
 1

SYNOPSIS

 Development of Microprocessor-based

Encoders for Secured Transmission

Introduction:

We are in the age of global communication systems. A communication system

exchanges information between source and destination. It connects a data source to a data

user through a channel. The most widely used method of communicating over distances is

through electrical signal, either over cables or through free space using radio wave. Data

when enter the communication system from the data source, are first processed by a

source encoder and it is called the source code. This source code is processed by the

channel encoder, which transforms a sequence of source code into another sequence

called the channel code. Next the modulator converts each channel code into

corresponding analog signal and transmitted through the channel. A demodulator

demodulates the signal into received code at the receiving end. Then, the signal passes a

channel decoder, which converts the coded signal into source code at the destination.

In general, there are three type of problems associated with such data transmission.

Firstly, a large volume of data has to be handled. Secondly, much of the data is very

sensitive to errors and thirdly, the most important; a lack of security exists when a volume

of data is transferred from its source to the destination if no measure is taken for its

security [1,2,3,4,5,6,7,8,9].

The process of adding security to a message is called encryption. In the process of

encryption some measure is taken to encapsule the actual information to make it well

secured. Hence the process by which an unprotected message is transformed into

ciphertext of an unintelligible form is known as encryption. In order to restore the original

message, a deciphering technique is used. This process is known as decryption or

decipherment. The ciphering facility for conversion of plaintext into ciphertext and vice

versa is known as a cryptographic system or cryptosystem [10].

A number of cryptographic encoder has been developed over the years from

ancient times. Each has its advantages and disadvantages. Generation of crypto-models is

such a technique where research for the models on cryptosystem is a continuous and

growing need against the threat of privacy violations [7,9].

Cryptosystem can basically be of two types – symmetric cryptosystem and

asymmetric cryptosystem. In symmetric cryptosystem, the same key is used to encrypt

and decrypt a message. This key is called secret key and hence it is better known as secret

key cipher system. Asymmetric cryptosystem uses one key (the public key) to encrypt a

message and a different key (the private key) to decrypt the message [4,11,12,13,14,15].

From e-mail to cellular communication, from secured web access to digital cash,

cryptography is an essential part of today’s information systems. It helps to provide

accountability, fairness, accuracy and confidentiality. It can prevent fraud in electronic

commerce and assure the validity of financial transactions. It can prove one’s identity and

protect one’s anonymity. It can keep away vandals from altering one’s web page and

prevent industrial competitors from reading one’s confidential documents. As commerce

and communications continue to move to computer networks as e-commerce,

cryptography is becoming vital issue in communication. This electronic commerce

schemes may fall fraud through forgery, misrepresentation, denial of service and cheating

if we do not add security to these systems. In fact, computerization makes the risks even

greater by allowing attacks that are impossible in non-automated systems. Only strong

cryptography can protect against these attacks [5].

 2

A cryptographic system may be obtained in two ways

i. Through software algorithms and its implementations using High

Level Language

ii. Through design of microprocessor based encoder and

implementation through Assembly Level Language.

The objective of the present study is to design microprocessor based encoder to

implement the same through assembly level language [16,17,18,19,20,21].

In the present study, some microprocessor based encoding systems for

encapsulations of data to enhance the security of the message have been developed. Its

principle has been verified through implementation using microprocessor-based system.

All techniques considered the inputs as stream of bits. The stream is divided into

blocks of size k which varies from 1 to n. For the present implementations, a block of bits,

varying from 8 to 256 bits has been selected on which the developed schemes are applied.

The block size may be increased to any value beyond 256 as the algorithms proposed are

generalized in nature.

In the present study six different techniques have been implemented through the

microprocessor based system. These are

1. Prime Position Encoding (PPE)

2. Triangular Encoding (TE)

3. Recursive Pair Parity Encoding (RPPE)

4. Rotational Encoding (RE)

5. Johnson Encoding (JE)

6. Bit swap Encoding (BSE)

The cascading of implemented encoders is also proposed in this study.

 For each encoder the frequency distribution of characters has been studied, a

corresponding graph has been drawn and a statistical method, called chi-square test, has

been performed to test the non-homogeneity of the encoded file in comparison with the

source file.

 Section 1 of the present study deals with Prime Position Encoding (PPE). Section

2 considers the Triangular Encoding (TE) Technique. Recursive Pair Parity Encoding

(RPPE) has been discussed in section 3. Rotational Encoding (RE) is discussed in section

4. Section 5 deals with Johnson Encoding (JE) and section 6 Bit swap Encoding (BSE).

The cascading of the schemes is presented in section 7.

1. Prime Position Encoding (PPE)
1.1 Principle of Prime Position Encoding

The technique accepts the binary level information and transforms the same into a

cipher-text based on the principle of PP Encoding. In this encoding, a block of data, X, is

considered in the form of binary as

 X= Xn Xn-1 ……..Xi …….X3 X2 X1 i varies from 1 to n

where X1, X2, ………Xn are the bits of the block, X1 being the first position (least

significant bit), X2 being the second position and so on in the block Xn being the msb .

The transformed block,

Y =Y n Yn-1 ………. Y i …….. Y 3 Y 2 Y 1 i varies from 1 to n as described in X.

 The transformation is made through reorientation of bit positioning generated

through PP encoding on the basis of prime position as stated below.

 The transformation for source block to encoded block is made using following

operations. Considering that a block contains n bit

i) The bit in i
th

position of X will move to the j
th

position of Y.

X i →Y j where the symbol → indicates ‘moves to’

 3

for i =1 to (n-1)

 j = (n-i) if j is non-prime

else j= previous prime of (n-i)

When j is the first prime number, then the last prime number will be considered as

previous prime in n-bit block.

ii) X i = Y i for i= n

 So the content of i
th

 position in X will occupy the j
th

 position in Y. The string X

having n bit would generate string Y with same number of bit.

1.2 Realization of PP Encoder using Microprocessor Based System
A generalized technique has been developed to realize the encoder through

microprocessor-based system. The program has been developed in assembly level

language for the length of the block up to 256 bits. The technique may be applied for

higher bit length also.

To generate the generalized algorithm for PP Encoder a 16 bit block is considered.

The algorithm required for 16 bit string is developed first. Then the concept is extended to

higher bit, multiple of 8.

Considering that the source data, X is stored in two adjacent locations in the memory.

The transformed data, Y would be stored in another two adjacent locations. This is also

termed as Target data.

For the transformation, it can be considered that the bit in a particular position of the

source data will occupy a particular position of the Target data as per the proposed

encoding principle. The logic of the bit movement from the source to the target is defined

as

X i moves to Y j for i = n = j

X i moves to Y j for i = 1 to (n-1)

 where j = n – i when j = non-prime

 = previous prime of j

To realize efficiently up to 256 bit length string, the bit position of the source as well

as that of target requires to be designated differently.

The principle is explained with the help of an example. Consider the source data as

76DDh stored in two adjacent locations of the memory. The 0
th

 bit (0) of X is moved to

the 14
th

 bit position of Y, the 1
st
 bit to the 13

th
, and so on. After the transformation, the

source data 76DDh is converted to 5FA7h.

The 0
th

 bit of source data moves to the 14
th

 bit position of the target data i.e. to the 1
st

row, 6
th

 column position of the target data. This target position (1
st
 row, 6

th
 column) is

coded in 8 bits as 00001 110b or 0Eh. The 5 most significant bits show the row number

and 3 least significant bits the column. The target information for each bit in source is

coded and is used as table for transformation. This coding can accommodate 32 rows and

8 columns. The maximum length of the block will be 32 x 8 = 256 bits. So 256 bit string

can be transformed to a target string of 256 bit.

This target information is stored in memory for transformation. The program will

collect the information of the target from the stored memory and set the target to either 0

or 1. The process of transformation can be made faster, if the target string is made clear

initially and the only 1s of the source data are considered for transformation in order to set

the corresponding bits of target string. Then the bits of source block, which are 1, need to

be sent to the corresponding the bit position of the target block consulting a table so

generated.

So the bit position of 1s in the source block is required to be detected and the number

of 1s present in the source block using a routine.

 4

Another routine will collect the position from F900h address .i.e. 01 here. This

position value will be added to the base address (FB00h) of the memory as given in the

table 1.6. The final address will be FB01h and the content of FB01h is 0Dh which is the

target position (1
st
 row, 5

th
 column) of 1

st
 bit, where the bit has to be set to 1. In this way

all the 8 bits of 1 in X will virtually move to the target positions in Y.

The principle of implementation described above has been extended to 256 bit block

with the required modification. However the principle is generalized in nature and may be

extended for higher block length.

The algorithms of different routines of generalized PP Encoding scheme are given in

section 1.3 and that of main in section 1.4.

1.3 Algorithm of Different Routines in Assembly Level
The routines are developed for realizing the PP Encoder are given in section 1.3a to

1.3g. The routines are generalized in nature. With proper change in parameter in the

routines, these may be used for any string, multiple of 8. The algorithms are written for

256 bit string. The registers described in algorithms below are A (Accumulator), B, C, D,

E, H, L, SP (Stack Pointer) and PC (Program Counter). The BC, DE and HL are used as a

pair of registers.

1.3a) Routine ‘save’

The routine saves the string stored from FA00h onwards to the save area which starts

from F9B0h onwards.

1. The D register is used as counter, loaded with 20h.

2. The HL pair is used as pointer pointed to F9B0h, the destination

3. The BC pair is used as pointer pointed to F9B0h, the source.

4. The memory content pointed by BC pointer is moved to A.

5. The content of A is moved to destination.

6. The HL and BC pairs are incremented

7. The counter register, D is decremented.

8. Untill the counter is exhausted, go to (4)

9. Return

1.3b) Routine ‘b’

 This routine clears the temporary result area starts from FA20h onwards for 20h

bytes.

1. The HL pair is used as memory pointer pointed to FA20h

2. The register A is cleared.

3. The register C, used as counter is loaded with 20h.

4. The content of A is moved to memory.

5. The memory pointer, HL pair is incremented.

6. The counter is decremented.

7. Till the counter is exhausted, go to (4)

8. Return

1.3c) Routine ‘a’

This routine finds the position of 1s in the string and stored the position in memory

location FE00h onwards. This routine also finds the number of 1s in the string and stored

in FDFFh.

1. The register A is loaded with count value, 20h and saved in FE00h

2. The HL pair used as pointer is pointed to memory location FE00h.

3. The BC pair is pointed to memory location FA00h.

4. The register D is cleared.

5. The register E is loaded with 08h.

6. The content of the memory pointed by the BC pair is moved to the regis A.

 5

7. The content of A is rotated right through carry.

8. Jump on no-carry to (11).

9. On carry, the content of D will move to the memory pointed by the HL

pair.

10. The HL pair is incremented.

11. The D register is incremented.

12. The E register is decremented.

13. Until the register E is exhausted, go to (7).

14. Else the BC pair is incremented.

15. The count value is retrieved and decremented and pushed back to the

stack.

16. Until the count value is exhausted, go to (5).

17. The content of L is moved to the memory location FDFFh.

18. Return

1.3d) Routine ‘c’

This routine checks the number of 1s stored in memory location FDFFh by the

routine ‘a’. If it finds any positive number, then the memory pointer is set to FE00h and

calls ‘prg’ routine for number of 1s stored in FDFFh.

1. The HL pair used as pointer is set to the memory location FDFFh.

2. The content of the memory location FDFFh is moved to C register.

3. If the memory content zero, then return.

4. The HL pointer is incremented to FE00h.

5. The routine ‘prg’ is called.

6. The register C is decremented.

7. Till the content of register C is exhausted, go to (4).

8. Return.

1.3e) Routine ‘prg’

 This routine is the important one. It takes the HL pair being the memory pointer as

parameter. The content of the memory is the 1s’ bit position of the string. It needs to be

moved to the target position as per the table, starts from FB00h onwards. The routine

performs the main function of PP Encoding.

1. The content of the memory is moved to the register L.

2. The register H is loaded with FBh.

3. The memory content is moved to register A and C register. This 8 bit data

gives the row and column information of the position of the target. The 5

most significant bits give the row and the 3 least significant bits the

column information.

4. The row information is derived from the data, stored in register E and in

memory FAFFh.

5. The column information is derived from the data and stored in FAFFh.

6. The BC pair is set to FAFEh.

7. The HL pair is set to FA20h, the base address of the result area.

8. The content of the memory, pointed by BC pair is moved to register A.

9. If the content of A is zero, go to (11).

10. The HL pair is incremented and the A register is decremented till the

content of A is zero.

11. The BC pair is pointed to the memory location FAFFh.

12. The content of FAFFh is moved to the register A.

13. The register D is loaded with 00000001b.

 6

14. If the content of A is zero, go to (20).

15. Else, the content of A is moved to the register C.

16. The content of register D is moved to the register A.

17. The content of A is rotated left and the register C is decremented.

18. Until the content of C is exhausted, go to (17).

19. The content of A is moved to D register.

20. The content of A is ORed with that of the memory and the result is in A.

21. Return.

1.3f) Routine ‘compr’

This routine compares the data from location F9B0h onwards with that of FA20h

onwards for 20h bytes.

1. The HL pair and BC pair are pointed to F9B0h and FA20h respectively.

2. The register D used as counter is loaded with 20h.

3. The content of memory pointed by BC pair is moved to A.

4. The content of A is compared with that of the memory, pointed by the HL.

5. If not zero, go to (9).

6. Else, the HL pair and BC pair are incremented.

7. The register D is decremented.

8. Until the content of D is exhausted go to (3).

9. Return.

1.3g) Routine ‘supply’

 This routine is used to supply the generated string at FA20h onwards to FA00h

onwards for 20h bytes.

1. The HL and BC pair are pointed to FA00h and FA20h respectively.

2. The register D used as counter is loaded with 20h.

3. The content of the memory pointed by BC pair is moved to A.

4. The content of A is moved to the memory pointed by the HL pair.

5. Both the BC and HL pairs are incremented.

6. The content of D register is decremented.

7. Till the content of D is exhausted, go to (3).

8. Return.

1.4) Algorithm of the Main Program for PP Encoder
The main program for PP Encoding calls the routines described above for the

transformation. When the routines are called, the registers used for it are properly saved in

the stack and at the time of leaving the routine the previous condition is restored by

popping.

1. The stack pointer SP is initialized at the highest address of the usable

RAM.

2. A register pair HL is used as pointer for iteration / cycle is initialized.

3. Another pointer used for storing the result (the transformed block) is saved

in memory.

4. The routine ‘save’ is called to save the string from FA00h onwards to

F9B0h onwards.

5. The routine ‘b’ is called the temporary result area.

6. The routine ‘a’ is called to find the positions of 1s in the string and store

from FE00h onwards.

7. The routine ‘c’ is called to check for presence of 1s in the string and calls

‘prg’ for the transformation consulting the table stored FB00h onwards.

 7

8. The content of the memory pointed by the pointer is incremented.

9. The routine ‘compr’ is called to compare the generated string with the

saved string.

10. If the transformed block is equal to the original block, the result displayed

and go to (12).

11. Else, the generated result is supplied to the location from where the

transformation will begin, by calling the routine ‘supply’ and go to (5).

12. Stop and end.

The above algorithm is implemented in assembly level for 16 bit initially in order

to verify the transformation. The same algorithm is extended to 256 bit block with the

microprocessor based kit. It is worth pointing that there is no limitation in increasing the

length of the block, if the microprocessor based system supports with large memory. For

the bit-length higher than 256 bit, the destination of the target has to be coded for more

than 8 bits.

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 1. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

Fig 1: Frequency Distribution of characters in source message and encoded message

under Prime Position Encoding

The Chi-square test has also been performed for source file and encoded file.

Table 1 shows the values of Chi-square for different bit stream length. Hence the Chi-

square is highly significant at 1 % level of significant.

Table 1: Chi-square value of PP Encoder for different bit length

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-

square

For 16

bit

length

Chi-

square

For 32

bit

length

Chi-

square

For 64

bit

length

Chi-

square

For

128bit

length

Chi-

square

For

256bit

length

Ave Chi-

Square

1 a.abc 904 990.86 362 771 258.71 195.18 173.21

2 b.abc 1061 1106.68 370.32 903.4 265.37 265.37 246.75

3 c.abc 907 984.74 301.21 769.58 228.42 228.42 215.09

 8

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-

square

For 16

bit

length

Chi-

square

For 32

bit

length

Chi-

square

For 64

bit

length

Chi-

square

For

128bit

length

Chi-

square

For

256bit

length

Ave Chi-

Square

4 d.abc 2841 3090.79 536.96 2359.34 673.25 458.53 478.49

5 e.abc 1765 1866.81 384.07 1532.2 480.74 332.36 336.88

6 f.abc 2227 2580.27 501.98 1898.17 633.79 477.68 504.04

7 g.abc 2157 2423.77 662.23 1817.52 563.04 410.77 437.07

8 h.abc 7121 7686.52 1811.56 5809.87 1668.83 1169.3 986.9

9 i.abc 8830 9559.08 1242.22 7392.4 2081.02 1189.76 1627.33

10 j.abc 2182 2432.87 481.64 1779.85 558.12 425.06 452.05

Average 2999.5 3272.24 665.419 2503.33 741.129 515.243 545.781 1373.86

2. Triangular Encoding (TE)
This encoder will accept a string of bit length, n. It will generate the encoded

string of bit length, n through encoding process. All the generating bits in the process

looks like a triangle and hence it is termed as triangular encoder. The generated bits in the

triangle give the encoded string. The encoding and decoding operation are discussed in

section 2.1.

2.1 Principle of Triangular Encoding

i) Encoding Process
The stream of binary bits are grouped into a finite block length, n and fed to

memory. A = a1, a2, ………. an are the bits of the string, a1 the most significant bit (msb)

and an the least significant bit (lsb) of the string.

 The encoding operation starts from most significant bit and continues up to least

significant bit. The msb is XORed with the next to msb i.e. a 1 is XORed with a 2 and

generates a 12 ; a 2 is XORed with a 3 and generates a 23 ; and so on up to a n-1,n . Thus it

generates n-1 bits in the process. The same operation is repeated on the intermediate

stream of bits generated in each cycle till it generates single bit. The output of each stage

of operation for 8 bit stream is given in figure 2.1.
Input String

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8

a 12 a 23 a 34 a 45 a 56 a 67 a 78

a 13 a 24 a 35 a 46 a 57 a 68

a 1234 a 2345 a 3456 a 4567 a 5678

a 15 a 26 a 37 a 48

a 1256 a 2367 a 3478

a 1357 a 2468

a 12345678

Encoded

String

b 1 b 2 b 3 b 4 b5 b6 b 7 b 8 = a 1 a 12 a 13 a 1234 a 15 a 1256a 1357 a 12345678

Fig 2.1 : Generation of Encoded string

The input 8 bit stream (a1 to a8) is shown in the first row. After the first encoding

operation, it generates 7 bit stream shown in the second row in the figure. The operation

 9

continues till the output is a single bit data (a 12345678) as shown in the last row in figure

2.1. The operation may be described as follows

 a 12 = a 1 XOR a 2 ; a 1 XOR a 1 = 0

 a 12 XOR a 23 = a 1 XOR a 2 XOR a 2 XOR a 3 = a 1 XOR a 3 = a 13

The encoded 8 bit string is generated by collecting the most significant bits i.e. a 1 a 12 a13

a 1234 a 15 a 1256 a 1357 a 12345678. Let the generated string be B = {b 1 b 2 b 3 b 4 b5 b6 b 7 b 8 }

. Then

b 1 = a 1 ; b 2 = a 12 ; b 3 = a 13 ; b 4 = a 1234 ; b 5 = a 15 ; b 6 = a 1256 ; b7 = a 1357 ;

b 8 = a 12345678 .

So the encoded string will be B = {b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 } . The encoded string can

be used as cipher text in encryption.

ii) Decoding Process
 In order to decode the encoded string, the same encoding operations are to be

applied on the encoded string B = {b1 b2 b 3 b 4 b 5 b 6 b 7 b 8 }. The intermediate string for

each step of decoding and hence the source stream generated is given in figure 2.2.

Encoded String

b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8

b 12 b 23 b 34 b 45 b 56 b 67 b 78

b 13 b 24 b 35 b 46 b 57 b 68

b 1234 b 2345 b 3456 b 4567 b 5678

b 15 b 26 b 37 b 48

b 1256 b 2367 b 3478

b 1357 b 2468

b 12345678

Decoded

String

b1 b12b 13 b 1234 b15 b 1256 b 1357 b 12345678 = a 1 a 2 a 3 a 4 a 5 a 6 a7 a 8

Fig 2.2 : Decoding of Encoded string

The decoded string A=(a1 ……a 8)= b1 b12b 13 b 1234 b15 b 1256 b 1357 b 12345678. The proof of

decoding is given as follows.

Consider the encoded string as B = {b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 } and the decoded

string generated as {b 1 b12b 13 b 1234 b 15 b 1256 b 1357 b 12345678} and the decoded string is

equal to the source string A = {a1 a2 a3 a4 a5 a6 a7 a8 }.

b 1 = a 1

b 12 = b 1 XOR b 2 = a 1 XOR a 12 = a 1 XOR a 1 XOR a 2 = a 2

b 13 = b 1 XOR b 3 = a 1 XOR a 13 = a 1 XOR a 1 XOR a 3 = a 3

b 1234 = b 1 XOR b 2 XOR b 3 XOR b 4 = a 1 XOR a 1 XOR a 2 XOR a 1 XOR a 3

 XOR a 1 XOR a 2 XOR a 3 XOR a 4 = a 4

b 15 = b 1 XOR b 5 = a 1 XOR a 1 XOR a 5 = a 5

b 1256 = b 1 XOR b 2 XOR b 5 XOR b 6 = a 1 XOR a 1 XOR a 2 XOR a 1 XOR a 5

 XOR a 1 XOR a 2 XOR a 5 XOR a 6 = a 6

b 1357 = b 1 XOR b 3 XOR b 5 XOR b 7 = a 1 XOR a 1 XOR a 3 XOR a 1 XOR a 5

 XOR a 1 XOR a 3 XOR a 5 XOR a 7 = a 7

 10

b 12345678 = b 1 XOR b 2 XOR b 3 XOR b 4 XOR b 5 XOR b 6 XOR b 7 XOR b 8

= a 1 XOR a 1 XOR a 2 XOR a 1 XOR a 3 XOR a 1 XOR a 2 XOR a 3

 XOR a 4 XOR a 1 XOR a 5 XOR a 1 XOR a 2 XOR a 5 XOR a 6 XOR a 1

 XOR a 3 XOR a 5 XOR a 7 XOR a 1 XOR a 2 XOR a 3 XOR a 4 XOR

 a 5 XOR a 6 XOR a 7 XOR a 8 = a 8

So this proves the decoding correctness.

 The principle of encoding and decoding, shown for 8 bits only, are applicable to a

string of n bits. Therefore it is generalized in nature.

 The encoding and decoding operations form a triangle, if we see all intermediate

bits as a whole and hence it is termed as Triangular Encoder.

2.2 Realization of Triangular Encoder through Microprocessor based System
 The Triangular Encoding operation / transformation has been implemented with

the help of an 8 bit microprocessor based system, up to 256 bit block length.

2.3 Algorithm of Different Routines for TE
 The main program along with other routines of the transformation for 16/ 32/ 64/

128/ 256 bit string has been written in assembly level language. The algorithm for main

program and all related routines are given section 2.3.1 to 2.3.5.

 There are 4 routines, which are called by the main program stated below.

2.3.1 Routine ‘rotat’
This routine can rotate n bytes in memory by one bit left. To illustrate the technique,

consider a 4 byte long string. The string is stored in the memory byte-wise. The Least

Significant (LS) byte is stored in lower memory, its address is say, x and the Most

Significant (MS) byte is stored in location, (x + 3). The rotation of the string by one bit to

the left means msb will go to lsb position and all other bits will move one bit to the left.

To implement it, msb is tested first, whether it is 0 or 1, and set the carry flag accordingly.

Then the LS byte is rotated left through carry. The msb will move to the lsb position,

other bits of LS byte will move to the left by one bit and msb of LS byte will go to the

carry position. The next byte of the string will be rotated through carry and continue till

the last byte is reached.

1. The registers used in the routine are pushed in stack and HL pair is pointed

to the most significant byte of the string.

2. The D register is loaded with the masking byte 10000000b.

3. The register E is loaded with counter value representing the number of byte

in the string.

4. The MS byte is moved to A register.

5. The content of D register is ANDed with A to check the msb of the string.

6. If the msb of the string is 0, go to (7).

 Else, carry is set, and go to (8).

7. The carry is set and complement the carry.

8. The memory HL is set to the address of the LS byte of the string.

9. The memory content is rotated left through carry.

10. The memory pointer is incremented.

11. The byte counter E is decremented.

12. Until the byte counter is zero, go to (10).

13. The registers are popped.

14. Return.

 11

2.3.2 Routine ‘clr’
This routine clears n bytes from a particular address of the memory. The algorithm

of ‘clr’ routine is given below.

1. The registers used in the routine are pushed in stack and HL pair is pointed

to the first location of the memory.

2. The C register is loaded with byte count value and A is cleared.

3. The content of A is stored to memory, pointed by the HL pair.

4. The memory pointer is incremented to the next location of the memory.

5. The byte counter, C register is decremented by one.

6. Until the byte counter value is 0, go to (3).

 Else the content of the registers are restored by popping.

7. Return.

2.3.3 Routine ‘mvtrgt’
This routine moves the most significant bit of the generated string to the place of

the most significant bit in target string.

1. The registers used in the routine are pushed in the stack.

2. The HL pair is pointed to the last location of the generated string in

memory.

3. The D register is loaded with 1000000b.

4. The content of the memory is moved to A.

5. The D register is ANDed with A and the result is moved to B.

6. The memory pointer is moved to the last location of the target string in

memory.

7. The content of B register is ORed with memory content and the result is

stored in memory.

8. The registers are popped.

9. Return.

2.3.4 Routine ‘XOR’
 This is very important routine. This routine XORs the successive bits (i

th
 bit and

(i-1)
th

) of the string and stores the in i
th

 bit. The process will start from most significant

bit and will continue to the least significant bit. The algorithm is given below.

1. The registers used in the routine are pushed in the stack.

2. The HL register pair, used as memory pointer is set to the last location of

the memory where the string is stored.

3. The register B, byte counter is loaded with count value.

4. The register D is loaded with the byte, 01000000b.

5. The register C is loaded with 07h, the number of operation for a byte.

6. The content of the memory is ANDed with D, the result is shifted left by

one bit and is stored in E.

7. The content of D is rotated left by one bit.

8. The content of memory is moved to A and the content of D is ANDed with

A.

9. The content of E is XORed with A.

10. The zero flag is checked, if it is set, go to (13).

 Else, the content of memory is moved to A, the D is ORed with A and the

 result is sent to memory.

11. The D register is rotated right by 2 bits.

12. The C is decremented, till it is zero go to (6). Else, go to (16).

13. The unmasked bit position in memory as determined by D is reset to 0.

 12

14. The masking byte in D is restored and rotated right by 2 bits.

15. The C, operation counter is decremented, till it is zero go to (6).

16. The 8
th

 operation is made between lsb of the present location and msb of

the previous location and the result is put in lsb of the present location.

17. The register B, byte counter is decremented by one.

18. Till the byte counter is 0, go to (4).

 Else, the registers are restored by pop operation.

19. Return.

2.3.5 Main Program
The algorithm of the main program which calls the other routines described above

applies the triangular encoding operation.

1. The stack pointer is initialized.

2. Routine ‘clr’ is called.

3. The registerB is initialized with 10h for 2 byte data.

4. The ‘mvtrgt’ is called and then the routine ‘rotat’.

5. The counter B is decremented.

6. The routine ‘XOR’ is called.

7. The ‘mvtrgt’ is called and then the routine ‘rotat’.

8. The counter B is decremented.

9. Till the B is zero, go to (6).

10. End.

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 2. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

Fig 2: Frequency Distribution of characters in source message and encrypted message

under Triangular Encoding

The Chi-square test has also been performed for source file and encoded file. Table 2

shows the values of Chi-square for different bit stream length. In this case also the Chi-

square is highly significant at 1 % level of significant

Table 2: Chi-square value of Triangular Encoder for different bit length

Triangular Encoder

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-square

For 16 bit

length

Chi-

square

For 32 bit

length

Chi-

square

For 64 bit

length

Chi-

square

For 128bit

Length

Chi-

square

For 256bit

length

Ave Chi-

Square

1 a.abc 904 1121.94 1068.4 951.74 896.1 838.95 839.04

2 b.abc 1061 1375.67 1205.6 1152.42 1152.93 1128.63 1116.81

 13

Triangular Encoder

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-square

For 16 bit

length

Chi-

square

For 32 bit

length

Chi-

square

For 64 bit

length

Chi-

square

For 128bit

Length

Chi-

square

For 256bit

length

Ave Chi-

Square

3 c.abc 907 1208.59 1029.99 966.96 975.8 948.21 937.24

4 d.abc 2841 3165.98 3291.88 3065.41 2966.2 2870.36 2804.04

5 e.abc 1765 2266.89 2030.04 1917.25 1910.28 1881.12 1850.23

6 f.abc 2227 3027.19 2721 2494.09 2410.25 2389.46 2351.56

7 g.abc 2157 2861.56 2510.92 2355.87 2304.06 2188.15 2105.05

8 h.abc 7121 9373.46 8283.96 7546.94 7376.81 7268.61 7167.57

9 i.abc 8830 11592.94 10293.64 9480.21 9108.76 9040.43 8847.35

10 j.abc 2182 2947.55 2652.19 2415.53 2287.17 2251.53 2204.05

Average 2999.5 3894.177 3508.762 3234.642 3138.836 3080.545 3022.29 3313.21

3. Recursive Pair Parity Encoding (RPPE)
This is another method of Encoding. It is symmetric and block cipher encoding in

connection with the encryption.

 Considering a k-bit string is passed through the Recursive Pair Parity (RPP)

encoder, which encodes a string of same length at its output. Let X be the string of k-bit.

It is supplied as an input to the RPP Encoder. The encoder will generate a string X
1

of k-

bit at the output. This is the first cycle of encoding. If the generated string is allowed to

pass to the input of the encoder again, then the encoder will generate a string X
2

. This is

called the 2
nd

 cycle and so on. The process is repeated and checked each time at the

output, whether the output is same as the string supplied initially (i.e. X) or not. It is

assumed that the original string is generated after i cycles. Then the intermediately

generated one of (i-1) strings can be used as encoded string. Consider that after m (m<i)

cycles the generated string is used as encoded string. The original string X can be decoded

by applying (i-m) cycles on the encoded string.

3.1 Principle of RPP Encoding
To describe the principle of Encoding, a binary string, X

0
 with the bit length of n,

is considered. The source string represented by subscript 0 i.e.

X
0
 = x1

0 x2
0 x3

0 x4
0

………. xn
0

where x1
0
 is the most significant bit and xn

0
 the least significant bit of the string.

After the application of 1
st
 cycle of RPP Encoding operation, the string generated is

X
1
 = x1

1 x2
1 x3

1 x4
1

………. xn
1

using the rules given below.

x1
1

=
 x1

0

x2
1

=
 x1

1
XOR

 x2
0

= x1
0

XOR
 x2

0

x3
1

=
 x2

1
XOR

 x3
0

= x1
0

XOR
 x2

0
XOR

 x3
0

…

xn
1

=
 x2

1
XOR

 x3
0 = x1

0
XOR

 x2
0

XOR x3
0

XOR
 x4

0
XOR ……. XOR xn

0

 If the same operation is repeated k times, the string generated after k
th

 iteration as

X
 k

= (x1
k x2

k x3
k ……… xn

k
) can be obtained using rules given below.

x1
k

=
 x1

k-1
=

 x1
0

x2
k

=
 x1

k
XOR

 x2
k-1

= x1
k-1

XOR
 x2

k-1

x3
k

=
 x2

k
XOR

 x3
k-1

= x1
k-1

XOR
 x2

k-1
XOR

 x3
k-1

…

xn
k

=
 xn-1

k
XOR

 xn
k-1 = x1

k-1
XOR

 x2
k-1

XOR x3
k-1

XOR
 x4

k-1
 ……. XOR xn

k-1

 14

So any bit generated in the transformation is the result of XORing between the bit

position in the previous transformation and parity generated up to the previous bit. Hence

is termed as Pair Parity Encoder. The same transformation is applied recursively on the

string, hence it is termed Recursive Pair Parity (RPP) Encoder.

3.2 Realization of Recursive Pair Parity Encoder
The encoder applies on a 256 (say) bit block by calling routines developed given

in section 3.2.1 to 3.2.5. There are four routines (ctr_clr, sav_data, xor_data, ctr_inr)

used by the main program of RPPE. The algorithms of the routines and the main program

are given in 3.2.1 to 3.2.5 for a block of 256 bit.

3.2.1 Routine ctr_clr
This routine clears the area (F900h & F920h) of the memory used as counter for

storing the number of transformation required to reappear the original string.

1. The Processor Status Word (PSW), BC, DE and HL register pairs are

saved in the stack.

2. The HL pair is pointed to the location(F950h) of the memory.

3. The register D, used as counter is loaded with 20h for clearing 32 bytes.

4. The register A is cleared.

5. The content of A is moved to the Memory.

6. The memory pointer is incremented.

7. The counter D is decremented.

8. Until the content of counter is zero, go to (5).

 Else, the register pairs and PSW are popped.

9. Return.

3.2.2 Routine sav_data
This routine saves the data from F900h onwards to the memory area, pointed by

memory pointer (HL pair).

1. The Processor Status Word (PSW), BC, DE and HL register pairs are

2. saved in the stack.

3. The register D, used as byte counter is loaded with 20h for 256 bit string.

4. The BC pair, used as memory pointer, is pointed to the location(F900h)

of the memory.

5. The content of the memory is taken to the register A.

6. The content of A is moved to that of memory.

7. The memory pointer is incremented.

8. The byte counter is decremented.

9. Until it is zero, go to (4).

 Else, the register pairs and PSW are popped.

10. Return.

3.2.3 Routine xor_data
This is the important routine which XORs the bits of the string according to the

principle of RPP operation. The content of B will be taken as parameter.

1. The registers is pushed in stack.

2. The HL pair is pointed to the last location of the string.

3. The masking register D is loaded with 10000000b

4. The counting register C is loaded with 07h.

5. The most significant bit of the memory is taken to A, is rotated right by

one bit and stored in E.

6. The content of D is rotated right by one bit.

7. The next to ms bit is taken to A and is XORed with E.

 15

8. If the result is zero, go to (12).

 Else, next to ms bit is set.

9. Are all the operations, as supplied through B, over ? if yes, go to (23).

10. The C is decremented.

11. Till it is zero, go to (5).

 Else, go to (16).

12. The next to ms bit is set to zero.

13. Are all the operations, as supplied through B, over ? if yes, go to (23).

 Else, the mask byte is restored.

14. The C is decremented.

15. Till it is zero, go to (5).

16. The D is loaded with 00000001b.

17. The ls bit is collected, shifted right by one bit and stored to E.

18. The ms bit of previous location is collected in A

19. It is XORed with E.

20. If it is zero, go to (21).

 Else, the bit concern is set and go to (22).

21. The bit concern is reset.

22. If all the operations, as supplied through B, are not over, go to (3).

23. The pushed registers are popped up.

24. Return.

3.2.4 Routine ctr_inr
This routine increments the memory counter, formed by the memory locations

(F900h & F901h), by one.

1. The registers is pushed in stack.

2. The HL pair is pointed to F94Fh

3. The HL pair is incremented.

4. The content of the memory is taken to A and checked whether it is full or

not.

5. If it is full, go to (3).

 Else, the content of the memory is incremented.

6. The pushed registers are popped up.

7. Return.

3.2.5 Main Program of RPP
The algorithm of main program calling the routines developed for RPPE is given

below.

1. The stack pointer is initialized.

2. Call ctr_clr.

3. Counter C is initialized with 20h for 256 bit string.

4. HL pair pointer is initialized to initial address FA00h for storing.

5. Call sav_data.

6. Counter B is initialized with FFh for 255 operations.

7. Call xor_rpp

8. Call ctr_inr.

9. Call sav_data.

10. The counter C is decremented.

11. Until the content of C is exhausted, go to (6).

12. Stop.

 16

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 3. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

 The Chi-square test has also been performed for source file and encoded file.

Table 3 shows the values of Chi-square for different bit stream length. In this case also the

Chi-square is highly significant at 1 % level of significant.

Fig 3: Frequency Distribution of characters in source message and encoded message

under RPP Encoding

Table 3: Chi-square value of RPP Encoder for different bit length

RPP Encoder

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-square

For 16 bit

Length

Chi-

square

For 32 bit

length

Chi-

square

For 64 bit

length

Chi-

square

For 128bit

length

Chi-

square

For 256bit

length

Ave Chi-

Square

1 a.abc 904 1156.13 1124.11 1109.2 1062.39 1049.01 1035.82

2 b.abc 1061 1347.59 1320.54 1268.47 1260.58 1254.71 1247.69

3 c.abc 907 1176.68 1140.3 1063.15 1047.21 1031.85 1030.67

4 d.abc 2841 3731.23 3639.42 3575.04 3547.86 3502.24 3416.07

5 e.abc 1765 2318.8 2292.7 2291.52 2217.45 2252.88 2204.06

6 f.abc 2227 3033.61 3019.67 2976.92 2968.62 2960.28 2847.83

7 g.abc 2157 2798.8 2748.02 2663.32 2588.36 2594.71 2560.16

8 h.abc 7121 6655.57 9201.07 8894.04 8721.55 8602.96 8516.29

9 i.abc 8830 11664.55 11310.32 11037.66 10803.58 10680.82 10501.99

10 j.abc 2182 2921.47 2890.65 2838.21 2813.67 2799.74 2739.33

Average 2999.5 3680.44 3868.68 3771.753 3703.127 3672.92 3609.991 3717.82

4. Rotational Encoding
In this encoding the bit stream considered of length, n is rotated placing in a ring.

The bit length may very from 8 bit to 256 bit. The rotated string may be considered as

encoded string. The decoding operation will depend upon the no of block length and the

the number of rotation given at the time of encoding.

4.1 Principle of Rotational Encoding

Considering a very simplest case with a byte, A(a1 a2 a3 a4 a5 a6 a7 a8) string is

allowed to rotate anticlockwise by one bit.

 17

After the first rotation by one bit, lsb has taken the msb position and all other bits

are shifted right by one bit. So 8 such rotations are required to get back the original string

for an 8 bit string and one of the seven intermediate strings can be used as encoded string.

If the string generated after 2
nd

 rotation is used as encoded string, then (8 –2) = 6

more rotations are to applied on the encoded string to get back the original string.

 The principle can be extended to n byte string. The number of rotation required to

get back the original string for n byte string (m) = n x 8, where n is the number of bytes

in the string.

The total number of intermediately generated string, (k) = (n x 8 –1)

For n = 1, k = 7.

 Considering that after i-th rotation, the generated string is used as encoded string.

Then the number of rotations (l) to be applied on the encoded string at the time of

decoding = n x 8 – i.

 For n = 1 and i = 2 , then l = 6.

 When a large number of bytes are taken into consideration in the string, the

rotational encoding will not be very effective. On 8
th

 rotation, the LS byte will go to the

MS byte position and all other bytes will be moved to the right. The characters in the

string will appear again in the shifted condition and LS byte character will come to the

MS byte position. On 16
th

 rotation the same thing will happen. So after 8 and its multiple

rotation the part of the message will reappear with cut and paste condition. This is the

disadvantage with the rotational encoding.

 On rotational encoding a modification is suggested here with a view to eliminate

the disadvantage with the rotational encoding.

 Before applying the rotational encoding, a particular bit (say, lsb) of each byte of

the string under consideration is complemented. This additional feature is very effective

and will eliminate the disadvantage of reappearing the bytes after 8 and its multiple

rotations.

 This will also be very effective for any number of bytes. The encoding with large

number of bytes with a particular bit inverted will be more effective. The complexity will

be high with large number of bits in the string.

4.2 Encoding Procedure
 The Modified Rotational Encoding (MRE) needs two steps to encode the string..

1. Inversion of a bit in each byte of the string.

2. Rotational encoding: The number of rotation will be applied to the string

under consideration, which is less than the number of rotations required to

get back the original string.

4.3 Decoding Procedure
 Two following steps in succession are required to decode the encoded string.

1. Rotational Decoding: The rest number of rotation will be applied to the

encoded string under consideration to complete the number of rotations

required to get back the original string.

2. Inversion of the bit in each byte of the string.

4.4 Realization of Modified Rotational Encoder

The microprocessor, as specified in the first chapter, has been used for realizing

the Modified Rotational Encoder. To realize the encoder, three following routines are

required. The main routine is calling the three routines (lsbinv, rot, store). The

algorithms of routines are given from section 4.4.1 to 4.4.4.

 18

4.4.1 Routine lsbinv
This routine has used HL pair as memory pointer and C register as counter,

representing the number of bytes for which the ls bit will be inverted.

1. The BC pair, HL pair, DE pair is pushed in the stack.

2. The HL pair, used as memory pointer is pointed to f900h

3. The register C is loaded with the count value.

4. Register B is initialized with the masking byte (00000001b).

5. The memory content, pointed by HL, is tested for its lsb whether 0 or 1.

6. If it were zero, go to (7), for setting it 1.

 Else, reset it to 0 and go to (8).

7. The ls bit is set to 1

8. The memory pointer is incremented

9. The counter C is decremented.

10. Until the counter value is zero, go to (5).

11. The registers are popped back.

12. Return.

By changing the counter value, the bit length of the string can be changed. Here, only the

lsb has considered, to be inverted. However any bit in the bytes of the string can be

inverted by changing the masking byte in register B.

4.4.2 Routine rot
 This routine rotates the string anticlockwise by one bit, containing n bytes. It is

assumed that the string is stored from f900h onwards, LSB in f900h. The ls bit of the

string stored in f900h is checked for 0 or 1 and set the carry accordingly. Then the

memory pointer is set to the last location, containing the MSB, and rotate the byte right by

one bit through carry. The process is continued until the first location, containing the

LSB, is reached. The steps are

1. Register C is initialized as counter

2. HL pair, used as memory pointer, is set to F900h

3. The memory content is moved to A.

4. 01h is ANDed with A.

5. If the zero flag is set, register B is loaded with 00h, otherwise with 01h.

6. The memory pointer is set to the last location.

7. The ls bit in B is shifted to carry bit.

8. The memory content is rotated through carry.

9. The pointer is decremented.

10. The byte counter, C is decremented.

11. Until the counter is exhausted, go to (8).

12. Return.

By changing the count value in C, the bit length in String can be changed.

4.4.3 Routine store
This routine is used for storing the string as well as the intermediate string generated

from F900h onwards during encoding or decoding. Here the HL pair is used the pointer of

the memory from where the bytes will stored. The initialization of the HL pair is made

through the main program and will be used as parameter to the routine ‘store’.

1. The BC and DE pair is saved in the stack.

2. The D is initialized with byte counter.

3. The BC pair is initialized with f900h.

4. The content of memory pointed by BC pair is moved to A.

5. The content of A is moved to the memory pointed by HL pair.

6. The HL and BC pair are incremented.

 19

7. The D, byte counter is decremented.

8. Till it is zero, go to (4).

9. BC and DE pairs are incremented.

10. Returned.

By changing the counter value in D, the byte length can be changed.

4.4.4 Main Program
The algorithm of main program is as follows.

1. The stack pointer is initialized.

2. The HL pair is initialized with fa00h.

3. The routine ‘store’ is called.

4. The routine ‘lsbinv’ is called.

5. The routine ‘store’ is called.

6. The counter C is loaded with the value, the number of rotations to be given

a. during the encoding.

7. The routine ‘rot’ is called.

8. The counter is decremented.

9. Till it is zero, go to (7).

10. The routine ‘lsbinv’ is called.

11. The routine ‘store’ is called.

12. End.

4.5 Encoding of MRE
 Here, the routine ‘lsbinv’ is called once and routine ‘rot’ is called j, the number of

rotations to be given during the encoding, times. The output generated at the memory

where the string was supplied.

1. The stack pointer is initialized at ffa0h.

2. The routine ‘lsbinv’ is called.

3. The counter C is loaded with the value, the number of rotations to be given during

 the encoding.

4. The routine ‘rot’ is called.

5. The counter is decremented.

6. Till it is zero, go to (4).

7. End.

4.6 Decoding of MRE
Here, the routine ‘rot’ is called (8 n – j), the number of rotations to be given

during the decoding, times and routine ‘lsbinv’ is called once.

1) The stack pointer is initialized at ffa0h.

2) The counter C is loaded with the value, the number of rotations to be given during the

 decoding

3) The routine ‘rot’ is called.

4) The counter is decremented.

5) Till it is zero, go to (3).

6) The routine ‘lsbinv’ is called.

7) End.

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 4. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

 The Chi-square test has also been performed for source file and encoded file.

Table 4 shows the values of Chi-square for different bit stream length. In this case also

the Chi-square is highly significant at 1 % level of significant.

 20

Fig 4: Frequency Distribution of characters in source message and encrypted message

under Rotational Encoding

Table 4 : Chi-square value of Rotational Encoder for different bit length
Rotational Encoder

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

length

Chi-square

For 16 bit

length

Chi-

square

For 32 bit

length

Chi-

square

For 64 bit

length

Chi-

square

For 128bit

length

Chi-

square

For 256bit

length

Ave Chi-

Square

1 a.abc 904 1109.35 1316.06 1136.07 1284.01 1098.57 1086.26

2 b.abc 1061 1471.86 1615.00 1441.31 1605.69 1435.07 1308.72

3 c.abc 907 1258.83 1370.76 1237.29 1361.99 1248.86 1091.92

4 d.abc 2841 3515.57 4142.43 3897.72 4147.48 3601.20 3407.21

5 e.abc 1765 2294.55 2602.47 2455.67 2638.70 2317.90 2194.66

6 f.abc 2227 2887.01 3339.16 3140.01 3376.64 3005.89 2769.38

7 g.abc 2157 2760.56 3110.47 3000.47 3097.51 2842.84 2596.32

8 h.abc 7121 8930.41 10587.39 9835.08 10544.42 9071.24 8496.01

9 i.abc 8830 10944.10 13039.84 12041.59 13025.41 11049.97 10651.96

10 j.abc 2182 2846.57 3288.61 3048.81 3316.18 2910.09 2670.99

Average 2999.5 3801.88 4441.22 4123.40 4439.80 3858.16 3627.34 4048.63

5. Modified Johnson Encoding (MJE)
The Johnson encoding is based on Johnson counter. This counter considers a block of

n bits and is subjected to rotation through left or right. While rotating the block to left

(say), the msb is inverted only and takes the position of lsb and all other bits are shifted to

the left by one bit. If we call this as one rotation, the number of rotation required to get

back the original block is 2n. A modified Johnson encoding is suggested.

In this modified Johnson encoding, a particular bit of each byte within the block of

256 bit is inverted and then the Johnson encoding is applied. This is a generalized

technique. The block length can be increased to any length.

5.1 Modified Johnson Encoding for N byte string
The string consisting of N bytes is considered for Modified Johnson Encoding.

The following steps are followed for the encoding.

1. Inversion of lsb of each byte of the string

2. Johnson Encoding on the string

 21

Both these steps are followed during Encoding as well as Decoding. Step (1) followed

step (2) is used at the time of Encoding, while step (2) followed by step (1) at the time of

Decoding.

 The step (1) is a very simple technique, as discussed in the earlier section. Also it

is known that the total number of Johnson Encoding for n byte string required to get back

the string is twice the number of bits in the string i.e. (2 x 8 x N). Any one of (2 x 8 x n

– 1) can be used as encoded string.

 So at the time of Encoding, let us assume that K number of Johnson encoding

operations are applied, where k is less than (2 x 8 x N – 1).

 At the time of Decoding, (2 x 8 x N – 1 - K) number of operations will be applied.

5.2 Realization of Modified Johnson Encoder using Microprocessor Based

System
To realize the Modified Johnson Encoder using Microprocessor Based System, 3

following routines (lsbinv, rotj, store) are developed. The routines ‘lsbinv’ and ‘store’ are

the same as the routines used in Rotational Encoding. So the discussion of the algorithms

of these routines is not given for clarity. The routine ‘rotj’ differs slightly from the

routine ‘rot’ in rotational encoder. In Rotational Encoding, the lsb takes the position of

msb and other bits in the string moves one bit to the right, while in Johnson Encoding, the

lsb is inverted first and takes the position of msb and other bits in the string moves one bit

to the right. The algorithm of routine rotj is given in 5.2.1 and that of main program is

given in 5.2.2.

5.2.1 Routine rotj
 This routine rotates the string anticlockwise by one bit, containing n bytes. It is

assumed that the string is stored from f900h onwards, LSB in f900h. The ls bit of the

string stored in f900h is checked for 0 or 1 and set the carry to its inverted bit accordingly.

Then, the memory pointer is set to the last location, containing the MSB, and rotated the

byte right by one bit through carry. The process is continued till the first location,

containing the LSB, is reached. The steps are

1. Register C is initialized as counter

2. HL pair, used as memory pointer, is set to F900h

3. The memory content is moved to A.

4. 01h is ANDed with A.

5. If the zero flag is set, register B is loaded with 01h, otherwise with 00h.

6. The memory pointer is set to the last location.

7. The ls bit in B is shifted to carry bit.

8. The memory content is rotated through carry.

9. The pointer is decremented.

10. The byte counter, C is decremented.

11. Until the counter is exhausted, go to (8).

12. Return.

By changing the count value in C, the bit length in String can be changed.

5.2.2 Main Program of MJE
The algorithm of main program is given below.

1. The stack pointer is initialized at ffa0h.

2. The HL pair is initialized with fa00h.

3. The routine ‘store’ is called.

4. The routine ‘lsbinv’ is called.

5. The routine ‘store’ is called.

 22

6. The counter C is loaded with the value, the number of rotations to be given

during the encoding.

7. The routine ‘rotj’ is called.

8. The counter is decremented.

9. Until it is zero, go to (7).

10. The routine ‘lsbinv’ is called.

11. The routine ‘store’ is called.

12. End.

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 5. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

 The Chi-square test has also been performed for source file and encoded file.

Table 5 shows the values of Chi-square for different bit stream length. Hence the Chi-

square is highly significant at 1 % level of significant

Fig 5: Frequency Distribution of characters in source message and encrypted message

under Johnson Encoding

Table 5: Chi-square value of Johnson Encoder for different bit length
Johnson Encoder

Sl

no

Sourc

e

File

Source

File size

Chi-square

For 8 bit

Length

Chi-square

For 16 bit

length

Chi-

square

For 32 bit

length

Chi-

square

For 64 bit

length

Chi-

square

For 128bit

length

Chi-

square

For 256bit

length

Ave Chi-

Square

(overall)

1 a.abc 904 1120.88 1182.92 1214.89 1242.94 1268.80 1273.19

2 b.abc 1061 1428.69 1535.73 1583.92 1590.85 1597.17 1607.06

3 c.abc 907 1226.82 1312.53 1347.78 1355.73 1369.26 1367.45

4 d.abc 2841 3748.21 3860.95 4011.11 4096.90 4109.80 4123.25

5 e.abc 1765 2324.76 2458.00 2527.23 2588.38 2600.17 2617.36

6 f.abc 2227 2876.52 3095.78 3228.18 3310.49 3349.98 3354.83

7 g.abc 2157 2816.41 2920.78 2998.06 3068.83 3076.86 3113.73

8 h.abc 7121 9307.56 9868.90 10170.16 10365.23 10478.05 10531.60

9 i.abc 8830 11687.59 1143.22 12600.84 12894.00 12986.56 12993.66

10 j.abc 2182 2850.30 3051.06 3176.02 3247.08 3300.38 3309.84

Average 2999.5 3938.77 3042.99 4285.82 4376.04 4413.70 4429.20 4081.09

 23

6. Bit Swap Encoding (BSE)
 A stream of input string (binary) is divided into blocks which may vary from 1 to

n. on each block a bit swapping transformation will be applied. The transformed message

will be an unintelligible form. It is a kind of block cipher method and symmetric in nature.

The technique has been tested and verified up to 256 bit string using a microprocessor

based system.

6.1 Principle of Bit Swap Encoding
 The total message can be considered as blocks of bits with different size like 2/ 4/

8/ 16/ 32/ 64/ 128/ 256. The bit swapping can be applied to each block separately. The

principle of bit swapping is discussed in following for different block size.

a) Swapping on 2 bit:

Considering a block (X) with two binary bits a and b

 X = b a

 X 1 = a b after 1
st
 swapping

 X 2 = b a after 2
nd

 swapping

X 1 is the first swapping and X 2 is the second swapping. It takes two swapping to

get back the original block.

b) Swapping on 4 bit:

Considering a block (X) with four binary bits, we have

 X = d c b a

 X 1 = c d a b after 2 bit swapping on X

 X 2 = a b c d after 4 bit swapping on X 1

 X 3 = b a d c after 2 bit swapping on X 2

 X 4 = d c b a after 4 bit swapping on X 3

It is mentioned that while dealing with 4 bit block, first 2 bit swapping and then 4 bit

swapping are applied on X generating X 1 and X 2. The same process is applied on X 2

generating X 3 and X 4. The block (X 4) generated is the original block.

c) Swapping on 8 bit:

Considering a block (X) with eight binary bits, we have

 X = h g f e d c b a

 X 1 = g h e f c d a b after 2 bit swapping on X

 X 2 = e f g h a b c d after 4 bit swapping on X 1

 X 3 = a b c d e f g h after 8 bit swapping on X 2

 X 4 = b a d c f e h g after 2 bit swapping on X 3

 X 5 = d c b a h g f e after 4 bit swapping on X 4

 X 6 = h g f e d c b a after 8 bit swapping on X 5

2 bit, 4 bit and 8 bit swapping are applied on the block and the same process is followed

to get back the original block.

 Swapping on 16, 32, 64, 128 and 256 follows the same principle as described

above. The number of swapping required to get back the original string is as follows.

The number of swapping required is 2 for 2 (2
1
) bit swapping, 4 for 4 (2

2
) bit

swapping, 6 for 8 (2
3
) bit swapping, 8 for 16 (2

4
) bit swapping and By induction it

can be written as

The number of swapping (m) required to get back the original string for n bit string will

be

 m = 2 log (n) / log(2) where n is an integer.

For 256 bit block swapping, 2, 4, 8, 16, 32, 64, 128 and 256 bit swapping are required and

again these swapping are applied to get back the original block. Therefore 16 number of

swapping is required to generate the original block for 256 bit block string.

 24

Out of these 16 swapping, any of 15 intermediately generated block can be used as

cipher text for security for 256 bit block string. Considering that after 5
th

 swapping, the

generated block is used for cipher text, then (16-5) number of rest swapping are to be

applied to get back the original block.

 Hence the technique can successfully be applied for encryption purpose for

security. Here maximum block length is considered as 256, but any bit higher than 256

can be considered without loss of generality. Higher the bit length, better is the security,

since attack by the eavesdropper for higher bit length block needs exponential increase in

computation.

6.2 Realization of BSE
In order to verify the technique a microprocessor based system has been

considered. 256 bit i.e. 32 byte data is stored in the memory on which the bit swapping

technique will be applied. 2, 4, 8, 16, 32, 64, 128 and 256 bit swapping routines and a

rotation of 256 bit string have been developed. The algorithms are presented here. 2, 4 and

8 bit swapping routines need a special care, while 16, 32, 64, 128 and 256 bit swapping

are comparatively easier, since these are basically byte movement only.

6.2.1 Routine for 2 bit swapping
 This routine will swap 2 least significant bit (lsb) of a byte stored in a memory

(say, F900h).

1. Registers A,B,C are cleared.

2. HL register pair is pointed to the memory F900h.

3. The content of the memory is moved to D register and A register.

4. The lsb of A is collected and stored in B.

5. Next to lsb of A is collected and stored in C.

6. The bit in B is shifted by one bit to the left.

7. The bit in C is inserted to the lsb position of B.

8. The swapped two bit is stored in C.

9. The two lsb of D register is cleared.

10. The content of C is ORed with D and the result is moved to F900h.

11. Return.

The algorithms for 4 and 8 bit swapping are same as that of 2 bit with proper change in

steps 4, 5, 6, 8 and 9.

6.2.2 Routine for 64 bit swapping
The algorithms for 16, 32, 128 and 256 bit swapping are same as that of 64 bit

swapping. Here the algorithm for 64 bit swapping is presented for clarity.

 A string of 64 bit block i.e. 8 byte data is assumed to be stored from F900h

onwards. The least significant part is stored in lower address and the most significant part

in higher address of the memory.

1. The string stored from F900h onwards is saved to FA00h onwards

2. The most significant part of the saved string is moved to least significant

part of F900h area.

3. The least significant part of the saved string is moved to most significant

part of F900h area.

4. Return..

6.2.3 Routine of Rotation for 256 bit string
 The routine can rotate the string of 256 bit stored from F900h onwards by one bit

to the left. The steps of the algorithm are as

1. A register C is loaded with 20h and used as counter.

2. HL register pair, used a pointer, is pointed to the memory F900h.

3. The lsb of the byte stored in F900h is collected and sent to carry flag.

 25

4. The pointer is moved to the last byte of the string.

5. The carry is sent to the most significant bit position and lsb to carry using

right rotation.

6. The pointer is decremented by one memory location.

7. The counter is decremented.

8. Until the counter value is zero, go to step 5.

9. Return.

By changing proper parameters, the algorithm may be applicable to any other bit string,

multiple of 8.

6.2.4 Routine for 2 bit swapping on 256 bit string
 To apply 2 bit swapping on 256 bit string, stored from F900h onwards, the

swapping is applied on 2 lsb of F900h, then the whole string of 256 bit is rotated right by

2 bits, again the bit swapping applied and so on, until all the bits are swapped in the

string.

1. A register C is loaded with 80h and used as counter.

2. 2 bit swapping is called.

3. Rotation for 256 bit string is called.

4. The counter C is decremented.

5. Until the counter is zero, go to step 2.

6. Return.

The principle of algorithm for 4, 8, 16, 32, 64, 128 and 256 bit swapping on 256 bit string

are same that of 2 bit swapping.

6.2.5 Main Program of BSE on 256 bit string
1. The stack pointer is initialized.

2. Routine for 2 bit swapping on 256 bit string is called.

3. Routine for 4 bit swapping on 256 bit string is called.

4. Routine for 8 bit swapping on 256 bit string is called.

5. Routine for 16 bit swapping on 256 bit string is called.

6. Routine for 32 bit swapping on 256 bit string is called.

7. Routine for 64 bit swapping on 256 bit string is called.

8. Routine for 128 bit swapping on 256 bit string is called.

9. Routine for 256 bit swapping on 256 bit string is called.

10. End.

Figure 6: Frequency Distribution of characters in source message and encoded message

for Bit Swap Encoding (prt.txt & prt.jen)

 26

To visualize the frequency distribution of characters of the source file and the

encoded file, a frequency distribution graph has been plotted in fig 6. The blue lines show

the characters in the source while the red lines show the characters in the encoded file.

 The Chi-square test has also been performed for source file and encoded file.

Table 6 shows the values of Chi-square for 64-bit stream length. Hence the Chi-square is

highly significant at 1 % level of significant.

Table 6: Value of Chi-square for 64 bit block lengths in Bit Swap Encoding

 Source

File (size in

bytes)

Encoded

File

No of

operation

Value of chi-

square

1 A0.abc (918) A64.abc (918) 8 1232.17

2 B0.abc (563) B64.abc (563) 8 711.65

3 C0.abc(1987) C64.abc(1987) 8 2862.32

4 D0.abc(1733) D64.abc(1733) 8 2503.53

5 E0.abc(1659) E64.abc(1659) 8 2150.60

6 F0.abc(2073) F64.abc(2073) 8 2689.39

7 G0.abc(1549) G64.abc(1549) 8 2040.13

8 H0.abc(1909) H64.abc(1909) 8 2464.68

9 I0.abc(1830) I64.abc(1830) 8 2358.44

10 J0.abc(1335) J64.abc(1335) 8 1788.38

 2080.13

7. Cascaded Encoders

7.1 Introduction
The principle of encoders are stated and verified through a microprocessor-based

system. These are Prime Position Encoding (PPE), Triangular Encoding (TE), Recursive

Pair Parity Encoding (RPPE), Modified Rotational Encoding (MRE), Modified Johnson

Encoding (MJE) and Bit Swap Encoding (BSE).

The four encoders (PPE, TE, RPPE and BSE) are symmetric in nature, while 4
th

and 5
th

 (MRE and MJE) are asymmetric, with reference to the encryption of a message.

An encoder will be designated as symmetric, when the encoding process is applied

repeatedly on a string, generates the original string. The 4
th

 and 5
th

 have lost its

symmetric character, the least significant bit of each byte in the string has been inverted

before the transformation is applied. If this operation (lsb inversion) is excluded, then

rotational and Johnson encoding as presented in the previous chapters are basically

symmetric encoders. So the last two encoders have been transformed into the cascaded

encoders due to adding of lsb inversion to overcome the shortcomings associated to.

7.2 Cascading of Encoders
It is proposed that any two encoders, out of these six encoders, can be cascaded,

one encoders followed by other, to have a cascaded encoder. There are 20 encoders

possible as shown in the table 7.

Here, the encoders (4) and (5) are considered without lsb inversion and hence, symmetric.

The encoder (1,2) indicates the encoder (1) followed by encoder (2) i.e. the output of the

encoder (1) is connected to input of the encoder (2). The string is supplied as input to the

encoder (1) and available at the output of the encoder (2).

 27

 Table 7: Possible Cascaded Encoders

Number Cascaded Encoder Number Cascaded Encoder

1 (1,2) 16 (2,1)

2 (1,3) 17 (3,1)

3 (1,4) 18 (4,1)

4 (1,5) 19 (5,1)

5 (1,6) 20 (6,1)

6 (2,3) 21 (3,2)

7 (2,4) 22 (4,2)

8 (2,5) 23 (5,2)

9 (2,6) 24 (6,2)

10 (3,4) 25 (4,3)

11 (3,5) 26 (5,3)

12 (3,6) 27 (6,3)

13 (4,5) 28 (5,4)

14 (4,6) 29 (6,4)

15 (5,6) 30 (6,5)

The encoded string is available from the output of second encoder. It is to mention that

each of the encoders are symmetric, but the cascaded encoder as whole as a whole

becomes asymmetric. The same encoding process under cascaded condition applying on a

string, will not decode the original string. Hence, a separate encoding and decoding

process are required.

a) Encoding:
It is assumed that encoder (1) and encoder (2) need N1 and N2 operations

respectively to get back a string. And it is also assumed that N3 operation is applied by

encoder (1) and then it is sent to the encoder (2), where N4 operation is applied and final

output is available as the encoded string. N1 and N2 are known from the encoders selected

and N3 and N4 are selected at the time of encoding by the user. N3 and N4 should be less

than N1 and N2 respectively.

b) Decoding:
To decode the encoded string, it is first sent to the encoder (2) and is subjected to

(N2 – N4) operation and then sent to the encoder (1) for (N1 – N3) operations.

The original string will be available from the output of the encoder (1).

8. Application of the Encoders

 The encoders as in the previous chapters are designed in order to maintain the

security of a message. A message can be considered as a stream of strings concatenated.

The string length of 256 bit maximum is considered in the encoders. The message can be

split up into the strings of length, considered by the user. To each of the string, any of the

encoding process or the cascaded encoding process is applied to convert the same into

encoded strings making the message into a cipher text.

The cipher text is sent to the receiving end through telephone line using internet.

The message will be recovered by the decoder (may be the same encoder used as decoder

or a different one) at the receiving end.

 The principles of the encoders are verified by the microprocessor based system.

For a user-friendly application in practice, the principles have to be realized in a high

level language and to be interfaced with suitable software.

 28

 The prospective area where the encoders can be successfully applicable to are as

follows.

i) Defence:
 The message in defence is highly valuable and needs to be secured in the

interest of the country.

ii) Banking / Insurance Sector:
 The information in banking / Insurance sector has to be maintained reliable and

secured in the interest of the user and the sector itself.

And any other places where the security of the message is the prime importance.

9. Comparative Study of Five Realized Encoders

 The five basic encoders are presented in first five chapters. The encoders are

discussed with a string of maximum 256 bit on which its operate. A comparative study of

these five encoders is presented in table 8 for the number of operations required to get

back the string.

The PP Encoding is a typical one, the operations required with increase in bit

length increase rapidly. There is no direct relationship between the bit length and the

operations.

The Triangular Encoding shows only two operations, one for encoding and other

for decoding, to get back the string. But it has sufficient number of computations inside

the operation, which is not reflected in the table.

Table 8: Comparative Study of Encoders

 Operations required to get back the string

Bit length

of the

string

PP

Encoding

Triangular

Encoding

RPP

Encoding

Modified

Rotational

Encoding

Modified

Johnson

Encoding

16 06 2 16 18 34

32 30 2 32 34 66

64 84 2 64 66 130

128 456 2 128 130 258

256 1820 2 256 258 514

The RPP Encoding gives a simple relationship between the operations and the bit

length. For detailed study, the respective chapter is referred.

The Modified Rotational Encoding is the simplest one. It takes the number of bit

length operations plus two lsb inversion to get back the string.

The Modified Johnson Encoding can be considered as the enhancement of the

Modified Rotational Encoding. The number of operation required is twice the number of

bit in the string plus two for lsb inversion.

10. Comparison with RSA
With a view to compare the frequency distribution of characters with encoded file,

the same source file is encrypted with existing RSA technique and the frequency

distribution of encoded file is compared with the source file. The pictorial representation

is given in figure 8.

 29

Figure 8: Frequency Distribution of characters in source message and encrypted

message for RSA Encoding (prt.txt & prt.jen)

To compare the result with RSA, a ten text files of different file size have been

taken. To each file the developed techniques applied to generate the encoded files for

different block length. The average chi-square value is computed. RSA encoding

technique is also applied to generate the encoded files and corresponding average chi-

square value is computed. The values are given in table 9 and corresponding graph is

given in figure 9.

Table 9: Comparison of Chi-Square Value among different Techniques

Sl No Technique Average Chi-

Square Value

1 PP Encoder 1373.86

2 Triangular Encoder 3313.21

3 RPP Encoder 3717.82

4 Rotational Encoder 4048.63

5 Johnson Encoder 4081.09

6 Bit Swap Encoder 2073.22

7 RSA 3144.71

 Fig 9: Chi-Square Values for Different Encoders

0

500

1000

1500

2000

2500

3000

3500

4000

4500

PP Triangular RPP Rotational Johnson Bit Swap RSA

Encoders

C
h

i-
S

q
u

ar
e

V
al

u
es

 30

11. Key Generation
 It is evident that the length of key increases the security and the maximum length

may be equal to that of the message. Then the suitable method is to generate the random

number, which may be used as key each time a message requires to be encrypted and

transmitted to the receiver. The receiver with the same key, to be transmitted by the

sender, recovers the message from cipher text. The generation of the purely random

number is not a very easy task. A good number of literatures are available on the random

number generation. These are basically a generation of pseudo-random number.

 For a short message we can use anyone of the six encoders to encrypt it by

selecting the block length and the number of operations. The algorithms are such that we

can extend the block length even equal to the message, though the study of each block

length has been restricted to 256 bit. This will give the maximum security. But the

computation time will increase at a very high rate and will make impracticable.

 Under the condition a proposition is made here to generate the key to be used for

the encryption of a message. These three parameters (the selection of encoder, the length

of block and the number of operation) are to be sent by the sender through a secured

channel and the encrypted message will be sent through insecure channel, which can be

accessed by the eavesdroppers. This is shown in the following figure.

Source Destination

 Insecure Channel

 Secure Channel

 Key source

 Fig : Model of Symmetric Cryptosystem

It is considering that X is the message and Y, the ciphertext generated by the encryption

algorithm and key, K. At the receiving end the message is generated from the ciphertext

and the securely transmitted key, K. The ciphertext is accessible to the cryptanalysts who

can estimate the message and the key.

Here three parameters are variable: variable technique, variable block length

and variable operation made at the time of encryption. The selection of block length and

operation are the numbers only chosen at the sending end each time separately in pseudo-

random fashion. But the selection of technique is described in the following.

Out of 6 encoders, two are substitution type and four are of transposition type.

Each time the technique selected, two encoders in cascade are selected, one from

substitution type and the other from transposition type. The message is subjected to the

first encoder and then to the second one. There will be 16 possible techniques.

These three variable components of the key will add sufficient security to the

message to be transmitted to the receiver. The receiver will receive the ciphertext through

the insecure channel and the key, the components of the key is encrypted in 256 bit length

Encryption

Cryptanalyst

Decryption

 31

block using any of the substitution encoder, through the secure channel. At the receiving

end the key components will be recovered from the key and the ciphertext will be

decrypted generating the message. This kind of key, different in each session of

transmission, is called the session key.

In brute-force attack, it will be a difficult task to the cryptanalysts to find the clue

of attack in the variable parameter key of 256 bit length.

12. Conclusion
 The technique presented here is a simple, takes little time to encode and decode.

The encoded string will not generate any overhead bits. It can be easily implemented to

any high level language for any practical application for encryption purpose in order to

provide a security in message.

13. References

1. Mandal J. K. and Dutta S., “A Space-Efficient Universal Encoder for Secured

Transmission”, International Conference on Modelling and Simulation (MS’

2000-Egypt), Cairo, April 11-14, 2000, pp-193-201.

2. Mandal J. K. and Dutta S., “A Universal Encryption Technique”, Proceedings of

the National Conference of Networking of Machines, Microprocessors, IT and

HRD-Need of the Nation in the Next Millennium, Kalyani-741 235, Dist. Nadia,

West Bengal, India, November 25-26,1999, pp-B114-B120.

3. Mandal J.K. and Dutta S., “A Universal Bit-Level Encryption Technique”,

Proceedings of the 7th State Science and Technology Congress, Jadavpur

University, West Bengal, India, February 28 - March 1, 2000, pp-INFO2.

4. D. K. Bhattacharryya, S. N. N. Pandit, S. Nandi, “A New Enciphering Scheme”,

Second International Workshop on Telematics, NERIST, India, May’97

5. Arnold G. Reinhold, “Diceware for Passphrase Generation and other

Cryptographic Applications”, downloaded from Internet

6. D. Welsh , “Codes and Cryptography”, Oxford: Claredon Press, 1988

7. J. Seberry and J. Pieprzyk , “An Introduction to Computer Security”, Australia:

Prentice Hall of Australia, 1989.

8. R.E. Blahut, “Theory and Practice of Error Control Codes” , Addison Wesley

Publishing Co., Sydney.

9. D. Boneh, “Twenty Years of Attacks on RSA Cryptosystem” in notices the

 American Mathematical Society (AMS), vol 46,no 2, 1998, pp 203-213.

10 B. Schneier, “Applied Cryptography”, Second Edition, John Wiley & Sons Inc.

 1996

11. C. Coupe, P.Nguyen and J. Stern, “ The Effectiveness of Lattice Attacks against

Low-Exponent RSA”, Proceedings of Second International Workshop on Practice

and Theory in Public Key Cryptography, PKC’99, vol1560, of lecture notes in

Computer Science, Springer-Verlag, 1999, pp 204-218.

12. D. Coppersmith, “Finding a small Root of a Univariate Modular Equation”,

Proceedings of EUROCRYPT’96,VOL 1070, of lecture notes in Computer

Science, Springer-Verlag, 1996, pp 155-165.

13. D. Coppersmith, “Small Solutions to Polynomial Equations and Low Exponent

 RSA Vulnerabilities”, Journal of Cryptology, vol 10, 1997, pp 233-260.

14. M. Wiener, “Cryptanalysis of Short RSA Secret Exponents”, IEEE Transactions

 on Information Theory, vol 36, 1990, pp 553-558.

 32

15. V P Gulati, A Saxena and D Nalla, “On Determination of Efficient Key Pair”,

Journal of the Institution of Engineers (India), vol 84, May 2003, pp 1-3.

16. J K Mandal, S Mal and S Dutta, “ Security in E-Business – A Strategic Issue”,

Natioal Seminar on Emerging Issues and Strategic Options Before Business in the

Liberalised Regime”, 7
th

 March2001, pp 5-6.

17. J K Mandal, S Mal and S Dutta, “Aspects of Storage Efficient Security in GIS

Data” Workshop on Remote Sensing and GIS for Sustainable Development and

Management in the Himalayas and Adjoining Areas” at NBU, West Bengal by

Indian Society of Remote Sensing, Kolkata Chapter, March 8-9, 2002, pp-24.

18. S Mal and J K Mandal, “A Cascaded Technique of Encryption Realised using

Microprocessor Based System”, Association for the Advancement of Modelling &

Simulation techniques in Enterprises, vol 7, no 2, 2002, pp 25-35.

19. S Mal and J K Mandal and S Dutta, “A Microprocessor Based Encoder for

Secured Transmission” Conference on Intelligent Computing on VLSI, Kalyani

Govt. Engg. College, 1-17 Feb, 2001, pp 164-169.

20. S Mal and J K Mandal and S Dutta, “A Microprocessor Based Cascaded

Technique of Encryption”, Proc. Of XXXVI Annual Convention of CSI-2001,

Kolkata, 20-24 November, 2001, pp.C269-275.

21. S Mal and J K Mandal and S Dutta, “A Cryptographic Model for Secured

Transmission of Messages”, Proceedings of the National Conference on

Applicable Mathematics, WMVC-2001, A.C. College of Commerce, Jalpaiguri,

March 17-19,2001, pp-18-21.

22. A Pal, “Microprocessor: Principles and Applications”, TMH,1990.

23. L Leventhal, “Introduction to Microprocessors: Software, Hardware,

Programming”, PHI, 1988.

24. R S Gaonkar,” Microprocessor Architecture, Programming, and Applications with

the 8085”, Penram International Publishing (India), 4
th

 Edition, 2000.

25. M. Slater, “Microprocessor Design – A Comprehensive Guide to Effective

Hardware Design”, PHI, 1999.

26. S Mal and J K Mandal and S Dutta, “A 256 bit Recursive Pair Parity Encoder for

Encryption”, Accepted for Publication by AMSE, France.

