
Towards Design and Implementation of

Soft computing based Cryptographic Techniques

for Wireless Communication

Thesis submitted for the degree of Doctor of Philosophy (Engineering)

in the Department of Computer Science and Engineering,

Faculty of Engineering, Technology and Management,

University of Kalyani

By

Arindam Sarkar

Under the supervison of

Prof. Jyotsna Kumar Mandal

Department of Computer Science and Engineering

University of Kalyani,

Kalyani, West Bengal, India

November, 2014

Kalyani-741235, Nadia

West Bengal, India

Phone: (033) 25809617 (O)

Mobile: +91- 9434352214

e-mail: jkm.cse@gmail.com

Univers i ty o f Kalyani
FACULTY OF ENGINEERING, TECHNOLOGY & MANAGEMENT

Prof. J. K. Mandal
Professor, Computer Science and

Engineering, University of Kalyani

Certificate

This is to certify that the thesis entitled “TOWARDS DESIGN AND IMPLEMENTATION

OF SOFT COMPUTING BASED CRYPTOGRAPHIC TECHNIQUES FOR WIRELESS

COMMUNICATION” submitted by Arindam Sarkar, who got his research proposal registered

on 30.05.2012 (Ref. No. Ph.D/Regn./N.Rgl./Eg-34/Com.Sc./AS/2012) for the award of Ph.D.

(Engineering) degree of the University of Kalyani is absolutely based upon his own work under

my supervision and that neither his thesis nor any part of the thesis has been submitted for any

degree or diploma or any other academic award anywhere before. I recommend that

Arindam Sarkar has fulfilled all the requirements according to rules of this University regarding

the work embodied in this thesis.

 (Dr. Jyotsna Kumar Mandal)

Date: Professor

Place: Kalyani Department of Computer Science and Engineering

 University of Kalyani, Kalyani

 Arindam Sarkar, University of Kalyani, India i

Copyright 2014, by the author(s)

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission.

 Arindam Sarkar, University of Kalyani, India ii

Dedicated
To

My family
&

All my beloved
Teachers

 Arindam Sarkar, University of Kalyani, India iii

ACKNOWLEDGEMENTS

This thesis is the end of my journey in obtaining my Ph.D. I have not traveled in a vacuum in this

journey. This thesis has been kept on track and been seen through to completion with the support

and encouragement of numerous people including my well wishers, my friends, colleagues and

various institutions. At the end of my thesis I would like to thank all those who contributed in

many ways to the success of this study and made it an unforgettable experience for me.

My first debt of gratitude must go to my supervisor and guide, Dr. Jyotsna Kumar Mandal,

Professor, Department of Computer Science and Engineering, University of Kalyani, Kalyani,

India. He patiently provided the vision, encouragement and advice necessary for me to proceed

through the doctorial program and complete my dissertation. I am indebted to him for continuous

inspiration, support and motivation and all kind of helps.

This gives me great pleasure to express my thanks to all teachers and staff members of the

Department of Computer Science and Engineering, University of Kalyani, Department of

Computer Science, The University of Burdwan and Department of Computer and System

Sciences, VISVA-BHARATI, West Bengal, India, who helped me time to time in many ways

during the period of my research work.

I take this opportunity to sincerely acknowledge the Department of Science & Technology

(DST), Government of India, New Delhi, for providing financial assistance in the form of

INSPIRE Fellowship which buttressed me to perform my work comfortably.

Last but not least, I would like to pay high regards to my parents Mr. Apurba Kumar Sarkar and

Mrs. Kaberi Sarkar. I could not have completed this dissertation without bless and love of them.

Besides this, several people have knowingly and unknowingly helped me in the successful

completion of this thesis.

 ………………………………….

 (Arindam Sarkar)

Department of Computer Science and Engineering

University of Kalyani, Kalyani, West Bengal, India.

 Arindam Sarkar, University of Kalyani, India iv

ABSTRACT

The objectives of the proposed thesis is to enhance the security of the wireless communication

system in such a way that the instead of exchanging the whole session key, soft computing based

synchronization technique is used to construct a cryptographic key exchange protocol for

generating the identical session key at sender and receiver. Here the partners benefit from mutual

interaction, so that a passive attacker is usually unable to learn the generated key in time. This

synchronized network can be used for message communication by encrypting the plaintext using

any light weight encryption/decryption technique with the help of synchronized session key at

both ends. Also grouped synchronization has been proposed to synchronize group of 𝑛 party to

form a synchronized grouped session key. The candidate searched some of such techniques

which are simple and easy to understand, and also to trade-off between security and performance

of light weight devices as well as energy awareness during the course of research.

The thesis considered synchronization of sender and receiver using soft computing tool for

generating identical session key and light weight soft computing based encryption/decryption

technique as an example corresponding to each technique. Here five such techniques based on

soft computing based synchronization have been designed, implemented and tested through High

Level Languages. These techniques have been discussed with their merits and demerits. Identical

soft computing based network has been considered at sender and receiver. Both the

communicating networks receive an indistinguishable input vector, produce an output bit and are

trained based on the output bit. The dynamics of the two networks and their weight vector are

found to a novel experience, where the demonstrate networks synchronize to an identical time

dependent weight vector. This observable fact has been used to form a secured variable length

secret session key using a public channel. Any light weight message encryption technique is used

to encrypt the plaintext. In this thesis as an example light weight soft computing based message

encryption technique is used to illustrate the cryptographic technique. Encrypted text get further

encrypted using synchronized session key and transmitted to the receiver. During decryption

receiver has the same synchronized session key which is used to perform first round of

decryption operation and outcomes of this further decrypted by message decryption technique

(exactly reverse process of message encryption) are performed and plaintext is regenerated.

Comparison of all proposed techniques with each other and also with Tree Parity Machine

(TPM) and Permutation Parity Machine (PPM), RSA, Triple-DES (168 bits), AES (128 bits),

 Arindam Sarkar, University of Kalyani, India v

RC4 and Vernam Cipher has been done with respect to the parameters like fifteen statistical tests

of the NIST test suite, analysis of the average time (in cycle) needed for generating 128/192/

256 bit session key by synchronization between two party and group of party, memory heap

used during synchronization, relative time spent in GC and thread required in synchronization

phase, encryption and decryption time, character frequencies, Avalanche and strict Avalanche

effects, Bit Independence effects, Chi-Square values, character frequency test, entropy test,

floating frequency test and autocorrelation test.

A model of session key generation through synchronization and encryption through cascaded

implementation embodied with proposed algorithms has been introduced. The approach of

cascaded implementation is an attempt to integrate the five proposed techniques. The proposed

model may introduce new dimension to ensure security at maximum possible level. The model is

very much suitable for the security of the system where unify computing is an essential

component and it is idle to trade-off between security and performance of light weight devices

having very low processing capabilities or limited computing power in wireless communication.

 Arindam Sarkar, University of Kalyani, India vi

List of Publications

Book published

1. Sarkar, A., & Mandal, J. K. (2012). Artificial Neural Network Guided Secured

Communication Techniques: A Practical Approach. LAP LAMBERT Academic

Publishing, ISBN-10: 3659119911, ISBN-13: 978-3659119910.

Book Chapter

2. Sarkar, A., & Mandal, J. K. (2014). Particle Swarm Optimization based Session Key

Generation for Wireless Communication (PSOSKG). In A. Bhattacharyya, S., & B. Dutta,

P. (Eds.), Handbook of Research on Swarm Intelligence in Engineering, chapter 20,

701 E. Chocolate Ave., Hershey, Pennsylvania (USA): IGI GLOBAL. (Accepted)

International Journals

3. Sarkar, A., & Mandal, J. K. (2014). Cryptanalysis of Key Exchange method in Wireless

Communication (CKE). International Journal of Network Security (IJNS), ISSN 1816 –

3548 [Online]; 1816 – 353X [Print]. (Accepted)

4. Sarkar, A., & Mandal, J. K. (2014). Computational Science guided Soft Computing based

Cryptographic Technique using Ant Colony Intelligence for Wireless Communication

(ACICT). International Journal of Computational Science and Applications (IJCSA), 4(5),

61-73, DOI: 10.5121/ijcsa.2014.4505, ISSN 2200 – 0011.

5. Sarkar, A., & Mandal, J. K. (2014). Intelligent Soft Computing based Cryptographic

Technique using Chaos Synchronization for Wireless Communication (CSCT).

International Journal of Ambient Systems and Applications (IJASA), 2(3), 11-20, DOI:

10.5121/ijasa.2014.2302, ISSN 2320 – 9259 [Online]; 2321 – 6344 [Print].

6. Sarkar, A., & Mandal, J. K. (2014). Soft Computing based Cryptographic Technique using

Kohonen's Self-Organizing Map Synchronization for Wireless communication

(KSOMSCT). International Journal in Foundations of Computer Science & Technology

(IJFCST), 4(5), 85-100, DOI: 10.5121/ijfcst.2014.4508, ISSN 1839 – 7662.

7. Sarkar, A., & Mandal, J. K. (2014). Secured Transmission Through Multi LayerPerceptron

in Wireless Communication (STMLP). International Journal of Mobile Network

Communications & Telematics (IJMNCT), 4(4), 1-16, DOI: 10.5121/ijmnct.2014.4401,

ISSN 1839 – 5678.

 Arindam Sarkar, University of Kalyani, India vii

8. Sarkar, A., & Mandal, J. K. (2014). Cryptanalysis of Key Exchange method using

Computational Intelligence guided Multilayer Perceptron in Wireless Communication

(CKEMLP). Advanced Computational Intelligence: An International Journal (ACII), 1(1),

1-9, ISSN 2317 – 4113.

9. Sarkar, A., & Mandal, J. K. (2013). Neuro Genetic Key Based Recursive Modulo-2

Substitution Using Mutated Character for Online Wireless Communication

(NGKRMSMC). International Journal of Computational Science and Information

Technology (IJCSITY), 1(4), 49-59, DOI: 10.5121/ijcsity.2014.1404, ISSN 2320 - 7442

[Online]; 2320 - 8457 [Print].

10. Sarkar, A., & Mandal, J. K. (2013). Genetic Algorithm Guided Key Generation in Wireless

Communication (GAKG). International Journal on Cybernetics & Informatics (IJCI), 2(5),

9-17, DOI: 10.5121/ijci.2013.2502, ISSN 2277 - 548X [Online]; 2320 - 8430 [Print].

11. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence Based Simulated Annealing

Guided Key Generation In Wireless Communication (CISAKG). International Journal on

Information Theory (IJIT), 2(4), 35-44, DOI: 10.5121/ijit.2014.2403, ISSN 2319 - 7609

[Online]; 2320 - 8465 [Print].

12. Sarkar, A., & Mandal, J. K. (2013). Group Session Key exchange Multilayer Perceptron

based Simulated Annealing guided Automata and Comparison based Metamorphosed

Encryption in Wireless Communication (GSMLPSA). International Journal of Wireless &

Mobile Networks (IJWMN), 5(4), 203-222, DOI: 10.5121/ijwmn.2013.5415, ISSN 0975-

3834 [Online]; 0975-4679 [Print].

13. Sarkar, A., & Mandal, J. K. (2013). Key Swap Over among Group of Multilayer

Perceptrons for Encryption in Wireless Communication (KSOGMLPE), International

Journal of Information Technology, Control and Automation (IJITCA), 3(1), 85-100,

DOI:10.5121/ijitca.2013.3107, ISSN 1839 – 6282.

14. Sarkar, A., & Mandal, J. K. (2012). Secured Wireless Communication using Fuzzy Logic

based High Speed Public-Key Cryptography (FLHSPKC), International Journal of

Advanced Computer Science and Applications (IJACSA), 3(10), 137-145, U.S ISSN : 2156-

5570 [Online], U.S ISSN : 2158-107X(Print), 2012 Impact Factor : 1.324.

15. Sarkar, A., & Mandal, J. K. (2012). Key Generation and Certification using Multilayer

Perceptron in Wireless Communication (KGCMLP), International Journal of Security,

Privacy and Trust Management (IJSPTM), 1(5), 27-43, DOI: 10.5121/ijsptm.2012.1503,

ISSN 2277 - 5498 [Online]; 2319 - 4103 [Print].

 Arindam Sarkar, University of Kalyani, India viii

16. Sarkar, A., & Mandal, J. K. (2012). Evolutionary Computation Guided Energy Efficient

Key Organization in Wireless Communication (ECEEKO), International Journal of

Information and Network Security (IJINS), 2(1), 352-366, ISSN: 2089-3299.

17. Sarkar, A., & Mandal, J. K. (2012). Energy Efficient Wireless Communication Using

Genetic Algorithm Guided Faster Light Weight Digital Signature Algorithm (GADSA),

International Journal of Advanced Smart Sensor Network Systems (IJASSN), 2(3), 9-25,

DOI: 10.5121/ijassn.2012.2302, ISSN: 2231 - 4482 [Online]; 2231 - 5225 [Print].

18. Sarkar, A., & Mandal, J. K. (2012). Multilayer Perceptron Guided Key Generation Through

Mutation With Recursive Replacement In Wireless Communication (MLPKG),

International Journal on AdHoc Networking Systems (IJANS), 2(3), 11-28, DOI:

10.5121/ijans.2012.2302, ISSN: 2249 - 0175 [Online]; 2249 - 2682 [Print].

19. Sarkar, A., & Mandal, J. K. (2012). Swarm Intelligence based Faster Public-Key

Cryptography in Wireless Communication (SIFPKC), International Journal of Computer

Science & Engineering Technology (IJCSET), 3(7), 267-273, ISSN: 2229-3345.

20. Sarkar, A., & Mandal, J. K. (2012). Secured Wireless Communication by High-Speed RSA

Using Evolutionary Programming based Optimized Computation (HS-RSA-EP),

International Journal of Advanced Research in Computer Science (IJARCS), 3(4), 161-165,

ISSN 0976 – 5697.

21. Sarkar, A., & Mandal, J. K. (2012). Object Oriented Modelling of Idea Using GA Based

Efficient Key Generation For E-Governance Security (OOMIG), International Journal of

Distributed and Parallel Systems (IJDPS), 3(2), 171-183, DOI: 10.5121/ijdps.2012.3215,

ISSN : 0976 - 9757 [Online] ; 2229 - 3957 [Print].

 Arindam Sarkar, University of Kalyani, India ix

International Conference

22. Sarkar, A., & Mandal, J. K. (2014). Analysis of Tree parity Machine and Double Hidden

Layer Perceptron based Session Key Exchange in Wireless Communication. Annual

Convention and International Conference on Emerging ICT for Bridging Future, CSI

Hyderabad Chapter in Association with JNTU Hyderabad & DRDO, December 12-14

2014, Hyderabad, India: AISC Series Springer. (Accepted)

23. Sarkar, A., Mandal, J. K., & Mondal, P. (2014). Neuro-Key Generation Based on HEBB

Network for Wireless Communication. In Proceedings of the 3
rd

 International Conference

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 197-205, DOI: 10.1007/978-3-319-

12012-6_22, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online],

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer

International Publishing.

24. Mandal, J. K., Dutta, D., & Sarkar, A. (2014). Hopfield network based neural key

generation for wireless communication. In Proceedings of the 3
rd

 International Conference

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 217-224, DOI: 10.1007/978-3-319-

12012-6_24, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online],

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer

International Publishing.

25. Sengupta, M., Mandal, J. K., Sarkar, A., & Bhattacharyya, T. (2014). KSOFM Network

Based Neural Key Generation for Wireless Communication. In Proceedings of the 3
rd

International Conference on Frontiers of Intelligent Computing: Theory and applications

(FICTA 2014), AISC Series Springer Vol. 328, Book Subtitle Vol.2, pp. 207-215, DOI:

10.1007/978-3-319-12012-6_23, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-

12012-6 [Online], Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa,

India, Springer International Publishing.

26. Sarkar, A., & Mandal, J. K. (2013). Complete Binary Tree Architecture based Triple Layer

Perceptron Synchronized Group Session Key Exchange and Authentication in Wireless

Communication (CBTLP). In Proceedings of the 48th Annual Convention of CSI on theme

"ICT and Critical Infrastructure, AISC Series Springer Vol. 249, Book Subtitle Vol.2,

pp. 609-615, DOI: 10.1007/978-3-319-03095-1_66, ISBN: 978-3-319-03094-4 [Print],

ISBN: 978-3-319-03095-1 [Online], Series ISSN: 2194-5357, December 13-15 2013,

Computer Society of India, Visakhapatnam Chapter, Visakhapatnam, India, Springer

International Publishing.

 Arindam Sarkar, University of Kalyani, India x

27. Sarkar, A., Mandal, J. K., & Patra P. (2013). Double Layer Perceptron Synchronized

Computational Intelligence guided Fractal Triangle based Cryptographic Technique for

Secured Communication (DLPFT). In Proceedings of the IEEE 4
th

 International

Symposium on Electronic System Design (ISED-2013), pp. 191-195, ISBN 978-0-7695-

5143-2, December 13-15 2013, NTU, Singapore, IEEE.

28. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence based Triple Layer

Perceptron Model Coordinated PSO guided Metamorphosed based Application in

Cryptographic Technique for Secured Communication (TLPPSO). In Proceedings of the

First International Conference on Computational Intelligence: Modeling, Techniques and

Applications (CIMTA-2013), Vol.10, pp. 433-442, DOI: 10.1016/j.protcy.2013.12.380,

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science &

Engineering, University of Kalyani, Kalyani, India, Procedia Technology, Elsevier.

29. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Time Efficient Optimal Tuning

through various Learning Rules in Unify Computing (TEOTLRUC). In Proceedings of the

First International Conference on Computational Intelligence: Modeling, Techniques and

Applications (CIMTA-2013), Vol.10, pp. 474-481, DOI: 10.1016/j.protcy.2013.12.385,

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science &

Engineering, University of Kalyani, Kalyani, India, Procedia Technology, Elsevier.

30. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Encryption Technique based on

Neural Session Key (ETNSK). In Proceedings of the Second International Conference on

Computing And Systems, (ICCS 2013), Department of Computer Science, The University

of Burdwan, September 21-22 2013, pp. 29-33, ISBN 978-9-35-134273-1, Burdwan,

India: McGraw Hill Education Private Limited.

31. Sarkar, A., & Mandal, J. K. (2013). Secured Wireless Communication Through Simulated

Annealing Guided Triangularized Encryption By Multilayer Perceptron Generated Session

Key (SATMLP). In Proceedings of the Third International Conference on Computer

Science & Information Technology (CCSIT 2013), Computer Science & Information

Technology (CS & IT), Bangalore, February 18-20 2013, pp. 217-224, DOI:

10.5121/csit.2013.3624, 2013, ISBN: 978-1-921987-00-7, India: AIRCC.

32. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Genetic Key Based Neural Encryption

For Online Wireless Communication (AGKNE). In Proceedings of the IEEE International

Conference on Recent Trends In Information System (RETIS 2011), Jadavpur University,

December 21-23 2011, pp. 62-67, ISBN 978-1-4577-0791-9. Kolkata, India: IEEE.

 Arindam Sarkar, University of Kalyani, India xi

33. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Secret Key

based Encryption through Recursive Positional Modulo-2 Substitution for Online Wireless

Communication (ANNRPMS). In Proceedings of the IEEE International Conference on

Recent Trends In Information Technology (ICRTIT 2011), Madras Institute of Technology,

Anna University, Chennai, June 3-5 2011, pp.107-112, ISBN 978-1-4577-0590-8/11,

Tamil Nadu, India: IEEE.

34. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Random Block

Length Based Cryptosystem (ANNRBLC). In Proceedings of the IEEE International

Conference on 2
nd

 International Conference on Wireless Communications, Vehicular

Technology, Information Theory And Aerospace & Electronic System Technology

(WIRELESS VITAE 2011), Special Session: Security Protection Mechanism in Wireless

Sensor Networks, Chennai, February 28-March 03 2011, pp. 1-5, ISBN 978-87-92329-61-

5, Tamil Nadu, India: IEEE.

35. Mandal, J. K., & Sarkar, A. (2010). Neural Network Guided Secret Key based Encryption

through Cascading Chaining of Recursive Positional Substitution of Prime Non-Prime

(NNSKECC). In Proceedings of the First International Conference on Computing And

Systems (ICCS 2010), Department of Computer Science, The University of Burdwan,

November 19-20 2010, pp. 291-297, ISBN 93-80813-01-5, Burdwan, India.

National Conference

36. Mandal, J. K., & Sarkar, A. (2012). Neural Session Key based Traingularized Encryption

for Online Wireless Communication (NSKTE), In Proceedings of the 2
nd

 National

Conference on Computing and Systems, (NaCCS 2012), Department of Computer Science,

The University of Burdwan, Burdwan, India, March 15-16 2012, pp. 172-177, ISBN 978-

93-808131-8-9.

37. Mandal, J. K., & Sarkar, A. (2012). Neural Weight Session Key based Encryption for

Online Wireless Communication (NWSKE), In Proceedings of the Research and Higher

Education in Computer Science and Information Technology, (RHECSIT- 2012),

Department of Computer Science, Sammilani Mahavidyalaya, Kolkata, India, February 21-

22 2012, pp. 90-95, ISBN 978-81-923820-0-5.

Zonal Seminar

38. Sarkar, A. (2013). Parallel Session Key Exchange and Certification by Fine Tuning of

Double Layer Perceptron in Wireless communication (PKECDLP), In Proceedings of the

ICT in Present Wireless Revolution: Challenges and Issues, The Institution of Electronics

and Telecommunication Engineers Kolkata Centre, IETE Kolkata Center, Salt Lake, India,

August 30-31 2013, pp. 1-9, ISBN 978-93-5126-699-0.

 Arindam Sarkar, University of Kalyani, India xii

Publication Indexing Database

The lists of publications are indexed/abstracted in the following databases which are mentioned

in the following table serially.

Table

Indexing database of publications
Publication

Serial No.
Database

1
Amazon, Slideshare, docstoc, takealot, ebay, zopper, infibeam, bol, bokus, gettextbooks, sears,

pricecheck, Google Scholar etc.

2

SCOPUS, Thomson Reuters, DBLP Computer Science Bibliography, ERIC - Education

Resources Information Center, and ACM Digital Library, CrossRef., Compendex, PsycINFO,

INSPEC, Cabell’s Directories, Google Scholar etc.

3
SCOPUS, DBLP, SciVerse, Engineering Village, Ei Compendex, Summon by Serial Solutions,

SCImago, EBSCO, DOAJ, Google Scholar etc.

4
Ulrichsweb, DOAJ, Scrib, getCITED, Pubget, .docstoc, pub zone, Open J-Gate, CiteSeerx,

Google Scholar, cnki.net, etc.

5
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc,

ProQuest, DOAJ, CiteSeerx, cnki.net, etc.

6
Ulrichsweb, , Scrib, getCITED, Pubget, ProQuest, .docstoc, pub zone, CiteSeerx, Google

Scholar, EBOSCO, cnki.net, WorldCat, CSEB, etc.

7
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, .docstoc, cnki.net,

etc.

8
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc,

ProQuest, etc.

9
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc,

ProQuest, etc.

10
Ulrichsweb, DOAJ, Scribd, getCITED, Pubget, .docstoc, pub zone, Open J-Gate, CiteSeerx,

Google Scholar, etc.

11
EBSCO, Google Scholar, CSEB, Scribd, DOAJ, getCITED, Pubget, CiteSeerx, .docstoc, pub

zone, Ulrichsweb, WorldCat, ProQuest, etc.

12

The Elektronische Zeitschriftenbibliothek EZB, Genamics JournalSeek, Inspec, Google Scholar,

SCIRUS, EBSCO, DOAJ, Scribd, Ulrichsweb, getCITED, Pubget, CiteSeerx, .docstoc, pub

zone, PKP (Public Knowledge Project), WorldCat, ProQuest, NASA, etc.

13
Google Scholar, ProQuest, EBSCO, .docstoc, getCITED, pub zone, Scribd, CSEB, Ulrichsweb,

Pubget, etc.

14

DOAJ, Index Copernicus (IC), Google Scholar, Microsoft Academic Search, GetCITED,

CiteSeerx, SCIRUS, EBSCOhost, WorldCat, BASE, Ulrichsweb™, Open J-Gate, Cabell's

Directory, University Citations: Harvard Library, The University of Melbourne, University of

Liverpool, Cornell University, Hochschule RheinMain University of Applied Sciences

Wiesbaden Rüsselsheim Geisenheim, Technische Universität Berlin, Universität Hamburg,

Queen’s University, Technische Universität Darmstadt, Unikassel Versitat, Philipps Universität

Marburg, Akademie der Wissenschaften und der Literatur Mainz, Universität Frankfurt Am

Main, Biblioteca, Universität Regensburg, Staats- und Universitätsbibliothek Bremen,

Technische Hochschule Mittelhssen, etc.

15 Ulrichsweb, EBSCO, Google Scholar, CSEB, Scribd, DOAJ, etc.

16

SCOPUS, BASE (Bielefeld Academic Search Engine), Cabell's Directory, Cite Seerx ,

Computer Science Directory, DOAJ, EBSCO Publishing, EI, Electronic Journals Library,

ELSEVIER, Google Scholar, Index Copernicus, ISSUU, NewJour,| OJS PKP, Open J-Gate,

ProQuest, Science Central , Scirus , , Socolar Open Access, Ulrich's Periodicals Directory,

World Wide Science , WorldCat, etc.

17 Google Scholar, getCITED, pub zone, .docstoc, Scribd, CSEB, EBSCO, ProQuest, etc.

 Arindam Sarkar, University of Kalyani, India xiii

Publication

Serial No.
Database

18 Google Scholar, ProQuest, EBSCO, .docstoc, getCITED, pub zone, Scribd, CSEB, etc.

19
DOAJ, INDEX COPERNICUS, Google Scholar, Open J-Gate, Cornell University Library,

SCIRUS, etc.

20

EBOSCO, Genamics, M Library, TU Berlin, Kun Shan University Library, INDEX

COPERNICUS, DOAJ, Electronic Journals Library, New Jour, sciencecentral.com,

ulrichsweb, Dayang Journal System, Google Scholar etc.

21 EBSCO, DOAJ, NASA, Google Scholar, INSPEC and WorldCat, 2011, etc.

22
ISI Proceedings, DBLP., SCOPUS, Zentralblatt Math, MetaPress, Springerlink, Google

Scholar, etc.

23
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress,

Springerlink, Google Scholar etc.

24
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress,

Springerlink, Google Scholar etc.

25
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress,

Springerlink, Google Scholar etc.

26 SCOPUS, DBLP, INSPEC, Google Scholar, ACM, Digital Library, Gale, SCImago etc.,

27 SCOPUS,DBLP, Google Scholar, ACM, Digital Library, Gale, SCImago etc.,

28 SCOPUS, INSPEC, Google Scholar, Gale, SCImago, ACM, Digital Library etc.,

29 SCOPUS, ACM, Digital Library, INSPEC, Google Scholar, Gale, SCImago etc.,

30 DBLP, Google Scholar etc.,

31 SCOPUS, DBLP, ACM, Digital Library, INSPE , SCImago, Google Scholar etc.,

32 SCOPUS, DBLP, Google Scholar, Digital Library, INSPEC, Gale, SCImago etc.,

33 SCOPUS, DBLP, INSPEC, , Digital Library, Google Scholar, SCImago etc.,

34 SCOPUS, DBLP, Google Scholar INSPEC, ACM,, Digital Library, Gale, SCImago etc.,

35 DBLP, Google Scholar etc.,

36 DBLP, Google Scholar etc.,

37 DBLP, Google Scholar etc.,

38 DBLP, Google Scholar etc.,

 Arindam Sarkar, University of Kalyani, India xiv

List of Papers Presented

International Conference

1. Sarkar, A., Mandal, J. K., & Mondal, P. (2014). Neuro-Key Generation Based on HEBB

Network for Wireless Communication. In Proceedings of the 3
rd

 International Conference

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 197-205, DOI: 10.1007/978-3-319-

12012-6_22, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online],

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer

International Publishing.

2. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence based Triple Layer

Perceptron Model Coordinated PSO guided Metamorphosed based Application in

Cryptographic Technique for Secured Communication (TLPPSO). In Proceedings of the

First International Conference on Computational Intelligence: Modeling, Techniques and

Applications (CIMTA-2013), Vol.10, pp. 433-442, DOI: 10.1016/j.protcy.2013.12.380,

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science &

Engineering, University of Kalyani, Kalyani, India, Procedia Technology, Elsevier.

3. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Time Efficient Optimal Tuning

through various Learning Rules in Unify Computing (TEOTLRUC). In Proceedings of the

First International Conference on Computational Intelligence: Modeling, Techniques and

Applications (CIMTA-2013), Vol.10, pp. 474-481, DOI: 10.1016/j.protcy.2013.12.385,

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science &

Engineering, University of Kalyani, Kalyani, India, Procedia Technology, Elsevier.

4. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Encryption Technique based on

Neural Session Key (ETNSK). In Proceedings of the Second International Conference on

Computing And Systems, (ICCS 2013), Department of Computer Science, The University

of Burdwan, September 21-22 2013, pp. 29-33, ISBN 978-9-35-134273-1, Burdwan,

India: McGraw Hill Education Private Limited.

5. Sarkar, A., & Mandal, J. K. (2013). Secured Wireless Communication Through Simulated

Annealing Guided Triangularized Encryption By Multilayer Perceptron Generated Session

Key (SATMLP). In Proceedings of the Third International Conference on Computer

Science & Information Technology (CCSIT 2013), Computer Science & Information

Technology (CS & IT), Bangalore, February 18-20 2013, pp. 217-224, DOI:

10.5121/csit.2013.3624, 2013, ISBN: 978-1-921987-00-7, India: AIRCC.

 Arindam Sarkar, University of Kalyani, India xv

6. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Genetic Key Based Neural Encryption

For Online Wireless Communication (AGKNE). In Proceedings of the IEEE International

Conference on Recent Trends In Information System (RETIS 2011), Jadavpur University,

December 21-23 2011, pp. 62-67, ISBN 978-1-4577-0791-9. Kolkata, India: IEEE.

7. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Secret Key

based Encryption through Recursive Positional Modulo-2 Substitution for Online Wireless

Communication (ANNRPMS). In Proceedings of the IEEE International Conference on

Recent Trends In Information Technology (ICRTIT 2011), Madras Institute of Technology,

Anna University, Chennai, June 3-5 2011, pp. 107-112, ISBN 978-1-4577-0590-8/11,

Tamil Nadu, India: IEEE.

8. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Random Block

Length Based Cryptosystem (ANNRBLC). In Proceedings of the IEEE International

Conference on 2
nd

 International Conference on Wireless Communications, Vehicular

Technology, Information Theory And Aerospace & Electronic System Technology

(WIRELESS VITAE 2011), Special Session: Security Protection Mechanism in Wireless

Sensor Networks, Chennai, February 28-March 03 2011, pp. 1-5, ISBN 978-87-92329-61-

5, Tamil Nadu, India: IEEE.

9. Mandal, J. K., & Sarkar, A. (2010). Neural Network Guided Secret Key based Encryption

through Cascading Chaining of Recursive Positional Substitution of Prime Non-Prime

(NNSKECC). In Proceedings of the First International Conference on Computing And

Systems (ICCS 2010), Department of Computer Science, The University of Burdwan,

November 19-20 2010, pp. 291-297, ISBN 93-80813-01-5, Burdwan, India.

National Conference

10. Mandal, J. K., & Sarkar, A. (2012). Neural Session Key based Traingularized Encryption

for Online Wireless Communication (NSKTE), In Proceedings of the 2
nd

 National

Conference on Computing and Systems, (NaCCS 2012), Department of Computer Science,

The University of Burdwan, Burdwan, India, March 15-16 2012, pp. 172-177, ISBN 978-

93-808131-8-9.

11. Mandal, J. K., & Sarkar, A. (2012). Neural Weight Session Key based Encryption for

Online Wireless Communication (NWSKE), In Proceedings of the Research and Higher

Education in Computer Science and Information Technology, (RHECSIT- 2012),

Department of Computer Science, Sammilani Mahavidyalaya, Kolkata, India, February 21-

22 2012, pp. 90-95, ISBN 978-81-923820-0-5.

 Arindam Sarkar, University of Kalyani, India xvi

Zonal Seminar

12. Sarkar, A. (2013). Parallel Session Key Exchange and Certification by Fine Tuning of

Double Layer Perceptron in Wireless communication (PKECDLP), In Proceedings of the

ICT in Present Wireless Revolution: Challenges and Issues, The Institution of Electronics

and Telecommunication Engineers Kolkata Centre, IETE Kolkata Center, Salt Lake, India,

August 30-31 2013, pp. 1-9, ISBN 978-93-5126-699-0.

 Arindam Sarkar, University of Kalyani, India xvii

Contents

Abstract …..……………………………………………………………………….…….

List of Publications …………………………………………………...………………...

Publication Indexing Database ………………………………………………………….

List of Papers presented ………………………………………………………………...

List of Abbreviations …………………………………………………………………...

List of Symbols ……………………………………………………………………........

List of Tables …………………………………………………………………………...

List of Figures ………………………………………………………………………......

1. Chapter 1:

Introduction ……………………………………………………………..................

1.1 Introductory Discussions ……………………………………………………..

1.2 Essence of Cryptography ……………………………………………………..

1.2.1 Encryption/Decryption ………………………………………………..

1.2.2 Cipher …………………………………………………………………

1.2.3 Cryptographic Key ……………………………………………………

1.2.4 Key Management ………………………………………………….….

1.2.5 Key Generation ……………………………………………………….

1.2.6 Key Agreement ………………………………………………….……

1.2.7 Key Exchange ……………………………………………………..….

1.2.8 Attack Model ……………………………………………………….…

1.3 Cryptographic Algorithm ……………………………………………………..

1.3.1 Advanced Encryption Standard (AES) ……………………………….

1.3.2 Data Encryption Standard (DES) ……………………………………..

1.3.3 Triple Data Encryption Standard (TDES) …………………………….

1.3.4 RSA …………………………………………………………………...

1.4 Soft Computing based Cryptography …………………………………………

1.5 Literature Survey ……………………………………………………………...

1.6 Learning Rules for Tuning of Perceptron …………………………………….

iv

vi

xii

xiv

xxvii

xxviii

xxix

xxxiv

1

3

3

4

5

6

7

7

7

7

9

10

10

10

11

12

12

17

37

 Arindam Sarkar, University of Kalyani, India xviii

1.7 Metrics for Evaluation ………………………………………………………..

1.7.1 NIST Statistical Test ………………………………………………….

1.7.2 Performance Analysis …………………………………….…………..

1.7.3 Encryption and Decryption Time ……………………………………..

1.7.4 Avalanche and Strict Avalanche Effects ……………………………...

1.7.5 Bit Independence Criterion …………………………………………...

1.7.6 Chi-Square Test ………………………………………………….……

1.7.7 Frequency Distribution ……………………………………………….

1.7.8 Entropy ………………………………………………………………..

1.7.9 Floating Frequency …………………………………………………...

1.7.10 Autocorrelation ……………………………………………………….

1.8 Objectives ……………………………………………………………….…….

1.9 Organization of the Thesis ……………………………………………………

1.10 Salient Features of the Proposed Techniques ………………………………...

2. Chapter 2:

Kohonen’s Self-Organizing Feature Map Synchronized Cryptographic

Technique (KSOMSCT)…………………………………………………………...

2.1 Introduction …………………………………………………………………...

2.2 The Technique ……….…………………………………………………….….

2.2.1 KSOMSCT Algorithm at Sender ……………………………..………

2.2.1.1 Kohonen Self-Organizing Feature Map (KSOFM) based

Synchronization …………………………………………….

2.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………......

2.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement

Frame ………………………………………...…..

2.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame

of Synchronization ……………………………….

2.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame ……..

2.2.1.1.5 KSOFM Synchronization ………………………..

2.2.1.1.6 Complexity Analysis …………………………….

38

38

41

42

42

43

43

43

44

44

44

45

46

47

48

50

51

53

53

57

59

60

60

61

62

 Arindam Sarkar, University of Kalyani, India xix

2.2.1.1.7 Kohonen Self-Organizing Feature Map (KSOFM)

based Session Key Generation …………………..

2.2.1.2 Fractal Triangle based Encryption Algorithm ……………...

2.2.1.3 Session Key based Encryption ………………….…………..

2.2.2 KSOMSCT Algorithm at Receiver …………………………………...

2.2.2.1 Session Key based Decryption …………………………….

2.2.2.2 Fractal Triangle based Decryption Algorithm ……….……..

2.3 Implementation ……………………………………………………………….

2.4 Security Analysis ……………………………………………………………..

2.5 Discussions …………………………………………………………….……...

3. Chapter 3:

Double Hidden Layer Perceptron Synchronized Cryptographic Technique

 (DHLPSCT) ………………………………………………………….....................

3.1 Introduction …………………………………………………………………...

3.2 The Technique ……….………………………………………………….…….

3.2.1 DHLPSCT Algorithm at Sender ……………………………..….……

3.2.1.1 Double Hidden Layer Perceptron (DHLP) based

Synchronization and Session Key Generation ……………...

3.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………......

3.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement

Frame …………………………………………….

3.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame

of Synchronization ……………………………….

3.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...…

3.2.1.1.5 DHLP Synchronization ………………….………

3.2.1.1.6 Complexity Analysis …………………………….

3.2.1.1.7 DHLP Learning Mechanism …………………….

3.2.1.2 Genetic Function based Simulated Annealing (SA) guided

Fittest Keystream Generation …………………………….…

62

65

66

66

67

67

69

72

74

76

78

79

81

81

87

88

89

89

90

92

93

94

 Arindam Sarkar, University of Kalyani, India xx

3.2.1.2.1 Simulated Annealing based Fittest Keystream

Generation Algorithm ……………………………

3.2.1.3 Encryption Algorithm ………………………………………

3.2.1.3.1 Triangle Edge Extension based Keystream

Expansion Technique ……………………………

3.2.1.4 Session Key based Encryption ………………….…………..

3.2.2 DHLPSCT Algorithm at Receiver ………………………………........

3.2.2.1 Session Key based Decryption …………………….……….

3.2.2.2 Decryption Algorithm ………………………....…………...

3.3 Implementation ……………………………………………………………….

3.4 Security Analysis ……………………………………………………………..

3.5 Discussions ………………………………………………………....................

4. Chapter 4:

Chaos based Double Hidden Layer Perceptron Synchronized Cryptographic

Technique (CDHLPSCT) ………………………………………………………...

4.1 Introduction …………………………………………………………………...

4.2 The Technique ……….………………………….………………………….…

4.2.1 CDHLPSCT Algorithm at Sender ……………..……….......................

4.2.1.1 Chaos based Double Hidden Layer Perceptron (CDHLP)

Synchronization and Session Key Generation ……………...

4.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………......

4.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement

Frame …………………………………………….

4.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame

of Synchronization ……………………………….

4.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...…

4.2.1.1.5 CDHLP Synchronization ……………....…….…..

4.2.1.1.6 Complexity Analysis …………………………….

4.2.1.1.7 CDHLP Learning Mechanism …………………...

100

101

102

103

103

104

104

105

109

113

116

118

119

121

122

130

131

131

132

132

136

138

 Arindam Sarkar, University of Kalyani, India xxi

4.2.1.2 Genetic Algorithm (GA) based Fittest Keystream

Generation …………………………………..……………....

4.2.1.2.1 Genetic Algorithm based Fittest Keystream

Generation Algorithm ……………………………

4.2.1.3 Encryption Algorithm ………………………………………

4.2.1.3.1 Square Edge Extension based Keystream

Expansion Technique ……………………………

4.2.1.4 Session Key based Encryption ………………….…………..

4.2.2 CDHLPSCT Algorithm at Receiver ………………………………......

4.2.2.1 Session Key based Decryption …………………….……….

4.2.2.2 Decryption Algorithm ……………………………………...

4.3 Implementation ……………………………………………………………….

4.4 Security Analysis ……………………………………………………………..

4.5 Discussions ………………………………………………………....................

5. Chapter 5:

Chaos based Triple Hidden Layer Perceptron Synchronized Cryptographic

Technique (CTHLPSCT) ………………………………………………………...

5.1 Introduction …………………………………………………………………...

5.2 The Technique ……….…………………….……………………………….…

5.2.1 CTHLPSCT Algorithm at Sender …………………………..………...

5.2.1.1 Chaos based Triple Hidden Layer Perceptron (CTHLP)

Synchronization and Session Key Generation ……………...

5.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame …………………..

5.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement

Frame ………………………………………….....

5.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame

of Synchronization ……………………………….

5.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...…

5.2.1.1.5 CTHLP Synchronization …………….....………..

139

146

147

148

149

149

151

151

152

154

157

160

162

163

165

165

175

176

176

177

177

 Arindam Sarkar, University of Kalyani, India xxii

5.2.1.1.6 Complexity Analysis …………………………….

5.2.1.1.7 CTHLP Learning Mechanism …………………...

5.2.1.2 Ant Colony Intelligence (ACI) based Fittest Keystream

Generation …………………………………………………..

5.2.1.2.1 Ant Colony Intelligence (ACI) based Fittest

Keystream Generation Algorithm ……………….

5.2.1.3 Encryption Algorithm ………………………………………

5.2.1.4 Session Key based Encryption ………………….…………..

5.2.2 CTHLPSCT Algorithm at Receiver ……………...…………………...

5.2.2.1 Session Key based Decryption ……………………….…….

5.2.2.2 Decryption Algorithm ……………….…………...…….…..

5.3 Implementation ……………………………………………………………….

5.4 Security Analysis ……………………………………………………………..

5.5 Discussions ………………………………………………………....................

6. Chapter 6:

Chaos based Grouped Triple Hidden Layer Perceptron Synchronized

Cryptographic Technique (CGTHLPSCT) …….………………………………..

6.1 Introduction …………………………………………………………………...

6.2 The Technique ……….…………….……………………………………….…

6.2.1 CGTHLPSCT Algorithm at Sender …………………………..………

6.2.1.1 Chaos based Group Triple Hidden Layer Perceptron

(CGTHLP) Synchronization and Session Key Generation

6.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ……………..........

6.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement

Frame ….…………………………………………

6.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame

of Synchronization ……………………………….

6.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame ….…

6.2.1.1.5 CGTHLP Synchronization ……………..…..……

182

183

184

188

189

190

191

191

192

192

198

201

204

206

207

208

209

216

216

217

218

218

 Arindam Sarkar, University of Kalyani, India xxiii

6.2.1.1.6 Complexity Analysis …………………………….

6.2.1.1.7 CTHLP Learning Mechanism …………………...

6.2.1.2 Particle Swarm Intelligence (PSI) based Fittest Keystream

Generation ………………………………………………......

6.2.1.2.1 PSI based Fittest Keystream Generation

Algorithm …………………………..………….…

6.2.1.3 Encryption Algorithm ………………………………………

6.2.1.4 Session Key based Encryption ………………….…………..

6.2.2 CGTHLPSCT Algorithm at Receiver ………………………………...

6.2.2.1 Session Key based Decryption ………………….………….

6.2.2.2 Decryption Algorithm ……………………….……………..

6.3 Implementation ……………………………………………………………….

6.4 Security Analysis ……………………………………………………………..

6.5 Discussions ………………………………………………………....................

7. Chapter 7:

Results and Analysis ………………………………………………………………

7.1 Introduction …………………………………………………………………...

7.2 NIST Statistical Test and Analysis …………………………………………...

7.2.1 The Frequency (Monobit) Test ……………………………………….

7.2.2 The Test for Frequency within a Block ………………………………

7.2.3 The Runs Test ………………………………………………………...

7.2.4 The Longest Run of Ones in a Block …………………………………

7.2.5 The Binary Matrix Rank Test ………………………………………...

7.2.6 The Discrete Fourier Transform Test …………………………………

7.2.7 The Non-overlapping Template Matching Test ………………………

7.2.8 The Overlapping (Periodic) Template Matching Test ………………..

7.2.9 Maurer's "Universal Statistical" Test …………………………………

7.2.10 The Linear Complexity Test ………………………………………….

7.2.11 The Serial Test ………………………………………………………..

223

225

226

231

233

234

234

235

235

236

241

244

247

249

250

252

253

254

255

257

258

259

260

261

262

263

 Arindam Sarkar, University of Kalyani, India xxiv

7.2.12 The Approximate Entropy Test …………………………………….…

7.2.13 The Cumulative Sums (Cusums) Test ………………………………..

7.2.14 The Random Excursions Test ………………………………………...

7.2.15 The Random Excursions Variant Test ………………………………..

7.3 Performace Analysis ………………………………………………………….

7.3.1 Average Synchronization Time (in cycle) for Generating variable bit

Session Key …………………………..……….………………………

7.3.2 Average Synchronization Time (in cycle) for Generating variable bit

Grouped Session (Group size= 4) Key …..…………………………..

7.3.3 Average Synchronization Time (in cycle) for Generating 128 bit

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons

7.3.4 Average Synchronization Time (in cycle) for Generating 192 bit

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons

7.3.5 Average Synchronization Time (in cycle) for Generating 256 bit

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons

7.3.6 Average synchronization time (in cycle) for generating variable

session key ………………………………………...………………….

7.3.7 Average Synchronization Time (in cycle) for Generating 128 bit

Session Key using variable Weight range (𝐿 = 5 to 50) with fixed

Neurons (2 − 4 − 2) in DHLPSCT, CDHLPSCT ………………...…

7.3.8 Average Synchronization Time (in cycle) for Generating 128 bit

Session Key using variable Weight range (𝐿 = 5 to 50) with fixed

Neurons (2 − 2 − 3 − 2) in CTHLPSCT, CGTHLPSCT …..……..…

7.3.9 Average Synchronization Time (in cycle) for Generating 128 bit

Session Key using Hebbian learning rule with variable Weight range

(𝐿 = 5 to 50) and fixed Neurons (2 − 4 − 2) in DHLPSCT,

CDHLPSCT ……..…………………………………………………....

265

266

267

268

270

272

276

281

289

298

306

309

313

317

 Arindam Sarkar, University of Kalyani, India xxv

7.3.10 Average Synchronization Time (in cycle) for Generating 128 bit

Session Key using Hebbian learning rule with variable Weight range

(𝐿 = 5 to 50) and fixed Neurons (2 − 2 − 3 − 2) in CTHLPSCT,

CGTHLPSCT …………………………………………………………

7.3.11 Comparison of memory heap used in both proposed and existing

techniques for generation of 128 bit session key ……………………..

7.3.12 Comparison of relative time spent in GC to generate 128 bit session

key using both proposed and existing techniques …………………….

7.3.13 Comparisons of thread required to generate 128 bit session key using

both proposed and existing techniques ………….……………………

7.3.14 Analysis of dimension of KSOMSCT vs. average number of

iterations ………………….………………………………………...…

7.3.15 Analysis of number of generations vs. average fitness value in

Simulated Annealing guided fittest keystream generation in

DHLPSCT …………………………………………….………………

7.3.16 Analysis of number of generations vs. average fitness value in

Genetic Algorithm guided fittest keystream generation in

CDHLPSCT ……………………………………...…………….……..

7.3.17 Comparisons of length of plain text vs. Keystream storage between

proposed and existing techniques ………..….………………………..

7.4 Encryption/Decryption Time …………………………………………………

7.4.1 .dll files ………………………………………………………………..

7.4.2 .exe files …………………………….…………………………………

7.4.3 .txt files ………………………………………………………………..

7.4.4 .doc files ………………………………………………………………

7.5 Avalanche, strict Avalanche and Bit Independence ……………………….….

7.5.1 .dll files …...….………………………………………………………..

7.5.2 .exe files …………………………………….…………………………

7.5.3 .txt files ………………………………………………………………..

7.5.4 .doc files ……………………………………………………………….

321

325

326

327

328

329

331

333

337

337

340

343

346

349

349

355

361

367

 Arindam Sarkar, University of Kalyani, India xxvi

7.6 Test for Non-Homogeneity ……………………….…………………………..

7.6.1 .dll files ……....………………………………………………………..

7.6.2 .exe files …….…………………………………………………………

7.6.3 .txt files ………………………………………………………………..

7.6.4 .doc files ……………………………………………………………….

7.7 Analysis of Character Frequencies, Entropy, Floating Frequencies,

Autocorrelation………………………………………………………..............

7.7.1 .dll file ……….………………………………………………………...

7.7.2 .com file ……..………………………………………………………...

7.7.3 .exe file ……….…………………………………….……………….…

7.7.4 .cpp file ……..…………………………………………………………

7.7.5 .txt file ………..………………………………………………………..

7.8 Analysis ……………………………………………………………………….

8. Chapter 8:

Proposed Model ……………………………………………………………………

8.1 Introduction …………………………………………………………………...

8.2 The Model …………………………………………………………………….

8.2.1 Session Key Generation …………………………………………...….

8.2.2 Encryptor Module …………………………………………………….

8.2.3 Decryptor Module ………………………………………………….....

8.3 Analysis ……………………………………………………………………….

8.4 Conclusions ………………………………………………………………...…

8.5 Future Scope ………………………………………………………………….

References ……………………………………………………………………………...

373

373

376

378

380

382

382

386

389

392

395

398

400

402

402

403

405

408

411

415

417

419

 Arindam Sarkar, University of Kalyani, India xxvii

List of Abbreviations

KSOFM : Kohonen’s Self Organizing Feature Map

DHLP : Double Hidden Layer Perceptron

CDHLP : Chaos based Double Hidden Layer Perceptron

CTHLP : Chaos based Triple Hidden Layer Perceptron

CGTHLP : Chaos based Group Triple Hidden Layer Perceptron

SA : Simulated Annealing

GA : Genetic Algorithm

ACI : Ant Colony Intelligence

PSI : Particle Swarm Intelligence

TPM : Tree Parity Machine

PPM : Permutation Parity Machine

MITM : Man-In-The-Middle

AES : Advanced Encryption standard

TDES : Triple Data Encryption standard

RSA : Rivest Shamir Adleman

RC4 : Rivest Cipher 4

RC5 : Rivest Cipher 5

 Arindam Sarkar, University of Kalyani, India xxviii

List of Symbols

∑ : Summation

 𝜎 : Sigma (Hidden Layer Output)

𝜏 : Perceptron Final Output

 : Exclusive-OR

 & : Bitwise AND

 ≠ : Not equal to

 × : Multiplication

 ÷ : Division

< : Less than

 ≤ : Less than Equal to

> : Grater than

 ≥ : Grater than equal to

 ≅ : Equivalent to

 ∀ : For All

 ∈ : Belongs to

 ! : Factorial

 Arindam Sarkar, University of Kalyani, India xxix

List of Tables

Table

No.

Heading Page

2.1 Control frames of KSOFM synchronization 57

2.2 KSOFM control frames and their command codes 58

2.3 DIM Index corresponds to the dimension of KSOFM 58

2.4 Weight DIM Index corresponds to the number of weights 59

2.5 Mask Index value corresponds to the different mathematical mask functions 59

2.6 Fractal triangle encryption of 010101000 70

2.7 Fractal triangle encryption of 110010101 70

2.8 Fractal triangle encryption of 100011011 70

2.9 Fractal triangle encryption of 010000110 70

2.10 Fractal triangle encryption of 111001101 71

2.11 Fractal triangle encryption of 001011100 71

2.12 Fractal triangle encryption of 010111010 71

2.13 Fractal triangle encryption of 101100101 71

3.1 Control frames of DHLP synchronization 85

3.2 DHLP control frames and their command codes 86

3.3 Character table of SA 95

4.1 Control frames of CDHLP synchronization 127

4.2 CDHLP control frames and their command codes 129

4.3 Operator’s format and their meaning 139

5.1 Control frames of CTHLP synchronization 172

5.2 CTHLP control frames and their command codes 174

5.3 ACI based keystream generation 193

6.1 Control frames of CGTHLP synchronization 213

6.2 CGTHLP control frames and their command codes 214

6.3 PSI based keystream generation 237

7.1 Proportion of passing and uniformity of distribution for frequency 252

7.2 Counting of P-values lying in the given ranges for frequency 252

7.3 Proportion of passing and uniformity of distribution for frequency within a

block

253

 Arindam Sarkar, University of Kalyani, India xxx

Table

No.

Heading Page

7.4 Counting of P-values lying in the given ranges for frequency within a block 253

7.5 Proportion of passing and uniformity of distribution for runs 254

7.6 Counting of P-values lying in the given ranges for runs 255

7.7 Proportion of passing and uniformity of distribution for longest run of ones

in a block

256

7.8 Counting of P-values lying in the given ranges for longest run of ones in a

block

256

7.9 Proportion of passing and uniformity of distribution for binary matrix rank

test

257

7.10 Counting of P-values lying in the given ranges for binary matrix rank test 257

7.11 Proportion of passing and uniformity of distribution for discrete Fourier

transform test

258

7.12 Counting of P-values lying in the given ranges for discrete Fourier transform

test

258

7.13 Proportion of passing and uniformity of distribution for non-overlapping

(aperiodic) template matching test

259

7.14 Counting of P-values lying in the given ranges for non-overlapping

(aperiodic) template matching test

259

7.15 Proportion of passing and uniformity of distribution for

overlapping (periodic) template matching test

260

7.16 Counting of P-values lying in the given ranges for

overlapping (periodic) template matching test

261

7.17 Proportion of passing and uniformity of distribution for Maurer’s “universal

statistical” test

262

7.18 Counting of P-values lying in the given ranges for Maurer’s “Universal

Statistical” test

262

7.19 Proportion of passing and uniformity of distribution for linear complexity

test

263

7.20 Counting of P-values lying in the given ranges for linear complexity test 263

7.21 Proportion of passing and uniformity of distribution for serial test 264

7.22 Counting of P-values lying in the given ranges for serial test 264

7.23 Proportion of passing and uniformity of distribution for approximate entropy

test

265

7.24 Counting of P-values lying in the given ranges for approximate entropy test 265

 Arindam Sarkar, University of Kalyani, India xxxi

Table

No.

Heading Page

7.25 Proportion of passing and uniformity of distribution for cumulative sums test 266

7.26 Counting of P-values lying in the given ranges for cumulative Sums test 266

7.27 Proportion of passing and uniformity of distribution for random excursions

test

267

7.28 Counting of P-values lying in the given ranges for random excursions test 268

7.29 Proportion of passing and uniformity of distribution for random excursions

variant test

269

7.30 Counting of P-values lying in the given ranges for random excursions variant

test

269

7.31 Average synchronization time (in cycle) for generating 128 bit session key 272

7.32 Average synchronization time (in cycle) for generating 192 bit session key 273

7.33 Average synchronization time (in cycle) for generating 256 bit session key 275

7.34 Average synchronization time (in cycle) for generating 128 bit grouped

session (Group size = 4) key

276

7.35 Average synchronization time (in cycle) for generating 192 bit grouped

session (Group size = 4) key

278

7.36 Average synchronization time (in cycle) for generating 256 bit grouped

session (Group size = 4) key

279

7.37 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in DHLPSCT

281

7.38 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

283

7.39 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

285

7.40 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

287

7.41 Generation of 192 bit session key using fixed weight range (L=5) with

variable neurons in DHLPSCT

289

7.42 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

291

7.43 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

293

7.44 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

295

7.45 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 298

 Arindam Sarkar, University of Kalyani, India xxxii

Table

No.

Heading Page

variable neurons in DHLPSCT

7.46 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

300

7.47 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

302

7.48 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

304

7.49 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 4 − 2) in DHLPSCT

309

7.50 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 4 − 2) in CDHLPSCT

311

7.51 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT

313

7.52 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT

315

7.53 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT

317

7.54 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT

319

7.55 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons 2 − 2 − 3 − 2 in

CTHLPSCT

321

7.56 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50), variable group size and fixed neurons

(2 − 2 − 3 − 2) in CGTHLPSCT

323

7.57 Average of fitness values in SA 329

7.58 List of best fitness values in 50 different runs of SA 330

7.59 Average of fitness values in GA 331

7.60 List of best fitness values in 50 different runs of GA 332

7.61 Comparisons of length of plain text vs. keystream storage between proposed

and existing techniques

333

7.62 Comparisons of encryption and decryption times for .dll files 338

7.63 Comparisons of encryption and decryption times for .exe files 341

7.64 Comparisons of encryption and decryption times for .txt files 344

7.65 Comparisons of encryption and decryption times for .doc files 347

 Arindam Sarkar, University of Kalyani, India xxxiii

Table

No.

Heading Page

7.66 Comparisons of Avalanche of .dll files 351

7.67 Comparisons of Strict Avalanche of .dll files 352

7.68 Comparisons of Bit Independence of .dll files 353

7.69 Comparisons of average values of Avalanche, Strict Avalanche and Bit

Independence of .dll files

354

7.70 Comparisons of Avalanche of .exe files 357

7.71 Comparisons of Strict Avalanche of .exe files 358

7.72 Comparisons of Bit Independence of .exe files 359

7.73 Comparisons of average values of Avalanche, Strict Avalanche and Bit

Independence of .exe files

360

7.74 Comparisons of Avalanche of .txt files 363

7.75 Comparisons of Strict Avalanche of .txt files 364

7.76 Comparisons of Bit Independence of .txt files using 365

7.77 Comparisons of average values of Avalanche, Strict Avalanche and Bit

Independence of .txt files

366

7.78 Comparisons of Avalanche of .doc files 369

7.79 Comparisons of Strict Avalanche of .doc files 370

7.80 Comparisons of Bit Independence of .doc files 371

7.81 Comparisons of average values of Avalanche, Strict Avalanche and Bit

Independence of .doc files

372

7.82 Comparisons of Chi-Square value of .dll files 375

7.83 Comparisons of Chi-Square value of .exe files 377

7.84 Comparisons of Chi-Square value of .txt files 379

7.85 Comparisons of Chi-Square value of .doc files 381

8.1 Time involved for various key spaces 413

8.2 Average time required for exhaustive key search 413

 Arindam Sarkar, University of Kalyani, India xxxiv

List of Figures

Fig.

No.

Title Page

2.1 The Sierpinski triangle 52

2.2 Frame format of 𝑆𝑌𝑁 frame 58

2.3 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 60

2.4 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 60

2.5 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 60

2.6 Exclusive-OR operation between central key bit of each triangle and vertex

elements of each triangle

64

2.7 Exclusive-OR operation between triangle’s centered key and vertex elements

of big triangle

65

2.8 Exclusive-OR operation between upper triangle’s vertex elements with right

triangle’s vertex elements

65

2.9 Exclusive-OR operation between upper triangle’s vertex elements with left

triangle’s vertex elements

65

2.10 Storage structure representation of the encrypted text 66

2.11 Exclusive-OR operation between upper triangle’s vertex elements with left

triangle’s vertex elements

68

2.12 Exclusive-OR operation between upper triangle’s vertex elements with right

triangle’s vertex elements

68

2.13 Exclusive-OR operation between triangle’s centered key and vertex elements

of big triangle

68

2.14 Exclusive-OR operation between key and vertex elements of each triangle 69

3.1 A DHLP with two hidden layers 83

3.2 Snapshot of a single path of DHLP 84

3.3 Exchange of control frames between sender and receiver during DHLP

synchronization

87

3.4 Frame format of 𝑆𝑌𝑁 frame 88

3.5 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 89

3.6 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 89

3.7 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 90

3.8 Single point crossover operation

97

 Arindam Sarkar, University of Kalyani, India xxxv

Fig.

No.

Title Page

3.9 Mutation operation

98

3.10 Flow chart of Simulated Annealing (SA) based fittest keystream generation 99

3.11 Triangle of different color sides, blue side represents the original key, red and

green side represents the left and right side extended key

102

3.12 Expanded keystream 102

4.1 Exchange of values between sender and receiver at the initial state 124

4.2 Exchange of updated values of the parameters 𝑥1 , 𝑦2 and 𝑧2 124

4.3 Exchange of 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 125

4.4 Exchange of authentication frame during session key certification phase 127

4.5 Exchange of control frames between sender and receiver during CDHLP

synchronization

129

4.6 Frame format of 𝑆𝑌𝑁 frame 130

4.7 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 131

4.8 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 132

4.9 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 132

4.10 Uniform crossover operation

142

4.11 Mutation operation

143

4.12 Flow chart of Genetic Algorithm (GA) based fittest keystream generation 145

4.13 Different color side, black side represents the original key, red and blue side

represents the left and right side of square

149

4.14 Expanded keystream 149

5.1 Snapshot of the single path from input neuron to the output neuron 167

5.2 A CTHLP with three hidden layers 168

5.3 Exchange of control frames between sender and receiver during CTHLP

synchronization

174

5.4 Frame format of 𝑆𝑌𝑁 frame 175

5.5 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 176

5.6 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 177

5.7 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 177

5.8 Flow chart of Ant Colony Intelligence (ACI) based fittest keystream

generation

187

 Arindam Sarkar, University of Kalyani, India xxxvi

Fig.

No.

Title Page

6.1 Initial state of group synchronization 211

6.2 First round of group synchronization 212

6.3 Second round of group synchronization 212

6.4 Exchange of control frames between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 during CGTHLP

synchronization

215

6.5 Frame format of 𝑆𝑌𝑁 frame 216

6.6 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 217

6.7 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 217

6.8 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 218

6.9 Flow chart of Particle Swarm Intelligence (PSI) based fittest keystream

generation

230

7.1 128 bit key length vs. average synchronization time (in cycle) 272

7.2 192 bit key length vs. average synchronization time (in cycle) 274

7.3 256 bit key length vs. average synchronization time (in cycle) 275

7.4 128 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size = 4)

277

7.5 192 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size= 4)

278

7.6 256 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size= 4)

280

7.7 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in DHLPSCT

281

7.8 Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

DHLPSCT technique

282

7.9 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

283

7.10 Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CDHLPSCT technique

284

7.11 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

285

7.12 Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CTHLPSCT technique

286

 Arindam Sarkar, University of Kalyani, India xxxvii

Fig.

No.

Title Page

7.13 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

287

7.14 Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CGTHLPSCT

288

7.15 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in DHLPSCT

290

7.16 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5

in DHLPSCT technique

290

7.17 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

292

7.18 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5

in CDHLPSCT technique

292

7.19 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

294

7.20 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5

in CTHLPSCT technique

294

7.21 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

296

7.22 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5

in CGTHLPSCT technique

296

7.23 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in DHLPSCT

298

7.24 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5

in DHLPSCT technique

299

7.25 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CDHLPSCT

300

7.26 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5

in CDHLPSCT technique

301

7.27 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CTHLPSCT

302

7.28 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5

in CTHLPSCT technique

303

7.29 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with

variable neurons in CGTHLPSCT

304

 Arindam Sarkar, University of Kalyani, India xxxviii

Fig.

No.

Title Page

7.30 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5

in CGTHLPSCT technique

305

7.31 Average synchronization time (in cycle) for generating variable session key in

KSOMSCT

306

7.32 Average synchronization time (in cycle) for generating variable session key in

DHLPSCT

307

7.33 Average synchronization time (in cycle) for generating variable session key in

CDHLPSCT

307

7.34 Average synchronization time (in cycle) for generating variable session key in

CTHLPSCT

308

7.35 Average synchronization time (in cycle) for generating variable session key in

CGTHLPSCT

308

7.36 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 4 − 2) in DHLPSCT

310

7.37 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 4 − 2) in CDHLPSCT

312

7.38 Generation of 128 bit session key using variable weight range

(𝐿 = 5 to 50) with fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT

314

7.39 Generation of 128 bit session key using variable weight range

(𝐿 = 5 to 50) with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT

316

7.40 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT

318

7.41 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT

320

7.42 Generation of 128 bit session key using Hebbian learning rule with variable

weight range(𝐿 = 5 to 50) and fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT

322

7.43 Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and variable group size with fixed neurons

(2 − 2 − 3 − 2) in CGTHLPSCT

324

7.44 Comparisons of memory used to generate 128 bit session key 325

7.45 Comparisons of relative time spent in GC to generate 128 bit session key 326

7.46 Comparisons of number of threads required generating 128 bit session key 327

7.47 KSOMSCT dimension vs. average number of iterations

328

 Arindam Sarkar, University of Kalyani, India xxxix

Fig.

No.

Title Page

7.48 Number of generation vs. average of fitness values in SA guided fittest

keystream generation technique

329

7.49 Number of generation vs. average of fitness values in GA guided fittest

keystream generation technique

331

7.50 Comparisons of length of plain text vs. keystream storage between proposed

and existing techniques

334

7.51 Graphical representation of encryption time against the varying size of input

stream of .dll files

339

7.52 Graphical representation of decryption time against the varying size of input

stream of .dll files

339

7.53 Graphical representation of encryption time against the varying size of input

stream of .exe files

342

7.54 Graphical representation of decryption time against the varying size of input

stream of .exe files

342

7.55 Graphical representation of encryption time against the varying size of input

stream of .txt files

345

7.56 Graphical representation of decryption time against the varying size of input

stream of .txt files

345

7.57 Graphical representation of encryption time against the varying size of input

stream of .doc files

348

7.58 Graphical representation of decryption time against the varying size of input

stream of .doc files

348

7.59 Pictorial representation of the average values of Avalanche and Strict

Avalanche of .dll type bit stream

354

7.60 Pictorial representation of the average values of Bit Independence of .dll type

bit stream

355

7.61 Pictorial representation of the average values of Avalanche and Strict

Avalanche of .exe type bit stream

360

7.62 Pictorial representation of the average values of Bit Independence of .exe type

bit stream

361

7.63 Pictorial representation of the average values of Avalanche and Strict

Avalanche of .txt type bit stream

366

7.64 Pictorial representation of the average values of Bit Independence of .txt type

bit stream

367

 Arindam Sarkar, University of Kalyani, India xl

Fig.

No.

Title Page

7.65 Pictorial representation of the average values of Avalanche and Strict

Avalanche of .doc type bit stream

372

7.66 Pictorial representation of the average values of Bit Independence of .doc type

bit stream

373

7.67 Pictorial representation of the average values of Chi-Square of .dll type bit

stream

374

7.68 Pictorial representation of the average values of Chi-Square of .exe type bit

stream

376

7.69 Pictorial representation of the average values of Chi-Square of .txt type bit

stream

378

7.70 Pictorial representation of the average values of Chi-Square of .doc type bit

stream

380

7.71 Graphical representation of frequency distribution spectrum of characters for

the .dll type input source stream

383

7.72 Graphical representation of frequency distribution spectrum of characters for

the encrypted stream using KSOMSCT for .dll file

384

7.73 Floating frequency of the input .dll source stream 384

7.74 Floating frequency of the encrypted stream using KSOMSCT for .dll file 385

7.75 Autocorrelation of the input .dll source stream 385

7.76 Autocorrelation of the encrypted stream using KSOMSCT for .dll file 385

7.77 Graphical representation of frequency distribution spectrum of characters for

the input .com source stream

387

7.78 Graphical representation of frequency distribution spectrum of characters for

the encrypted stream using DHLPSCT for .com file

387

7.79 Floating frequency of the input .com source stream 387

7.80 Floating frequency of the encrypted stream using DHLPSCT for .com file 388

7.81 Autocorrelation of the input .com source stream 388

7.82 Autocorrelation of the encrypted stream using DHLPSCT for .com file 388

7.83 Graphical representation of frequency distribution spectrum of characters for

the input .exe source stream

390

7.84 Graphical representation of frequency distribution spectrum of characters for

the encrypted stream using CDHLPSCT for .exe file

390

7.85 Floating frequency of the input .exe source stream 390

 Arindam Sarkar, University of Kalyani, India xli

Fig.

No.

Title Page

7.86 Floating frequency of the encrypted stream using CDHLPSCT for .exe file 391

7.87 Autocorrelation of the input .exe source stream 391

7.88 Autocorrelation of the encrypted stream using CDHLPSCT for .exe file 391

7.89 Graphical representation of frequency distribution spectrum of characters for

the input .cpp source stream

393

7.90 Graphical representation of frequency distribution spectrum of characters for

the encrypted stream using CTHLPSCT for .cpp file

393

7.91 Floating frequency of the input .cpp source stream 393

7.92 Floating frequency of the encrypted stream using CTHLPSCT for .cpp file 394

7.93 Autocorrelation of the input .cpp source stream 394

7.94 Autocorrelation of the encrypted stream using CTHLPSCT for .cpp file 394

7.95 Graphical representation of frequency distribution spectrum of characters for

the input .txt source stream

396

7.96 Graphical representation of frequency distribution spectrum of characters for

the encrypted stream using CGTHLPSCT for .txt file

396

7.97 Floating frequency of the input .txt source stream 396

7.98 Floating frequency of the encrypted stream using CGTHLPSCT for .txt file 397

7.99 Autocorrelation of the input .txt source stream 397

7.100 Autocorrelation of the encrypted stream using CGTHLPSCT for .txt file 397

8.1 Pictorial representation of the flow chart of encryption for the proposed

cascaded model

407

8.2 Pictorial representation of the flow chart of decryption for the proposed

cascaded model

410

8.3 Graphical representation of average time T in years (T in logarithmic scale as

log10T) against n, number of cascading stages

414

Chapter 1

Introduction

 Arindam Sarkar, University of Kalyani, India 3

1.1 Introductory Discussions

Cryptography is the practice and study of techniques for secure communication in the

existence of third parties (called adversaries).
[1][2]

 More usually, it is about constructing and

analyzing protocols that overcome the influence of adversaries
[3][4]

 and which are associated

to a variety of aspects in information security such as data confidentiality, data integrity,

authentication, and non-repudiation.
[5]

 Section 1.2 discussed about essence of cryptography

that of some other available cryptographic techniques have been presented in section 1.3 of

this chapter. Section 1.4 discussed about the soft computing based cryptography. A

comprehensive survey of literature has been presented in section 1.5. Learning rules for

tuning of perceptrons discussed in section 1.6. Metrics for evaluation of proposed algorithms

have been given in section 1.7. Objectives of the study are given in section 1.8. Organization

of the thesis is given in section 1.9. Some salient features of the thesis are described in

section 1.10.

1.2 Essence of Cryptography

Modern cryptography intersects the disciplines of mathematics, computer science, and

electrical engineering. Applications of cryptography include ATM cards, computer

passwords, and electronic commerce. Modern cryptography follows a strongly scientific

approach, and designs cryptographic algorithms around computational hardness assumptions,

making such algorithms hard to break by an adversary. It is theoretically possible to break

such a system but infeasible to do so by any practical means. These schemes are therefore

computationally secure. There exist secure schemes that provably cannot be broken, an

example is the one-time pad, but these schemes are more difficult to implement than the

theoretically breakable but computationally secure mechanisms.
[6]

Until modern times cryptography almost exclusively as encryption, which is the process

of converting ordinary information (called plaintext) into unintelligible gibberish (cipher

text).
[7]

 Decryption is the reverse, in other words, moving from the unintelligible cipher text

back to plaintext. A cipher (or cypher) is a pair of algorithms that create the encryption and

the reversing decryption. The detailed operation of a cipher is controlled both by the

algorithm and in each instance by a key. This is a secret parameter (ideally known only to the

 Arindam Sarkar, University of Kalyani, India 4

communicants) for a specific message exchange context. A "cryptosystem" is the ordered list

of elements of finite possible plaintexts, finite possible cipher texts, finite possible keys, and

the encryption and decryption algorithms which correspond to each key. Keys are important,

as ciphers without variable keys can be trivially broken with only the knowledge of the

cipher used and are therefore useless (or even counter-productive) for most purposes.

Historically, ciphers were often used directly for encryption or decryption without additional

procedures such as authentication or integrity checks.
[6]

 To provide the essence of

cryptographic techniques section 1.2.1 discussed about the basic idea of

encryption/decryption. Concept of cipher is discussed in the section 1.2.2. Section 1.2.3

discussed about the cryptographic key. The concept of key management, key generation, key

agreement and key exchange are discussed in section 1.2.4, 1.2.5, 1.2.6, 1.2.7. Finally attack

models are presented in section 1.2.8.

1.2.1 Encryption/Decryption

In cryptography, encryption is the process of encoding messages or information in such a

way that only authorized parties can read it.
[9]

 Encryption does not of itself prevent

interception, but denies the message content to the interceptor.
[10]

 In an encryption scheme,

the message or information, referred to as plaintext, is encrypted using an encryption

algorithm, generating cipher text that can only be read if decrypted.
[10]

 Symmetric key

cryptography involves the usage of the same key for the encryption and decryption. This

scheme is suffering from key distribution or key exchange. Since the sender and the receiver

will use the same key to lock and unlock, this is called symmetric key operation. Thus the

key distribution problem is inherently linked with the symmetric key operation. Also number

of keys required as compared to the number of participants in the message exchange is equal

about the square of the number of participants, so scalability is an issue. Whereas,

asymmetric key cryptography involves the usage of one key for encryption and another,

different key for decryption. No other key can decrypt the message-not even the original (i.e.

first) key used for encryption. The beauty of this scheme is that every communicating party

needs just a key pair for communicating with any number of other communicating parties.

One of the two keys is called as public key and other is the private key. In case of

 Arindam Sarkar, University of Kalyani, India 5

asymmetric key cryptography speed of encryption and decryption is very slow and size of

resulting encrypted text is more than the original plaintext size.
[11]

1.2.2 Cipher

In cryptography, a cipher (or cypher) is an algorithm for performing encryption or

decryption, a series of well-defined steps that can be followed as a procedure. An alternative,

less common term is encipherment. To encipher or encode is to convert information from

plaintext into cipher or code. In non-technical usage, a 'cipher' is the same thing as a 'code';

however, the concepts are distinct in cryptography. In classical cryptography, ciphers were

distinguished from codes. Most modern ciphers can be categorized in several ways

 By whether they work on blocks of symbols usually of a fixed size (block ciphers), or on

a continuous stream of symbols (stream ciphers).

 By whether the same key is used for both encryption and decryption (symmetric key

algorithms), or if a different key is used for each (asymmetric key algorithms). If the

algorithm is symmetric, the key must be known to the recipient and sender and to no one

else. If the algorithm is an asymmetric one, the enciphering key is different from, but

closely related to, the deciphering key. If one key cannot be deduced from the other, the

asymmetric key algorithm has the public/private key property and one of the keys may be

made public without loss of confidentiality.
[12]

 Block ciphers or stream ciphers are the two ways in which symmetric ciphers are

implemented. A block cipher enciphers input in blocks of plaintext whereas individual

characters are the form of input by a stream cipher.

 Block cipher like the Data Encryption Standard (DES) and the Advanced Encryption

Standard (AES) have been designated cryptography standards by the US government

(though later DES was withdrawn and replaced by AES).
[11[13]

 Despite not being an

official standard anymore, DES (especially its still approved and much more secure

variety, triple-DES) still holds a firm position. Its application is of wider range, from

ATM encryption to e-mail privacy and secure remote access. There are many ciphers that

 Arindam Sarkar, University of Kalyani, India 6

have been designed and released with variation in quality whereas many have been

thoroughly broken like FEAL.
[14][15]

 Unlike block cipher, stream cipher creates an arbitrarily long stream of key which is

combined bit-by-bit or character-by-character (similar to one-time pad). The output

stream, in a stream cipher is created based on hidden internal state which changes as the

cipher operates. The secret key is used to set up the internal state. Block ciphers can be

used as stream ciphers where RC4 is a widely used stream cipher.
[15]

1.2.3 Cryptographic Key

In cryptography, a key is a piece of information (a parameter) that determines the functional

output of a cryptographic algorithm or cipher. Without a key, the algorithm would produce

no useful result. In encryption, a key specifies the particular transformation of plaintext into

cipher text, or vice versa during decryption. Encryption algorithms which use the same key

for both encryption and decryption are known as symmetric key algorithms. Asymmetric key

algorithms use a pair of keys or keypair, a public key and a private one. Public keys are used

for encryption or signature verification; private ones decrypt and sign. The public key

cryptography has two different keys but mathematically related to each other
.[16]

 A public key

and a private key was proposed by Whitfield Diffie and Martin Hellman in a ground breaking

1976 paper.
[17]

A public key is related to private key but a public key is constructed in such a

way that calculation of one key (private key) is computationally infeasible from the other

(the public key). But still both the keys are generated secretly as an interrelated pair. Public

key cryptography is described as “the most revolutionary new concept in the field since

polyalphabetic substitution emerged in the Renaissance”.
[18]

The public-key is freely

distributed in a public-key cryptosystems, while its paired private key must remain secret. In

a public-key encryption system, encryption is done by using public key while for decryption

private or secret key is used. Being unsuccessful in finding such a system Diffie and Hellman

showed that by presenting the Diffie-Hellman key exchange protocol, public-key

cryptography was indeed possible a solution that is now widely use in secure communication

to allow two parties to secretly agree on shared encryption key.
[19]

A widespread academic effort in finding a practical public-key encryption system was

initiated due to Diffie and Hellman‟s publication, as a result in 1978 Ronald Rivest, Adi

 Arindam Sarkar, University of Kalyani, India 7

Shamir and Len Adleman design the technique which is known as RSA algorithm.
[20]

 Some

other examples are Crammer-Shoup cryptosystem, ElGamal encryption and various elliptical

curve techniques.
[11]

1.2.4 Key Management

Key management is the management of cryptographic keys in a cryptosystem. This includes

dealing with the generation, exchange, storage, use, and replacement of keys. Key

management concerns keys at the user level, either between users or systems.
[21]

[22]

1.2.5 Key Generation

Key generation is the process of generating keys for cryptography. A key is used to encrypt

and decrypt whatever data is being encrypted/decrypted. Modern cryptographic systems

include symmetric-key algorithms (such as DES and AES) and public-key algorithms (such

as RSA).
[23]

1.2.6 Key Agreement

In cryptography, a key agreement protocol is a protocol whereby two or more parties can

agree on a key in such a way that both influence the outcome. If properly done, this precludes

undesired third-parties from forcing a key choice on the agreeing parties. Protocols that are

useful in practice also do not reveal to any eavesdropping party what key has been agreed

upon.
[24]

1.2.7 Key Exchange

Key exchange (also known as "key establishment") is any method in cryptography by which

cryptographic keys are exchanged between users, allowing use of a cryptographic

algorithm.
[25]

If sender and receiver wish to exchange encrypted messages, each must be

equipped to encrypt messages to be sent and decrypt messages received. The nature of the

equipping they require depends on the encryption technique they might use. If they use a

code, both will require a copy of the same codebook. If they use a cipher, they will need

appropriate keys. If the cipher is a symmetric key cipher, both will need a copy of the same

 Arindam Sarkar, University of Kalyani, India 8

key. If an asymmetric key cipher with the public/private key property, both will need the

other's public key. Prior to any secured communication, users must set up the details of the

cryptography. In some instances this may require exchanging identical keys (in the case of a

symmetric key system). In others it may require possessing the other party's public key.

While public keys can be openly exchanged (their corresponding private key is kept secret),

symmetric keys must be exchanged over a secure communication channel. Formerly,

exchange of such a key was extremely troublesome, and was greatly eased by access to

secure channels such as a diplomatic bag. Clear text exchange of symmetric keys would

enable any interceptor to immediately learn the key, and any encrypted data. The advance of

public key cryptography in the 1970s has made the exchange of keys less troublesome. Since

the Whitfield Diffie and Martin Hellman published a cryptographic protocol, (Diffie–

Hellman key exchange) in 1976, it has become possible to exchange a key over an insecure

communications channel, which has substantially reduced the risk of key disclosure during

distribution. It allows users to establish 'secure channels' on which to exchange keys, even if

an opponent is monitoring that communication channel. However, Diffie-Hellman key

exchange did not address the problem of being sure of the actual identity of the person (or

'entity'). In Diffie-Hellman key exchange algorithm two parties, who want to communicate

securely, can agree on a symmetric key using this technique. This algorithm can be used for

key agreement, but not for encryption or decryption of message. Once both the parties agree

on the key to be used, they need to use other symmetric key encryption algorithms for actual

encryption or decryption of messages. This Diffie-Hellman key exchange algorithm can fall

pray to the Man-In-The-Middle attack, also called as Bucket Bridge Attack. This Man-In-

The-Middle attack can work against the Diffie-Hellman key exchange algorithm, causing it

to fail. This is plainly because the Man-In-The-Middle makes the actual communicators

believe that they are taking to each other, whereas they are actually taking to the Man-In-

The-Middle, who is taking to each of them.

 Arindam Sarkar, University of Kalyani, India 9

1.2.8 Attack Model

 A chosen-cipher text attack (CCA) is an attack model for cryptanalysis in which the

cryptanalyst gathers information, at least in part, by choosing a cipher text and obtaining

its decryption under an unknown key. In the attack, an adversary has a chance to enter

one or more known cipher texts into the system and obtain the resulting plaintexts. From

these pieces of information the adversary can attempt to recover the hidden secret key

used for decryption.
[26]

 A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes that

the attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain

the corresponding cipher texts. The goal of the attack is to gain some further information

which reduces the security of the encryption scheme. In the worst case, a chosen-

plaintext attack could reveal the scheme's secret key. For some chosen-plaintext attacks,

only a small part of the plaintext needs to be chosen by the attacker: such attacks are

known as plaintext injection attacks.
[26]

 In cryptography, a cipher text-only attack (COA) or known cipher text attack is an attack

model for cryptanalysis where the attacker is assumed to have access only to a set of

cipher texts. The attack is completely successful if the corresponding plaintexts can be

deduced, or even better, the key. The ability to obtain any information at all about the

underlying plaintext is still considered a success. For example, if an adversary is sending

cipher text continuously to maintain traffic-flow security, it would be very useful to be

able to distinguish real messages from nulls. Even making an informed guess of the

existence of real messages would facilitate traffic analysis.
[26]

 The known-plaintext attack (KPA) is an attack model for cryptanalysis where the attacker

has samples of both the plaintext (called a crib), and its encrypted version (cipher text).

These can be used to reveal further secret information such as secret keys and code

books. The term "crib" originated at Bletchley Park, the British World War II decryption

operation.
[26]

 The Man-In-The-Middle Attack (often abbreviated MITM, MitM, MIM, MiM, MITMA)

in cryptography and computer security is a form of active eavesdropping in which the

attacker makes independent connections with the victims and relays messages between

 Arindam Sarkar, University of Kalyani, India 10

them, making them believe that they are talking directly to each other over a private

connection, when in fact the entire conversation is controlled by the attacker. The

attacker must be able to intercept all messages going between the two victims and inject

new ones, which is straightforward in many circumstances (for example, an attacker

within reception range of an unencrypted Wi-Fi wireless access point, can insert himself

as a Man-In-The-Middle).
[27]

1.3 Cryptographic Algorithm

Out of large variety of cryptographic algorithms, few are discussed in section 1.3.1 to 1.3.4.

1.3.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a symmetric-key block cipher published by the

National Institute of Standard and Technology (NIST) as FIPS 197 in the Federal Register in

December 2001.
[11]

 AES allows for three different key lengths: 128 bit keys, 192 bit keys

and 256 bit keys where encryption consists of ten rounds of processing for 128 bit keys,

twelve rounds for 192 bit keys and fourteen rounds for 256 bit keys. In each case, all other

rounds are identical except for the last round. There are four steps for each round of

processing: One single-byte based substitution, a row-wise permutation, a column-wise

mixing and the addition of the round keys. The order of the above four steps is different for

encryption and decryption.

1.3.2 Data Encryption Standard (DES)

Data Encryption Standard (DES) is a symmetric-key based block cipher. It was the result of a

research project set up by International Business Machines (IBM) Corporation in the late

1960‟s.
[13]

 DES is based on Feistel block cipher and only operates on 64 bit blocks of data at

a time. After an initial permutation, the block is broken into a right half and a left half, each

32 bits long. There are sixteen rounds of identical operations in which the data are combined

with the key with key length 56 bits. In each round, the bits of the key are shifted and then

48 bits are selected from the 56 bits of the key. The right half of the data is expanded to 48

bits via an expansion permutation, combined with 48 bits of a shifted and permuted key via

 Arindam Sarkar, University of Kalyani, India 11

an Exclusive-OR, sent through eight S-boxes producing 32 new bits and permuted again.

After these four operations, the output is combined with the left half via another Exclusive-

OR. The new right half is generated from the above operations and the old right half becomes

the new left half. These operations are repeated for 16 times making 16 rounds of DES.

After the sixteenth round, the right and left halves are joined and a final permutation, which

is the inverse of the initial permutation, finishes off the DES algorithm.

1.3.3 Triple Data Encryption Standard (Triple DES)

The man-in-the-middle attack on Double DES has made the technique impractical and

Double DES is seemed to be inadequate, therefore it paving the way for Triple DES.
[13]

Triple DES block cipher applies DES cipher thrice to each data block, where the block size is

64 bits. Triple DES uses three DES keys, K1, K2 and K3 (each of 56 bits, excluding parity

bits), and the key sizes are 168 (= 56 × 3), 112 (= 56 × 2) or 56 bits with respect to

keying option 1, 2 or 3 as follows:

 Keying Option 1: All of the keys are independent.

 Keying Option 2: K1 and K2 are independent and K3 = K1.

 Keying Option 3: All of the keys are identical i.e. K1 = K2 = K3.

Keying Option 1 is the strongest with three independent keys with 168 key bits. Keying

Option 2 provides less security with 112 key bits but stronger than the simply DES

encrypting twice with keys K1 and K2. Keying Option 3, which has backward compatibility

with DES, is equivalent to DES with 56 key bits.

The encryption and decryption algorithms of Triple DES with three independent keys are

 Cipher Text = EK3 (DK2 (EK1 (Plaintext)))

 Plaintext = DK1 (EK2 (DK3 (Cipher Text)))

The encryption and decryption algorithms of Triple DES with two independent keys are

 Cipher Text = EK1 (DK2 (EK1 (Plaintext)))

 Plaintext = DK1 (EK2 (DK1 (Cipher Text)))

 Arindam Sarkar, University of Kalyani, India 12

1.3.4 RSA Algorithm

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman introduced RSA algorithm which is

an asymmetric key cryptosystem.
[11]

 RSA involves the use of two keys: a public key, which

may be known by anyone and used to encrypt messages and a private key, known only by the

recipient and used to decrypt messages. A plaintext 𝑃 is encrypted to cipher text 𝐶 by

𝐶 = (𝑃𝑒𝑚𝑜𝑑 𝑛) and the ciphertext 𝐶 is decrypted into plaintext 𝑃 by 𝑃 = (𝐶𝑑 𝑚𝑜𝑑 𝑛).

Since knowing the factors of 𝑛, which will give away (𝑛) and therefore 𝑑, a cryptanalyst

would break the algorithm. The authors of RSA recommended that the length of 𝑛 be about

200 digits long. However, this length may be varied based on the importance of the speed of

encryption versus security.

1.4 Soft Computing based Cryptography

The advances in software technology assign more computational power. New computational

environment becomes more distributed, more diverse and more global, the transmission of

information is becoming more vulnerable to adversary attacks. Thus making the design of

cryptographic schemes that can counter new cryptanalysis techniques is becoming harder.

Recently soft computing approaches provide inspiration in solving problems from various

fields. Now-a-days works in the application of soft computing inspired computational

paradigm in cryptography become famous. The findings show that the research on

applications of soft computing based approaches in cryptography is minimal as compared to

other fields. Multiple disciplines have started to work together more closely for last few

decades to improve the network security for reliable communication. A number of alternative

cryptosystems have gained significant attention during these periods. Soft computing is the

most promising one among them. Soft computing refers to the science of reasoning, thinking

and deduction that recognizes and uses the real world phenomena of grouping, memberships,

and classification of various quantities under study. As such, it is an extension of natural

heuristics and capable of dealing with complex systems because it does not require strict

mathematical definitions and distinctions for the system components. Soft computing differs

from conventional (hard) computing in that, unlike hard computing, it is tolerant of

imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft

 Arindam Sarkar, University of Kalyani, India 13

computing is the human mind. Soft computing is a term used in computer science to refer to

problems in computer science whose solutions are unpredictable, uncertain and between 0

and 1. Soft computing became a formal area of study in computer science in the early

1990s.
[28]

 Earlier computational approaches could model and precisely analyze only

relatively simple systems. More complex systems arising in biology, medicine, the

humanities, management sciences, and similar fields often remained intractable to

conventional mathematical and analytical methods. That said, it should be pointed out that

simplicity and complexity of systems are relative, and many conventional mathematical

models have been both challenging and very productive. Soft computing deals with

imprecision, uncertainty, partial truth, and approximation to achieve practicability,

robustness and low solution cost. As such it forms the basis of a considerable amount of

machine learning techniques. Recent trends tend to involve evolutionary and swarm

intelligence based algorithms and bio-inspired computation in cryptography. Components of

soft computing include:

Evolutionary algorithms
[29][30]

are adaptive methods, which may be used to solve search and

optimization problems, based on the genetic processes of biological organisms. Over many

generations, natural populations evolve according to the principles of natural selection and

„survival of the fittest‟. By mimicking this process, evolutionary algorithms are able to

„evolve‟ solutions to real world problems, if they have been suitably encoded. Usually

grouped under the term evolutionary algorithms or evolutionary computation
[31][32]

, the

domains are genetic algorithms, evolution strategies, evolutionary programming, genetic

programming and learning classifier systems.
 [33]

They all share a common conceptual base of

simulating the evolution of individual structures via processes of selection, mutation, and

reproduction. Cultural algorithms are computational models of cultural evolution. They

consist of two basic components, a population space (using evolutionary algorithms), and a

belief space. The two components interact by means of a vote-inherit-promote protocol.

Likewise the knowledge acquired by the problem solving activities of the population can be

stored in the belief space in the form of production rules etc. Cultural algorithms represent a

general framework for producing hybrid evolutionary systems that integrate evolutionary

search and domain knowledge.

 Arindam Sarkar, University of Kalyani, India 14

The application of an evolutionary algorithm to the field of cryptography is rather unique.

Few works exist on this topic. Using evolutionary algorithms most of the work has been done

in the field of cryptanalysis. This nontraditional application is investigated to determine the

benefits of applying an evolutionary algorithm to a cryptographic problem, if any. This area

is so different from the application areas where evolutionary algorithms are developed. Major

works that involves genetic algorithm focuses on cryptanalysis of cryptographic algorithms

and design of cryptographic primitives. Most cryptanalytic research using Genetic Algorithm

(GA) has been done on classical ciphers. An initial attempt conducted by Spillman et al.
[34]

,

whereby GA is exploited to cryptanalysis simple substitution ciphers. Since known

cryptanalytic attack for simple substitution ciphers employs frequency distribution of

characters in the message, Spillman derived a cost or fitness function based on single-

character and diagram frequency distributions in this work. The attempt was fruitful as GA

was proven to be highly successful in this cryptanalysis. Spillman suggested the use of

trigram frequency distribution and variations on crossover and mutation procedures as future

research. Spillman continues the work and illustrated that GA can also be used in the

cryptanalysts of public key cryptosystem, the knapsack ciphers. The encryption scheme for

knapsack ciphers is based on the NP-complete problem, which is a hard problem.
[35]

 Another

initial attempt conducted by Matthews for investigating the use of GA in cryptanalysis of

transposition ciphers.
[36]

 In this work the fitness function is based on the message length,

frequency distribution of diagrams and trigrams tested for, the number of diagrams and

trigrams checked for and the likelihood of occurrence in successful deciphered messages.

Swarm intelligence is aimed at collective behaviour of intelligent agents in decentralized

systems. Most of the basic ideas are derived from the real swarms in the nature, which

includes particle swarm, ant colonies, bird flocking, honeybees, bacteria and microorganisms

etc. Swarm models are population-based and the population is initialized with a population of

potential solutions. These individuals are then manipulated (optimized) over many several

iterations using several heuristics inspired from the social behaviour of insects in an effort to

find the optimal solution. Particle Swarm Optimization (PSO) emulates flocking behavior of

birds and herding behavior of animals to solve optimization problems. The PSO was

introduced by Kennedy and Eberhart.
[37][38]

 In the PSO domain, there are two main variants:

global PSO and local PSO. In the local version of the PSO, each particle‟s velocity is

 Arindam Sarkar, University of Kalyani, India 15

adjusted according to its personal best position pbest and the best position lbest achieved so

far within its neighborhood. The global PSO learns from the personal best position pbest and

the best position gbest achieved so far by the whole population.

Ant Colony Optimization (ACO) algorithms are inspired by the behavior of natural ant

colonies, in the sense that they solve their problems by multi agent cooperation using indirect

communication through modifications in the environment. This algorithm is a member of the

Ant Colony algorithms family, in swarm intelligence methods, and it constitutes some

metaheuristic optimizations. ACO was initially proposed by Marco Dorigo in his PhD

thesis.
[39][40]

 Ants release a certain amount of pheromone (hormone) while walking, and each

ant prefers (probabilistically) to follow a direction, which is rich of pheromone. This simple

behavior explains why ants are able to adjust to changes in the environment, such as

optimizing shortest path to a food source or a nest. In ACO, ants use information collected

during past simulations to direct their search and this information is available and modified

through the environment. Bafghi performed a differential cryptanalysis on Serpent using Ant

Colony and claimed that it can be used for any block cipher.
 [41]

 Ant colony algorithms are

multi-agent systems where the behavior of each single agent, the ants, is inspired by the

behavior of real ants.

Simulated Annealing (SA) is based on the manner in which liquids freeze or metals

recrystalize in the process of annealing. The method was independently described by

Kirkpatrick et al.
[42]

 and Černý.
[43]

 The method is an adaptation of the Metropolis-Hastings

algorithm, a Monte Carlo method to generate sample states of a thermodynamic system,

invented by Rosenbluth and published in a paper by Metropolis et al..
[44]

 In an annealing

process, molten metal, initially at high temperature, is slowly cooled so that the system at any

time is approximately in thermodynamic equilibrium. If the initial temperature of the system

is too low or cooling is done insufficiently slowly the system may become brittle or unstable

with forming defects. The initial state of a thermodynamic system is set at energy 𝐸 and

temperature 𝑇, holding 𝑇 constant the initial configuration is perturbed and the change in

energy 𝑑𝐸 is computed. If the change in energy is negative the new configuration is

accepted. If the change in energy is positive it is accepted with a probability given by the

Boltzmann factor 𝑒𝑥𝑝 −(𝑑𝐸/𝑇). This processes is then repeated for few iterations to give

good sampling statistics for the current temperature, and then the temperature is decremented

 Arindam Sarkar, University of Kalyani, India 16

and the entire process repeated until a frozen state is achieved at 𝑇 = 0. An extensive

research on classical cipher cryptanalysis was investigated by Bagnall
[45]

and Clark in his

Ph.D work
[46]

. Clark‟s cryptanalytic attack work covers a variety of classical ciphers that

include simple substitution, transposition as well as poly-alphabetic ciphers. Clark proposed

new attacks on these ciphers, which utilize SA and the tabu search. Tabu search, created by

Glover in 1986
[47]

 and formalized in 1989
[48][49]

, is a metaheuristic search method employing

local search methods used for mathematical optimization. Existing attacks which make use of

the GA and SA are compared with the new SA and tabu search techniques.

Artificial Neural Network (ANN)
[50][51]

 have been developed as generalizations of

mathematical models of biological nervous systems. In a simplified mathematical model of

the neuron, the effects of the synapses are represented by weights that modulate the effect of

the associated input signals, and the nonlinear characteristic exhibited by neurons is

represented by a transfer function, which is usually the sigmoid, Gaussian function etc.
[52][53]

The neuron impulse is then computed as the weighted sum of the input signals, transformed

by the transfer function. The learning capability of an artificial neuron is achieved by

adjusting the weights in accordance to the chosen learning algorithm.
[54][55]

Neural Cryptography
[56][57]

 is a branch of cryptography dedicated to analyzing the application

of stochastic algorithms, especially ANN algorithms, for use in encryption and cryptanalysis.

ANNs are well known for their ability to selectively explore the solution space of a given

problem. This feature finds a natural niche of application in the field of cryptanalysis. At the

same time, ANNs offer a new approach to attack ciphering algorithms based on the principle

that any function could be reproduced by an ANN, which is a powerful proven computational

tool that can be used to find the inverse-function of any cryptographic algorithm. The ideas

of mutual learning, self learning, and stochastic behavior of ANNs and similar algorithms

can be used for different aspects of cryptography, like public-key cryptography, solving the

key distribution problem using ANN mutual synchronization, hashing or generation of

pseudo-random numbers. Another idea is the ability of a ANN to separate space in non-linear

pieces using "bias". It gives different probabilities
[58][59]

 of activating or not the ANN. This is

very useful in the case of cryptanalysis. Two names are used to design the same domain of

researches: Neuro-Cryptography and Neural Cryptography. The most used protocol for key

exchange between two parties A and B in the practice is Diffie-Hellman protocol. Neural key

 Arindam Sarkar, University of Kalyani, India 17

exchange, which is based on the synchronization of two Tree Parity Machines (TPM), should

be a secure replacement for this method. Synchronizing these two machines is similar to

synchronizing two chaotic oscillators in chaos communications.

1.5 Literature Survey

Currently new computational environment becomes more distributed, more diverse and more

global; the transmission of information is becoming more vulnerable to adversary attacks.

Now-a-days appropriate cryptographic technique in light weight devices having very low

processing capabilities or limited computing power in wireless communication is the major

challenge. Thus making the design of light weight cryptographic schemes for low processing

devices that can counter new cryptanalysis techniques in wireless communication is

becoming harder. Therefore, computer network security is a fast moving technology in the

field of computer science. Network security using cryptography originally focused on

mathematical and algorithmic aspects. As security techniques continue to mature, there is an

emerging set of cryptographic techniques always. This advancement of digital

communication technology benefitted the field of cryptography. The efficient cryptographic

schemes were designed and implemented and also broken subsequently over time.

Metropolis et al. devised an algorithm about Simulated Annealing (SA) method in the year

1953.
 [44]

SA is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to

generate sample states of a thermodynamic system, invented by Rosenbluth.

Whitfield Diffie

and Martin Hellman published a cryptographic protocol, (Diffie–Hellman key exchange) in

1976; to exchange a key over an insecure communications channel, which has substantially

reduced the risk of key disclosure during distribution.
[17]

 It allows users to establish 'secure

channels' on which to exchange keys, even if an opponent is monitoring that communication

channel. However, Diffie–Hellman key exchange did not address the problem of being sure

of the actual identity of the person (or 'entity'). So, Diffie–Hellman key exchange is

vulnerable to Man-In-The-Middle (MITM) attack. Kirkpatrick et al.
[42]

 in the year 1983 and

Černý et al.
[43]

 in the year 1985 independently described Simulated Annealing which is based

on the manner in which liquids freeze or metals recrystalize in the process of annealing. Tabu

search, proposed by Fred W. Glover
[47]

 in 1986 and formalized in 1989
[48]

and 1990
[49]

 is a

 Arindam Sarkar, University of Kalyani, India 18

metaheuristic search method employing local search methods used for mathematical

optimization. Colorni et al. proposed a scheme of distributed optimization by Ant Colonies in

the year 1991.
[39]

 Marco Dorigo in his Ph.D thesis proposed Ant Colony Optimization (ACO)

in 1992.
[40]

 This algorithm is a member of the Ant Colony algorithms family, in swarm

intelligence methods, and it constitutes some metaheuristic optimizations. Ants release a

certain amount of pheromone (hormone) while walking, and each ant prefers

(probabilistically) to follow a direction, which is rich of pheromone. In ACO, ants use

information collected during past simulations to direct their search and this information is

available and modified through the environment. The application of an evolutionary

algorithm to the field of cryptography is rather unique. Few works exist on this topic. Using

evolutionary algorithms most of the work has been done in the field of cryptanalysis. Major

works that involves GA focuses on cryptanalysis of cryptographic algorithms and design of

cryptographic primitives. Most cryptanalytic research using GA was done on classical

ciphers. An initial attempt was conducted by Spillman et al.
[34]

in 1993, whereby GA is

exploited to cryptanalysis simple substitution ciphers. Since known cryptanalytic attack for

simple substitution ciphers employs frequency distribution of characters in the message,

Spillman derived a cost or fitness function based on single-character and diagram frequency

distributions in the work. This attempt was fruitful as GA was proven to be highly successful

in this cryptanalysis. Spillman suggested the use of trigram frequency distribution and

variations on crossover and mutation procedures as future research. Spillman continues the

work and illustrated that GA can also be used in the cryptanalysts of public key

cryptosystem, the knapsack ciphers. The encryption scheme for knapsack ciphers is based on

the NP-complete problem, which is a hard problem.
[35]

Maurer considered the problem of

MITM attack for generating a shared secret key S by two parties knowing dependent random

variables X and Y, respectively, but not sharing a secret key initially.
[60]

 An enemy who

knows the random variable Z, jointly distributed with X and Y according to some probability

distribution, can also receive all messages exchanged by the two parties over a public

channel. The goal of Maurer research is to develop a protocol is that the enemy obtains at

most a negligible amount of information about S. Author shows that such a secret key

agreement is possible for a scenario in which all three parties receive the output of a binary

symmetric source over independent binary symmetric channels, even when the enemy's

 Arindam Sarkar, University of Kalyani, India 19

channel is superior to the other two channels. But it may not be always possible to receive the

output of a binary symmetric source over independent binary symmetric channels in wireless

communication. Zadeh et al. in 1994 described the concept of soft computing, Artificial

Neural Networks and Fuzzy Logic.
[28]

 Soft Computing became a formal area of study in

computer science in the early 1990s.

Particle Swarm Optimization (PSO) in the year 1995.

[37]

Then they analyzed the small worlds and mega-minds effects of neighborhood topology on

particle swarm performance.
[38]

 Swarm intelligence is aimed at collective behaviour of

intelligent agents in decentralized systems. Most of the basic ideas are derived from the real

swarms in the nature, which includes particle swarm, ant colonies, bird flocking, honeybees,

bacteria and microorganisms etc. Delgado-Restituto et al. proposed the use of analog

integrated circuits for secure communication based on chaos synchronization.
[61]

This

phenomenon is demonstrated through experimental measurements realized on silicon

prototypes in a double-metal, single-poly 1.6 μm CMOS technology. The approach is not

simple and not suitable for light weight devices having very low processing capabilities in

wireless communication. Dourlens presented the application of ANNs in classical

cryptography in MSc Thesis named Neuro-Cryptography.
[62]

 Caponetto et al. offered a state

controlled cellular neural network-based circuit for secure transmission applications.
[63]

 In

this work the basic principles of synchronization between two (or more) chaotic systems are

reported concerning the inverse system technique. Fundamentals of this kind of transmission

are briefly introduced together with some experimental results. The main problem of this

technique is that some of the parameters are predefined in the chaotic systems and still this

technique suffers from vulnerability of public channel. Bäck et al. discussed about the

evolution strategies, evolutionary programming and genetic algorithms.
[29][30]

 Evolutionary

algorithm are adaptive methods, which is used to solve search and optimization problems,

based on the genetic processes of biological organisms. An extensive research on classical

cipher cryptanalysis using Simulated Annealing investigated by Bagnall
[45]

 and Clark in his

Ph.D work
[46]

. Clark‟s cryptanalytic attack work covers a variety of classical ciphers that

include simple substitution, transposition as well as poly-alphabetic ciphers. Clark proposed

new attacks on these ciphers, which utilize Simulated Annealing and the tabu search. Metzler

et al. focused on several scenarios of interacting Neural Networks for using competitive

perceptrons as decision-making algorithms in a model of a closed market.
[64]

Neural

 Arindam Sarkar, University of Kalyani, India 20

Networks which are trained either in an identical or in a competitive way are solved

analytically. In the case of identical training each perceptron receives the output of its

neighbor. The symmetry of the stationary state as well as the sensitivity to the used training

algorithms are investigated. Two competitive perceptrons trained on mutually exclusive

learning aims and a perceptron which is trained on the opposite of its own output are

examined analytically. Authors of this paper soon discover that dynamics of interacting

perceptrons is solved analytically. They have observed that for a directed flow of information

the system runs into a state which has a higher symmetry than the topology of the model. A

symmetry breaking phase transition is found with increasing learning rate. In addition it is

shown that a system of interacting perceptrons which is trained on the history of its minority

decisions develops a good strategy for the problem of adaptive competition known as the Bar

Problem or Minority Game. Using this competitive perceptrons training approach authors of

this paper Kanter and Kinzel came up with revolutionary approach in cryptography called

Neural Cryptography.
[56]

 It is a connection between the theory of Neural Networks and

cryptography. This turned out to be a new branch of cryptography and became very popular

soon. Kanter and Kinzel shows the secure exchange of information by synchronization of

two Neural Networks which are trained on their mutual output bits.
[57]

 Using numerical

simulations, Kanter and Kinzel shows that two artificial networks being trained by Hebbian

learning rule on their mutual outputs develop an antiparallel state of their synaptic

weights.
[65]

 From the novel phenomenon Kanter et al. conclude that the synchronized weights

are used to construct an ephemeral key exchange protocol for a secure transmission of secret

data.
[66]

 It is shown that an opponent who knows the protocol and all details of any

transmission of the data has no chance to decrypt the secret message, since tracking the

weights is a hard problem compared to synchronization. The complexity of the generation of

the secure channel is linear with the size of the network. Two Neural Networks which are

trained on their mutual output bits are analyzed using methods of statistical physics. So,

interacting Neural Networks and cryptography together. Rosen-Zvi et al. studied the mutual

learning process between two parity feed-forward networks with discrete and continuous

weights analytically, and they found that the number of steps required to achieve full

synchronization between the two networks in the case of discrete weights is finite.
[67]

 The

synchronization process is shown to be non-self-averaging and the analytical solution is

 Arindam Sarkar, University of Kalyani, India 21

based on random auxiliary variables. The learning time of an attacker that is trying to imitate

one of the networks is examined analytically and is found to be much longer than the

synchronization time. An algorithm for an eavesdropper which could break the key was

introduced by Klimov et al. by analyzing the scheme and explains why the two parties

converge to a common key, and why an attacker using a similar neural network is unlikely to

converge to the same key.
[68]

 However, authors shown that this key exchange protocol can be

broken in three different ways, and thus it is completely insecure. For this reason Mislovaty

et al. investigated the security of Neural Cryptography very minutely.
[69]

 The weights of the

networks have integer values between ±𝐿. Authors shown that the synchronization time

increases with 𝐿2 while the probability to find a successful attacker decreases exponentially

with 𝐿. Hence for large 𝐿 authors find a secure key-exchange protocol which depends neither

on number theory nor on injective trapdoor functions used in conventional cryptography.

Rosen-Zvi et al. analyzed the mutual learning features in a Tree Parity Machine (TPM) and

its application to the cryptography.
[70]

 Mutual learning of a pair of TPMs with continuous and

discrete weight vectors is studied analytically. The analysis is based on a mapping procedure

that maps the mutual learning in TPMs onto mutual learning in noisy perceptrons. The

stationary solution of the mutual learning in the case of continuous TPMs depends on the

learning rate where a phase transition from partial to full synchronization is observed. In the

discrete case the learning process is based on a finite increment and a full synchronized state

is achieved in a finite number of steps. The synchronization of discrete parity machines is

introduced in order to construct an ephemeral key exchange protocol. The dynamic learning

of a TPM (an attacker) that tries to imitate one of the two machines while the two still update

their weight vectors is also analyzed. Now, Kinzel et al. presented a connection between the

theory of Neural Networks and cryptography.
[71]

 A new phenomenon, namely

synchronization of Neural Networks, is leading to a new method of exchange of secret

messages. Kanter et al. presented the mutual synchronization of Neural Networks to analyze

the theory of Neural Networks and cryptography.
[72]

 Kinzel et al. shows when Neural

Networks are trained on their own output signals they generate disordered time series.
[73]

This disorder generated by interacting Neural Networks has an application to econophysics

and cryptography. When agents competing in a closed market (minority game) are using

Neural Networks to make their decisions, the total system relaxes to a state of good

 Arindam Sarkar, University of Kalyani, India 22

performance is an application of econophysics and two partners communicating over a public

channel can find a common secret key is an application of cryptography. Mislovaty et al.

construct a hybrid network in public channel cryptography by synchronizing of Neural

Networks and chaotic maps. In this network the external signal to the chaotic maps is

synchronized by the neural nets.
[74]

 This allows a secure generation of secret encryption keys

over a public channel. Another initial attempt conducted by Matthews investigated the use of

GA in cryptanalysis of transposition ciphers.
[36]

 In this work the fitness function is based on

the message length, frequency distribution of diagrams and trigrams tested for, the number of

diagrams and trigrams checked for and the likelihood of occurrence in successful deciphered

messages. Bafghi performed a differential cryptanalysis on Serpent using Ant Colony and

claimed that it can be used for any block cipher.
[41]

 Shacham et al. presented a successful

attack strategy in Neural Cryptography.
[75]

 In this attack cooperating attackers are involved

for breaking the security of the Neural Cryptography. A successful attack strategy in Neural

Cryptography is presented. The neural cryptosystem, based on synchronization of Neural

Networks by mutual learning, has been recently shown to be secure under different attack

strategies. Mislovaty et al. also analyze the security of Neural Cryptography.
[76]

 The success

of the advanced attacker presented by them, called the “majority-flipping attacker,” does not

decay with the parameters of the model. This attacker‟s outstanding success is due to its

using a group of attackers which cooperate throughout the synchronization process, unlike

any other attack strategy known. Ruttor et al. analyze the synchronization of Random Walks

with reflecting boundaries.
[77]

 They have shown that reflecting boundary conditions cause

two one-dimensional Random Walks to synchronize if a common direction is chosen in each

step. The mean synchronization time and its standard deviation are calculated analytically.

Both quantities are found to increase proportional to the square of the system size.

Additionally, in this method the probability of synchronization in a given step is analyzed,

which converges to a geometric distribution for long synchronization times. From this

asymptotic behaviour the number of steps required to synchronize an ensemble of

independent Random Walk pairs is deduced. They have observed that the synchronization

time increases with the logarithm of the ensemble size. To enhance the security Ruttor et al.

also proposed a feedback mechanism in Neural Cryptography for increasing the security of

the network.
[78]

 Neural Cryptography is based on a competition between attractive and

 Arindam Sarkar, University of Kalyani, India 23

repulsive stochastic forces. A feedback mechanism increases the repulsive forces. Using

numerical simulations and an analytic approach, they have calculated the probability of a

successful attack for different model parameters. They also derived the scaling laws which

show that feedback improves the security of the system. Volkmer et al. thought of

authenticated TPM for key exchange purpose.
[79]

 The synchronization of TPMs, has proven

to provide a valuable alternative concept for secure symmetric key exchange. Yet, from a

cryptographer's point of view, authentication is at least as important as a secure exchange of

keys. Adding an authentication via hashing e.g. is straightforward but with no relation to

Neural Cryptography. They have presented an alternative, integrating a Zero-Knowledge

protocol into the synchronization. A Man-In-The-Middle attack and even all currently known

attacks, that are based on using identically structured TPMs and synchronization as well, can

so be averted. This in turn has practical consequences on using the trajectory in weight space.

Next to authentication, secure key exchange is considered the most critical and complex issue

regarding ad-hoc network security. Volkmer et al. also presented a low-cost, (i.e. low

hardware-complexity) solution for feasible frequent symmetric key exchange in adhoc

networks, based on a Tree Parity Machine Rekeying Architecture.
[80]

Using this TPM a key

exchange can be performed within a few milliseconds, given practical wireless

communication channels and their limited bandwidths. Ruttor et al. presented Neural

Cryptography with queries.
[81]

 Neural Cryptography is based on synchronization of TPMs by

mutual learning. They extend previous key exchange protocols by replacing random inputs

with queries depending on the current state of the Neural Networks. The probability of a

successful attack shows that queries restore the security against cooperating attackers. The

success probability can be reduced without increasing the average synchronization time.

Based on synchronization of Neural Networks by mutual learning Klein et al. suggested

several models for this cryptographic system, and have been tested for their security under

different sophisticated attack strategies.
[82]

 Then they conclude that the most promising

models are networks that involve chaos synchronization. Kanter et al. presented a detail

analysis of the theory of Neural Networks: learning from examples, time-series and

cryptography.
[83]

 These detail analysis actually deals with the storage capacity of the TPM,

learning from examples, and time series generation by feed forward networks. Kotlarz et al.

proposed a new schedule of S-boxes design in their paper.
[84]

 They presented the most

 Arindam Sarkar, University of Kalyani, India 24

popular S-box design criteria, especially a possibility of application of Boolean bent-

functions. Finally, they propose integrating Neural Networks (playing a role of Boolean

functions with appropriate properties) in the design process. The necessity of securing the

communication between hardware components in embedded systems becomes increasingly

important with regard to the secrecy of data and particularly its commercial use. Volkmer et

al. suggested Tree Parity Machine Rekeying Architectures and a low-cost (i.e., small logic-

area) solution for flexible security levels and short key lifetimes.
[85]

 The basis is an approach

for symmetric key exchange using the synchronization of TPMs. So, they proposed a TPM

based key establishment IP-Core for ubiquitous computing.
[86]

 Fast successive key generation

enables a key exchange within a few milliseconds, given realistic communication channels

with a limited bandwidth. Alternative security solutions are considered in science and

industry, motivated by the strong restrictions as they are often present in embedded security

scenarios especially in a RFID setting. They investigated a low hardware-complexity

cryptosystem for lightweight symmetric key exchange and stream cipher based on TPMs.
[87]

They decided that Tree Parity Machine Rekeying Architectures can be used for embedded

security.
[88]

 The speed of a key exchange is basically only limited by the channel capacity as

is the stream cipher throughput. This work significantly improves and extends previously

published results on Tree Parity Machine Rekeying Architectures. Identity-based public key

cryptosystem may perfectly substitute the traditional certificate-based public key system if

only the efficiency and security of key issuing are satisfied. Batina et al. proposed a

framework and platform to compare stream ciphers not only on their security level but also

based on their energy consumption, performance and area cost.
[89]

 They described the basic

hardware assumptions, give the area, delay and power consumption values of some existing

stream ciphers and give guidelines for the designs of future algorithms. Interactions of neural

network has been studied out coming a novel result that the two Neural Networks can

synchronize to a stationary weight state with the same initial inputs. Based on this approach

Chen et al. proposed a remote user authentication and identity-based key issuing

scheme.
[90][91]

 This simple but novel interacting neural network based scheme for secure key

agreement purpose, and ID-based private key secure issuing over a complete public channel,

which can provide a full dynamic and security remote user authentication over a completely

insecure communication channel. Gross et al. proposed a framework for public-channel

 Arindam Sarkar, University of Kalyani, India 25

cryptography using chaotic lasers.
[92]

 Two mutually coupled chaotic diode lasers with

individual external feedback, are used to establish chaos synchronization in the low-

frequency fluctuations regime. A third laser with identical external feedback but coupled

unidirectionally to one of the pair does not synchronize. Both experiments and simulations

reveal the existence of a window of parameters for which synchronization by mutual

coupling is possible but synchronization by unidirectional coupling is not. Klein et al.

proposed a key-exchange protocol that comprises two parties with chaotic dynamics that are

mutually coupled and undergo a synchronization process, at the end of which they can use

their identical dynamical state as an encryption key.
[93]

 The transferred coupling- signals are

based nonlinearly on time-delayed states of the parties, and therefore they conceal the

parties‟ current state and can be transferred over a public channel. JCH Castro et al. shows

the application of evolutionary computation in computer security and cryptography.
[94]

 The

main objective of the authors is to consider the problem of defining fitness function for the

evolutionary algorithms like GA, SA etc. Godhavari et al. uses the concept of neural

synchronization by mutual learning to a secret key exchange protocol over a public for

encrypting and decrypting the given message using DES algorithm which is simulated and

synthesized using VHDL.
[95]

 Klein et al. shows stable isochronal synchronization of mutually

coupled chaotic lasers.
[96]

 The dynamics of two mutually coupled chaotic diode lasers are

investigated experimentally and numerically by them. By adding self-feedback to each laser,

stable isochronal synchronization is established. This stability, which can be achieved for

symmetric operation, is essential for constructing an optical public-channel cryptographic

system. Ruttor et al. appied the genetic attack on Neural Cryptography.
[97]

 A genetic

algorithm, which selects the fittest Neural Networks for attack. The probability of a

successful genetic attack is calculated for different model parameters using numerical

simulations. Ruttor presented the detail analysis about the Neural Cryptography in Ph.D

thesis named Neural Synchronization and Cryptography.
[98]

 Ruttor et al. again analysis the

dynamics of Neural Cryptography.
[99]

 In the case of TPMs the dynamics of both bidirectional

synchronization and unidirectional learning is driven by attractive and repulsive stochastic

forces. They described it by a Random Walk model for the overlap between participating

Neural Networks. For that purpose transition probabilities and scaling laws for the step sizes

are derived analytically. Both these calculations as well as numerical simulations show that

 Arindam Sarkar, University of Kalyani, India 26

bidirectional interaction leads to full synchronization on average. In contrast, successful

learning is only possible by means of fluctuations. Consequently, synchronization is much

faster than learning, which is essential for the security of the neural key-exchange protocol.

The protection of chip-level microcomputer bus systems in embedded devices is essential to

prevent the growing number of hardware hacking attacks. Müehlbach et al. presented an

authenticated key exchange and encryption solution in order to ensure chip-level

microcomputer bus systems via the Tree Parity Machine Rekeying Architecture

(TPMRA).
[100]

 Due to this intention, a scalable TPMRA IP-core is designed and implemented

in order to meet variable bus performance requirements. It allows the authentication of the

bus participants as well as the encryption of chip-to-chip buses from a single primitive. The

solution is transparent and easy applicable to an arbitrary microcomputer bus system for

embedded devices on the market. Saballus et al. proposed secure group communication in

ad-hoc networks using Tree Parity Machines.
[101]

 This can be divided into key agreement and

key distribution. Common group key agreement protocols are based on the Diffie-Hellman

key exchange and extend it to groups. Group key distribution protocols are centralized

approaches which make use of one or more special key servers. In contrast to these

approaches, they present a protocol which makes use of the TPM key exchange between

multiple parties. Patra el al. presented a new concept of key agreement, using chaos

synchronization based parameter estimation of two chaotic systems.
[102]

 Laskari et al.

addresses the issue of cryptography and cryptanalysis through computational intelligence.
[103]

Arvandi et al. proposed a neural network-based symmetric cipher design methodology to

provide high performance data encryption.
[104]

 The proposed approach is a novel attempt to

apply the parallel processing capability of Neural Networks for cryptography purposes. A

Diffie-Hellman public-key cryptography based on chaotic attractors of Neural Networks is

described by Liu et al.
[105]

 There is a one-way function between chaotic attractors and initial

states in an Overstoraged Hopfield Neural Networks (OHNN). If the synaptic matrix of

OHNN is changed, each attractor and its corresponding domain of initial state attraction will

be changed. Then, the neural synaptic matrix as a trap door, and change it with commutative

random permutation matrix. A new Diffie-Hellman public-key cryptosystem can be

implemented, keeping the random permutation operation of the neural synaptic matrix as the

secret key, and the neural synaptic matrix after permutation as public-key. Hen et al.

 Arindam Sarkar, University of Kalyani, India 27

analyzed and optimized the interacting network neural, then present a cryptography-oriented

secure parity model and implement the performance simulations.
[106]

 Li et al. presented a new

and effective attack strategy on Neural Cryptography.
[107]

 Their proposal focuses on the

authentication which the neural cryptosystem takes little account of. Chen et al. proposed two

TPM-based novel OTP solutions.
[108]

 One is a full implementation model including

initialization and rekeying, while the other is light-weight and efficient suitable for resource-

constrained embedded environment. Dong et al. presented an new authentication method

using Neural Cryptography on WiMAX.
[109]

 Dong et al. also presented a new security

solution in ubiquitous computing.
[110]

 They explored the challenges for building security and

privacy into ubiquitous computing, described their prototype implementation based on

Neural Cryptography.
[111]

 Yunpeng et al. proposed the improvement of public key

cryptography based on chaotic Neural Networks.
[112]

 By adopting a kind of hybrid-coding

and chaotic map, the modified algorithm performs better result on avalanche test. Shouhong

et al. proposed password authentication using Hopfield Neural Networks.
[113]

 The

conventional verification table approach has significant drawbacks. Neural Networks have

been used for password authentication to overcome the shortcomings of traditional

approaches. In neural network approaches to password authentication, no verification table is

needed; rather, encrypted neural network weights are stored within the system. Tieming et al.

proposed the improved secure TPM which can be utilized to synchronize parameters for OTP

schemes.
[114]

 Authors introduced the TPM mutual learning scheme and the two TPM-based

novel OTP solutions. One is a full implementation model including initialization and

rekeying, while the other is light-weight and efficient suitable for resource-constrained

embedded environment. Arvandi et al. described an innovative form of cipher design based

on the use of recurrent Neural Networks.
[115]

 The proposed cipher has a relatively simple

architecture and, by incorporating Neural Networks, it releases the constraint on the length of

the secret key. The design of the symmetric cipher is described in detail and its security is

analyzed. Dong et al. presented a new service-based computing security model, which is

combined with Neural Cryptography.
[116]

Service-based computing is a new and hot research

point for telecommunication and computer scientist. Neural Cryptography is a new way to

create shared secret key. The existed system architecture mentions little about security.

Synchronization of Neural Networks is an alternative to cryptographic applications such as

 Arindam Sarkar, University of Kalyani, India 28

the realization of symmetric key exchange protocols. Reyes et al. proposed a first view of

the so-called Permutation Parity Machine (PPM), an ANN proposed as a binary variant of the

TPM.
[117][118]

 The dynamics of the synchronization process by mutual learning between

PPMs is analytically studied and the results are compared with those of TPMs. It will turn

out that for neural synchronization, PPMs form a viable alternative to TPMs. Pulses of

synchronization in chaotic coupled map lattices discussed by Schmitzer et al. in the context

of transmission of information.
[119]

 Synchronization and desynchronization propagate along

the chain with different velocities which are calculated analytically from the spectrum of

convective Lyapunov exponents. Since the front of synchronization travels slower than the

front of desynchronization, the maximal possible chain length for which information can be

transmitted by modulating the first unit of the chain is bounded. Wallner et al. investigated

the implementation of a low hardware complexity cryptosystem for lightweight

(authenticated) symmetric key exchange, based on two new Tree Parity Machine Rekeying

Architectures (TPMRAs).
[120]

 This work significantly extends and optimizes (number of

gates) previously published results on TPMRAs. Lian et al. constructed a hash function based

on a three-layer neural network.
[121]

 The three neuron-layers are used to realize data

confusion, diffusion and compression respectively, and the multi-block hash mode is

presented to support the plaintext with variable length. Allam et al. proposed three new

algorithms to enhance the mutual learning process.
[122]

 Ahmad et al. compared between

stream cipher and block cipher using RC4 and Hill Cipher.
[123]

 The authors introduced two

keys used for encrypting the information transferred during communication by using the

Meet in the Middle Attack on triple S-DES algorithm, instead of using Brute force attack.

Revankar et al. introduced a query based mutual influence between A and B which is not

available to an attacking network E
[124]

. In this work query incorporated to the case of the

Hebbian training rule. Tirdad et al. proposed an application of Hopfield Neural Networks

(HNN) as pseudo random number generator.
[125]

 This is done based on a unique property of

HNN, i.e., its unpredictable behavior under certain conditions. They compared the main

features of ideal random number generators with those of PRNG based on Hopfield Neural

Networks. Prabakaran et al. proposed a scheme where TPMs random inputs are replaced with

queries for cooperating attackers and effective number of keys.
[126][127]

 The queries depend on

the current state of A and B TPMs. Then, TPM's hidden layers of each output vector are

 Arindam Sarkar, University of Kalyani, India 29

compared. That is, the output vector of hidden unit using Hebbian learning rule and dynamic

unit using Random Walk learning rule are compared. Among the compared values, the

output layer receives one of the best values. Cyclic Cryptography, a different cryptographic

system, has been proposed by Chowdhury et al. and its allied characteristics are

implemented.
[128]

A data encryption technique using genetic crossover of robust biometric

key and session based password has been introduced by Bhattacharya et al. where the key is

obtained by crossing over of the session key generated from the password given by the

legitimate user and the biometric key generated from the fingerprint of the same user.
[129]

A

public key cryptosystem based on the system of higher order Diophantine equations has been

proposed by Yosh et al..
[130]

 In this system those Diophantine equations are used as public

keys for sender and recipient, and both sender and recipient can obtain the shared secret

through a trapdoor, while attackers must solve those Diophantine equations without trapdoor.

This technique is based on complex mathematics. Jogdand et al. used the existing concept of

Neural Cryptography, where both the communicating networks receive an identical input

vector, generate an output bit and are trained based on the output bit.
[131]

 The two networks

and their weight vectors exhibit a novel phenomenon, where the networks synchronize to a

state with identical time-dependent weights. Allam et al. suggested an algorithm that employs

and extends the mutual learning process to accommodate the much needed group secure

communication.
[132]

 A new key generation mechanism has been introduced and amalgamated

by Saeed et al. with the technique termed as “Fauzan-Mustafa Encryption Technique

(FMET)”.
[133]

Karas et al. presented a novel PHY-layer security algorithm whose function is

based on Neural Networks.
[134]

 Specifically, they present a full key exchange scheme which

includes channel sampling and thresholding and neural network based error reconciliation. Li

et al. proposed and analyzed a parallel hash algorithm construction based on chaotic maps

with changeable parameters.
[135]

 The two main characteristics of the proposed algorithm are

parallel processing mode and message expansion. Lu´ıs et al. presented a successful attack on

PPM based Neural Cryptography.
[136]

Rasool et al. proposed a symmetric key encryption

technique which provides security to both the message and the secret key achieving

confidentiality and authentication.
[137]

 In this technique, the security level is higher due to the

inherent poly-alphabetic nature of the substitution mapping method used here, together with

the translation and transposition operations performed in the algorithm. A new distributed

 Arindam Sarkar, University of Kalyani, India 30

key generation technique for threshold cryptography has been introduced by Qian et al. using

bivariate symmetric polynomials.
[138]

 The technique is based on some group G
6
 which is

either a cyclic additive group of prime order q or a cyclic multiplicative group with an

element of prime order q. An extensive and careful study has been performed by Gajbhiye et

al. on the applications of elliptic curve cryptography (ECC) and on different forms of elliptic

curve in various coordinate systems specifying which is most widely used and why, on

extended form of elliptic curve i.e. hyper-elliptic curve (HEC) with its pros and cons, on the

performance of ECC and HEC based on scalar multiplication and DLP.
[139]

A cryptographic

scheme has been proposed by Vijayakumar et al. which provides first level of security with

smaller key size and less computation overhead using DNA Computing technique and the

second level of security is provided by using the encryption and decryption algorithms of low

computation Elliptic Curve Cryptography (ECC).
[140]

 The novelty of this scheme is

advantages of both ECC and DNA computation is exploited in providing a high level of data

security. A public key cryptographic technique has been introduced by Som et al. using

Genetic algorithm where bit level XOR operation followed by Genetic crossover and

mutation during encryption.
[141]

Das et al. have introduced an integrated symmetric key

cryptographic method combining two independent methods modified generalized Vernam

cipher method and DJSA method.
[142]

A hybrid encryption technique has been introduced by

Patheja et al. using Tiger algorithm.
[143]

 In Tiger algorithm there is double protection of Data

using triple DES and with the help of this algorithm transmission of data will be more secure

for exchanging data over short distances from one device to another. The characteristics and

performance related issues has been discussed by Kumar et al. for several symmetric block

cipher algorithms like MARS, RC6, Serpent, Twofish, Rijndael and asymmetric

cryptosystems like RSA, ECC, ECRYPT, HASH, DSAsg.
[144]

). A different symmetric key

based cryptographic algorithm has been developed by Gupta et al. where block based

substitution method, logical operations like XOR and shifting operations are used.
[145]

Based

on the concept of Rijndael algorithm, a cryptographic algorithm has been developed by

Rayarikar et al..
[146]

 The algorithm uses various invertible, self-invertible and non-invertible

components of modern encryption ciphers and key generation same as that of AES. A hybrid

security enhancement algorithm has been designed and implemented by Kaul et al. based on

AES-DES algorithms using 128 bit key.
[147]

Enhanced Identity-Base Cryptography (EIBC)

 Arindam Sarkar, University of Kalyani, India 31

has been proposed by Nicanfar et al. which is an efficient key management mechanism that

minimizes control packets to reduce the communication overheads.
[148]

Cryptanalytic attack

on DES, which is a known-plaintext attack based on neural networks, has been discussed by

Alani.
[149]

 In this work a trained neural network retrieves parts of plaintext from cipher text

without retrieving the key used in encryption. A verification strategy in the exhaustive search

step of the linear attack has been designed to allow Eve to mount a successful attack in the

noisy environment. The most popular and efficient encryption algorithms in smart cards such

as RSA, ECC, DES and ECDSA were described and compared between these algorithms by

Savari et al. to find out the differences.
[150]

Banerjee et al. considered the phenomena of

chaos synchronization with bidirectional linear feedback coupling. The synchronized system

can be used as a cryptosystem, where both the model can be considered as a transceiver.

They have proposed an asymmetric cryptographic scheme for ensuring security of data being

transmitted in the above manner.
[151]

 Seoane et al. presented an algorithm which implements

a probabilistic attack on the key exchange protocol based on PPMs.
[152]

 Instead of imitating

the synchronization of the communicating partners, the strategy consists of a Monte Carlo

method to sample the space of possible weights during inner rounds and an analytic approach

to convey the extracted information from one outer round to the next one. Urbanovich et al.

considered the hash function built on ANN.
[153]

 The data about the process of

synchronization of an ANN, obtained by experiment, are presented. The fact, that the

obtained vector of weight coefficients for the networks after the synchronization is different

for each new session, is determined. Santhanalakshmi et al. proposed a genetic approach has

been used in the field of Neural Cryptography for synchronizing TPMs by mutual learning

process.
[154]

 Here a best fit weight vector is found using a genetic algorithm and then the

training process is done for the feed forward network. The proposed approach improves the

process of synchronization. Winkler et al. investigated the effect of dynamic adaptive

couplings on the cooperative behavior of chaotic networks.
[155]

 The couplings adjust to the

activities of its two units by two competing mechanisms: An exponential decrease of the

coupling strength is compensated for by an increase due to desynchronized activity. This

mechanism prevents the network from reaching a steady state. Numerical simulations of a

coupled map lattice show chaotic trajectories of desynchronized units interrupted by pulses

of mutually synchronized clusters. Dolecki presented the statistical analysis on TPM

 Arindam Sarkar, University of Kalyani, India 32

synchronization time.
[156]

 The author described the features of architecture and the principles

of interaction of two ANNs. Synchronization status of networks allows using the relevant

information as a key to encrypt further communications. The design principles of elliptic

curve public key cryptography analyzed and the selection method of secure elliptic curve

along with its implementation has been discussed by Qing-hai et al. in details.
[157]

Abdulkader

et al. presented cryptography keys using self-organizing maps.
[158]

 Santhanalakshmi et al.

proposed a soft computing based approach for generating keys to design a stream cipher for

text encryption.
[159]

 Optimal weights for the sender and receiver used for the synchronization

on the TPM neural network, are generated using a GA. A hybrid crypto system has been

proposed by Gutub et al. which utilizes benefits of both symmetric key and public key

cryptographic methods.
[160]

 Symmetric key algorithms (DES and AES) were used in this

crypto system to perform data encryption and Public key algorithm (RSA) was used in this

crypto system to provide key encryption before key exchange. Combination of both the

symmetric-key and public-key algorithms provides greater security and some unique features

in that hybrid system. This system is not suitable for light weight devices having very low

processing capabilities. A different cryptographic algorithm has been introduced by

Shrivastava et al. which provides two phase security to the quantum cryptography

system.
[161]

 In this algorithm the presence of the eavesdropper will not affect the security of

the system as the secret key bits are modified at both sender and receiver end based on the

concept of prime factor. Paramanik et al. worked with the concept of massive parallelism and

large information density inherent in DNA molecule are exploited for cryptographic

purposes.
[162]

 The main difficulties of DNA cryptography are the requirement of high tech

biomolecular laboratory and computational complexity. In this paper, a new parallel

cryptography technique is proposed using DNA molecular structure, one-time-pad scheme

and DNA hybridization technique which certainly minimizes the time complexity. An

implementation of the three-stage quantum communication protocol in free-space has been

presented by Mandal et al. where multiple photons can be used for secure

communication.
[163]

Verma et al. proposed enhanced version of RC6 Block cipher algorithm

(RC6e - RC6 enhanced version), which is a symmetric encryption algorithm designed for 256

bit plain text block.
[164]

 Yang et al. proposed that how to provide Stream cipher service in

JCA, the implementations provide a so-called StreamCipherSpi abstract class for efficiently

 Arindam Sarkar, University of Kalyani, India 33

writing and maintaining any Stream cipher algorithm by developers.
[165]

 Dolecki et al.

proposed other schemes to evaluate compatibility of weights‟ vector.
[166]

 The first one uses

Euclidean distance of both weights‟ vector. The second one is based on frequencies of

common TPM‟s outputs and as such does not rely on the weights‟ vector. Both approaches to

handle secure key exchange protocol facilitate more extended analysis of many technical

processes in which a vital role plays an incorporation of a non-standard high-quality method

securing any sensitive data. Dolecki et al. uses the phenomenon of Neural Networks

synchronization by mutual learning to construct key exchange protocol on an open

channel.
[167]

 The method presented permits evaluating the level of synchronization before it

terminates. Subsequently, this research enables to assess the synchronizations, which are

likely to be considered as long-time synchronizations. Once that occurs, it is preferable to

launch synchronization with the new selected weights as there is a high probability that a

new synchronization belongs to the short one. By taking an in-depth investigation on the

security of Neural Cryptography, Mu et al. proposed a heuristic rule.
[168]

 Aguilar et al.

proposed an extended model of the random Neural Networks, whose architecture is multi-

feedback.
[169]

 In this case, they suppose different layers where the neurons have

communication with the neurons of the neighbor layers. They present its learning algorithm

and its possible utilizations; specifically, its use has been tested in an encryption mechanism

where each layer is responsible of a part of the encryption or decryption process. It is striking

to observe that after the first decade of Neural Cryptography, the TPM network with hidden

unit 𝐾 = 3 appears to be the sole network that is suitable for a neural protocol. No

convincingly secure neural protocol is well designed by using other network structures

despite considerable research efforts. With the goal of overcoming the limitations of a

suitable network structure, Lei et al. develop a two-layer tree-connected feed-forward neural

network (TTFNN) model for a neural protocol.
[170]

 Three encryption algorithms namely

DES, AES and Blowfish were analyzed by Ramesh et al. by considering certain performance

metrics such as execution time, memory required for implementation and throughput.
[171]

A

new symmetric key cryptographic method has been proposed by Sircar et al. using Modified

generalized Vernam cipher method with feedback along with different block sizes.
[172]

A

different image encryption technique has been presented by Soni et al. based on DNA

sequence addition operation.
[173]

A different symmetric cryptographic technique has been

 Arindam Sarkar, University of Kalyani, India 34

developed which merged both RSA and Diffie-Hellman algorithms and a comparison has

been conducted by Mandal et al. between the proposed technique, AES (Rijndael), DES,

3DES, RC2 and Blowfish.
[174]

Naveen et al. offers two different cryptographic schemes based

on DNA binary strands are. In one of the approaches DNA based cryptography itself is used

to encrypt and decrypt the message.
[175]

 And in another approach DNA strands are used to

generate key for encryption and decryption. Nakun et al. proposed generic framework is

named as tree state classification machine (TSCM).
[176]

 Allam et al. aimed to increase the

security of the Neural Cryptography by authenticating the communication using preshared

secrets.
[177]

 The mutual learning algorithm is modified so that the reflecting boundaries

become hidden and only accessible by the two partners. By making use of Artificial

Intelligence (AI), Human Intelligence can be simulated by a machine, Neural Networks is

one such sub field of AI. ANN consists of neurons and weights assigned to inter neuron

connections helps in storing the acquired knowledge. Jhajharia et al. made use of Hebbian

learning rule to train the ANN of both sender and receiver machines.
[178]

 They proposesed

key generation for PKC by application of ANN using GA. Allam et al. investigated the

information leakage through the learning process.
[179]

 This information can be used to reduce

the complexity of the genetic attack, a Neural Cryptography known attack strategy. Akhavan

et al. proposed a new efficient scheme for parallel hash function based on high-dimensional

chaotic map.
[180]

 In the proposed scheme, the confusion as well as the diffusion effect is

enhanced significantly by utilizing two nonlinear coupling parameters. Singh et al. proposed

Neural Cryptography for secret key exchange and encryption with AES.
[181]

 Adel et al.

presented a survey report on cryptography based on Neural Network.
[182]

 Lonkar et al. in the

year 2014 worked with cryptography using Neural Networks.
[183]

 They formed the key by

Neural Network is in the form of weights and neuronal functions. Apdullah et al. proposed

non-linear encryption using relation-building functionality through Neural Network.
[184]

Mohammed Al-Maitah et al. proposed Neuro Cryptographic protocol based on a three-level

Neural Network of the direct propagation.
[185]

 There was evaluated it‟s cryptosecurity and

analyzed three types of this algorithm attack to show the reality of the hypothesis that Neuro

Cryptography is currently one of the most promising post quantum cryptographic systems.

Soni et al. described a scheme and claimed that any cryptographic system is used to exchange

confidential information securely over the public channel without any leakage of information

 Arindam Sarkar, University of Kalyani, India 35

to the unauthorized users.
[186]

 They proposed that Neural Networks can be used to generate a

common secret key because the processes involve in cryptographic system requires large

computational power and very complex. Two Neural Networks which are trained on their

mutual output bits. The networks synchronize to a state with identical time dependent

weights. Secret key exchange over a public channel and this key can be used in implementing

any encryption algorithm. Dadhich et al. proposed a scheme for information communication,

particularly text, image and video transmission.
[187]

 Improvement of pictorial information for

betterment of human perception involves de-blurring, de-noising and safe transmission.

These applications extend over several fields such as satellite imaging, medical imaging etc.

Specifically they would like to elaborate their research on the significance of computational

intelligence as one of the domains which finds application in cryptography and information

security, and then the relevance of cryptography is indeed unavoidable. This paper deals with

the study of the requirements for strong cryptography and various computational intelligence

techniques that find use in cryptography. Finally, they performed detailed comparison

between cryptographic methods with computational intelligence and those cryptography

techniques without computational intelligence. Singla et al. discussed about efficient random

sequence generators which are used in the application areas of cryptographic stream cipher

design, statistical sampling and simulation, direct spread spectrum, etc.
[188]

 A

cryptographically efficient pseudo-random sequence should have the characteristics of high

randomness and encryption effect. The statistical quality of pseudo-random sequences

determines the strength of cryptographic system. The generation of pseudo-random

sequences with high randomness and encryption effect is a key challenge. A sequence with

poor randomness threatens the security of cryptographic system. In this paper, the features

and strengths of chaos and Neural Network are combined to design a pseudo-random binary

sequence generator for cryptographic applications. The statistical performance of the chaotic

neural network based pseudo random sequence generator is examined against the NIST

SP800-22 randomness tests and multimedia image encryption. Soni et al. constructed a hash

function based on multilayer feed forward network with piecewise linear chaotic map.
[189]

Chaos has been used in data protection because of the features of initial value sensitivity,

random similarity and ergodicity. They have used three neuronal layers to prove confusion,

diffusion and compression respectively. This hash function takes input of arbitrary length and

 Arindam Sarkar, University of Kalyani, India 36

generate a fixed length hash value (128 bit, 256 bit or 512 bit). Chakraborty et al. performed

a survey on exchange of secret keys over public channels based on neural synchronization

using a variety of learning rules offer an appealing alternative to number theory based

cryptography algorithms.
[190]

 Though several forms of attacks are possible on this neural

protocol e.g. geometric, genetic and majority attacks, they found that deterministic

algorithms that synchronize with the end-point networks have high time complexity, while

probabilistic and population-based algorithms have demonstrated ability to decode the key

during its exchange over the public channels. They also examined the queries, heuristics,

erroneous information, group key exchange, synaptic depths, etc, that have been proposed to

increase the time complexity of algorithmic interception or decoding of the key during

exchange. They conclude that The TPM and its variants, Neural Networks with tree

topologies incorporating parity checking of state bits, appear to be one of the most secure and

stable models of the end-point networks. Our survey also mentions some noteworthy studies

on Neural Networks applied to other necessary aspects of cryptography. They also claimed

that discovery of neural architectures with very high synchronization speed, and designing

the encoding and entropy of the information exchanged during mutual learning, and design of

extremely sensitive chaotic maps for transformation of synchronized states of the networks to

chaotic encryption keys, are the primary issues in this field. Adel et al. in the year 2014

proposed a public key cryptography system based on chaotic neural network (CNN) for

encrypt and decrypt a digital image.
[191]

 The most traditional public key cryptography is

based on number theory which has some drawbacks such as large computational power,

complexity, and time consumption. To overcome these drawbacks, a new chaotic Neural

Network is introduced by the authors. They used multidimensional chaotic maps as a chaotic

sequence for determined the Neural Network weight and basis through five layers of

networks and additional layer for public key using Chebyshev chaotic map as a chaotic

sequence for basis Neural Network.

Number of cryptographic techniques are proposed each of which has some advantages and

disadvantages. There is no algorithm exists as universal solutions. So there is a dearth of

searching new techniques as the scenario of computing world is changing continuously with

a high rate of gradients.

 Arindam Sarkar, University of Kalyani, India 37

1.6 Learning Rules for Tuning of Perceptron

Cryptographic session key can be generated through synchronization of two perceptrons one

at sender another at receiver. At the perceptron synchronization phase weight vector of both

perceptron is updated using perceptron learning rule to tuned the network. If the output bits

are different for sender (A) and receiver (B) perceptrons i.e. 𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed.

If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated. The

weight vector of this hidden unit is adjusted using any of the following learning rules:

Anti-Hebbian: Both networks are trained with the opposite of their own output. This is

achieved by using the Anti-Hebbian
[98]

 learning rule given in equation

1.1.

))((//// BABA

kk
BABA

k
BA

k xWW
 (1.1)

Hebbian: In the case of the Hebbian

[98]
 learning rule both DHLPs learn from each

other. The Hebbian rule given in equation 1.2.

))((//// BABA

kk
BABA

k
BA

k xWW
 (1.2)

Random Walk: The set value of the output is not important for synchronization as long as

it is the same for all participating DHLPs. That is why one can use the

Random Walk
[98]

 learning rule, too. The Random Walk rule given in

equation 1.3.

))((/// BABA

kk
BA

k
BA

k xWW
 (1.3)

Only weights are changed by these learning rules, which are in hidden units with 𝜎i = 𝜏. By

doing so it is impossible to tell which weights are updated without knowing the internal

representation (𝜎1, 𝜎2, . . . , 𝜎k). This feature is especially needed for the cryptographic

application of perceptron synchronization. Of course, the learning rules have to assure that

the weights stay in the allowed range between – 𝐿 and +𝐿. If any weight moves outside this

region, it is reset to the nearest boundary value ±𝐿. Afterwards the current synchronization

step is finished. This process can be repeated until corresponding weights in sender‟s and

receiver‟s perceptrons have equal values, 𝑊𝑖
𝐴 = 𝑊𝑖

𝐵. Further applications of the learning

 Arindam Sarkar, University of Kalyani, India 38

rule are unable to destroy this synchronization, because the movements of the weights

depend only on the inputs and weights, which are then identical in sender‟s and receiver‟s

perceptrons.

1.7 Metrics for Evaluation

An indicator conform the evidence that a particular condition exists or certain results have or

have not been achieved. It can be either quantitative or qualitative. A metric refers to a unit

of measurement that is quantitative. Several kinds of metrics have been used for evaluating

the quality of the proposed cryptographic systems. The measures are NIST statistical test,

performance test, encryption and decryption time, Avalanche and Strict Avalanche effects,

Bit Independence criterion, Chi-Square test, frequency distribution, entropy, floating

frequency and autocorrelation which are described in section 1.71 to section 1.7.10

respectively.

1.7.1 NIST Statistical Test

A total of fifteen statistical tests recommended in the NIST

test

[192]
 Suite to evaluate

randomness of the synchronized session key proposed in different chapters. These tests

focused on a variety of different types of non-randomness that could exist in a sequence.

Some tests are decomposable into a variety of subtests. The fifteen tests are following:

 Frequency (Monobits) Test - The purpose of this test is to determine whether that

number of ones and zeros in a sequence are approximately the same as would be

expected for a truly random sequence. The test assesses the closeness of the fraction

of ones to ½, that is, the number of ones and zeroes in a sequence should be about the

same.

 Test for Frequency within a Block - The focus of the test is to find the proportion of

zeroes and ones within M-bit blocks. The purpose of this test is to determine whether

the frequency of ones is an 𝑀-bit block is approximately
𝑀

2

 Runs Test - The focus of this test is the total number of zero and one runs in the entire

sequence, where a run is an uninterrupted sequence of identical bits. A run of length 𝑘

 Arindam Sarkar, University of Kalyani, India 39

means that a run consists of exactly k identical bits and is bounded before and after

with a bit of the opposite value. The purpose of the runs test is to determine whether

the number of runs of ones and zeros of various lengths is as expected for a random

sequence. In particular, this test determines whether the oscillation between such

substrings is too fast or too slow.

 Longest Run of Ones in a Block - The focus of the test is to find the longest run of

ones within 𝑀-bit blocks. The purpose of this test is to determine whether the length

of the longest run of ones within the tested sequence is consistent with the length of

the longest run of ones that would be expected in a random sequence. Note that an

irregularity in the expected length of the longest run of ones implies that there is also

an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes

were not evaluated separately due to a concern about statistical independence among

the tests.

 Binary Matrix Rank Test - The focus of the test is the rank of disjoint sub-matrices of

the entire sequence. The purpose of this test is to check for linear dependence among

fixed length substrings of the original sequence.

 Discrete Fourier Transform Test - The focus of this test is the peak heights in the

discrete Fast Fourier Transform. The purpose of this test is to detect periodic features

(i.e., repetitive patterns that are near each other) in the tested sequence that would

indicate a deviation from the assumption of randomness.

 Non-overlapping (Aperiodic) Template Matching Test - The purpose of this test is to

reject sequences that exhibit too many occurrences of a given non-periodic

(aperiodic) pattern. For this test and for the Overlapping Template Matching test, an

𝑚-bit window is used to search for a specific 𝑚-bit pattern. If the pattern is not found,

the window slides one bit position. For this test, when the pattern is found, the

window is reset to the bit after the found pattern, and the search resumes.

 Overlapping (Periodic) Template Matching Test - The purpose of this test is to reject

sequences that show deviations from the expected number of runs of ones of a given

length. Note that when there is a deviation from the expected number of ones of a

 Arindam Sarkar, University of Kalyani, India 40

given length, there is also a deviation in the runs of zeroes. Runs of zeroes were not

evaluated separately due to a concern about statistical independence among the tests.

For this test and for the Non-overlapping Template Matching test, an m-bit window is

used to search for a specific m-bit pattern. If the pattern is not found, the window

slides one bit position. For this test, when the pattern is found, the window again

slides one bit, and the search is resumed.

 Maurer’s “Universal Statistical” Test - The purpose of the test is to detect whether

or not the sequence can be significantly compressed without loss of information. An

overly compressible sequence is considered to be non-random.

 Linear Complexity Test - The focus of this test is to find the length of a generating

feedback register. The purpose of this test is to determine whether or not the sequence

is complex enough to be considered random. Random sequences are characterized by

a longer feedback register. A short feedback register implies non-randomness.

 Serial Test - The focus of this test is to obtain the frequency of each and every

overlapping m-bit pattern across the entire sequence. The purpose of this test is to

determine whether the number of occurrences of the 2𝑚 𝑚-bit overlapping patterns is

approximately the same as would be expected for a random sequence. The pattern can

overlap.

 Appoximate Entropy Test - The focus of this test is to obtain the frequency of each

and every overlapping m-bit pattern. The purpose of the test is to compare the

frequency of overlapping blocks of two consecutive/adjacent lengths (𝑚 and 𝑚 + 1)

against the expected result for a random sequence.

 Cumulative Sums Test - The focus of this test is the maximal excursion (from zero) of

the random walk defined by the cumulative sum of adjusted (−1, +1) digits in the

sequence. The purpose of the test is to determine whether the cumulative sum of the

partial sequences occurring in the tested sequence is too large or too small relative to

the expected behavior of that cumulative sum for random sequences. This cumulative

sum may be considered as a random walk. For a random sequence, the random walk

 Arindam Sarkar, University of Kalyani, India 41

should be near zero. For non-random sequences, the excursions of this random walk

away from zero will be too large.

 Random Excursions Test - The focus of this test is to find the number of cycles

having exactly 𝐾 visits in a cumulative sum random walk. The cumulative sum

random walk is found if partial sums of the (0,1) sequence are adjusted to (−1, +1).

A random excursion of a random walk consists of a sequence of n steps of unit length

taken at random that begin at and return to the origin. The purpose of this test is to

determine if the number of visits to a state within a random walk exceeds what one

would expect for a random sequence.

 Random Excursions Variant Test - The focus of this test is to find the number of

times that a particular state occurs in a cumulative sum random walk. The purpose of

this test is to detect deviations from the expected number of occurrences of various

states in the random walk.

1.7.2 Performance Analysis

In performance testing performance of all the proposed and existing techniques are compared

with each other in terms of average synchronization time for generation of session key and

grouped session key of 128/192/256 bit using fixed weight range and different number of

neurons in input and hidden layer, different weight range and fixed number of neurons in

input and hidden layer, amount of heap used for generating 128 bit session key, amount of

relative time spent in GC used for generating 128 bit session key, amount of thread required

for generating 128 bit session key, number of generation vs. average fitness value in SA and

GA and key storage comparisons.

 Arindam Sarkar, University of Kalyani, India 42

1.7.3 Encryption and Decryption Time

All the test programs for the proposed techniques are equipped to calculate and display total

encryption time and decryption time at the end of execution. Time taken is the difference

between processor clock ticks between the starting and end of the algorithm. All times are

measured in milliseconds (ms). The lower processing time means the higher speed which

sometimes better for a typical end user. Since the CPU clock ticks are taken as time, there

might be a slight variation with actual time. This variation is very insignificant and may be

ignored.

1.7.4 Avalanche and Strict Avalanche Effects

In cryptography, the Avalanche Effect (AVAL) is a desirable property of block ciphers.

Avalanche effect means that a very small number of bit changes in the plaintext will lead to a

very large number of bit changes in the cipher text. In case of high quality block ciphers, a

small change in either the key or the plaintext should cause a drastic change in the cipher

text. The actual term was first used by Horst Feistel in 1973.
[1]

 More formally, a function

𝑓 ∶ {0,1}𝑛 {0,1}𝑛 satisfies AVAL if whenever one input bit is changed, on the average

half of the output bits change, where 𝑖 and 𝑗 (1, 2, 3, … . . , 𝑛) are input and output bits

respectively.

The Strict Avalanche Effect (SAE) is a generalized of the avalanche effect. SAE is said to be

satisfy if, whenever a single input bit is complemented, each of the output bits changes with a

50% probability. It builds on the combined concept of completeness and avalanche effect. It

was first introduced by Webster and Tavares in 1985.
[193]

 A function

𝑓 ∶ {0,1}𝑛 {0,1}𝑛 satisfies SAE if for all 𝑖 and 𝑗 (1, 2, 3, … . . , 𝑛), flipping input bit i

changes the output bit 𝑗 with the probability of exactly one half. In 1990, the notion of strict

avalanche criterion was extended by R. Forre. He considered sub-functions obtained from the

original function by keeping one or more input bits constant.

 Arindam Sarkar, University of Kalyani, India 43

1.7.5 Bit Independence Criterion

In 1986, Webster and Tavares introduced another cryptographic property Bit Independence

Criterion (BIC) for s-boxes.
[194]

 A function 𝑓 ∶ {0,1}𝑛 {0,1}𝑛 satisfies BIC if for all

𝑖, 𝑗, 𝑘 {1, 2, 3, … . . , 𝑛}, with 𝑗𝑘, inverting input bit 𝑖 causes output bits 𝑗 and 𝑘 to change

independently. To measure BIC, the correlation coefficient between 𝑗'th and 𝑘'th components

of the output difference string is needed, which is called the Avalanche vector 𝐴𝑒ᵢ.

1.7.6 Chi-Square Test

Chi-Square value is calculated from the character frequencies using the equation 1.4 devised

by Karl Pearson:
[194]

𝜒2 =
 𝑂𝑖 − 𝐸𝑖

2

𝐸𝑖

𝑛

𝑖=1

 (1.4)

Where,

𝑂𝑖 (Occurred) is the frequency of occurrence of character 𝑖 in the encrypted message

𝐸𝑖 (Expected) is the frequency of occurrence of character 𝑖 in the original message

Chi-Square test is used to determine whether the observed sample frequencies differ

significantly from the expected frequencies. The higher the Chi-Square values the more

deviation from the original message. The large Chi-Square values confirm the heterogeneity

of the source file and the encrypted file. Larger Chi-Square value compare to tabulated Chi-

Square value ensure the higher degree of heterogeneity.

1.7.7 Frequency Distribution

Frequency distribution analyzes both the original and encrypted files. The occurrence of each

character on both the files is measured. Graphs are generated where ASCII value of each

character plotted along X-axis and frequency or number of occurrences of characters along

Y-axis. The smoother curve in the spectrum of frequency distribution indicates that it is

harder for a cryptanalyst to detect the original message bytes.

 Arindam Sarkar, University of Kalyani, India 44

1.7.8 Entropy

The entropy of a document is an index of its information content. The entropy is measured in

bits per character. If a character has a very high probability of occurrence, then its

information content is low. For documents which can contain every character of the character

set (0 to 255) the entropy lies between 0 bit/char (in a document which consists of only one

character) and log(256) bit/char = 8 bit/char (in a document in which all 256 characters

occur equally often).

1.7.9 Floating Frequency

The floating frequency of a document is a characteristic of its local information content at

individual points in the document. The floating frequency specifies how many different

characters are to be found in any given 64 character long segment of the document. The

function considers sequences of text in the active window that are 64 characters long and

counts how many different characters are to be found in this "window". The "window" is

then shifted one character to the right and the calculation is repeated. This procedure results

in a summary of the document in which it is possible to identify the places with high and low

information density. A document of length n > 64 bytes has (n − 63) such index numbers

in its characteristics.

1.7.10 Autocorrelation

The purpose of this empirical test of independence is to check correlations between

succeeding outcomes of the encryption and/or between the binary sequence 𝑠 and an

alternative version of 𝑠 that is displaced by 𝑡 positions. Let 𝑡 be a number, 1 ≤ 𝑡 ≤ (𝑛 / 2)

and fixed.

 Arindam Sarkar, University of Kalyani, India 45

1.8 Objectives

The objective of modern cryptographic technique is to provide security for the system where

unify computing is an essential component and also for light weight devices having very low

processing capabilities or limited computing power in wireless communication.

In the present scenario, existing cryptographic technique depend on the exchange of keys

through insecure public channel which are used to encrypt and decrypt the information

exchange. This is vulnerable in terms of security. Using these key sender and receiver

perform reasonably complex mathematical operations on the data stream. This is also takes

significant amount of resources. So it is essential to find some cryptographic techniques

where instead of transmitting the whole key through insecure public channel, session key can

be generated at both sides using mutual synchronization of both parties. By keeping in mind

the resource constrains criteria of wireless communication the robust and secure

encryption/decryption technique which takes less resources for computations and secure

session key which is less complex but provides very high degree of security with respect to

existing cryptographic techniques along with energy awareness is very much needed in

wireless communication.

So it is essential for modern day users to secure their communication in terms of security as

well as energy awareness.

The objectives of this thesis are to

 enhance the security of the wireless communication system in such a way that the

instead of exchanging the whole session key, soft computing based synchronization

technique is used to construct a cryptographic key-exchange protocol for generating

the identical session key at sender and receiver.

 develop and implement cryptographic techniques which are very simple, and easy to

implement but provide good security and can be implemented.

 compare the proposed techniques with the existing and industrially accepted

techniques with respect to parameters like NIST statistical test, performance test,

encryption and decryption time, Avalanche and Strict Avalanche effects, Bit

Independence criterion, Chi-Square test, frequency distribution, entropy, floating

frequency and autocorrelation.

 Arindam Sarkar, University of Kalyani, India 46

 trade-off between security and performance of light weight devices having very low

processing capabilities or limited computing power

1.9 Organization of the Thesis

The thesis consists of eight chapters. Chapter 1 contains the introductory discussion of the

problem and solution domain. An introductory interface about cryptography and soft

computing based techniques, literature survey, objective and organization of the thesis,

learning rules for tuning of perceptrons, metrics for evaluation and salient features of the

proposed techniques have been discussed briefly.

Chapter 2 of this thesis deals with Kohonen's Self-Organizing Feature Map Synchronized

Cryptographic Technique (KSOMSCT). Security analysis and discussions about the

proposed technique has been done.

In Chapter 3, a Double Hidden Layer Perceptron Synchronized Cryptographic Technique

(DHLPSCT) has been proposed. Security analysis and discussions about the proposed

technique has been done.

In Chapter 4, a Chaos based Double Hidden Layer Perceptron Synchronized Cryptographic

Technique (CDHLPSCT) has been proposed. Security analysis and discussions about the

proposed technique has been done.

In Chapter 5, a Chaos based Triple Hidden Layer Perceptron Synchronized Cryptographic

Technique (CTHLPSCT) has been proposed. Security analysis and discussions about the

proposed technique has been done.

In Chapter 6, a Chaos based Grouped Triple Hidden Layer Perceptron Synchronized

Cryptographic Technique (CGTHLPSCT) has been proposed. Security analysis and

discussions about the proposed technique has been done.

Chapter 7 deals with results and analysis of the proposed techniques. Comparison has been

done among proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT

and existing Tree Parity Machine (TPM) and Permutation Parity Machine (PPM), RSA,

Triple-DES (168 bits), AES (128 bits), RC4 and Vernam Cipher for their relative

performances.

 Arindam Sarkar, University of Kalyani, India 47

A model has been proposed through cascaded implementation of the devised cryptographic

techniques of this thesis, in chapter 8. At the end list of references is given.

1.10 Salient Features of the Proposed Techniques

In this thesis, the logic of the proposed soft computing based cryptographic techniques in

wireless communication is simple to understand and implementation is easy using any high

level programming language. Since keys are session based which varies session to session

and key size is variable in length, the security of the proposed techniques is good. The

strength of the proposed techniques is the adoption of complexity based on energy and

resource available in the wireless communication, infrastructure for computing in a node or

mesh in wireless communication. For a wireless network having low energy, the number of

cascading stages and iteration be less. Also during the synchronization phase the different

structures of the proposed perceptrons can be used depending on the available resources in

the wireless communication. So, the proposed techniques are very much suitable for the

security of the system where energy and resource is one of the main constraints. All the

proposed techniques can handle any sort of input file of any size. There is no alteration of

input file size i.e. after encryption file size remains unchanged. The salient features of all the

proposed techniques are summarized as follows:

 Generation of session key through synchronization

 No exchange of session key through public channel

 High degree of security

 Variable in length keys

 Independency of file types

 Size independency of source file

 Offers variable block size

 No space overhead

 Logics are simple to understand

 Less complex

 Easy to implement the algorithms

Chapter 2

Kohonen's Self-Organizing Map Synchronized

Cryptographic Technique

(KSOMSCT)

 Arindam Sarkar, University of Kalyani, India 50

2.1 Introduction

In this chapter a novel soft computing assisted cryptographic technique KSOMSCT based on

synchronization of two Kohonen's Self-Organizing Feature Map (KSOFM)
[195]

, one at sender

and another at receiver has been proposed. In public-key cryptography key generation and

key exchange are one of the major issues. Eavesdroppers can reside between sender and

receiver and tries to capture all the information transmitting between the parties. So, at the

time of key exchange between sender and receiver intruders can perform sniffing, spoofing

or phishing operation to tamper the key. Another noticeable problem is that most of the key

generation algorithms need large amounts of memory space for generating the session key

but now-a-days most of the handheld wireless devices have a criterion of memory and

resource constraints.

For the solution of the problem KSOFM based synchronization has been proposed to address

this issue by resolving the drawbacks of some of the existing cryptographic approach.
[196]

Here, KSOFM based synchronization is performed for tuning both sender and receiver

simultaneously. On completion of the tuning phase identical session key generates at the both

end using synchronized KSOFM. This synchronized network can be used for transmitting

message using any light weight encryption/decryption techniques with the help of identical

session key of the synchronized network. To illustrate the cryptographic technique in

wireless communication one of the simple and secure encryption/decryption technique has

been presented. A plaintext is considered as a stream of binary bits. Fractal triangle based

encryption
[197]

 is performed with the help of KSOFM tuned session key to generate the cipher

text. The plaintext is regenerated at the destination by performing Fractal triangle based

decryption with the help of KSOFM tuned session key.

Section 2.2 presents a description of proposed technique. Section 2.3 deals with the

implementation of the proposed cryptographic technique. Section 2.4 discussed the security

issue related to the proposed technique. Discussions are presented in section 2.5.

 Arindam Sarkar, University of Kalyani, India 51

2.2 The Technique

The technique performs the KSOFM based synchronization for generation of secret session

key at both ends. This synchronized session key of the tuned network is used for the

transmission of secured message through wireless network with the help of any light weight

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless

communication one of the simple and secure encryption/decryption technique has been

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is

encrypted using Fractal triangle based encryption technique. The session key based on

KSOFM is used to further encrypt the Fractal triangle encoded text to produce final cipher

text. In this technique instead of exchanging the whole session key to the receiver using

public channel KSOFM index parameters are exchanged. The technique has an ability to

construct the unique secret session key at both ends using exchanged information. For

ensuring the randomness in every session, certain parameter values get randomly changed

like seed values for generating random inputs and weights, number of iteration to train the

map, different mathematical functions (Radial basis, Gaussian, Mexican Hat) for choosing

the random points from the KSOFM.

 In Fractal triangle based encryption/decryption technique the number of dimensions of

Fractal triangle used in the encryption/decryption process key size has been determined. Key

for Fractal triangle based encryption is formed from the KSOFM based synchronized session

key. The key size may also larger than available number of bits in the synchronized session

key. The extra bits require is taken after performing four bits circular right shift operation on

the KSOFM based synchronized session key. Finally, a cascaded Exclusive-OR operation is

performed between Fractal triangle encrypted blocks with the KSOFM based session key to

generate final cipher text.

Receiver has same KSOFM synchronized session key as a result of tuning. This session

key used to perform first step of the deciphering. In the next step, Fractal triangle based

deciphering operation is performed to regenerate the plaintext.

The technique does not produce any storage overhead. This technique needs a minimum

amount of storage for storing the key which greatly handles the resource constraints criteria

of wireless communication. The implementation on practical scenario is well proven with

positive outcome. A comparison of KSOMSCT with existing Tree Parity Machine (TPM)

 Arindam Sarkar, University of Kalyani, India 52

and Permutation Parity Machine (PPM) based key exchange techniques and industry

accepted AES, RC4, Vernam Cipher, Triple DES (TDES) and RSA

have been done. Details

of results along with analysis are given in chapter 7.

In KSOMSCT, synchronization operation on both sender’s and receiver’s KSOFM

system is performed for generating common session key. The Fractal triangle based

encryption algorithm takes the plaintext as a binary stream of bits which is encrypted using

Fractal triangle based encryption technique. The key size is determined depending on the

dimensions of Fractal triangle used in the encryption process. The Fractal dimension is

calculated using equation 2.1

 𝑛 =
𝑙𝑛 𝑠

𝑙𝑛 𝑚−1 2−1
+ 1 (2.1)

Where 𝑚 = edges numbers and 𝑠 = sub-triangles numbers

If Fractal triangle 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) = 3 then first four bits of the synchronized session key

becomes the encryption key, if 𝑛 = 4 then first thirteen bits are taken from synchronized

session key. If encryption key size is greater than available number of bits in the

synchronized session key then rest of the required bits can be taken from left to right by

performing the four bits circular right shift operation on the synchronized session key.

Mandlbrot Set equation is used to form the Fractal triangle, which is given in equation 2.2.

 𝑍𝑘+1 = 𝑍𝑘2 + 𝐶 𝑍0 = 0 (2.2)

Figure 2.1: The Sierpinski triangle

Fractal triangle has been used to perform encryption technique by placing the source bits

(plaintext) into the each vertex of each triangle in sequence and placing the key bits for

encryption into the middle of each triangle. Then the encryption operation is performed to

generate the Fractal triangle encrypted text. Fractal triangle encoded text is encrypted further

using Exclusive-OR operation with the session key. The algorithm for the complete process is

given in section 2.2.1.

 Arindam Sarkar, University of Kalyani, India 53

2.2.1 KSOMSCT Algorithm at Sender

 Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

Kohonen's Self-Organizing Feature Map (KSOFM) and Fractal triangle based

encryption.

Step 1. Perform synchronization operation on both sender’s and receiver’s

KSOFM system to generate tuned common session key.

Step 2. Perform Fractal triangle based encryption technique to generate the

intermediate cipher text.

Step 3. Perform cascaded Exclusive-OR operations between KSOFM based

synchronized session key and intermediate encrypted text generated in

step 2 to form the final cipher text.

Step 1 of the algorithm for generating common tuned session key through synchronization of

sender’s and receiver’s KSOFM system is discussed in section 2.2.1.1. Step 2 of the

algorithm for performing Fractal triangle based encryption is discussed in 2.2.1.2. Step 3 of

the algorithm is discussed in 2.2.1.3.

2.2.1.1 Kohonen Self-Organizing Feature Map (KSOFM) based Synchronization

In this section, a novel Kohonen Self-Organizing Feature Map (KSOFM)
[195]

 based

synchronization of both sender and receiver machine has been proposed. The tuned network

is used for message communication purpose based on tuned parameter. The technique

imparts a simple and secure way of key generation both sender and receiver simultaneously

using KSOFM based tuning. Unsupervised competitive learning is used for synchronization.

The method uses unsupervised learning to represent input space of the training samples in a

discrete 2𝐷 maps. Neighborhood of each neuron (i.e. the connections of the neuron with

adjacent neurons) in the map depends on the dimension of the map. 2𝐷 regular spacing in a

hexagonal or rectangular grid uses to arrange the neurons. Detailed methodology used in

KSOFM based synchronization is discussed as follows.

 Arindam Sarkar, University of Kalyani, India 54

The KSOFM comprises of neurons along with a weight vector for each neuron having a

dimension same as the dimension of the input vector. Consider the input vector

𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑛
𝑇and weight vector 𝑊 = 𝑤1,𝑤2,… ,𝑤𝑛

𝑇. The process initially, assigns a

weight vector to each neuron (point) by arbitrarily choosing a neuron (point)

𝑥 ∈ 𝑖𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒 𝑋. The value of the weight vector is set to a tiny random numbers.

The necessity of unsupervised learning mechanism in KSOFM is to produce similar

response from different parts of the network for a certain input patterns. Competitive learning

is used in the training period to train the KSOFM. Euclidean distance between each neuron

and an arbitrary neuron (point) 𝑥 get calculated using equation 2.3

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 = 𝑥1 − 𝑤𝑘1 2 + 𝑥2 − 𝑤𝑘2 2 + ⋯+ 𝑥𝑛 − 𝑤𝑘𝑛 2
(2.3)

Where,

 𝑘 = 1,2, . . . ,𝑃

 𝑃 is the neuron number

 𝑊𝑘𝑗 is the entry of 𝑗 of the weight of neuron 𝑘 where 𝑗 = 1,2, . . . ,𝑛

The neuron (point) whose weight vector is most similar to the input is called the Best

Matching Unit (BMU). The weights of the BMU and neurons (point) close to it in the

KSOFM lattice are adjusted towards the input vector. The magnitude of the change decreases

with time and with distance (within the lattice) from the BMU.

The technique uses 2𝐷 KSOFM with 100 neurons. A learning rate 𝛼 of 0.1 is used to

train the KSOFM and decreasing the spread of the neighborhood function by the rule given

in equation 2.4

 𝜎 = 𝜎0 1 −
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 _𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 _𝑛𝑜 _𝑜𝑓 _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 (2.4)

Here, 𝜎 is initial spread. The value of 𝜎 decreases from the initial value to the final value (0)

constantly. Hence, the neighborhood function influences all neurons of the map in the first

time and its influence on far neurons vanishes progressively. Towards the end of the training

only the winner neuron will be updated so as to drive neurons towards centers of gravity.

 Arindam Sarkar, University of Kalyani, India 55

The winner neuron is a neuron which has a minimum distance from 𝑥 (arbitrary point).

Winner neuron gets selected based on the distance factor. The minimum distance

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑛𝑛𝑒𝑟 fulfills the condition given in equation 2.5.

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑛𝑛𝑒𝑟 ≤ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 (2.5)

 𝑊𝑒𝑟𝑒 𝑘 = 1,2, . . . ,𝑃

An updating rule has been applied over the entire map keeping in mind the priority of the

winner neuron and its closest neighbors. In existing KSOFM algorithm
[198]

 the general update

formula
[199]

 for a neuron with weight vector 𝑊𝑣(𝑠) is given in equation 2.6

 𝑊𝑣(𝑠 + 1) = 𝑊𝑣(𝑠) + 𝛩(𝑢, 𝑣, 𝑠) 𝛼(𝑠)(𝐷(𝑡) − 𝑊𝑣(𝑠)) (2.6)

Where,

 𝑆 is the old iteration

 𝑆 + 1 is the new iteration

 𝑡 is the index of the target input data vector in the input data set 𝐷

 𝐷(𝑡) is a target input data vector

 𝑣 is the index of the node in the map

 𝑊𝑣 is the current weight vector of node 𝑣

 𝑢 is the index of the Best Matching Unit (BMU) in the map

 𝛩(𝑢, 𝑣, 𝑠) is a restraint due to distance from BMU, usually called the neighborhood

function, and

 𝛼(𝑠) is a learning restraint due to iteration progress

The existing generalized KSOFM updating equation 2.6 is expressed using equation 2.7 with

the parameters of the proposed technique.

 𝑤𝑘 ,𝑛𝑒𝑤 = 𝑤𝑘 ,𝑜𝑙𝑑 + 𝛼.𝑁𝑒𝑖𝑔𝑏𝑜𝑟 𝑤𝑖𝑛𝑛𝑒𝑟,𝑘 . 𝑥 − 𝑤𝑘 ,𝑜𝑙𝑑

 (2.7)

Where, old iteration (𝑆) is denoted by 𝑜𝑙𝑑. New iteration (𝑆 + 1) is denoted by 𝑛𝑒𝑤, index

of the node in the map (𝑣) is denoted by 𝑘, current weight vector (𝑊𝑣) is denoted by 𝑊𝑘 ,

learning restraint 𝛼(𝑠) is denoted by 𝛼, index of the Best Matching Unit (BMU) in the map

(𝑢) is denoted by 𝑤𝑖𝑛𝑛𝑒𝑟, neighborhood function 𝛩(𝑢, 𝑣, 𝑠) is denoted by

𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑤𝑖𝑛𝑛𝑒𝑟,𝑘) with a bell shape centered at the winner neuron. It is a function of the

 Arindam Sarkar, University of Kalyani, India 56

distance between the winner neuron and the neuron 𝑘. 𝑁𝑒𝑖𝑔𝑏𝑜𝑟 𝑤𝑖𝑛𝑛𝑒𝑟,𝑘 =

𝑒
 𝑤𝑖𝑛𝑛𝑒 𝑟−𝑘 2

𝜎2 and target input data vector 𝐷(𝑡) is denoted by 𝑥.

A new arbitrary point 𝑦 ∈ 𝑖𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒 𝑋 get selected and starting from the step

unsupervised training of KSOFM to the step updating the network get perform again. This

process is repeated for each input vector for a (usually large) number of cycles 𝜆.

The spreading of the neighborhood function (𝜎) is important since it controls the

convergence of the map. It should be large at the beginning and shrink progressively to reach

a small value in order to globally order the neurons over the whole map. The maximum value

of 𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑤𝑖𝑛𝑛𝑒𝑟,𝑤𝑖𝑛𝑛𝑒𝑟) = 1 corresponds to the winner neuron and value of

Neighbor function decreases when the distance between neurons 𝑘 and winner increases.

Concerning the value of the learning rate 𝜎, it should be small enough to ensure the

convergence of the KSOFM.

During synchronization both sender and receiver use the identical KSOFM architecture

along with identical parameters in each session. Parameters used in each session are:

 Dimension of the KSOFM (2𝐷 or 3𝐷)

 Number of neurons which specifies the number of different possible session keys

 Dimension of the weight vector specify the length of the key

 Seed value for generating random inputs and weights

 Number of iteration to train the map

 Different mathematical functions as a mask for choosing the random points from

the KSOFM (Radial basis, Mexican Hat, Gaussian etc.)

 Different index value for choosing different neurons (key) on the mathematical

mask at each session for forming the session key

Parameters that get negotiated at the initial stage of synchronization process between sender

and receiver by mutual agreement are completely random. Changing each of the parameters

randomly in each session security of proposed technique can be enhanced which in turns

decrease the success rate of the attackers.

Both sender’s and receiver’s KSOFM are starts synchronization by exchanging control

frames for negotiation of parameters value. KSOFM based synchronization uses transmission

 Arindam Sarkar, University of Kalyani, India 57

of control frames given in table 2.1 at the time of three way handshaking based TCP

connection establishment phase.

Table 2.1

Control frames of KSOFM synchronization
Frame Description

𝑆𝑌𝑁
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment phase

𝐴𝐶𝐾_𝑆𝑌𝑁
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁

frame

𝑁𝐴𝐾_𝑆𝑌𝑁
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁

frame

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection

The 𝑆𝑌𝑁 frame is used for establishing the connection to the other side. It carries index

information of different initial parameters. The detailed format of 𝑆𝑌𝑁 frame is given in

section 2.2.1.1.1. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is used for providing the positive

acknowledgement with respect to the 𝑆𝑌𝑁 frame. The detailed format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is

discussed in section 2.2.1.1.2. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame is used for providing the

negative acknowledgement with respect to the 𝑆𝑌𝑁 frame. The detailed format of 𝑁𝐴𝐾_𝑆𝑌𝑁

frame is discussed in section 2.2.1.1.3. The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is used for closing the

connection. Either side can generate the request of closing connection through 𝐹𝐼𝑁_𝑆𝑌𝑁

frame. The detailed format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 2.2.1.1.4.

2.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver

for handshaking in connection establishment phase. 𝑆𝑌𝑁 usually comprises of several fields

these are 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝑊𝑒𝑖𝑔𝑡 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥,

𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥, 𝑆𝑒𝑒𝑑 𝐼𝑛𝑑𝑒𝑥, 𝑁𝑒𝑢𝑟𝑜𝑛 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝐶𝑅𝐶. Figure 2.2 shows the complete

format of 𝑆𝑌𝑁 frame.

 Arindam Sarkar, University of Kalyani, India 58

 2 4 1 2 16 2 4 4 16 (𝑏𝑖𝑡𝑠)

Figure 2.2: Frame format of 𝑆𝑌𝑁 frame

Table 2.2 shows different 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 against different frames. 𝑆𝑌𝑁 frame has a unique

two bits 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 00, 𝐴𝐶𝐾_𝑆𝑌𝑁 has the 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 01. Whereas 𝑁𝐴𝐾_𝑆𝑌𝑁

uses 10 as its 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 and finally 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 11 is for 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

Table 2.2

KSOFM control frames and their command codes
Command code Frame

00 𝑆𝑌𝑁

01 𝐴𝐶𝐾_𝑆𝑌𝑁

10 𝑁𝐴𝐾_𝑆𝑌𝑁

11 𝐹𝐼𝑁_𝑆𝑌𝑁

Four bits 𝑆𝑌𝑁 𝐼𝐷 is used to identify different 𝑆𝑌𝑁 frame in different session. One bit is

used to specify the dimension of KSOFM using 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥. Table 2.3 gives the 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥

corresponds to the dimension of KSOFM.

Table 2.3

DIM Index corresponds to the dimension of KSOFM
DIM Index KSOFM Dimension

0 2𝐷

1 3𝐷

Two bits are used to illustrate the 𝑊𝑒𝑖𝑔𝑡 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, where four different weights are

available as shown in table 2.4.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑

𝐶𝑜𝑑𝑒
00

𝑆𝑌𝑁 𝐼𝐷
𝐷𝐼𝑀

𝐼𝑛𝑑𝑒𝑥

𝑊𝑒𝑖𝑔𝑡
𝐷𝐼𝑀

𝐼𝑛𝑑𝑒𝑥

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑑𝑒𝑥

𝑀𝑎𝑠𝑘

𝐼𝑛𝑑𝑒𝑥

𝑆𝑒𝑒𝑑

𝐼𝑛𝑑𝑒𝑥

𝑁𝑒𝑢𝑟𝑜𝑛
𝐷𝐼𝑀

𝐼𝑛𝑑𝑒𝑥

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 59

Table 2.4

Weight DIM Index corresponds to the number of weights
Weight DIM Index Number of weights

00 64

01 128

10 192

11 256

Sixteen bits are used to illustrate the 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥. Two bits are used to illustrate the

𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥. Table 2.5 illustrate the different 𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 value corresponds to the

different mathematical mask functions.

Table 2.5

Mask Index value corresponds to the different mathematical mask functions
Mask Index Mathematical Mask Function

00 𝑀𝑒𝑥𝑖𝑐𝑎𝑛 𝐻𝑎𝑡

01 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

10 𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠

11 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑

Four bits are used to illustrate the 𝑆𝑒𝑒𝑑 𝐼𝑛𝑑𝑒𝑥 and four bits are used to illustrate

the 𝑁𝑒𝑢𝑟𝑜𝑛 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥 which is the total number of neurons. Sixteen bits are used in 𝐶𝑅𝐶.

When the receiver receives the frame 𝑆𝑌𝑁, the receiver carries out integrity test. Receiver

also performs integrity test after receiving the 𝑆𝑌𝑁 frame. If the messages are received as

sent (with no replication, incorporation, alteration, reordering, or replay) the receiver will

execute the synchronization phase.

2.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs two bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 10. Four bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶

needs sixteen bits for error checking purpose. Figure 2.3 shows the complete frame format of

𝐴𝐶𝐾_𝑆𝑌𝑁 frame.

 Arindam Sarkar, University of Kalyani, India 60

 2 4 16 (𝑏𝑖𝑡𝑠)

Figure 2.3: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame

2.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative

acknowledgement. This frame comprises of three fields, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs two bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e.

11. Four bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error

checking purpose. Figure 2.4 shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame.

 2 4 16 (bits)

Figure 2.4: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame

2.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐼𝑛𝑑𝑒𝑥, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒

needs two bits. The 𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 01. Four bits are

used for representing 𝑆𝑌𝑁 𝐼𝐷. Two bits are used for providing index value of the neuron

(key) on the mathematical mask and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose.

Figure 2.5 shows the complete frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

 2 4 4 16 (𝑏𝑖𝑡𝑠)

Figure 2.5: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
10

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
11

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
01

𝑆𝑌𝑁 𝐼𝐷
𝐼𝑛𝑑𝑒𝑥

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 61

The KSOFM synchronization algorithm for generating synchronized session key is discussed

in section 2.2.1.1.5. Section 2.2.1.1.6 presents the complexity analysis of the KSOFM

synchronization algorithm and KSOFM based session key generation methodology is

discussed in section 2.2.1.1.7.

2.2.1.1.5 KSOFM Synchronization

Input : Assign a weight vector to each neuron by arbitrarily choosing a point of the input

space

 Output : Synchronized KSOFM

 Method : The process operates on sender’s and receiver’s Kohonen's Self-Organizing

 Feature Map (KSOFM) and generate synchronized session key.

Step 1. Randomize the map's nodes' weight vector.

Step 2. Select an arbitrary input vector.

Step 3. Traverse each node in the map.

Step 3.1 Use the Euclidean distance formula to find the similarity

between the input vector and the map's node's weight vector.

Step 3.2 Track the node that produces the smallest distance (this

node is the Best Matching Unit, BMU).

Step 4. Update the nodes in the neighborhood of the BMU (including the

BMU itself) by pulling them closer to the input vector using equation

2.8.

 𝑊𝑣(𝑠 + 1) = 𝑊𝑣(𝑠) + 𝛩(𝑢, 𝑣, 𝑠) 𝛼(𝑠)(𝐷(𝑡) − 𝑊𝑣(𝑠)) (2.8)

 Where,

 𝑆 is the current iteration

 𝜆 is the iteration limit

 𝑡 is the index of the target input data vector in the input data set 𝐷

 𝐷(𝑡) is a target input data vector

 𝑣 is the index of the node in the map

 𝑤𝑣 is the current weight vector of node 𝑣

 𝑢 is the index of the Best Matching Unit (BMU) in the map

 Arindam Sarkar, University of Kalyani, India 62

 𝛩(𝑢, 𝑣, 𝑠) is a restraint due to distance from BMU, usually called

the neighborhood function, and

 𝛼(𝑠) is a learning restraint due to iteration progress.

Step 5. Increase s and repeat from step 2.

2.2.1.1.6 Complexity Analysis

For assigning random weight vector to the map's, nodes needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

computations. Selection of any arbitrary point needs unit amount of time. Traversing each

node in the map and then using the Euclidean distance formula to find the similarity between

the input vector and the map's node's weight vector needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ×

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 computations. Tracking of the node that

produces the smallest distance (BMU) needs unit amount of time. Updating the nodes in the

neighborhood of the BMU (including the BMU itself) by pulling them closer to the input

vector needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 computations. So, each iteration of the

algorithm needs 𝑂(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 + (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 × 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛) + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠) amount of computations. This is

the best case situation where a single iteration is needed to synchronize both the KSOFM

networks. If the algorithm iterate 𝑛 number of times then in average and worst case

𝑂(𝑛 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 + (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 × 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛) + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠)) amount of computations is needed. Because

each iteration eliminates the nodes which has a far Euclidean distance than the BMU.

2.2.1.1.7 Kohonen Self-Organizing Feature Map (KSOFM) based Session Key Generation

Based on a mutually predetermined iteration steps both sender and receiver stop their

iteration due to synchronization at both end. Both sender and receiver have the identical

KSOFM as they have started with same initial configuration and proceeds with same

mutually agreed parameters. In this situation both sender and receiver uses identical

mathematical function as a mask. A general form of the mask is represented by the equation

2.9.

 Arindam Sarkar, University of Kalyani, India 63

 𝑓𝑤𝑖𝑛𝑛𝑒𝑟 𝑥 = 𝑎. 𝑒
 𝑘−𝑤 2

𝛼1
2

- 𝑏. 𝑒
 𝑘−𝑤 2

𝛼2
2

 (2.9)

Where, 𝑎, 𝑏,𝜎1,𝜎2𝜖 𝑅, 𝑥 a neuron in the KSOFM, 𝑤𝑖𝑛𝑛𝑒𝑟 is the winner neuron. A huge

number of masks could be generated by changing parameters 𝑎, 𝑏,𝜎1,𝜎2. Using the mask

incontestably enhances the security of the key. Use of mathematical mask increases the

security of the scheme because instead of one single neuron, session key can be constructed

using several neurons on the mask. Also changing the mask parameters several session keys

can be generated. This provides a significant improvement to the security of the generation of

session key. A mask hides all neurons other than the winner. Here, different mask functions

like Gauss, Radial basis, Mexican hat functions are used randomly in different sessions. The

winner neuron fixes the center of the mask and each neuron around the winner will be

weighted and summed to the winner. The result is a different session keys depending on the

shape of the mask. From this discussion it can be concluded that initially the process need

slightly more amount of time but once the mask get set it takes less amount of time. An

adversary could not find the session key because they do not have the map, mathematical

function for masking and other mutually pre agreed parameters. During mask association

several neurons around the designated neuron get associated to form the session key using

the equation 2.10.

 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦𝑢 ,𝑞 = 𝑤𝑖𝑗 ,𝑞𝑖 ,𝑗 .𝑓𝑤𝑖𝑛𝑛𝑒𝑟 𝑖, 𝑗

 𝑞 = 1,2,… ,𝑁 (2.10)

Where,

 𝑓𝑤𝑖𝑛𝑛𝑒𝑟 𝑖, 𝑗 is the mask centered at the winner neuron ,

 𝑤𝑖𝑗 ,𝑞 is the component 𝑞 of the vector associated to neuron (𝑖 , 𝑗) and

 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦𝑢 ,𝑞 is the component 𝑞 of the ultimate (final) session key.

In wireless communication, instead of starting from the initial state of the KSOFM key

generation procedure a user may use the same trained KSOFM in different session with

different users by changing only the parameters value of the mask or mask function used to

determine the ultimate session key. This procedure helps to save the resources of wireless

communication very efficiently.

Fractal triangle has been used to perform encryption technique by placing the plaintext

into the each triangle vertex and place the key bits for encryption into the middle of each

triangle and then Exclusive-OR operation is performed between central key bit of each

 Arindam Sarkar, University of Kalyani, India 64

triangle and vertex elements of each triangle. On the outcomes of this step Exclusive-OR

operation is performed again between triangle centered key and vertex elements of big

triangle. On the outcome of the previous step Exclusive-OR operation between upper

triangle’s vertex elements are performed with right triangle’s vertex elements and finally

Exclusive-OR operation is performed between upper triangle’s vertex elements with left

triangle’s vertex elements to generate the Fractal triangle encrypted text. The detail steps of

Fractal triangle based encryption algorithm are given in section 2.2.1.2.

2.2.1.2 Fractal Triangle based Encryption Algorithm

 Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

Fractal triangle based encryption.

Step 1. Perform Exclusive-OR operation between central key bit of each

triangle and vertex elements of each triangle. Figure 2.6 shows the red

colored vertex elements after performing the Exclusive-OR operations.

For example if the Fractal triangle dimension is n= 3 and the four bit

key for this encryption is “1110” and first nine bits of the plaintext is

“011011110” then figure 2.6 shows the first step of the algorithm.

Figure 2.6: Exclusive-OR operation between central key bit of each

triangle and vertex elements of each triangle

Step 2. Perform Exclusive-OR operation between triangle centered key and

vertex elements of big triangle. Figure 2.7 shows the green colored

vertex elements after performing the Exclusive-OR operations.

 Arindam Sarkar, University of Kalyani, India 65

Figure 2.7: Exclusive-OR operation between triangle’s centered key

and vertex elements of big triangle

Step 3. Perform Exclusive-OR operation between upper triangle’s vertex

elements with right triangle’s vertex elements. Figure 2.8 shows the

orange colored right triangle’s vertex elements after performing the

Exclusive-OR operations.

Figure 2.8: Exclusive-OR operation between upper triangle’s vertex

elements with right triangle’s vertex elements

Step 4. Perform Exclusive-OR operation between upper triangle’s vertex

elements with left triangle’s vertex elements. Figure 2.9 shows the

orange colored left triangle’s vertex elements after performing the

Exclusive-OR operations.

Figure 2.9: Exclusive-OR operation between upper triangle’s vertex

elements with left triangle’s vertex elements

Step 5. Now, Fractal triangle based encrypted text is “000110111” and the

representation of the storage structure shown in figure 2.10

 Arindam Sarkar, University of Kalyani, India 66

Figure 2.10: Storage structure representation of the encrypted text

2.2.1.3 Session Key based Encryption

At the final step of the technique a cascaded Exclusive-OR operation between KSOFM

synchronized session key and Fractal triangle encrypted cipher text is done to generate final

encoded cipher text and the same is transmitted to the receiver.

In Kohonen's Self-Organizing Map Synchronized Cryptographic Technique (KSOMSCT)

decryption algorithm takes the cipher text as a binary stream of bits and perform first level of

decryption using KSOFM generated synchronized session key. Finally, Fractal triangle based

decryption is performed to regenerate the plaintext, at the receiving end. Section 2.2.2

represents the algorithm of the decryption technique at the receiver end.

2.2.2 KSOMSCT Algorithm at Receiver

 Input : Encrypted file/encrypted stream i.e. cipher text

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on encrypted binary stream and generates decrypted bit

stream through Kohonen's Self-Organizing Feature Map (KSOFM) and Fractal

triangle based decryption.

Step 1. Perform cascaded Exclusive-OR operation between KSOFM based

session key and cipher text.

Step 2. Perform Fractal triangle based decryption on the outcomes of the

step 1. Fractal triangle based reverse encryption operation will be

 Arindam Sarkar, University of Kalyani, India 67

required to decrypt the encrypted text, i.e., to regenerate starting

combination i.e. plaintext.

Step 1 of the algorithm is discussed in section 2.2.2.1. Step 2 of the algorithm for performing

Fractal triangle based decryption is discussed in 2.2.2.2.

2.2.2.1 Session Key based Decryption

A cascaded Exclusive-OR operation between KSOFM synchronized session key and cipher

text get perform to produce session key decrypted text. Outcomes of this operation used as an

input of Fractal triangle based decryption algorithm discussed in 2.2.2.2 to regenerate the

plaintext.

 Fractal triangle has been used to perform decryption technique by placing the plaintext

into the each triangle vertex and place the key bits for encryption into the middle of each

triangle and Exclusive-OR operation is performed between upper triangle’s vertex elements

with left triangle’s vertex elements. On the outcomes of this step Exclusive-OR operation is

performed again between upper triangle’s vertex elements with right triangle’s vertex

elements. On the outcome of the previous step Exclusive-OR operation between triangle

centered key and vertex elements of big triangle are performed and finally Exclusive-OR

operation between central key bit and vertex elements of each triangle are performed to

generate the Fractal triangle encrypted text. The detail steps of Fractal triangle based

decryption algorithm are given in section 2.2.2.2.

2.2.2.2 Fractal Triangle based Decryption Algorithm

 Input : Fractal triangle encrypted file/ Fractal triangle encrypted stream

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on Fractal triangle encrypted bit stream and regenerates the

plaintext through Fractal triangle based decryption.

Step 1. Perform Exclusive-OR operation between upper triangle’s vertex

elements with left triangle’s vertex elements. Figure 2.11 shows the

 Arindam Sarkar, University of Kalyani, India 68

green colored left triangle’s vertex elements after performing the

Exclusive-OR operations.

Figure 2.11: Exclusive-OR operation between upper triangle’s vertex

elements with left triangle’s vertex elements

Step 2. Perform Exclusive-OR operation between upper triangle’s vertex

elements with right triangle’s vertex elements. Figure 2.12 shows the

orange colored right triangle’s vertex elements after performing the

Exclusive-OR operations.

Figure 2.12: Exclusive-OR operation between upper triangle’s vertex

elements with right triangle’s vertex elements

Step 3. Perform Exclusive-OR operation between triangle centered key and

vertex elements of big triangle. Figure 2.13 shows the orange colored

vertex elements after performing the Exclusive-OR operations.

Figure 2.13: Exclusive-OR operation between triangle’s centered key

and vertex elements of big triangle

 Arindam Sarkar, University of Kalyani, India 69

Step 4. Perform Exclusive-OR operation between key and vertex elements of

each triangle. Figure 2.14 shows the blue colored vertex elements

after performing the Exclusive-OR operations.

Figure 2.14: Exclusive-OR operation between key and vertex elements

of each triangle

2.3 Implementation

To perform Fractal triangle based encryption first considers the KSOFM synchronized

session key. If the Fractal dimension is three then first four bits form synchronized session

key form the encryption/decryption key. For example from the KSOFM synchronized 128

bits, the following session key is generated

1001/1110/1000/1110/0111/0100/0101/0111/1110/0101/01010101/10100011/11011010/

10100011/11010100/10111101/01001101/01101111/10100010/11000011/11101010

Here “/” is used as the separator between successive bytes.

Now, consider the plaintext to be encrypted is “Technique”, binary representation of the

ASCII value of plaintext is

01010100/01100101/01100011/01101000/01101110/01101001/01110001/01110101/

01100101

First four bits of KSOFM synchronized session key i.e. 1001 becomes the key for Fractal

triangle encryption of first nine bits of the plaintext i.e. 010101000. For the rest of the

plaintext each time nine bits are taken and the next four bits of the synchronized session key

becomes the Fractal triangle encrypted key for the particular block. This process will

continue until plaintext gets exhausted. The process is given in table 2.6 to table 2.13.

 Arindam Sarkar, University of Kalyani, India 70

Table 2.6 illustrates the encryption of plaintext block 010101000 using key 1001. After

step-4 the encrypted text is 110001000.

 Table: 2.6

Fractal triangle encryption of 010101000
Plaintext block : 010101000 Key: 1001

Initial Fractal Triangle Value 010101000

After step 1 010101111

After step 2 110111110

After step 3 110111000

After step 4 (Encrypted text) 110001000

Table 2.7 illustrates the encryption of plaintext block 110010101 using key 1110. After

step-4 the encrypted text is 101010001.

Table: 2.7

Fractal triangle encryption of 110010101
Plaintext block: 110010101 Key: 1110

Initial Fractal Triangle Value 110010101

After step 1 001101101

After step 2 101111100

After step 3 101111001

After step 4 (Encrypted text) 101010001

Table 2.8 illustrates the encryption of plaintext block 100011011 using key 1000. After step-

4 the encrypted text is 000001010.

Table: 2.8

Fractal triangle encryption of 100011011

Plaintext block: 100011011 Key: 1000

Initial Fractal Triangle Value 100011011

After step 1 100011011

After step 2 000001010

After step 3 000001010

After step 4 (Encrypted text) 000001010

Table 2.9 illustrates the encryption of plaintext block 010000110 using key 1110. After

step-4 the encrypted text is 001100110.

Table: 2.9

Fractal triangle encryption of 010000110

Plaintext block: 010000110 Key: 1110

Initial Fractal Triangle Value 010000110

After step 1 101111110

After step 2 001101111

After step 3 001101110

After step 4 (Encrypted text) 001100110

 Arindam Sarkar, University of Kalyani, India 71

Table 2.10 illustrates the encryption of plaintext block 111001101using key 0111. After

step-4 the encrypted text is 000110010.

Table: 2.10

Fractal triangle encryption of 111001101

Plaintext block: 111001101 Key: 0111

Initial Fractal Triangle Value 111001101

After step 1 000110010

After step 2 000110010

After step 3 000110010

After step 4 (Encrypted text) 000110010

Table 2.11 illustrates the encryption of plaintext block 001011100 using key 0100. After

step-4 the encrypted text is 110101010.

Table: 2.11

Fractal triangle encryption of 001011100

Plaintext block: 001011100 Key: 0100

Initial Fractal Triangle Value 001011100

After step 1 110011100

After step 2 110011100

After step 3 110011010

After step 4 (Encrypted text) 110101010

Table 2.12 illustrates the encryption of plaintext block 010111010 using key 0101. After

step-4 the encrypted text is 101010000.

Table: 2.12

Fractal triangle encryption of 010111010

Plaintext block: 010111010 Key: 0101

Initial Fractal Triangle Value 010111010

After step 1 101111101

After step 2 101111101

After step 3 101111000

After step 4 (Encrypted text) 101010000

Table 2.13 illustrates the encryption of plaintext block 101100101using key 1110. After step-

4 the encrypted text is 110111010.

Table: 2.13

Fractal triangle encryption of 101100101

Plaintext block: 101100101 Key: 1110

Initial Fractal Triangle Value 101100101

After step 1 010011101

After step 2 110001100

After step 3 110001010

After step 4 (Encrypted text) 110111010

 Arindam Sarkar, University of Kalyani, India 72

Now, Fractal triangle based encrypted text is

11000100/01010100/01000001/01000110/01100001/10010110/10101010/10100001/

10111010

On performing the Exclusive-OR between KSOFM synchronized session key and Fractal

triangle encrypted text, final cipher text is generated as follows

01011010/11011010/00110101/00010001/10000100/11000011/00001001/01111011/

00011001.

2.4 Security Analysis

In this chapter a Kohonen's Self-Organizing Map Synchronized Cryptographic Technique

(KSOMSCT) has been proposed. The technique generates the synchronized session key by

tuning KSOFM of both sender and receiver. Plaintext gets encrypted using Fractal triangle

based encryption. Outcomes of this process and final tuned session key get Exclusive-OR to

produce the final cipher text and same is transmitted to the sender. The Following standard

attacks are considered to ensure the robustness of the technique.

 Cipher text only Attack: In this type of attack, the attacker has access to a set of cipher

text. In cipher text only attack, encryption algorithm and cipher text is known to an

attacker. An attacker tries to break the algorithm or in simple words tries to deduce the

decryption key or plaintext by observing the cipher text. The KSOMSCT nullifies the

success rate of this attack by producing a robust KSOFM and Fractal triangle based

encrypted cipher text. The strength of resisting exhaustive key search attack relies on a

large key space. Initially, Fractal triangle based encryption used to encrypt the plaintext

after that outcome of this passes through KSOFM session key based encryption process.

So, cipher text produces by the technique is mathematically difficult to break. Thus a

hacker has to try all such key streams to find an appropriate one. Keystream have high

degrees of correlation immunity. Thus it is practically difficult to perform a brute-force

search in a key-space.

 Arindam Sarkar, University of Kalyani, India 73

 Known Plaintext Attack: The attacker has access to one or more cipher text and some

characters in the original data. The objective is to find the secret key. The technique

offers better floating frequency of characters. So, known plaintext attack is very difficult

in this proposed technique.

 Chosen Plaintext Attack: Here, the attacker has liberty to choose a plaintext of his/her

choice and get the corresponding cipher text. Since the attacker can choose plaintext of

his/her choice, this attack is more powerful. Again the objective of this attack is to find

the secret key. This attack is impractical for KSOMSCT because there is no obvious

relationship between the individual bits of the sequence in plaintext and cipher text. So, it

is not possible to choose a plaintext of his/her choice and get the corresponding cipher

text.

 Chosen Cipher text Only Attack: The attacker can choose cipher text and get the

corresponding plaintext. By selecting some cipher text a cryptanalyst has access to

corresponding decrypted plaintext. Chosen cipher text only attack is more applicable to

public key cryptosystems. The technique has a good Chi-Square value this confirms good

degree of non-homogeneity. So, it will be difficult to regenerate plaintext from the cipher

text.

 Brute Force Attack: A cryptanalyst tries all possible keys in finite key space one by one

and check the corresponding plaintext, if meaningful. The basic objective of a brute force

attack is to try all possible combinations of the secret key to recover the plaintext image

and or the secret key. On an average, half of all possible keys must be tried to achieve

success but brute force attack involves large computation and has a very high complexity.

Due to high complexity brute force attack will not be feasible. The technique has a good

entropy value near to eight which indicates that brute force attack is very difficult in the

proposed technique.

 Arindam Sarkar, University of Kalyani, India 74

2.5 Discussions

The technique is very simple and easy to implement in various high level language. The test

results show that the performance and security provided by the technique is good and

comparable to standard technique. The security provided by the KSOMSCT is comparable

with other techniques. To enhance the security of the technique, proposed technique offers

changes of some parameters randomly in each session. To generate the secret session key

index mask is exchanged between sender and receiver. This technique has a unique ability to

construct the secret key at both sides using this exchanged information. Since the encryption

and decryption times are much lower, so processing speed is very high. Proposed method

takes minimum amount of resources which is greatly handle the resource constraints criteria

of wireless communication. This method generates a large number of keys which is the same

number of neurons in the map. For ensuring the randomness in every session, some of the

parameters get change randomly at each session. KSOMSCT outperform than existing TPM,

PPM and does not suffers from Brute Force or Man-In-The-Middle (MITM) attack. No

platform specific optimizations were done in the actual implementation, thus performance

should be similar over varied implementation platform. The whole procedure is randomized,

thus resulting in a unique process for a unique session, which makes it harder for a

cryptanalyst to find a base to start with. The technique is applicable to ensure security in

message transmission in any form and in any size in wireless communication.

 Some of the salient features of KSOMSCT are summarized as follows:

a) Session key generation and exchange – Identical session key can be generate after the

tuning of KSOFM in both sender and receiver side. So, no need to transfer the whole

session key via vulnerable public channel.

b) Degree of security – The technique does not suffers from cipher text only attack,

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute

force attack.

c) Variable block size – Encryption algorithm can work with any block length and thus

not require padding, which result identical size of files both in original and encrypted

file. So, KSOMSCT has no space overhead.

 Arindam Sarkar, University of Kalyani, India 75

d) Variable key – 128/192/256 bit session key with high key space can be used in

different sessions. Since the session key is used only once for each transmission, so

there is a minimum time stamp which expires automatically at the end of each

transmission of information. Thus the cryptanalyst may not be able guess the session

key for that particular session.

e) Complexity – The technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh

through wireless communication. So, the KSOMSCT may be suitable in wireless

communication.

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value

have been performed between the source and corresponding cipher streams

generated using KSOMSCT. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good.

g) Floating frequency – In the technique it is observed that floating frequencies of

encrypted characters are indicates the high degree of security for the technique.

a) Entropy – The entropy of encrypted characters is near to eight which indicate the

high degree of security for the proposed technique.

h) Correlation – The cipher stream generated through proposed technique is negligibly

correlated with the source stream. Therefore the proposed technique may effectively

resist data correlation statistical attack.

i) Key sensitivity – The technique generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

j) Security and performance trade-off – The technique may be ideal for trade-off

between security and performance of light weight devices having very low processing

capabilities or limited computing power in wireless communication.

Chapter 3

Double Hidden Layer Perceptron Synchronized

Cryptographic Technique

 (DHLPSCT)

 Arindam Sarkar, University of Kalyani, India 78

3.1 Introduction

In this chapter a novel soft computing assisted cryptographic technique DHLPSCT, based on

synchronization of two Double Hidden Layer Perceptron (DHLP)
[200]

, one at sender and

another at receiver has been proposed. The KSOMSCT technique proposed in chapter 2 have

some drawbacks like sender and receiver both have to be agreed on several predefined

parameters which get send via public channel. So, there is an overhead of parameters passing

and an associated risk in terms of security. Also initially large numbers of neurons need to

form the KSOFM for which significant amount of memory as well as large amount of

training cycles is required to train all the neurons in the map. Furthermore, there is no well

defined terminating criteria to terminate the training of KSOFM. The existing Tree Parity

Machine (TPM) and Permutation Parity Machine (PPM) are also not the best alternative

solution which has already analysed in chapter 2. DHLPSCT eliminates all the above

mentioned drawbacks of the KSOMSCT in chapter 2, existing TPM and PPM. The technique

need less number of synchronization steps than earlier techniques. It also greatly handles the

resource constraints criteria of wireless communication and passes fewer parameters than the

earlier techniques which in turn significantly reduces the risk and hence increases the

security.

Here, DHLP based synchronization is performed for tuning both sender and receiver. On

the completion of the tuning phase identical session keys are generated at the both end with

the help of synchronized DHLP. This synchronized network can be used for transmitting

message using any light weight encryption/decryption technique with the help of session key

of the synchronized network. To illustrate the cryptographic technique using DHLP in

wireless communication one of the simple and secure encryption/decryption technique has

been presented. A plaintext is considered as a stream of binary bits. Genetic operation based

Simulated Annealing (SA) guided enciphering technique
[201]

 with the help of DHLP tuned

session key is used to generate the cipher text. The plaintext is regenerated from the cipher

text using same technique with the help of DHLP tuned session key at the receiver.

Section 3.2 represents a description of proposed technique in detail. Section 3.3 deals

with the implementation of the proposed cryptographic technique. Section 3.4 discussed the

security issues related to the proposed technique. Discussions are presented in section 3.5.

 Arindam Sarkar, University of Kalyani, India 79

3.2 The Technique

The technique performs DHLP based synchronization for generation of secret session key at

both ends. This synchronized session key of the tuned network is used for the transmission of

secured message through wireless network with the help of any light weight

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless

communication one of the simple and secure encryption/decryption technique has been

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is

encrypted using genetic operation based SA generated fittest encryption/decryption

keystream. The session key based on DHLP is used to encrypt intermediate output which

produces final cipher text. Identical DHLP is used to tune the sender and receiver to generate

the secret session key at both ends. Two DHLPs at sender and receiver start with common

input vector and completely anonymous random weight vector. In each time DHLPs at both

end compute their final output based on input and weight vector, and communicate to each

other. If both are be in agreement on the mapping between the present input and the output,

their weights are updated according to an appropriate learning rule. In case of discrete weight

values this process leads to full synchronization in a finite number of steps. After

synchronization weight vector of both DHLPs become identical. This indistinguishable

weight vector forms the session key.

Genetic operation based Simulated Annealing guided encryption/decryption process

generates the initial population of individuals randomly (i.e. keystream) having population

size of 200 individuals. Each individual that represents the candidate keystream is strings of

characters ‘𝑎’ … ’𝑝’. The letters ‘𝑎’ … ’𝑝’ represent the numbers 0. . .15. Thus, each letter is a

sequence of four bits. Fitness values of each keystream in the population are calculated

depending on the randomness of the generated keystream, keystream period length and

keystream length. Genetic operation based SA guided keystream generation algorithm set the

initial temperature to 250 and select a value up to which the algorithm will iterate i.e. the

maximum number of generation depend on the resource available at the time of wireless

communication. Each generation the process checks whether the current generation number

is less or equal to the maximum number of generations, if so, then the operations is repeated.

At first the single point crossover is perform in the mating pool with a crossover probability

of 0.6 to 0.9 on the keystrem having higher fitness. Then the mutation operation is performed

 Arindam Sarkar, University of Kalyani, India 80

with comparatively lower mutation probabilities i.e. . 001 to . 01 to produce new generation

having some genetic diversity. Fitness calculation is done again for this newly generated

keystream and then checks whether the fitness value of new generation is better than the

fitness value of old generation, if so, then the process set the new population as the current

population. Otherwise, it computes 𝑒 as the differences between fitness value of old

generation and fitness of new generation after that 𝑃𝑟 = 𝑒/𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is computed. Now,

if 𝑒𝑥𝑝(−𝑝𝑟) is grater than an arbitrary random number, then process set current population

as an new population, otherwise temperature is updated by multiplying the temperature with

an 𝛼 vale (in this experiment 𝛼 = 0.95). These steps is repeated in several generations until

the best fittest keystream is obtained or maximum number of generation is reached

whichever is earlier. If the length of the plaintext to be encrypted is grater then the length of

generated keystream then triangle edge based key expansion method is used to extend the

length of the keystream. Stream of plaintext is encrypted using the SA based

keystream/extended keystream. Finally a cascaded Exclusive-OR operation is performed

between SA encrypted text and the DHLP based session key to generate final cipher text.

Receiver has same DHLP generated synchronized session key as a result of tuning. This

session key is used to perform first step of the deciphering. In the next step, SA guided

keystream based deciphering operation is performed to regenerate the plaintext.

The DHLPSCT does not cause any storage overhead. This greatly handles the resource

constraints criteria of wireless communication. A comparison of DHLPSCT with previously

proposed technique in chapter 2, existing Tree Parity Machine (TPM), Permutation Parity

Machine (PPM), and industry accepted AES, RC4, Vernam Cipher, Triple DES (TDES) and

RSA have been done. Analyses of results are given in chapter 7.

In DHLPSCT, encryption process takes the plaintext as a binary stream of bits which is

encrypted using genetic operation based SA generated fittest keystream. SA encoded text is

encrypt further through Exclusive-OR operation with the session key. The algorithm for the

complete process is given in section 3.2.1.

 Arindam Sarkar, University of Kalyani, India 81

3.2.1 DHLPSCT Algorithm at Sender

 Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

DHLP guided Simulated Annealing (SA) based encryption technique.

Step 1. Perform tuning of sender’s and receiver’s DHLP to generate common

secret session key.

Step 2. Generates SA based fittest encryption keystream.

Step 3. Perform SA based encryption operation on the plaintext.

Step 4. Perform cascaded Exclusive-OR operation between DHLP based

session key and outcomes of step 3.

Step 1 of the algorithm generate common session key through synchronization of DHLP at

both end. The detailed step is discussed in section 3.2.1.1. Step 2 of the algorithm generates

SA based fittest encryption keystream. The detailed description of the process is given in

section 3.2.1.2. Algorithm for performing SA based encryption operation (step 3) on the

plaintext is discussed in 3.2.1.3. The technique of cascading encryption process (step 4)

which takes the intermediate output generated in step 3 is given in details in section 3.2.1.4.

3.2.1.1 Double Hidden Layer Perceptron (DHLP) based Synchronization and Session Key

Generation

It is seen that Artificial Neural Networks can synchronize. These mathematical models have

been developed to study and simulate the activities of biological neurons at the beginning.

But with a very short span of time it was discovered that complex problems in computer

science can be solved by using Artificial Neural Networks. Neural synchronization is used to

construct a cryptographic key-exchange protocol. Here, the partners are benefitted from

mutual interactions, so that a passive attacker is usually prevented. If the synaptic depth (𝐿) is

increased, the complexity of a successful attack grows exponentially, but there is only a

polynomial increase of the effort needed to generate a key. Using the basic concept of neural

synchronization, this chapter offers a novel session key generation technique using DHLP

(Double Hidden Layer Perceptron) for transmitting the cipher text session wise using unique

 Arindam Sarkar, University of Kalyani, India 82

session key. Here, both sender and receiver use an identical DHLP. DHLPs at both end start

with identical input vector and anonymous random weight vector. In each time both DHLPs

compute their output based on inputs and weight vector, and communicate to each other. If

both are in agreement, their weights are updated through appropriate learning rules. In case

of discrete weight values this process leads to full synchronization in a finite number of steps.

On synchronization weight vector of both DHLPs become identical. From this

indistinguishable weight vector session key for a particular session is formed. So, as a

substitute of transferring the whole session key through public channel DHLP based

synchronization process is carried out and outcomes of this is used as a secret session key for

that entire session. In DHLP following salient features may be obtained to improve the

security of the communication.

 DHLP offers two hidden layers instead of single hidden layer in TPM

 Instead of increasing number of hidden neurons in a single hidden layer, DHLP

introduces an additional layer (second hidden layer) which actually increased the

structural complexity of the network that in turn helps to make the attacker’s life

difficult to guessing the internal representation of DHLP

 Weight vector consisting of discrete values are used for faster synchronization

 𝑆𝑌𝑁, 𝐴𝐶𝐾_𝑆𝑌𝑁, 𝑁𝐴𝐾_𝑆𝑌𝑁, 𝐹𝐼𝑁 frames are used to perform connection

establishment and synchronization procedure

 Three different learning rules are used based on the network size for faster

synchronization

 The process generates variable length bits length session key where key space is

higher

 DHLP enhance the security by increasing the range of the values of weight vector

(𝐿)

The figure 3.1 shows a perceptron with two hidden layers. Here 𝐾1 = 4 and 𝐾2 = 2. So, the

first hidden layer 𝐾1 has four hidden neurons. The second hidden layer 𝐾2 has two hidden

neurons. The total number of inputs neurons are 𝑁 × 𝐾1, where 𝑁 is the number of inputs to

each hidden neuron in layer 1.

 Arindam Sarkar, University of Kalyani, India 83

Figure 3.1: A DHLP with two hidden layers

A TPM usually consist of 𝐾 hidden neurons, 𝑁 × 𝐾 no. of input neurons having binary input

vector, 𝑥𝑖𝑗 ∈ {−1, +1}, discrete weights are generated from input to output, are lies

between −𝐿 and +𝐿, 𝑤𝑖𝑗 ∈ {−𝐿, −𝐿 + 1, … , +𝐿}.Where 𝑖 = 1, … , 𝐾 denotes the 𝑖th
 hidden

unit of the TPM and 𝑗 = 1, … , 𝑁 the elements of the vector and one output neuron. So, there

are 2𝐾−1 different internal representations (𝜎1, 𝜎2, . . . , 𝜎K), which lead to the same output

value 𝜏. In DHLP, the parameter 𝐾 is divided into 𝐾1 and 𝐾2. 𝐾1 numbers of hidden

neurons resides in the hidden layer adjacent to the input layer, that of 𝐾2 represents number

of hidden neurons adjacent to the output layer. Now for each 𝐾1 hidden neurons there are 𝑁

inputs possible. Hence, the input layer has 𝑁 × 𝐾1 input neurons. The size of the DHLP is

represented by 𝑁 × 𝐾1 × 𝐾2 .

Total number of weights generated by the DHLP is (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Decimal value

of each weight is represented in eight bit binary. So, total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8)

number of bits are present in a weight (length of a session key). If 𝑁 = 1, 𝐾1 = 8, 𝐾2 = 1

 𝜎1
2 𝜎𝐾2

2

 𝜎1
1 𝜎2

1 𝜎3
1 𝜎𝐾1

1

 W1,1 W1,2W1,N W2,1W2,2W2,N W3,1W3,2W3,N WK1,1 WK1,2WK1,N

 X1,1 X1,2 X1,N X2,1 X2,2 X2,N X3,1 X3,2 X3,N XK1,1 XK1,2 XK1,N

Hidden Layer 1

With 𝐾1 neurons

Input Layer with

N× 𝐾1 neurons

Hidden Layer 2
Hidden Layer 2

With 𝐾2 neurons

…

𝜏

∑

∑

∑

𝜋

∑

∑

∑

…

 Arindam Sarkar, University of Kalyani, India 84

then 1 × 8 + 8 × 1 × 8 = 128 bits weight value may constitute the session key.

Consider the synaptic depth i.e. weight limits 𝐿 = ±127. So, eight binary bits are needed to

represents each weight, where the MSB represents the sign bit and rest of the seven bits

represents the magnitude of the weight. The figure 3.2 shows the single path form input

neuron to the output neuron.

Figure 3.2: Snapshot of a single path of DHLP

Two DHLPs start with identical input vectors generated by sender’s and receiver’s identical

secret seed value and completely different random weight vectors. DHLPs compute their

final output based on input and weight vector, and communicate to each other. If both are in

agreement, their weights are updated using appropriate learning rules. Within finite number

of steps both DHLPs get synchronized and as a results weight vector of both DHLPs become

identical. These indistinguishable weight vectors forms the session key for a particular

session.

In DHLPSCT both DHLPs start synchronization by exchanging control frames. The

process involves message integrity and synchronization test. DHLP synchronization uses

transmission of control frames at the time of three way handshaking based TCP connection

establishment phase, as given in table 3.1.

𝑋2,𝑁

σ2
1

σ1
2

𝑊2,𝑁

 ∑

 ∏

 ∑

 Arindam Sarkar, University of Kalyani, India 85

Table 3.1

Control frames of DHLP synchonization
Frame Description

𝑆𝑌𝑁
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment

phase

𝐴𝐶𝐾_𝑆𝑌𝑁
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁

frame

𝑁𝐴𝐾_𝑆𝑌𝑁
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁

frame

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a

timer and waits for a reply from the receiver. If the receiver does not take any action until a

certain time limit and number of attempts exceeded a certain value, the sender restarts the

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, it should carry out the

integrity test. If the messages are received as sent (with no replication, incorporation,

alteration, reordering, or replay) the receiver will execute the synchronization check. The

sender and receiver have an identical 𝑇 variable formally store in their respective memory.

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256

bits weights to decrypt the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the

networks are synchronized. This is the best case solution where sender and receiver

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial

stage. The receiver should send the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to alert the sender. But most of the time

this best case is may not achievable. If decryption algorithm does not produce predictable

result, the receiver should use the secret seed value of sender’s to produce the input

vector(𝑋) which is identical to sender. With this input vector the receiver will work out its

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑆𝑒𝑛𝑑𝑒𝑟). If the outputs at both ends are different, the receiver should not fine-tune

its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 frame to

notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this technique is

used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁 frame. If receiver’s

output is equal to sender’s output i.e. (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then receiver update it weights.

 Arindam Sarkar, University of Kalyani, India 86

At the end of updates, the receiver should report the sender that outputs are equal. The

receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same 𝐼𝐷 value received from

sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this technique is used for providing the positive

acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the sender also

updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. The sender will

create new synchronization frame until receive the frame 𝐹𝐼𝑁_𝐴𝐶𝐾 from receiver. When the

sender receives the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame, it stops the further synchronization. The proposed

𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this technique is used for closing the connection. At end of

synchronization, both networks provide the identical weight vector which acts as a session

key identical to both end. Table 3.2 shows the different frames and their corresponding

command codes.

Table 3.2

DHLP control frames and their command codes
Frame Command

𝑆𝑌𝑁 0000

𝐹𝐼𝑁_𝑆𝑌𝑁 0001

𝐴𝐶𝐾_𝑆𝑌𝑁 0010

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011

𝐴𝑈𝑇𝐻 0100

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111

The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the

sender sends a synchronization frame. The figure 3.3 shows the exchange of frames during

DHLP synchronization process.

 Arindam Sarkar, University of Kalyani, India 87

Figure 3.3: Exchange of control frames between sender and receiver during DHLP

synchronization

The detailed frame format of 𝑆𝑌𝑁 frame is discussed in section 3.2.1.1.1. The detailed frame

format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 3.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁

frame has been discussed in section 3.2.1.1.3. The frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is

discussed in section 3.2.1.1.4.

3.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in

connection establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶 needs eight bits,

𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟

 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇))

𝐴𝐶𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝑁𝐴𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝐹𝐼𝑁_𝑆𝑌𝑁

Sender’s DHLP Receiver’s DHLP

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

 Arindam Sarkar, University of Kalyani, India 88

128 bits, one bits, 128 bits, sixteen bits respectively. When the receiver receive 𝑆𝑌𝑁 frame,

the receiver should carry out integrity test. Receiver performs integrity test on receiving the

𝑆𝑌𝑁 frame. If the messages are received as sent (with no replication, incorporation,

alteration, reordering, or replay) the receiver will execute the synchronization test. In

synchronization test receiver utilize its 128 first weights as key for decryption of

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from the sender. After decryption operation if

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

Figure 3.4 shows the complete frame format of 𝑆𝑌𝑁 frame.

 4 8 128 1 128 16 (𝑏𝑖𝑡𝑠)

Figure 3.4: Synchronization (𝑆𝑌𝑁) frame

3.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive

acknowledgement of the parameters value. The proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶

needs sixteen bits for error checking purpose. Now check the condition i.e. If

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑

received from sender to produce the receiver input vector (𝑋) identical to sender input vector

(𝑋) and calculates the output 𝜏 𝑅𝑒𝑐𝑒 𝑖𝑣𝑒𝑟 . If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then receiver should

update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using learning rule. At end of

weight updation of the receiver, it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the sender

for updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. Figure

3.5 shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑
 𝐶𝑜𝑑𝑒
0000

𝑆𝑌𝑁 𝐼𝐷
𝑆𝑒𝑐𝑟𝑒𝑡

 𝑆𝑒𝑒𝑑
𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦
𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 89

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 3.5: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame

3.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative

acknowledgement of the parameters value. The proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then the

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver’s and sender’s

outputs are different, the receiver should not fine-tune its weights and inform the sender. The

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure

3.6 shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 3.6: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame

3.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four

bits. The 𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose.

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0010

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0011

𝑆𝑌𝑁_𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 90

Receiver sends the FIN_SYN frame to the sender. Figure 3.7 shows the complete frame

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 3.7: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame

 The DHLP synchronization algorithm for generating synchronized session key is discussed

in section 3.2.1.1.5. Section 3.2.1.1.6 presents the complexity analysis of the DHLP

synchronization algorithm and DHLP learning is discussed in section 3.2.1.1.7.

3.2.1.1.5 DHLP Synchronization

Input : Random weights and identical input vector(𝑋) for both DHLPs

Output : Sender’s and receiver’s synchronized DHLP along with synchronized session key

Method : Sender’s and receiver’s DHLPs both are be in agreement on the mapping

between the present input and the output, their weights are updated according to

an appropriate learning rule. After synchronization procedure weight vector of

both DHLPs become identical. These indistinguishable weight vector forms the

session key for a particular session.

Step 1. Initialization of synaptic links (weight values) between input layer and

first hidden layer also between first hidden layer and second hidden

layer using random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .

 Repeat step 2 to step 11 until the full synchronization is achieved.

Step 2. The input vector(𝑋) are generated by the sender using 128 bit secret

seed value.

Step 3. Computes the values of hidden neurons by the weighted sum over the

current input values. Each hidden neuron in first hidden layer

produces 𝜎1
i values and each hidden neuron in second hidden layer

produces 𝜎2
p values.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0001

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 91

 These can be represented using equation 3.1 and 3.2

 𝜎1
i = 𝑠𝑔𝑛 𝐾1

𝑖=1 𝑁
𝑗=1 𝑊𝑖 ,𝑗 𝑋𝑖,𝑗 (3.1)

 𝜎2
p = 𝑠𝑔𝑛 𝐾2

𝑝=1 𝑊𝑝 ,𝑖
𝐾1
𝑖=1 𝜎𝑖

1 (3.2)

 𝑠𝑔𝑛(𝑥) is a function shown in equation 3.3, which returns −1, 0 𝑜𝑟 1:

 𝑠𝑔𝑛(𝑥) =

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 (3.3)

 If the weighted sum over its inputs is negative then set 𝜎𝑖 = −1.

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0.

Step 4. Compute the value of the final output neuron by computing

multiplication of all values produced by 𝐾2 number of hidden neurons

using the equation 3.4.

 𝜏 = 𝜎𝑝
2𝐾2

𝑝=1 (3.4)

Step 5. Sender utilizes its 128 initial weights as key for encryption of 𝑇

variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Step 6. Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually

comprises of several fields like 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑,

Sender output 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶 (Cyclic

Redundancy Checker).

Step 7. Receiver performs integrity test after receiving the 𝑆𝑌𝑁 frame and

then receiver utilize its 128 weights as key for decryption of

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from the sender.

Step 8. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then

networks are synchronized. Go to step 12.

Step 9. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇then

receiver use the secret seed received from sender to produce the

 Arindam Sarkar, University of Kalyani, India 92

receiver input vector(𝑋) identical to sender input vector (𝑋) and

calculates the output 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using step 3 and step 4.

Step 10. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then performs the following steps

Step 10.1 Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟
 using any of the learning rules discussed

in chapter 1 section 1.8.

Step 10.2 At end of receiver’s weights updation, the receiver sends

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights

using step 10.1.

Step 10.3 Sender transmits

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 to receiver.

Step 10.4 Receiver checks

if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇

 then networks are synchronized. Go to step 12.

Step 10.5 Perform the following checking

if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇

 then networks are still not synchronized. Go to step 10.1.

Step 11. If 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 then the receiver sends the message

𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. Go to step2.

Step 12. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to

finish the synchronization phase.

3.2.1.1.6 Complexity Analysis

In DHLP synchronization and session key generation technique initialization of weight

vector takes (𝑁 × 𝐾1 + 𝐾1 × 𝐾2) amount of computations. For example, if 𝑁 = 2, 𝐾1 = 4,

𝐾2 = 2 then total numbers of synaptic links (weights) are (2 × 4 + 4 × 2) = 16. So, it takes

sixteen amount of computations. Computation of the hidden neuron outputs takes 𝐾1 + 𝐾2

computations. Where 𝐾1 and 𝐾2 are the number of hidden units in first and second layer

respectively. Generation of 𝑁 number of input vector for each 𝐾1 number of hidden neurons

takes (𝑁 × 𝐾1) amount of computations. Computation of final output value takes unit

 Arindam Sarkar, University of Kalyani, India 93

amount of computation because it needs only a single operation to compute the value.

Encryption of 𝑇 variable using Exclusive-OR operation takes unit amount of computations.

Decryption of 𝑇 variable using Exclusive-OR operation also takes unit amount of

computation. Check if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 __𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 or not, takes

unit amount of computations. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 __𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇

then step 3 and 4 iterated again with its respective time complexity. Weight updating

procedure takes place where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning

rules which takes (𝑛𝑜. 𝑜𝑓

𝜎𝑘

𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟
= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟) amount of computations.

In best case, sender’s and receiver’s arbitrarily chosen weight vectors are identical. So,

networks are synchronized at initial stage do not needs to update the weight using learning

rule. Here, 𝑁 × 𝐾1 + 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾1 + 𝐾2 amount of computation is

needed. So, in the best case the computation complexity can be expressed is in form of

O(initialization of input vector + initialization of weight vector + Computation of the hidden

 neuron outputs).

If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in

each iteration the weight vectors of the hidden unit which has a value equivalent to the

pereceptron output are updated according to the learning rule. This scenario leads to average

and worst case situation where 𝐼 number of iteration to be performed to generate the identical

weight vectors at both ends. So, the total computation for the average and worst case is

 𝑁 × 𝐾1 + 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾1 + 𝐾2 +

 𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟) which is can be expressed as follws

O Time complexity in first iteration+(No. of iteration × No. of weight updation) .

3.2.1.1.7 DHLP Learning Mechanism

If the output bits are different for sender (A) and receiver (B) i.e.𝜏𝐴 ≠ 𝜏𝐵 , nothing is done.

If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated using

any of the learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes

less synchronization steps than other two learning rules in the range of 2 − 4 − 2 − 5

(𝑁 − 𝐾1 − 𝐾2 − 𝐿) to 2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian rule takes more

 Arindam Sarkar, University of Kalyani, India 94

steps to synchronize than other two learning rules. Here, Anti-Hebbian rules takes less time

than the other two learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 − 2 − 30. Random

Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital findings is that if the

synaptic depth i.e. weight range (𝐿) is increased, the complexity of a successful attack grows

exponentially, but there is only a polynomial increase of the effort needed to generate a key.

So, increasing the 𝐿 value security of the system can be increased.

3.2.1.2 Genetic Function based Simulated Annealing (SA) guided Fittest Keystream

Generation

In the DHLPSCT a genetic function based Simulated Annealing (SA) guided approach is

used to construct the keystream for encryption/decryption. Instead of this technique any other

light weight encryption/decryption technique also used for exchanging message between

sender and receiver with the help of DHLP synchronized network.

 SA is a randomization technique for solving optimization problems. It is a technique to

generate appropriate solutions to a large diversity of combinatorial optimization problems.

SA is a good technique for finding near global optimal solutions for complex problems.

Generating encryption/decryption keystream of good properties with very minimal resource

requirements in wireless communication is always a complex problem. The keystream

generators proposed can assist to solve the problem of getting stuck in local optima and to

escort towards the global optimal solution.

The keystream (individual) in SA based technique are comprises of character sequence.

Here, ‘𝑎’ … 𝑝’ represents the number 0 … 15. For representing 128 bit long SA based

keystream 32 characters are chosen randomly among ‘𝑎’ … 𝑝’ characters, where each

character represent a four bits binary number. So, one particular character may appear more

than once in the sequence. Table 3.3 represents the different characters along with its decimal

and binary representation.

 Arindam Sarkar, University of Kalyani, India 95

Table 3.3

Character table of SA
Character Decimal Value Binary Value

𝑎 0 0000

𝑏 1 0001

𝑐 2 0010

𝑑 3 0011

𝑒 4 0100

𝑓 5 0101

𝑔 6 0110

 7 0111

𝑖 8 1000

𝑗 9 1001

𝑘 10 1010

𝑙 11 1011

𝑚 12 1100

𝑛 13 1101

𝑜 14 1110

𝑝 15 1111

Each individual which represents candidate keystream is strings of characters and are

represented using binary sequence. These rules should be preserved during the generation of

the initial population. The keystream is represented using character sequence ‘𝑎’ … ’𝑝’. These

letters represent the numbers 0. . .15. Thus, each letter is a sequence of four bits. The

following are examples of the chromosomes having 32 characters i.e. 128 bits:

 Chromosome 1: 𝑚𝑒𝑙𝑎𝑝𝑒𝑘𝑎𝑏𝑟𝑑𝑜𝑗𝑒𝑛𝑝𝑔𝑑𝑗𝑙𝑛𝑐𝑚𝑎𝑜𝑓𝑗𝑙𝑛𝑐

 Chromosome 2: 𝑎𝑗𝑐𝑘𝑒𝑝𝑒𝑔𝑛𝑏𝑚𝑑𝑎𝑜𝑓𝑒𝑔𝑜𝑙𝑝𝑙𝑎𝑐𝑓𝑏𝑒𝑝𝑓𝑗

 Chromosome 3: 𝑐𝑝𝑑𝑚𝑗𝑎𝑙𝑜𝑏𝑔𝑒𝑗𝑎𝑓𝑛𝑏𝑙𝑖𝑐𝑝𝑑𝑎𝑚𝑙𝑖𝑒𝑗𝑐𝑙𝑒

 Chromosome 4: 𝑗𝑙𝑎𝑘𝑓𝑑𝑝𝑛𝑜𝑎𝑑𝑓𝑙𝑎𝑏𝑝𝑚𝑓𝑛𝑚𝑎𝑛𝑙𝑜𝑘𝑔𝑎𝑗𝑏

The fitness value is a measurement of the goodness of the keystream (individual), and it is

used to control the application of the operations that modify a population. There are a number

of metrics used to analyze keystream, which are keystream randomness, linear complexity

and correlation immunity. Therefore, these metrics should be taken in account in designing

 Arindam Sarkar, University of Kalyani, India 96

keystream (individual), and they are in general hard to be achieved. Three factors are

considered in the fitness evaluation of the keystream (individual). These are:

a. Randomness of the generated keystream (individual)

b. Keystream (individual) period length

c. Keystream (individual) length

a. Randomness of the generated keystream (individual) - The purpose of evaluation of

randomness is to determine whether that number of ones and zeros in a sequence are

approximately the same as would be expected for a truly random sequence. The test

assesses the closeness of the fraction of ones to ½, that is, the number of ones and zeroes

in a sequence should be about the same. The equation 3.5 is used for the evaluation of

keystream randomness using the frequency and serial tests, in which, 𝑛𝑤 is the frequency

of 𝑤 in the generated binary sequence.

 𝑓1 = 𝑛0 − 𝑛1 + 𝑛00 −
𝑆𝑍

4
 + 𝑛01 −

𝑆𝑍

4
 + 𝑛10 −

𝑆𝑍

4
 + 𝑛11 −

𝑆𝑍

4
 (3.5)

Fitness 𝑓1 calculates the frequency of the bits. This function is derived from the fact that

in the random sequence, Probability (no) = Probability (n1) which checks frequency of

0 and 1 in a binary string and Probability (n01) = Probability (n11) = Probability (n10) =

Probability (n00) which checks the probability of occurrence of the pattern 00, 01, 10 and

11 in a binary string.

b. Keystream (individual) period length - The focus of keystream (individual) period length

evaluation is to determine the total number of zero and one runs in the entire sequence,

where a run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a

run consists of exactly 𝑘 identical bits and is bounded before and after with a bit of the

opposite value. The purpose of this evaluation is to determine whether the number of runs

of ones and zeros of various lengths is as expected for a random sequence. In particular,

this test determines whether the oscillation between such substrings is too fast or too

slow.
1

2𝑖 × 𝑛𝑟 of the runs in the sequence are of length 𝑖, where 𝑛𝑟 is the number of runs

in the sequence. Thus, the following equation 3.6 represents the period length.

 𝑓2 =
1

2𝑖 × 𝑛𝑟 − 𝑛𝑖
𝑀
𝑖=1

(3.6)

 Arindam Sarkar, University of Kalyani, India 97

Where 𝑀 is maximum run length, and 𝑛𝑖 is the desired number of runs of length 𝑖.

c. Keystream (individual) length - Another factor is considered in the evaluation of the

fitness value which is the size of the candidate keystream (length of the individual).

Thus, the fitness function used to evaluate the chromosome 𝑥 is given in equation 3.7, where

𝑤𝑒𝑖𝑔𝑡 is a constant and 𝑠𝑧 is the key stream period length:

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 =
𝑆𝑍

1+𝑓1+𝑓2
+

𝑤𝑒𝑖𝑔 𝑡

𝑙𝑒𝑛𝑔𝑡 (𝑥)
 (3.7)

Crossover operation performs exchange of genetic information. It takes place between

randomly selected parent chromosomes. Single point crossover is the most commonly used.

In this technique single point crossover is performed with probability 0.6 to 0.9. Figure 3.8

shows the single point crossover operation having chromosome length of eight.

Figure 3.8: Single point Crossover operation

Mutation operation is a random alternation in the genetic structure. It introduces genetic

diversity into the population. performs exchange of genetic information. It takes place

between randomly selected parent chromosomes. In this technique mutation is performed

with probability 0.001 to 0.01. Figure 3.9 shows the mutation operation having chromosome

length eight.

Parent Chromosomes:

Offspring Chromosomes:

 Arindam Sarkar, University of Kalyani, India 98

Figure 3.9: Mutation operation

The parameters used in this work have been set based on the experimental results, the

parameter value that shows the highest performance has been chosen to be used in the

implementation of this algorithm. Thus, the genetic operations used to update the population

are single point crossover with probability 𝑝𝑐 (probability of crossover) = 0.6 to 0.9 and

mutation with probability 𝑝𝑚 (probability of mutation) = .001 to 0.1. The selection strategy,

used to select chromosomes for the genetic operations, is the binary tournament selection.

The old population is completely replaced by the new population which is generated from the

old population by applying the genetic operations. The maximum chromosome length is 256

bits. The run of this algorithm is stopped after a fixed number of iterations depend on

resource available in wireless communication. The solution is the best keystream (individual)

of the final iteration. The figure 3.10 shows the flowchart of SA based fittest keystream

generation and section 3.2.1.2.1 presents the SA based fittest keystream generation

algorithm.

Parent Chromosome

Mutated Chromosome

 Arindam Sarkar, University of Kalyani, India 99

Figure 3.10: Flow chart of Simulated Annealing (SA) based fittest keystream generation

No

No

Yes

Yes

No

Is fitness (new

generation)> fitness

(old generation) ?

Compute e= fitness (old generation) - fitness (new generation)

Compute Pr = e/temperature

Is Current generation

≤ Maximum generation ?

Perform Single Point Crossover

Generate Initial Population

Perform Fitness Calculation

Set Temperature = 250

Perform Mutation

Is (𝑒𝑥𝑝(−𝑝𝑟) >
 random number) ?

Fitness Calculation

Yes

Current population
 = New Population

Compute Temperature = Temperature × 0.95

Select keystream size

Stop

Start

Return fittest

Chromosome

 Arindam Sarkar, University of Kalyani, India 100

3.2.1.2.1 Simulated Annealing based Fittest Keystream Generation Algorithm

SA based fittest keystream generation algorithm takes length of the keystream and maximum

number of iterations as an input. After complete iteration, algorithm generates the fittest

keystream as an output. The maximum number of iterations depends on the resource

available in wireless communication.

 Input : Length of the keystream, maximum number of iteration

 Output: Simulated Annealing based best fittest keystream (individual) at the final iteration

Method: The process performs Simulated Annealing procedure on set of keystream and

finally produces best fittest keystream.

Step 1. Generate the initial population (𝑝𝑜𝑝) randomly.

Step 2. Evaluate the Population.

Step 3. Set temperature:=250.

Step 4. Perform the following steps until maximum number of generation

reach.

Step 4.1 Generate a new population (𝑝𝑜𝑝1) by applying crossover

and mutation.

Step 4.2 Evaluate the fitness of the new generated individual of

𝑝𝑜𝑝1.

Step 4.3 Calculate the averages of fitness values for 𝑝𝑜𝑝 and 𝑝𝑜𝑝1,

𝑎𝑣 and 𝑎𝑣1 respectively.

Step 4.4 𝐼𝑓 (𝑎𝑣1 > 𝑎𝑣) then replace the old population by the new

one, 𝑝𝑜𝑝 = 𝑝𝑜𝑝1. Else compute 𝑒 = 𝑎𝑣 − 𝑎𝑣1 and

𝑃𝑟 = 𝑒/𝑇𝑒𝑚𝑝. Hence, generate a random number (𝑟𝑛𝑑)

and check 𝑖𝑓 (𝑒𝑥𝑝(−𝑝𝑟) > 𝑟𝑛𝑑) then assign 𝑝𝑜𝑝 =

 𝑝𝑜𝑝1.

Step 4.5 Set 𝑇𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝 × 0.95 (3.8)

Step 5. Return the best chromosome of the final generation

The SA based fittest keystream is used to perform the encryption operation on the plaintext.

The detail step of SA based encryption process is given in section 3.2.1.3.

 Arindam Sarkar, University of Kalyani, India 101

3.2.1.3 Encryption Algorithm

 Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

Simulated Annealing (SA) based encryption.

Step 1. Perform Exclusive-OR with Simulated Annealing (SA) generated

128/192/256 bits key and the plaintext to form intermediate cipher

text. If the size of the plaintext to be encrypted is larger than 128/

192/256 bits then triangle edge extension based keystream expansion

strategy is perform to expand the SA based keystream and then

expanded keystream is Exclusive-OR with the plaintext for forming the

intermediate cipher text.

Step 2. Divide the outcomes of step 1 into variable blocks.

Step 3. Perform following operation as per equations 3.9 and 3.10 on each

block until the source block itself is generated.

 𝑠0
𝑗

= 𝑠0
𝑗−1

 (3.9)

 𝑠𝑖
𝑗

= 𝑠𝑖−1
2 𝑠𝑖

𝑗−1
 (3.10)

Step 4. Consider an intermediate 𝑖th
 step during the process of forming the

cycle as the encrypted block.

Step 5. Merge all the encrypted blocks of step 3.

The details of triangle edge based keystream expansion in step 1 is discussed in section

3.2.1.3.1. Step 2 of the algorithm is used to divide the outcomes of step 1 in variable blocks.

After that in step 3 a pair of Exclusive-OR operation is performed on each block for forming

the cycle. In step 4, 𝑖th
 step is considered as an encrypted block. Finally, in step 5 all the

encrypted blocks of previous step is merged together to generate SA based encrypted text.

 Arindam Sarkar, University of Kalyani, India 102

3.2.1.3.1 Triangle Edge Extension based Keystream Expansion Technique

If the size of the plaintext to be encrypted is larger than 128/192/256 bits then triangle edge

extension based keystream expansion strategy is performed to expand the keystream.

Consider a keystream 𝐾 = 𝑘0
0 𝑘1

0 𝑘2
0 𝑘3

0 𝑘4
0 𝑘5

0 … 𝑘𝑛−2
0 𝑘𝑛−1

0 of size 𝑛 bits, where 𝑘𝑖
0 = 0 or 1

for 0 ≤ 𝑖 ≤ (𝑛 − 1). Now, starting from MSB (𝑘0
0) and the next-to-MSB (𝑘1

0), bits are

pair-wise Excusive-OR, so that the first intermediate sub-keystream 𝐾1 is expressed as

𝐾1 = 𝑘0
1 𝑘1

1 𝑘2
1 𝑘3

1 𝑘4
1 𝑘5

1 … 𝑘𝑛−2
1 this is consisting of (𝑛 − 1) bits, where 𝑘𝑗

1 = 𝑘𝑗
0𝑘𝑗 +1

0 for

0 ≤ 𝑗 ≤ 𝑛 − 2, stands for the Exclusive-OR operation. This first intermediate

sub-keystream 𝐾1 is also then pair-wise Excusive-OR to generate the second intermediate

sub-keystream 𝐾2 = 𝑘0
2 𝑘1

2 𝑘2
2 𝑘3

2 𝑘4
2 𝑘5

2 … 𝑘𝑛−3
2 , of length (𝑛 − 2). This process continues

(𝑛 − 1) times to ultimately generate 𝑘𝑛−1 = 𝑘0
𝑛−1, which is a single bit only. Thus the size

of the first intermediate sub-stream is one bit less than the source sub-keystream; the size of

each of the intermediate sub-keystreams starting from the second one is one bit less than that

of the sub-keystream wherefrom it was generated; and finally the size of the final sub-

keystream in the process is one bit less than the final intermediate sub-keystream. In this way

intermediate sub-keystream 𝐾𝑗 +1 = 𝑘0
𝑗 +1

 𝑘1
𝑗+1

 𝑘2
𝑗 +1

 𝑘3
𝑗 +1

𝑘4
𝑗+1

𝑘5
𝑗 +1

… 𝑘𝑛−(𝑗+2)
𝑗 +1

 is generated

from the previous intermediate sub-keystream 𝐾𝑗 = 𝑘0
𝑗
 𝑘1

𝑗
 𝑘2

𝑗
 𝑘3

𝑗
𝑘4

𝑗
𝑘5

𝑗
… 𝑘𝑛−(𝑗 +1)

𝑗
. Figure

3.11 shows the keystream expansion triangle with different colors and figure 3.12 represents

the left side and right side expanded keystream.

Figure 3.11: Triangle of different color sides, blue side represents the original key, red and

green side represents the left and right side extended key

1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0

 Left side bits of the triangle Right side bits of the triangle

Figure 3.12: Expanded keystream

 Arindam Sarkar, University of Kalyani, India 103

Bits of the left side of the triangle (i.e. 11101010) is generated at the front of the original key

and bits of the right side of the triangle (i.e.11000010) is attached at the end. As per

keystream expansion strategy the new expanded keystream will be three times longer than

original one.

3.2.1.4 Session Key based Encryption

During final step of the technique a cascaded Exclusive-OR operation between DHLP

synchronized session key and SA encrypted cipher text is performed to generate final

encoded cipher text.

The decryption algorithm takes the cipher text as a binary stream of bits and perform first

level of operation using DHLP generated synchronized session key to produce intermediate

decrypted text. Finally, SA generated fittest keystream based decryption is performed on the

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete

process is given in section 3.2.2.

3.2.2 DHLPSCT Algorithm at Receiver

 Input : Encrypted file/encrypted stream i.e. cipher text

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on encrypted binary stream and generates decrypted bit

stream through DHLP guided Simulated Annealing (SA) based decryption

operations.

Step 1. Perform cascaded Exclusive-OR operation between DHLP based

session key and cipher text.

Step 2. Perform Simulated Annealing (SA) based decryption on the outcomes

of the step 1 to regenerate starting combination i.e. plaintext.

Step 1 of the algorithm is discussed in section 3.2.2.1. Step 2 of the algorithm for performing

SA based decryption is discussed in 3.2.2.2.

 Arindam Sarkar, University of Kalyani, India 104

3.2.2.1 Session Key based Decryption

Initially cascaded Exclusive-OR operation between DHLP synchronized session key and

cipher text is performed to produce session key decrypted text. Outcomes of this operation

used as an input of decryption algorithm discussed in 3.2.2.2 to regenerate the plaintext.

In the decryption process the SA based cipher text is divided into blocks. A pair of Exclusive-

OR operation based cycle decryption is performed on each block. After that all blocks are

merged together. The SA generated keystream is use to Exclusive-OR with the merged blocks

to regenerate the plaintext. The detail steps of decryption process is given in section 3.2.2.2.

3.2.2.2 Decryption Algorithm

Input : SA Encrypted file/ SA encrypted stream

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on SA encrypted bit stream and regenerates the plaintext

through SA based decryption.

Step 1. Divide the SA encrypted text into different blocks.

Step 2. Perform operation given in equation given in 3.11 and 3.12 upto

(𝑃 – 𝑖) steps on each block if the total number of iterations required to

complete the cycle is 𝑃 and the 𝑖th
 step is considered to be the

encrypted block.

 𝑠0
𝑗

= 𝑠0
𝑗−1

 (3.11)

 𝑠𝑖
𝑗

= 𝑠𝑖−1
2 𝑠𝑖

𝑗−1
 (3.12)

Step 3. Merge outcomes of step 2.

Step 4. Check if the length of the SA based keystream is less than the length of

outcomes of step 3 then perform triangle edge based keystream

expansion method to enhance the length of the keystream. Otherwise,

select the 128 bit fittest keystream for decryption.

 Arindam Sarkar, University of Kalyani, India 105

Step 5. Finally, perform Exclusive-OR operation between outcomes of step 3

and SA generated fittest encryption keystream of same length to

produce the plaintext.

3.3 Implementation

Consider Initial population size as 200 and randomly generated each keystream having 128

bits. The population gets evaluated with the help of fitness function using generations

through a fitness technique which consist of number of statistical tests to examine whether

the pseudorandom number sequences are sufficiently random or not.

On receipt of fittest generation the SA based keystream generation algorithm let generate the

best fittest keystream having length of 128 bits. Let the binary form of 128 bits SA based

keystream is

11111101/10101110/00011111/11011010/11010010/10000010/10101101/01100110/

01001111/11101001/00001110/11110101/01010010

Here “/” is used as the separator between successive bytes.

Consider the plaintext to be encrypted is “SA Encryption”, binary representation of the

ASCII value of plaintext is

01000001/01010011/00100000/01000101/01101110/01100011/01110010/01111001/011100

00/01110100/01101001/01101111/01101110

So, the plaintext size is 104 bits. As plaintext size is less than the size of the 128 bit SA

based keystream, no need to perform keystream expansion operation.

On performing Exclusive-OR operation between plaintext and SA based keystream the

intermediate cipher text is

10111100/11111101/00111111/10011111/10111100/11100001/11011111/00011111/

00111111/10011101/01100111/10011010/00111100

Perform Exclusive-OR based cycle formation operation on intermediate cipher text by

dividing into seven segments having variable size like 16, 32, 8, 16, 16, 8, 8 bits respectively.

 Arindam Sarkar, University of Kalyani, India 106

Following are the different segments constructed from S (intermediate encrypted text):

S1 = 1011110011111101 (16 bits)

S2 = 00111111100111111011110011100001 (32 bits)

S3 = 11011111 (8 bits)

S4 = 0001111100111111 (16 bits)

S5 = 1001110101100111 (16 bits)

S6 = 10011010 (8 bits)

S7 =00111100 (8 bits)

Cycle formation operation is now performed on S1, S2, S3, S4, S5, S6, S7 segments

respectively. For each of the segments, an arbitrary intermediate stream segment is

considered as the encrypted stream segment.

The formation of cycles for segments S1 (1011110011111101) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1001001101010001) after iteration-6 considered as an encrypted segment for the segment

S1.

1011110011111101 1101011101010110
1
1001101001100100

2
1110110001000111

3

1011011110000101
4
1101101011111001

5
1001001101010001

6
1110001001100001

7

1011110001000001
8
1101011110000001

9
1001101011111110

10
1110110010101011

11

1011011100110010
12
1101101000100011

13
1001001111000010

14

1110001010000011
15
 1011110011111101

16

The formation of cycles for segments S2 (00111111100111111011110011100001) is shown

below. After 32 steps cycle is complete and the plaintext is regenerated. An arbitrary

intermediate segment (00110000010010000010101110001010) after iteration-22 considered

as an encrypted segment for the segment S2.

0011111110011111101111001110000100101010111010101101011101000001
1

00110011010011001001101001111110
2
00100010011101110001001110101011

3

00111100010110100001110100110010
4
00101000011011000001011000100011

5

00110000010010000001101111000010
6
00100000011100000001001010000011

7

00111111101000000001110011111101
8
00101010110000000001011101010110

9

 Arindam Sarkar, University of Kalyani, India 107

00110011011111111110010110011011
10
00100010010101010100011011101101

11

00111100011001100111101101001001
12
00101000010001000101001001110001

13

00110000011110000110001110100001
14
00100000010100000100001011000001

15

00111111100111111000001101111110
16
00101010111010101111110110101011

17

00110011010011001010100100110010
18
00100010011101110011000111011100

19

00111100010110100010000101101000
20
00101000011011000011111001001111

21

00110000010010000010101110001010
22
00100000011100000011001011110011

23

00111111101000000010001101011101
24
00101010110000000011110110010110

25

00110011011111111101011011100100
26
00100010010101010110010010111000

27

00111100011001100100011100101111
28
00101000010001000111101000110101

29

00110000011110000101001111011001
30
00100000010100000110001010010001

31

00111111100111111011110011100001
32

The formation of cycles for segments S3 (11011111) is shown below. After 8 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (11010010)

after iteration-4 considered as an encrypted segment for the segment S3.

1101111110010101
1
11100110

2
10111011

3
11010010

4
10011100

5
11101000

6

10110000
7
11011111

8

The formation of cycles for segments S4 (0001111100111111) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment I47

(0001000010110000) after iteration-7 considered as an encrypted segment for the segment

S4.

00011111001111110001010111010101
1
0001100101100110

2
0001000110111011

3

0001111011010010
4
0001010010011100

5
0001100011101000

6
0001000010110000

7

0001111100100000
8
0001010111000000

9
0001100101111111

10
0001000110101010

11

0001111011001100
12
0001010010001000

13
0001100011110000

14

0001000010100000
15
0001111100111111

16

 Arindam Sarkar, University of Kalyani, India 108

The formation of cycles for segments S5 (1001110101100111) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1011101010000100) after iteration-6 considered as an encrypted segment for the segment

S5.

10011101011001111110100110111010
1
1011000100101100

2
1101111000110111

3

1001010000100101
4
1110011111000110

5
1011101010000100

6
101001100000111

7

1001110111111010
8
1110100101010011

9
1011000110011101

10
1101111011101001

11

1001010010110001
12
1110011100100001

13
1011101000111110

14

1101001111010100
15
1001110101100111

16

The formation of cycles for segments S6 (10011010) is shown below. After 8 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (11100010)

after iteration-5 considered as an encrypted segment for the segment S6.

1001101011101100
1
10110111

2
11011010

3
10010011

4
11100010

5
10111100

6

11010111
7
10011010

8

The formation of cycles for segments S7 (00111100) is shown below. After 8 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (00100000)

after iteration-3 considered as an encrypted segment for the segment S7.

0011110000101000
1
00110000

2
 00100000

3
 00111111

4
00101010

5
00110011

6

00100010
7
00111100

8

On completion of the cycle formation technique on each segment as indicated above, seven

intermediate blocks one for each segment are considered as the encrypted segments. On

merging the above seven encrypted segments following SA based encrypted text is

generated.

10010011/01010001/00110000/01001000/00101011/10001010/11010010/00010000/101100

00/10111010/10000100/11100010/00100000

Consider the Double Hidden Layer Perceptron (DHLP) synchronized 128 bits session key is

00110010/11101001/10111000/11000101/00011001/01000111/00010000/01010100/110011

00/00011010/01101111/00100101/01000111/11001110/10101100/00101011

 Arindam Sarkar, University of Kalyani, India 109

Following is the session key encrypted final cipher text produce on performing

Exclusive-OR operation between SA based encrypted text and DHLP synchronized session

key.

10100001/10111000/10001000/10001101/00110010/11001101/11000010/01000100/011111

00/10100000/11101011/11000111/01100111.

3.4 Security Analysis

In DHLPSCT, sender (A) and receiver (B) do not share a common secret but use their

indistinguishable weights as a secret session key. The fundamental conception of DHLP

based key exchange protocol focuses mostly on two key attributes of DHLP. Firstly, two

nodes coupled over a public channel will synchronize even though each individual network

exhibits disorganized behavior. Secondly, an outside network, even if identical to the two

communicating networks, will find it exceptionally difficult to synchronize with those

parties, are communicating over a public network. An attacker (E) who knows all the

particulars of the algorithm and records through this channel finds it thorny to synchronize

with the parties, and hence to calculate the common secret key. Synchronization by mutual

learning (A and B) is much quicker than learning by listening (E). Usual cryptographic

systems, improve the safety of the protocol by increasing of the key length. In the case of

DHLP, security is improved by increasing the synaptic depth 𝐿 of the DHLP. The

communication of DHLPs has been discussed as a substitute concept for secure symmetric

key exchange. For the key exchange protocol eavesdropping attacks can all be made

arbitrarily costly and thus can be defeated by simply increasing the parameter synaptic depth

(𝐿) of the DHLP i.e. weight range. The security increases proportional to 𝐿2
 while the

probability of a successful attack decreases exponentially with 𝐿. The approach is thus

regarded computationally secure with respect to these attacks for sufficiently large 𝐿. For a

brute force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For

example, the DHLP configuration 𝐾1 = 3, 𝐾2 = 3, 𝐿 = 3 and the value of 𝑁 = 100 gives

 (2 × 3 + 1)(3×100+3×3) key possibilities, making the attack unfeasible. E could start from all

of the (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) initial weight vector and calculate the ones which are consistent

with the input/output sequence. It has been shown, that all of these initial states move

 Arindam Sarkar, University of Kalyani, India 110

towards the same final weight vector, the key is unique. This is not true for simple perceptron

the most unbeaten cryptanalysis has two supplementary ingredients first; a group of attacker

is used. Second, E makes extra training steps when A and B are quiet. So increasing synaptic

depth 𝐿 of the DHLP we can make our DHLP safe. The main difference between the partners

and the attacker in DHLP is that A and B are able to influence each other by communicating

their output bits and while E can only listen to these messages. Of course, A and B use their

advantage to select suitable input vector for adjusting the weights. This finally leads to

different synchronization times for partners and attackers. Bidirectional interaction of the

partners confirm that the security of DHLP key generation. Both A and B uses a secret seed

for generating identical input vector. Whereas attacker does not know this secret seed state.

By increasing synaptic depth (weight range) average synchronize time will be increased

polynomial time. But success probability of attacker will be drop exponentially

Synchronization by mutual learning is much faster than learning by adapting to example

generated by other network. As E can’t influence A and B at the time they stop transmit due

to synchronization. Only one weight get changed where, 𝜎𝑖 = 𝜏. So, difficult to find weight

for attacker to know the actual weight without knowing internal representation it has to

guess. It is important to note, though, that all of the existing attacks refer to a non-

authenticated key exchange, in which a MITM-attack on the symmetric principle is possible

as well. Generally, for mutual authentication the two parties engage in a conversation to

increase their confidence that it is a specific other party with whom they communicate.

Additionally exchanging a new secret (session) key leads to authenticated key exchange.

Assume that all communication among interacting parties is under the adversary’s control. In

particular, the adversary can read the bit packages produced by the parties, provide her own

bit packages to them, modify bit packages before they reach their destination, and delay bit

packages as well as replay them. The scheme cannot be reduced to number-theoretic

hardness assumptions. Yet, a proof that the authentication is sound is given, as well as a

proof of its security with regard to eavesdropping-attacks that also use DHLPs. The structure

of the network, the involved computations producing the output 𝜏𝐴/𝐵(𝑡). The different initial

preliminary keys 𝑊𝑖𝑗
𝐴,𝐵 𝑡0 of the two parties are the secret information. If they were public,

the resulting final keys could simply be calculated (by an adversary), because all further

computations are completely deterministic. An implicit solution to include authentication

 Arindam Sarkar, University of Kalyani, India 111

into the DHLP key exchange protocol bases on the simple but strong fact, that two

interacting parties A and B which have different input vector 𝑥A
(t) ≠ 𝑥B

(t); 𝑥A
(t), 𝑥B

(t) ∈

 {0, 1}𝐾1×𝑁 cannot become synchronous. Equation 3.13 shows two DHLPs A and B are

synchronous at iteration 𝑡s when all their weights are identical.

 𝑊𝑖𝑗
𝐴 𝑡𝑠 = 𝑊𝑖𝑗

𝐵 𝑡𝑠 ∀ 𝑖, 𝑗 (3.13)
Equation 3.14 shows two corresponding hidden units of two DHLPs A and B are

synchronous at iteration 𝑡s when all their weights (components) are identical:

 𝑊𝑖𝑗
𝐴 𝑡𝑠 = 𝑊𝑖𝑗

𝐵 𝑡𝑠 ∀𝑗 (𝑖 𝑓𝑖𝑥𝑒𝑑) (3.14)

Once a summation unit is synchronous (i.e. it is in an identical state with the other party) it

remains synchronous for all subsequent iterations. Two corresponding summation units
A
i

and 𝜎𝑖
𝐵of two DHLPs A and B that have identical internal states 𝑊𝑖𝑗

𝐴 𝑡 = 𝑊𝑖𝑗
𝐵 𝑡

∀𝑗 𝑖 𝑓𝑖𝑥𝑒𝑑 at an arbitrary iteration 𝑡𝑠 (that are synchronous at an arbitrary iteration 𝑡𝑠)

remain synchronous for all 𝑡 > 𝑡𝑠 when having the same inputs and applying the same

learning rule and bounding operation. Consider the subsequent iteration at time 𝑡𝑠 + 1.

Formally, two cases can be distinguished, first is no adaptation at iteration 𝑡𝑠 + 1.

If 𝜏𝐴 𝑡𝑠 + 1 ≠ 𝜏𝐵 𝑡𝑠 + 1 , no adaptation is performed and in this trivial case

𝑊𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐴 𝑡 = 𝑊𝑖𝑗
𝐵 𝑡 = 𝑊𝑖𝑗

𝐴 𝑡𝑠 + 1 , ∀𝑗 𝑖 𝑓𝑖𝑥𝑒𝑑 i.e. the summation units of

both DHLPs remains synchronous. Second is adaptation at iteration 𝑡𝑠 + 1.

If 𝜏𝐴 𝑡𝑠 + 1 = 𝜏𝐵 𝑡𝑠 + 1 = 𝜎𝑖
𝐴 𝑡𝑠 + 1 = 𝜎𝑖

𝐵 𝑡𝑠 + 1 , an adaptation is performed

and each component 𝑗 of the weight vector of hidden unit 𝑖 of both parties will be changed

according to the same learning rule given in equation 3.15 for the parties A and B.

 𝑊𝑖𝑗
𝐴/𝐵 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐴/𝐵 𝑡𝑠 + 𝜏𝐴/𝐵 𝑡𝑠 + 1 𝑋𝑖𝑗
𝐴/𝐵 𝑡𝑠 + 1 , ∀𝑗 𝑖 𝑓𝑖𝑥𝑒𝑑 (3.15)

 The adaptation is performed in the same direction given in equation 3.16 and 3.17.

 𝜏𝐴 𝑡𝑠 + 1 = 𝜏𝐵 𝑡𝑠 + 1 (3.16)

 𝑋𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑋𝑖𝑗

𝐵 𝑡𝑠 + 1 , ∀𝑖, 𝑗 (3.17)

Thus 𝑊𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐵 𝑡𝑠 + 1 ,∀𝑗 𝑖 𝑓𝑖𝑥𝑒𝑑 – the summation units remain synchronous.

Proposed mechanism has been compared with existing key exchange method like

 Arindam Sarkar, University of Kalyani, India 112

Diffie-Hellman Key exchange. In this existing method attackers can reside middle of sender

and receiver and tries to capture all the information transmitting from both parties Intruders

can act as sender and receiver simultaneously and try to steal secret session key at the time of

exchanging key via public channel.

In DHLPSCT, problem of Man-In-The-Middle (MITM) attack of Diffie-Hellman Key

exchange has been resolved by DHLP based session key generation technique where both

sender and receiver uses an identical DHLP. In each session sender’s and receiver’s both

DHLPs are start synchronization by exchanging some control frames. During

synchronization process message integrity test and synchronization test has been carried out.

Synchronized identical weight vector forms the session key on synchronization for a

particular session. So, in this technique session key instead of transferring through public

channel DHLP based synchronization process is carried out and outcomes of this used as a

secret session key for that entire session. That actually helps to get rid of famous Man-In-

The-Middle attack. The following standard attacks are considered to ensure the robustness of

the DHLPSCT.

 Cipher text only Attack: The DHLPSCT nullifies the success rate of this attack by

producing a completely random SA based encryption/decryption keystream. The strength

of resisting exhaustive key search attack relies on a large key space. Initially, SA based

large keystream is used to encrypt the plaintext after that, outcomes of this passes through

Exclusive-OR based cycle formation based encryption process and DHLP generated

session key based encryption. So, cipher text produces by this technique is

mathematically difficult to break. Thus a hacker has to try all such keystreams to find an

appropriate one. This method makes it difficult for the hacker to find out the keystream

used for encryption. The technique helps to generate long period of random keystreams

along with no obvious relationship between the individual bits of the sequence. Also the

generated keystreams are of large linear complex. Finally keystream have high degrees of

correlation immunity. Thus it is practically difficult to perform a brute-force search in a

key-space.

 Arindam Sarkar, University of Kalyani, India 113

 Known Plaintext Attack: DHLPSCT offers better floating frequency of characters and in

SA based encryption technique cycle formation operation also enhance the security of the

technique. So, known plaintext attack is difficult in this technique.

 Chosen Plaintext Attack: The technique passes the frequency (monobit) test, runs test,

binary matrix rank test and in each session a fresh DHLP based session key is used for

encryption which confirms that chosen plaintext attack is very difficult in this technique.

 Chosen Cipher text Only Attack: The technique passes the discrete Fourier transform test,

approximate entropy test, overlapping (periodic) template matching test which confirms

that chosen plaintext attack is difficult in this technique.

 Brute Force Attack: In DHLPSCT, security is improved by increasing the synaptic depth

𝐿 of the DHLP. The security increases proportional to 𝐿2
 while the probability of a

successful attack decreases exponentially with 𝐿. The approach is thus regarded

computationally secure with respect to these attacks for sufficiently large 𝐿. For a brute

force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For

example, a DHLP with the configuration 𝐾1 = 3, 𝐾2 = 3, 𝐿 = 3 and 𝑁 = 100

produces (2 × 3 + 1)(3×100+3×3) amount of session key which makes the attack

difficult.

3.5 Discussions

DHLPSCT is simple and easy to implement in various high level language. The test results

show that the performance and security provided by the DHLPSCT is good and comparable to

standard technique. The security provided by the technique is comparable with other

techniques. To enhance the security of the technique, DHLPSCT offers changes of some

parameters randomly in each session. To generate the secret session key secret seed get

exchanged between sender and receiver. This technique has a unique ability to construct the

secret key at both sides using this DHLP synchronization. Since the encryption and decryption

times are much lower, so processing speed is very high. The method takes minimum amount

of resources which is greatly handle the resource constraints criteria of wireless

 Arindam Sarkar, University of Kalyani, India 114

communication. DHLPSCT outperform than existing TPM, PPM and method proposed in

chapter 2. No platform specific optimizations were done in the actual implementation, thus

performance should be similar over varied implementation platform. The whole procedure is

randomized, thus resulting in a unique process for a unique session, which makes it harder for

a cryptanalyst to find a base to start with. This technique is applicable to ensure security in

message transmission in any form and in any size in wireless communication.

Some of the salient features of DHLPSCT are summarized as follows:

a) Session key generation and exchange – Identical session key can be generate after the

tuning of DHLP in both sender and receiver side. So, no need to transfer the whole

session key via vulnerable public channel.

b) Degree of security – The technique does not suffers from cipher text only attack,

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute

force attack and attacks during DHLP synchronization process.

c) Variable block size – Encryption algorithm can work with any block length and thus

not require padding, which result identical size of files both in original and encrypted

file. So, DHLPSCT has no space overhead.

d) Variable key – 128/192/256 bits DHLP based session key and 128/192/256 bits

SA based encrypted keystream with high key space can be used in different sessions.

Since the session key is used only once for each transmission, so there is a minimum

time stamp which expires automatically at the end of each transmission of

information. Thus the cryptanalyst may not be able guess the session key for that

particular session.

e) Complexity – The technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh

through wireless communication. So, the DHLPSCT may be suitable in wireless

communication.

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value

have been performed between the source and corresponding cipher streams

generated using DHLPSCT. Measures indicate that the degree of non-homogeneity of

 Arindam Sarkar, University of Kalyani, India 115

the encrypted stream with respect to the source stream is good. This technique has a

better Chi-Square value than technique proposed in chapter 2.

g) Floating frequency – In the DHLPSCT it is observed that floating frequencies of

encrypted characters are indicates the high degree of security for the technique. This

technique has a better floating frequency than technique proposed in chapter 2.

h) Entropy – The entropy of encrypted characters is near to eight which indicate the

high degree of security of technique. This technique also has a better entropy value

than technique proposed in chapter 2.

i) Correlation – The cipher stream generated through proposed technique is negligibly

correlated with the source stream. Therefore the DHLPSCT may effectively resist

data correlation statistical attack.

j) Key sensitivity – The technique generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

k) Security and performance trade-off – The technique may be ideal for trade-off

between security and performance of light weight devices having very low processing

capabilities or limited computing power in wireless communication.

Chapter 4

Chaos based Double Hidden Layer Perceptron

Synchronized Cryptographic Technique

(CDHLPSCT)

 Arindam Sarkar, University of Kalyani, India 118

4.1 Introduction

In this chapter a novel soft computing based cryptographic technique CDHLPSCT, on

synchronization of Chaos based two Double Hidden Layer Perceptron (CDHLP), has been

proposed. The DHLPSCT technique proposed in chapter 3 have some drawbacks like secret

seed values used in the generation of identical input vector has to be transmitted to the other

party via public channel in the 𝑆𝑌𝑁 frame in each iteration. This significantly increases the

synchronization time. Also for ensuring the security this parameters should not be

transmitted via public channel. Furthermore, till now all the synchronization techniques

devised in previous chapters concentrated only in session key generation mechanism by

tuning the sender and receiver. But the process of generating session keys does not guarantee

the information security. Because, any attacker can also synchronize with an authorized

device, because the protocol is a public knowledge. Proposed CDHLPSCT of this chapter

eliminates all the above stated drawbacks of the DHLPSCT in chapter 3, KSOFMSCT in

chapter 2 and existing TPM and PPM.

Here, Chaos based Double Hidden Layer Perceptron (CDHLP) synchronization

mechanism has been introduced between sender and receiver where instead of transmitting

the secret seed values used in the generation of identical input vector in each iteration, Chaos

is use to generate identical random seed value for generating common input vector at the

both ends.
[202]

 This improves the security of the technique. Also to ensure that only entities

authorized have access to information, authentication service has been introduced in this

chapter. The function of the authentication service is to ensure the recipient that the message

is from the source that it claims. CDHLPSCT performs secret keys authentication where both

entities must have a common secret code. This newly introduced technique significantly

reduces the risk and increases the security.

On the completion of the tuning phase identical session keys is generated at the both end

with the help of synchronized CDHLP. This synchronized network can be used for

transmitting message using any light weight encryption/decryption technique with the help of

session key of the synchronized network. To illustrate the cryptographic technique using

CDHLP in wireless communication one of the simple and secure encryption/decryption

technique has been presented. A plaintext is considered as a stream of binary bits. Genetic

Algorithm (GA) guided enciphering technique
[203]

 with the help of CDHLP tuned session key

 Arindam Sarkar, University of Kalyani, India 119

is used to generate the cipher text. The plaintext is regenerated from the cipher text using

same technique with the help of CDHLP tuned session key at the receiver.

Section 4.2 represents a description of proposed technique in detail. Section 4.3 deals

with the implementation of the proposed cryptographic technique. Section 4.4 discussed the

security issues related to the proposed technique. Discussions are presented in section 4.5.

4.2 The Technique

The technique performs the CDHLP based synchronization for generation of secret session

key at both ends. This synchronized session key of the tuned network is used for the

transmission of secured message through wireless network with the help of any light weight

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless

communication one of the simple and secure encryption/decryption technique has been

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is

encrypted using GA generated fittest encryption/decryption keystream. The session key

based on CDHLP is used to encrypt intermediate output which produces final cipher text.

Identical CDHLPs are used to tune the sender and receiver to generate the secret session key

at both ends. Chaos helps to generate identical secret seed values (𝑧) at the both end using

chaos synchronization. This identical seed value is used to generate identical input vector.

For generating common seed value (𝑧) in sender and receiver side two chaotic system

synchronized with each other by exchanging parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2) between

sender and receiver. Some of the parameter which takes major roles to form the common

seed value (𝑧) does not get transmitted via public channel, sender keeps these parameters

secret. Two CDHLPs at sender and receiver start with common seed value (𝑧) based identical

input vector and completely anonymous random weight vector. In each time both CDHLPs at

both end compute their final output based on input and weight vector, and communicate to

each other. If both are be in agreement on the mapping between the present input and the

output, their weights are updated according to an appropriate learning rule. After

synchronization weight vector of both CDHLPs become identical. This identical weight

vector forms the session key.

 Arindam Sarkar, University of Kalyani, India 120

 CDHLPSCT performs secret session keys authentication where both sender and receiver

must have a common secret code. Here, two secret codes are used, called 𝑅𝑆𝐶 (Receiver

Secret Code) and 𝑆𝑆𝐶 (Sender Secret Code).

In GA based keystream generation technique LFSR (Linear Feedback Shift register) are

used to generate the initial population of keystream (i.e. chromosomes). Each chromosome

that represents candidate keystream is strings of characters ‘𝑎’ … ’𝑝’ along with LFSR

function (SR), bitwise OR, bitwise AND, bitwise Exclusive-OR and these are represented

using prefix notation.The letters ‘𝑎’ … ’𝑝’ represent the numbers 0. . .15. Thus, each letter is a

sequence of four bits. The number of these letters must be even, because half of them are

used for the initial state of the LFSR, and the second half for the feedback function of LFSR.

GA based keystream generation algorithm first initialize the keystream (chromosome) size

(maximum 300 characters for each chromosome), select a value up to which the algorithm

will iterate i.e. the maximum number of generation depend on the resource available at the

time of wireless communication and generate initial population of keystream randomly

having size of 200 keystream. Then for each keystream in the population fitness is evaluated.

Fitness values of each keystream in the population are calculated depending on the

randomness of the generated keystream, keystream period length and keystream length. The

process checks whether the current generation number is less or equal to the maximum

number of generations, if so, then the process performs uniform crossover and dynamically

adjust the crossover probability and then mutation operation is performed through

dynamically adjusted mutation probability. Newly generated chromosomes through genetic

operations like uniform crossover and mutation formed a new population. So, fitness value of

each chromosome in this newly formed population is evaluated. Fitness calculation is

performed again for the newly generated keystream and then checks whether the fitness

value of new generation is higher than the fitness value of old generation, if so, then the

process set the new population as the current population. The process again check whether

the current generation number is less or equal to the maximum number of generations, if the

condition is still satisfied then operation is repeated until the best fittest keystream is found or

maximum number of generation is reached whichever is earlier. If the length of the plaintext

to be encrypted is grater then the length of GA based keystream then square edge based

keystream expansion method is used to extend the length of the keystream. Stream of

 Arindam Sarkar, University of Kalyani, India 121

plaintext is then encrypted using the GA based keystream/expanded keystream. Finally a

cascaded Exclusive-OR operation is performed between GA encrypted text and the CDHLP

based session key to generate final cipher text.

Receiver has same CDHLP synchronized session key. This session key is used to perform

first step of the deciphering technique. In the next step, GA guided keystream based

deciphering operation is performed to regenerate the plaintext.

The CDHLPSCT does not cause any storage overhead. This greatly handles the resource

constraints criteria of wireless communication. A comparison of proposed technique with

previously proposed technique in chapter 3, chapter 2, existing Tree Parity Machine (TPM),

Permutation Parity Machine (PPM), and industry accepted AES, RC4, Vernam Cipher,

Triple DES (TDES) and RSA have been done. Analyses of results are given in chapter 7.

In CDHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits which

is encrypted using GA generated fittest keystream. Chaos based DHLP synchronized session

key is used to further encrypt the GA encoded text to produce final cipher text. The algorithm

for the complete process is given in section 4.2.1.

4.2.1 CDHLPSCT Algorithm at Sender

Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

CDHLP guided Genetic Algorithm (GA) based encryption operations.

Step 1. Perform tuning of sender’s and receiver’s CDHLP to generate

common secret session key.

Step 2. Generates GA based fittest encryption keystream.

Step 3. Perform GA based encryption operation on the plaintext.

Step 4. Perform cascaded Exclusive-OR operation between CDHLP based

session key and outcomes of step 3.

Step 1 of the algorithm generate common session key through synchronization of CDHLP at

both end. The detailed step is discussed in section 4.2.1.1. Step 2 of the algorithm generates

GA based fittest encryption keystream. The detailed description of the process is given in

 Arindam Sarkar, University of Kalyani, India 122

section 4.2.1.2. Algorithm for performing GA based encryption operation (step 3) on the

plaintext is discussed in 4.2.1.3. The technique of cascading encryption process (step 4)

which takes the intermediate output generated in step 3 is given in details in section 4.2.1.4.

4.2.1.1 Chaos based Double Hidden Layer Perceptron (CDHLP) Synchronization and

Session Key Generation

A novel Chaos based scheme is introduce to generate identical seed values at the both sender

and receiver end at the initial phase. There are several authentication methods, differentiated

mainly by the use of secret-keys or public-keys. CDHLPSCT performs secret keys

authentication where both entities must have a common secret code. Here, two secret codes

are used, called 𝑅𝑆𝐶 (Receiver Secret Code) and 𝑆𝑆𝐶 (Sender Secret Code) which are known

to both parties. This codes are used to examine whether the authenticate parties are involved

in synchronization or not. The CDHLP synchronization technique use the already discussed

architecture and parameters of DHLP synchronization technique of chapter 3 with some

additional parameters for chaos synchronization.

Common seed has been generated by synchronization of two chaotic systems using Pecora

and Caroll (PC) method
[204]

. In this technique tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2) are

being exchanged between sender and receiver for synchronization purpose. Some of the

parameter which takes major roles to form the seed does not get transmitted via public

channel, sender keeps these parameters secret. This way of handling parameter passing

mechanism prevents any kind of attacks during exchange of parameters like sniffing,

spoofing, phishing, or Man-In-The-Middle (MITM) attack.In this technique PC method is

applied on the Edward Lorenz chaotic system
[205]

 to describe three equations 4.1, 4.2 and 4.3

to form two secure sub systems i.e. initiator (sender) and responder (receiver).

 𝑥 = 𝜎 𝑥 − 𝑦 (4.1)

 𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 (4.2)
 𝑧 = 𝑥𝑦 − 𝑏𝑧 (4.3)

The main objective of this technique is coordination of two chaotic systems. This is refers to

a method where two (or more) chaotic systems (either identical or non identical) regulate a

given property of their motion to a similar performance owing to a pairing or to a forcing

 Arindam Sarkar, University of Kalyani, India 123

(periodical or noisy). Proposed technique use the PC method to assume a dynamical system

characterized by the state space equation 4.4.

 𝑥 = 𝑓 𝑥 (4.4)

Where 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 the system vector and 𝑓 is an arbitrary mapping. Further system is

decomposed into two following sub system represented by equation 4.5 and 4.6.

 𝑢
 = 𝑓 𝑢 , 𝑣

𝑣 = 𝑔 𝑢 , 𝑣
 𝑑𝑟𝑖𝑣𝑒𝑟 (4.5)

 𝑤 = 𝑢 , 𝑤 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (4.6)

Driver signal 𝑢 (𝑡) is drives the response system. Using Lyapunov exponents of the response

system along with consideration that the action of the driver is negative, Chaotic

synchronization can be possible between these driver and response system. From the

following equations two secure sub systems i.e. initiator and responder respectively can be

defined by applying the PC method on the Lorenz system. The initiator (sender) (𝑥1 , 𝑧1),

can be defined by equations 4.7 and 4.8.

 𝑥1 = 𝜎(𝑥1 − 𝑦) (4.7)

 𝑧1 = 𝑥1𝑦 − 𝑏𝑧1 (4.8)

The responder (receiver) (𝑦2 , 𝑧2) can be defined by equations 4.9 and 4.10.

 𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2 (4.9)

 𝑧2 = 𝑥𝑦2 − 𝑏𝑧2 (4.10)

From the above two equations 4.9 and 4.10 it can be observed that the Lyapunov exponents

of the system are both negative. The sender and receiver response subsystems are driven by

the signal 𝑦(𝑡) and 𝑥(𝑡). When 𝑡 trends to infinity value of 𝑧2 − 𝑧1 trends to zero. After

synchronization of both the system a common value of both the system is obtained.

Figure 4.1 shows that in this technique at first sender initialize the value of 𝜎 and 𝑏, after that

value of 𝑏 is send to the receiver. Receiver initializes the value of 𝑟 and send to the sender.

Sender initially generates random value for the point 𝑥1 and 𝑧1. Sender sends 𝑥1 to receiver.

Receiver initially generates random value for the point 𝑦2, 𝑧2 and sends to the sender. So,

receiver receives the value of 𝑏 and 𝑥1 from the sender and sender receives 𝑦2, 𝑧2, from the

receiver.

 Arindam Sarkar, University of Kalyani, India 124

Figure 4.1: Exchange of values between sender and receiver at the initial state

Receiver calculates the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and 𝑏 and 𝑥1 (received from

sender) using the equation 4.11 and 4.12 and returns the value of 𝑦2 and 𝑧2 to the sender. In

the equation 4.11the value of 𝑥 = 𝑥1 (current value received form sender).

 𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2 (4.11)

 𝑧2 = 𝑥𝑦2 − 𝑏𝑧2 (4.12)

Sender calculates the new value of 𝑥1 and 𝑧1 with the help of receives value 𝑦2 from the

receiver and own generated values 𝜎 and 𝑏 using the equation 4.13 and 4.14 and sends the

value of new 𝑥1 to the receiver and so on. In equation 4.13 and 4.14 𝑦 = 𝑦2(current value

received from receiver)

 𝑥1 = 𝜎 𝑥1 − 𝑦 (4.13)

 𝑧1 = 𝑥1𝑦 − 𝑏𝑧1 (4.14)

The figure 4.2 shows the exchange of updated parameters.

Figure 4.2: Exchange of updated values of the parameters 𝑥1 , 𝑦2 and 𝑧2

𝑟, 𝑦2, 𝑧2 transmitted to the sender

𝑏 , 𝑥1 transmitted to the receiver

Sender

initially

generates

random value

of 𝜎,𝑏, 𝑥1 and

𝑧1

Receiver

initially

generates

random value

of 𝑟, 𝑦2 and 𝑧2

𝑦2 , 𝑧2 transmitted to the sender

𝑥1 transmitted to the receiver

Sender

Calculates

𝑥1 and 𝑧1

Receiver

Calculates

𝑦2 and 𝑧2

 Arindam Sarkar, University of Kalyani, India 125

After predefined amount of exchange of parameters sender generates a nonce which is a

random number. This nonce gets encrypted using a symmetric cipher with 𝑧1 as the key and

sends the results of the encryption using equation 4.15.

 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒 (4.15)

The receiver receives 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 from sender. Then decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key

and performs a defined function 𝑓() on it using equations 4.16and 4.17 respectively.

 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒

 (4.16)

 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 (4.17)

The receiver encrypts the result of the previous step using 𝑧2 as the key and sends the result

to the sender using equation 4.18.

 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 (4.18)

Figure 4.3 shows the exchange of 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒.

Figure 4.3: Exchange of 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

Sender receives the message 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 from receiver and tries to decrypts this message

using 𝑧1 as the key and also performs the inverse of the pre-defined function 𝑓() and checks

if the original nonce is obtained or not using equation 4.19.

 𝑁𝑜𝑛𝑐𝑒 = 𝑓−1 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 (4.19)

If the original „Nonce‟ is generated it can be concluded that both chaotic system has the same

value of z i.e. z1 = z2 on which they get synchronized. Then z1 is used as a secret seed for

generation of identical input vector for sender and receiver. Otherwise if original Nonce not

𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 transmitted to the sender

𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 transmitted to the receiver

Sender

generates

nonce and

encrypted using

𝑧1

Receiver

decrypt

𝐸𝑛_𝑁𝑜𝑛𝑐𝑒

using 𝑧2 and

performs a

defined

function 𝑓()

on it and

encrypt using

𝑧2

 Arindam Sarkar, University of Kalyani, India 126

get obtained then again some predefined amount of message get exchanged between sender

and receiver for chaos synchronization.

Two CDHLPs start with chaos synchronized secret seed value generated identical input

vector and anonymous random weight vector. CDHLPs compute their final output based on

input and weight vector, and communicate to each other. If both are in agreement, their

weights are updated using appropriate learning rules. Within finite number of steps both

CDHLPs is synchronized and as a results weight vector of both CDHLPs become identical.

This indistinguishable weight vector forms the session key for a particular session.

However, only the process of generating keys does not guarantee the information

security. Therefore, any attacker can also synchronize with an authorized device, because the

protocol is a public knowledge. Thus, to ensure that only entities authorized have access to

information is necessary authentication service. The function of the authentication service is

to ensure the recipient that the message is from the source that it claims. There are several

authentication methods, differentiated mainly by the use of secret-keys or public-keys.

Unlike encryption algorithms, in public-key authentication the user A send message

encrypted with A‟s private-key. The recipient of the message uses the public-key to verify

the message, thus ensuring that only the owner of the private-key could have encrypted the

message. On secret keys authentication both entities must have a common secret code. In this

proposed approach two secret codes are used, called 𝑅𝑆𝐶 (𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑆𝑒𝑐𝑟𝑒𝑡 𝐶𝑜𝑑𝑒)

and 𝑆𝑆𝐶 (𝑆𝑒𝑛𝑑𝑒𝑟 𝑆𝑒𝑐𝑟𝑒𝑡 𝐶𝑜𝑑𝑒), as shown in the figure 4.4.

 Arindam Sarkar, University of Kalyani, India 127

Figure 4.4: Exchange of authentication frame during session key certification phase

In the proposed technique CDHLPs start synchronization by exchanging some control

frames. The process involves message integrity and synchronization test. Proposed CDHLP

synchronization uses transmission of control frames at the time of three way handshaking

based TCP connection establishment phase, as given in table 4.1.

Table 4.1

Control frames of CDHLP synchronization
Frame Description

𝑆𝑌𝑁
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment

phase

𝐴𝐶𝐾_𝑆𝑌𝑁
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁

frame

𝑁𝐴𝐾_𝑆𝑌𝑁
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁

frame

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection

Sender‟s CDHLP Receiver‟s CDHLP

 𝑻 𝑺𝑺𝑪
𝑰𝑫 𝑹𝑺𝑪

𝑻 𝑺𝑺𝑪
 𝑹𝑺𝑪

𝑨𝑼𝑻𝑯(𝑬𝒏𝒄𝒓𝒚𝒑𝒕 (𝑺𝑺𝑪))

𝑨𝑼𝑻𝑯(𝑬𝒏𝒄𝒓𝒚𝒑𝒕 (𝑹𝑺𝑪))

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

 Arindam Sarkar, University of Kalyani, India 128

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a

timer and waits for a reply from the receiver. If the receiver does not take any action until a

certain time limit and number of attempts exceeded a certain value, the sender restarts the

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, it carry out the

integrity test. If the messages are received as sent (with no replication, incorporation,

alteration, reordering, or replay) the receiver will execute the synchronization check. The

sender and receiver have an identical 𝑇 variable formally store in their respective memory.

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256

bits weights to decrypt of the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the

networks are synchronized. This is the best case solution where sender and receiver

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial

stage. The receiver should send the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to alert the sender. But most of the time

this best case is may not achievable. If decryption algorithm does not produce predictable

result, the receiver should use the secret seed of senders to produce the input vector (𝑋)

which is identical to sender. With this input vector the receiver will work out its

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟). If the receiver‟s and sender‟s outputs are different, the receiver should

not fine-tune its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁

frame to notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this

technique is used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁 frame.

If receiver‟s output is equal to sender‟s output i.e. (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏𝑆𝑒𝑛𝑑𝑒𝑟) then receiver update

it weights. At the end of weights update, the receiver should report the sender that outputs are

equal. The receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same 𝐼𝐷 value

received from sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this technique is used for providing

the positive acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the

sender also updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. The

sender will create new synchronization frame until receive the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame from

receiver. When the sender receives the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame, it stops the further synchronization.

The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this technique is used for closing the connection. At end of

synchronization, both networks provide the identical weight vector which acts as a session

 Arindam Sarkar, University of Kalyani, India 129

key identical to both ends. The figure 4.5 shows the exchange of frames during CDHLP

synchronization process.

Figure 4.5: Exchange of control frames between sender and receiver during CDHLP

Synchronization

Table 4.2 shows the different frames and their corresponding Command Codes

Table 4.2

CDHLP control frames and their command codes
Frame Command

𝑆𝑌𝑁 0000

𝐹𝐼𝑁_𝑆𝑌𝑁 0001

𝐴𝐶𝐾_𝑆𝑌𝑁 0010

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011

𝐴𝑈𝑇𝐻 0100

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111

The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the

sender sends a synchronization frame. The detailed frame format of 𝑆𝑌𝑁 frame is discussed

Sender‟s DHLP

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

Receiver‟s CDHLP

𝐹𝐼𝑁_𝑆𝑌𝑁

𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟

 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇))

𝐴𝐶𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝑁𝐴𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

 Arindam Sarkar, University of Kalyani, India 130

in section 4.2.1.1.1. The detailed frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section

4.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame has been discussed in section 4.2.1.1.3. The

frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 4.2.1.1.4.

4.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in

connection establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has the fixed

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, five different fields like 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒 needs four bits.

𝑆𝑌𝑁 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶 needs eight bits, one

bits, 128 bits, sixteen bits respectively. When the receiver receive 𝑆𝑌𝑁 frame, the receiver

should carry out integrity test. Receiver performs Integrity test on receiving the 𝑆𝑌𝑁 frame.

If the messages are received as sent (with no replication, incorporation, alteration, reordering,

or replay) the receiver will execute the synchronization test. In synchronization test receiver

utilize its 128 first weights as key for decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that is received

from the sender. This received value is decrypted in the receiver end. After decryption

operation if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are

synchronized. Figure 4.6 shows the complete frame format of 𝑆𝑌𝑁 frame.

 4 8 1 128 16 (𝑏𝑖𝑡𝑠)

Figure 4.6: Synchronization (𝑆𝑌𝑁) frame

𝐶𝑜𝑚𝑚𝑎𝑛𝑑
 𝐶𝑜𝑑𝑒
0000

𝑆𝑌𝑁 𝐼𝐷 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦
𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 131

4.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶

needs sixteen bits for error checking purpose. Now check the condition i.e. If

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑

received from sender to produce the receiver input vector (𝑋) identical to sender input

vector(𝑋) and calculates the output 𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏𝑆𝑒𝑛𝑑𝑒𝑟) then receiver should

update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using learning rule. At end of

weight updation of the receiver, then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the

sender for updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights.

Figure 4.7 shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 4.7: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame

4.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏𝑆𝑒𝑛𝑑𝑒𝑟) then the receiver

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver and sender outputs are

different, the receiver should not fine-tune its weights and inform the sender. The receiver

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure 4.8 shows

the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0010

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 132

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 4.8: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame

4.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four

bits. The 𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose.

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

Receiver sends the FIN_SYN frame to the sender. Figure 4.9 shows the complete frame

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 4.9: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame

 The CDHLP synchronization algorithm for generating synchronized session key is discussed

in section 4.2.1.1.5. Section 4.2.1.1.6 presents the computational complexity of the CDHLP

synchronization algorithm and CDHLP learning is discussed in section 4.2.1.1.7.

4.2.1.1 CDHLP Synchronization

Sender and receiver initially start Chaos synchronization between them to construct a

common seed value at both ends. This Chaos synchronized identical seed value is used to

generate the identical input vector at sender and receiver. Two CDHLPs start with Chaos

synchronized common seed value generated identical input vector and anonymous random

weight vector. In each time both CDHLPs compute their final output based on input and

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0011

𝑆𝑌𝑁_𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0001

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 133

weight vector, and communicate to each other. If both are be in agreement on the mapping

between the present input and the output, their weights are updated according to an

appropriate learning rule. In the case of discrete weight values this process leads to full

synchronization in a finite number of steps. After synchronization procedure weight vector of

both CDHLPs become identical. These indistinguishable weight vector forms the session key

for a particular session.

Input : Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2), random weights

Output : Sender’s and receiver’s synchronized CDHLP along with synchronized session key

Method : Sender’s and receiver’s CDHLPs both are be in agreement on the mapping

between the present input and the output, their weights are updated according to

an appropriate learning rule. After synchronization procedure weight vector of

both CDHLPs become identical. These indistinguishable weight vector forms the

session key for a particular session.

Step 1. Sender initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to

the receiver.

Step 2. Receiver initializes the value of 𝑟.

Step 3. Sender generates the point 𝑥1 and 𝑧1.

Step 4. Receiver generates the point 𝑦2and 𝑧2.

Step 5. Sender sends 𝑥1 to receiver and receiver sends 𝑦2 and 𝑧2 to sender.

Step 6. Receiver calculates the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and

𝑏 using the equations 4.20 and 4.21 then returns the value of 𝑦2 and

 𝑧2 to the sender.

 𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2 (4.20)

 𝑧2 = 𝑥𝑦2 − 𝑏𝑧2 (4.21)

Step 7. Sender calculates the value of 𝑥1 and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏

using equations 4.22 and 4.23 then sends the value of 𝑥1 to the

receiver and so on.

 𝑥1 = 𝜎 𝑥1 − 𝑦2 (4.22)

 𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1 (4.23)

 Arindam Sarkar, University of Kalyani, India 134

Step 8. Sender generates a nonce. This nonce gets encrypted using a

symmetric cipher with 𝑧1 as the key and sends the results of the

encryption using equation 4.24.

 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒 (4.24)

Step 9. The receiver decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key, performs a

defined function on it using equation 4.25 and 4.26.

 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒

 (4.25)

 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒
 (4.26)

Step 10. The receiver encrypts the result of the previous step using 𝑧2 as the key

and sends the result to the sender illustrated in equation 4.27.

 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 (4.27)

Step 11. The sender decrypts this message using 𝑧1 as the key, performs the

inverse of the pre-defined function and checks if the original nonce is

obtained as shown in equation 4.28.

 𝑁𝑜𝑛𝑐𝑒 = 𝑓−1 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 (4.28)

Step 12. If synchronization is not achieved, the process is repeated from step 5.

Step 13. If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1 is used as a seed for

a pseudo random number generator to generate identical

input vector(𝑋) at both end.

Step 14. Initialization of synaptic links between input layer and first hidden

layer and between first hidden layer and second hidden layer using

random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .

 Repeat step 15 to step 24 until the full synchronization is achieved,

Step 15. The input vector(𝑋) is generated both end using Chaos synchronized

seed value.

Step 16. Computes the values of hidden neurons by the weighted sum over the

current input values. Each hidden neurons in first hidden layer

produces 𝜎1
i values and each hidden neuron in second hidden layer

produces 𝜎2
p values.

 Arindam Sarkar, University of Kalyani, India 135

 These can be represented using equation 4.29 and 4.30.

 𝜎1
i = 𝑠𝑔𝑛 𝐾1

𝑖=1 𝑁
𝑗=1 𝑊𝑖 ,𝑗 𝑋𝑖,𝑗

(4.29)

 𝜎2
p = 𝑠𝑔𝑛 𝐾2

𝑝=1 𝑊𝑝 ,𝑖
𝐾1
𝑖=1 𝜎𝑖

1
(4.30)

 𝑠𝑔𝑛(𝑥) is a function represents in equation 4.31, which returns the

value −1, 0 𝑜𝑟 1:

 𝑠𝑔𝑛(𝑥) =

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

(4.31)

If the weighted sum over its inputs is negative then set 𝜎𝑖 = −1.

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0.

Step 17. Compute the value of the final output neuron by computing

multiplication of all values produced by 𝐾2 no. hidden neurons using

the equation 4.32.

 τ = 𝜎𝑝
2𝐾2

𝑝=1
(4.32)

Step 18. Sender utilizes its 128 first weights as key for encryption of 𝑇 variable

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Step 19. Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually

comprises of several fields 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, Sender

output(𝜏𝑆𝑒𝑛𝑑𝑒𝑟),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶 (Cyclic

Redundancy Checker).

Step 20. Receiver performs Integrity test after receiving the SYN frame and

then Receiver utilize its 128 first weights as key for decryption of

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from the sender.

Step 21. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then

networks are synchronized. Go to step 25.

 Arindam Sarkar, University of Kalyani, India 136

Step 22. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇then

receiver use the chaos synchronized secret seed to produce the

receiver input vector(𝑋) identical to sender input vector(𝑋) and

calculates the output 𝜏Receiver
 using step 16 and step 17.

Step 23. If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏𝑆𝑒𝑛𝑑𝑒𝑟) then performs the following steps

Step 23.1 Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules discussed

in chapter 1 section 1.8.

Step 23.2 At end of receiver’s weights updation, the receiver sends

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights

using step 23.1.

Step 23.3 Sender transmits

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇) to receiver.

Step 23.4 Receivers checks

 if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇

 then networks are synchronized. Go to step 25.

Step 23.5 Perform the following checking

 if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖 𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇

 then networks are still not synchronized. Go to step 23.1.

Step 24. If (𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ≠ 𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟) then the receiver sends the message

𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. Go to step 15.

Step 25. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to

finish the synchronization phase.

4.2.1.2 Complexity Analysis

In CDHLP synchronization algorithm initialization of the value of 𝜎 and 𝑏 takes unit amount

of computation at sender. Receiver initialization of the value of 𝑟 also takes unit amount of

computation. Generation of the point 𝑥1 and 𝑧1 needs unit amount of computation.

Generation of the point 𝑦2 and 𝑧2 requires unit amount of computation. Receiver calculates

the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and 𝑏. This step also takes unit amount of

 Arindam Sarkar, University of Kalyani, India 137

computation. Sender calculates the value of 𝑥1 and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏. This step

also takes unit amount of computation. Sender generates a nonce having a random value.

This nonce is encrypted using a symmetric cipher with 𝑧1 as the key and sends the results of

the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The receiver

decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key. It also takes 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 amount of

computation. The receiver encrypts the result of the previous step using 𝑧2 as the key. It

takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The sender decrypts this message using 𝑧1

as the key, performs the inverse of the pre-defined function and checks if the original nonce

is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. Initialization of

weight vector takes (𝑁 × 𝐾1 + 𝐾1 × 𝐾2) amount of computations. For example, if 𝑁 =

2, 𝐾1 = 4, 𝐾2 = 2 then total numbers of synaptic links (weights) are (2 × 4 + 4 × 2) = 16.

So, it takes 16 amount of computations. Generation of 𝑁 number of input vector for each 𝐾1

number of hidden neurons takes (𝑁 × 𝐾1) amount of computations. Computation of the

hidden neuron outputs takes 𝐾1 + 𝐾2 amount of computations. Where 𝐾1 and 𝐾2 are the

number of hidden units in first and second layer respectively. Computation of final output

value takes unit amount of computation because it needs only a single operation to compute

the value. Encryption of 𝑇 using Exclusive-OR operation also takes unit amount of

computation. Decryption of 𝑇 using Exclusive-OR operation also takes unit amount of

computation. Checking 𝑖𝑓 (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 or not

takes unit amount of computation. Weight updating procedure takes place where

𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules which

takes 𝑂 𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 amount of computations.

In best case of DHLP synchronization algorithm, sender’s and receiver’s arbitrarily

chosen weight vectors are identical. So, networks are synchronized at initial stage do not

needs to update the weight using learning rule. Here, 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑁 × 𝐾1 + 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾1 + 𝐾2 amount

of computation is needed in best case which is in form of

O Generation of common seed value + initialization of input vector +

initialization of weight vector + Computation of the hidden neuron outputs .

 Arindam Sarkar, University of Kalyani, India 138

If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in each

iteration the weight vectors of the hidden unit which has a value equivalent to the

pereceptron output are updated according to the learning rule. This scenario leads to average

and worst case situation where 𝐼 number of iteration to be performed to generate the identical

weight vectors at both ends. So, the total computation for the average and worst case is

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑁 × 𝐾1 +

 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾1 + 𝐾2 + 𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

)

This is can be expressed as O Time complexity in first iteration + (No. of iteration ×

No. of weight updation) .

4.2.1.3 CDHLP Learning Mechanism

If the output bits are different for sender (A) and receiver (B) i.e. 𝜏𝐴 ≠ 𝜏𝐵, nothing get

changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be

updated. The weight vector of this hidden unit is adjusted using any of the learning rules

discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes less synchronization

steps than other two learning rules in the range of 2 − 4 − 2 − 5 (𝑁 − 𝐾1 − 𝐾2 − 𝐿) to

2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian rule takes more steps to synchronize

than other two learning rules. Here, Anti-Hebbian rules takes less time than the other two

learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 − 2 − 30. Random Walk outperform

from 2 − 4 − 2 − 35 and beyond that. The most vital findings is that if the synaptic depth

i.e. weight range (𝐿) is increased, the complexity of a successful attack grows exponentially,

but there is only a polynomial increase of the effort needed to generate a key. So, increasing

the 𝐿 value security of the system can be increased.

 Arindam Sarkar, University of Kalyani, India 139

4.2.1.2 Genetic Algorithm (GA) guided Fittest Keystream Generation

A Genetic Algorithm (GA) guided approach is used to construct the keystream for

encryption/decryption. Instead of this technique any other light weight encryption/decryption

technique also may use for exchanging message between sender and receiver.

Ordinary version of GA suffers from many troubles such as getting stuck in a local minimum

and parameters dependence. In the proposed encryption/decryption keystream generation self

acclimatize GA approach some useful improvements have been proposed to enhance the

performance of the simple GA, by dynamically adjusts selected control parameters, such as

population size and genetic operation rates, during the course of evolving a problem solution.

That is because, one of the main problems related to GA is to find the optimal control

parameter values that it uses, when a poor parameter setting is made for an evolutionary

computation algorithm, the performance of the algorithm will be seriously degraded. Thus,

different values may be necessary during the course of a run. A widely practiced approach to

identify a good set of parameters for a problem is through experimentation. For these

reasons, proposed technique offers the most appropriate exploration and exploitation

behavior. Following sub sections discussed about methodology used in self acclimatize GA

based encryption/decryption keystream generation.

The LFSR (Linear Feedback Shift Register) based generator is used to generate the

chromosomes (solution) in self acclimatize GA. The operator used in this work is presented

in table 4.3.

Table 4.3

Operator‟s format and their meaning
Operator Format Meaning

| |𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝑂𝑅

& &𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝐴𝑁𝐷

^ ^𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 − 𝑂𝑅

𝑋 𝐶𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 ‘𝑎’ … 𝑝’ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 0. .15

𝑆𝑅 𝑆𝑅𝑥 𝑆𝑖𝑓𝑡 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑠 𝑆𝑅 𝑎𝑛𝑑 𝑥 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

Each chromosome that represents candidate keystream generators is strings of characters

which are represented using prefix notation. These syntactic rules should be preserved during

the generation of the initial population. The initial states and feedback functions of the shift

registers are represented as strings of the letters ‘𝑎’ … ’𝑝’. These letters represent the

 Arindam Sarkar, University of Kalyani, India 140

numbers 0. . .15. Thus, each letter is a sequence of four bits. So, from this (16 × 8)=128 bit

keystream get generated. The length of a LFSR is determined by the number of letters which

are initially generated randomly. The number of these letters must be even, because half of

them for the initial state, and the second half for the feedback function. For example, if the

number of these letters is eight, then four letters are used for the feedback function, thus, the

length of LFSR is 16 bits (4 × 4). Furthermore, the first zeros of the feedback function are

ignored.

For example, consider the LFSR “𝑆𝑅 𝑚𝑒𝑖𝑝” So, binary representation of the

LFSR “SR meip” will be 1100 0100 1000 1111. Here 1100 0100 (𝑚𝑒) is used for the initial

state and rest half i.e. 1000 1111 (𝑖𝑝) is used for the feedback function. Representation of „𝑖‟

is number (8)10 = (1000)2 then the first three zeros are ignored. Now, here length of 1111

(𝑝) is four bits and length of 1000 (i) is 1bit after ignoring first three zeros from LSB. So, the

length of this LFSR will be five bits (4 + 1) = 5. The following are examples of the

chromosomes:

Chromosome 1: 𝑆𝑅𝑎𝑖𝑗

Chromosome 2: ∧ 𝑆𝑅𝑚𝑐𝑝𝑆𝑅𝑛𝑐𝑜𝑒

Chromosome 3: 𝑆𝑅𝑎𝑗𝑓𝑙𝑝𝑑𝑚𝑜𝑏𝑒𝑛𝑘𝑎

Chromosome 4: |&𝑆𝑅𝑎𝑗 ∧ 𝑆𝑅𝑓&|𝑆𝑅𝑔𝑙𝑛𝑐 ∧ 𝑆𝑅𝑏𝑎𝑐𝑓𝑆𝑅𝑝𝑜𝑆𝑅𝑙𝑛

The fitness value is a measurement of the goodness of the keystream (individual), and it is

used to control the application of the operations that modify a population. There are a number

of metrics used to analyze keystream, which are keystream randomness, linear complexity

and correlation immunity. Therefore, these metrics should be taken in account in designing

keystream (individual), and they are in general hard to be achieved. Three factors are

considered in the fitness evaluation of the keystream (individual) which are:

a. Randomness of the generated keystream (individual)

b. Keystream (individual) period length

c. Keystream (individual) length

a. Randomness of the generated keystream (individual) - The purpose of evaluation of

randomness is to determine whether that number of ones and zeros in a sequence are

approximately the same as would be expected for a truly random sequence. The test

 Arindam Sarkar, University of Kalyani, India 141

assesses the closeness of the fraction of ones to ½, that is, the number of ones and zeroes

in a sequence should be about the same. The equation 4.33 is used for the evaluation of

keystream randomness using the frequency and serial tests, in which, 𝑛𝑤 is the frequency

of 𝑤 in the generated binary sequence.

 𝑓1 = 𝑛0 − 𝑛1 + 𝑛00 −
𝑆𝑍

4
 + 𝑛01 −

𝑆𝑍

4
 + 𝑛10 −

𝑆𝑍

4
 + 𝑛11 −

𝑆𝑍

4
 (4.33)

Fitness 𝑓1 calculates the frequency of the bits. This function is derived from the fact that

in the random sequence, Probability (no) = Probability (n1) which checks frequency of

0 and 1 in a binary string and Probability (n01) = Probability (n11) = Probability (n10) =

Probability (n00) which checks the probability of occurrence of the pattern 00, 01, 10 and

11 in a binary string.

b. Keystream (individual) period length - The focus of keystream (individual) period length

evaluation is to determine the total number of zero and one runs in the entire sequence,

where a run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a

run consists of exactly 𝑘 identical bits and is bounded before and after with a bit of the

opposite value. The purpose of this evaluation is to determine whether the number of runs

of ones and zeros of various lengths is as expected for a random sequence. In particular,

this test determines whether the oscillation between such substrings is too fast or too

slow.
1

2𝑖 × 𝑛𝑟 of the runs in the sequence are of length 𝑖, where 𝑛𝑟 is the number of runs

in the sequence. Thus, the following equation 4.34 represents the period length.

 𝑓2 =
1

2𝑖
× 𝑛𝑟 − 𝑛𝑖

𝑀
𝑖=1

(4.34)

Where 𝑀 is maximum run length, and 𝑛𝑖 is the desired number of runs of length 𝑖.

c. Keystream (individual) length - Another factor is considered in the evaluation of the

fitness value which is the size of the candidate keystream (length of the individual).

Thus, the fitness function used to evaluate the chromosome 𝑥 is given in equation 4.35,

where 𝑤𝑒𝑖𝑔𝑡 is a constant and 𝑠𝑧 is the key stream period length:

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 =
𝑆𝑍

1+𝑓1+𝑓2
+

𝑤𝑒𝑖𝑔 𝑡

𝑙𝑒𝑛𝑔𝑡 (𝑥)
 (4.35)

 Arindam Sarkar, University of Kalyani, India 142

More copies to good strings and fewer copies to bad string get selected using Roulette wheel

selection. In this proportional selection scheme number of copies taken to be directly

proportional to its fitness. It mimics the natural selection procedure to some extent. The

selection strategy, used to select chromosomes for the genetic operations, is the roulette

selection. The old population is completely replaced by the new population which is

generated from the old population by applying the genetic operations.

Crossover operation performs exchange of genetic information. It takes place between

randomly selected parent chromosomes. In this scheme uniform crossover is performed with

probability 0.6 to 0.9. Before applying the crossover operation chromosomes are converterd

into binary representation. Figure 4.10 shows the uniform crossover operation having binary

chromosome length of eight.

Figure 4.10: Uniform Crossover operation

Mutation operation is a random alternation in the genetic structure. It introduces genetic

diversity into the population. performs exchange of genetic information. It takes place

between randomly selected parent chromosomes. In this scheme mutation is performed with

probability 0.001 to 0.01. Figure 4.11 shows the mutation operation having chromosome

length eight.

Parent Chromosomes:

Offspring Chromosomes:

Crossover Mask:

 Arindam Sarkar, University of Kalyani, India 143

Figure 4.11: Mutation operation

The goals of GA with adaptive probabilities of crossover and mutation are to maintain the

genetic diversity in the population and prevent the GAs to converge prematurely to local

minima. Crossover rate and Mutation rate get modified using the equation 4.36 , 4.37, 4.38

and 4.39.

𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≥ max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 𝑡𝑒𝑛

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 −
 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 − 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏2 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(4.36)

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 −
 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 − 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏2 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠

 max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(4.37)

𝑒𝑙𝑠𝑒

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 (4.38)

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 (4.39)

Where max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the highest fitness value in the population. 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the

average fitness value in every population. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is higher fitness value between two

individuals. 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 = 1.0, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏2 = 0.7 and 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 =

0.2, and 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 = 0.01. The parameters used in this work were set based on the

experimental results, the parameter value that show the highest performance was chosen to

be used in the implementation of the algorithm. Population size is usually fixed in this

experiment. String length also usually fixed and a probability of crossover is kept high and a

Parent Chromosome:

Mutated Chromosome:

 Arindam Sarkar, University of Kalyani, India 144

probability of mutation is kept low. The maximum chromosome length is 300 characters.

The run of GA is stopped after a fixed number of generations. The solution is the best

chromosome of the final generation. Thus, the genetic operations used to update the

population are uniform crossover with probability 𝑝𝑐 (probability of crossover) = 0.6 𝑡𝑜 0.9

and mutation with probability 𝑝𝑚 (probability of mutation) = .001 𝑡𝑜 0.1. The probability of

the function 𝑆𝑅 is 0.5, and all other function are of probability 0.5. Finally, the maximum

LFSR length is 20 bits. The run of this proposed algorithm is stopped after a fixed number of

iterations depend on resource available in wireless communication. The solution is the best

keystream (chromosome) of the final iteration. The figure 4.12 shows the flowchart of GA

based keystream generation and section 4.2.1.2.1 presents the complete

encryption/decryption keystream generation algorithm.

 Arindam Sarkar, University of Kalyani, India 145

Figure 4.12: Flow chart of GA based keystream generation

Generate Initial Population

Perform Fitness Calculation

Select keystream size

Start

No

Yes

Yes No

Is fitness (new

generation)> fitness

(old generation) ?

Is Current generation

<= Maximum generation?

Perform Single Point Crossover and dynamically adjust

the Crossover Probability

Perform Mutation and dynamically adjust the Mutation

probability

 Perform Fitness Calculation

Current population = New Population

Stop

Return fittest

Chromosome of final

generation size

 Arindam Sarkar, University of Kalyani, India 146

4.2.1.2.1 Genetic Algorithm based Fittest Keystream Generation Algorithm

GA based encryption/decryption keystream generation algorithm takes length of the

keystream and maximum number of iterations as an input. After the final number of iteration

algorithm generates the fittest keystream as an output. The maximum number of iterations

depends on the resource available in wireless communication.

Input : Length of the keystream, Maximum number of iteration

Output : Genetic Algorithm based best fittest keystream (chromosome) at the final iteration

Method : The process performs Genetic Algorithm procedure on set of keystream and

finally produces best fittest keystream. .

Step 1. Generate the initial population (pop) randomly.

Step 2. Evaluate the Population.

Step 3. Perform the following steps until maximum number of generation

reach.

Step 3. 1. Generate a new population (pop1) by applying crossover

and mutation and self acclimatizing adjustment of the

population size, crossover and mutation probabilities

Step 3. 2. Evaluate the fitness of the new generated chromosomes of

pop1.

Step 3. 3. Calculate the averages of fitness values for pop and pop1,

av and av1 respectively.

Step 3. 4. 𝐼𝑓 (𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑜𝑙𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) then replace the old

population by the new one.

Step 4. Return the best chromosome of the final generation

The GA based fittest keystream is used to perform the encryption operation on the plaintext.

The detail step of GA based encryption process is given in section 4.2.1.3.

 Arindam Sarkar, University of Kalyani, India 147

4.2.1.3 Encryption Algorithm

Input : Source file/source stream i.e. plaintext

Output : Encrypted file/encrypted stream i.e. cipher text

Method : The process operates on binary stream and generates encrypted bit stream through

Genetic Algorithm (GA) based encryption.

Step 1. Perform Exclusive-OR with Genetic Algorithm (GA) generated

128/192/256 bits key and the plaintext to form intermediate cipher

text. If the size of the plaintext to be encrypted is larger than

128/192/256 bits then square edge extension based keystream

expansion strategy get perform to expand the GA based keystream and

then expanded keystream get Exclusive-OR with the plaintext for

forming the intermediate cipher text.

Step 2. Divide the outcomes of step 1 into variable blocks.

Step 3. For each block 𝑆 = 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 … 𝑠𝐿−1 of length 𝐿 bits, where

 𝐿 = 8 perform the following operation in a stepwise manner to

generate the target block 𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 … 𝑡𝐿−1 of the same length

(𝐿).

Step 3. 1. Corresponding to the each block 𝑆 = 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 … 𝑠𝐿−1,

evaluate the equivalent decimal integer, 𝐷𝐿.

Step 3. 2. Apply step 3.3 and step 3.4 exactly 𝐿 number of times, for

the values of the variable 𝑃 ranging from 0 to (𝐿 − 1)

increasing by 1 after each execution of the loop.

Step 3. 3. Apply modulo-2 operation on 𝐷𝐿−𝑃 to check if 𝐷𝐿−𝑃 is

even or odd.

Step 3. 4. If 𝐷𝐿−𝑃 is found to be even, compute 𝐷𝐿−𝑃−1 = 𝐷𝐿−𝑃/2 ,

where 𝐷𝐿−𝑃−1 is its position in the series of natural even

numbers. Assign 𝑡𝑃 = 0.

If 𝐷𝐿−𝑃is found to be odd, compute 𝐷𝐿−𝑃−1 = (𝐷𝐿−𝑃 +

1)/2, where 𝐷𝐿−𝑃−1 is its position in the series of natural

odd numbers. Assign 𝑡𝑃 = 1.

 Arindam Sarkar, University of Kalyani, India 148

Step 3. 5. With the values of all the 𝑡𝑃’s being available, 𝑝 ranging

from 0 to (𝐿 − 1), 𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 … 𝑡𝐿−1 constructs the

target block corresponding to 𝑆 = 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 … 𝑠𝐿−1.

Step 4. Merge all the encrypted blocks of step 3.

The detail of square edge based keystream expansion in step 1 is discussed in section

4.2.1.3.1. Step 2 of the algorithm is used to divide the outcomes of step 1 in variable blocks.

After that in step 3 a modulo-2 based even odd checking operation is performed on each

block. Finally, in step 4 all the encrypted blocks of previous step is merged together to

generate GA based encrypted text.

4.2.1.3.1 Square Edge Extension based Keystream Expansion Technique

If the size of the plaintext to be encrypted is larger than 128/192/256 bits then square edge

extension based key expansion strategy get perform to expand the keystream. Considers the

keystream as a stream of finite number of bits 𝑁, and is divided into a finite number of

blocks, each also containing a finite number of bits n, where 1 ≤ 𝑛 ≤ 𝑁.

Let 𝐾 = 𝑘0
0 𝑘1

0 𝑘2
0 𝑘3

0 𝑘4
0 … 𝑘𝑛−1

0 is a block of size n in the plaintext. Then the first

intermediate block 𝐼1 = 𝑘0
1 𝑘1

1 𝑘2
1 𝑘3

1 𝑘4
1 … 𝑘𝑛−1

1 can be generated from 𝐾 in the following

way:

 𝑘0
1 = 𝑘0

0 (4.40)

 𝑘𝑛−1
1 = 𝑘𝑛−1

0 (4.41)

 𝑘𝑖
1 = 𝑘𝑖−1

1 𝑘𝑖
0, 1 × 𝑖 × (𝑛 − 2); (4.42)

 stands for the Exclusive-OR operation. Now, in the same way, the second intermediate

block 𝐼2 = 𝑘0
2 𝑘1

2 𝑘2
2 𝑘3

2 𝑘4
2 … 𝑘𝑛−1

2 of the same size (𝑛) can be generated by:

 𝑘0
2 = 𝑘0

1 (4.43)

 𝑘𝑛−1
2 = 𝑘𝑛−1

1 (4.44)

 𝑘𝑖
2 = 𝑘𝑖−1

2 𝑘𝑖
1, 1 × 𝑖 × (𝑛 − 2); (4.45)

After this process continues for a finite number of iterations, which depends on the value of

𝑛, the source keystream block 𝑘 is regenerated.

 Arindam Sarkar, University of Kalyani, India 149

If the number of iterations required to regenerate the source block is assumed to be 𝐼, the

generation of any intermediate or the final block can be generalized as follows:

 𝑘0
𝑗

= 𝑘0
𝑗−1

 (4.46)

 𝑘𝑛−1
𝑗

= 𝑘𝑛−1
𝑗−1

 (4.47)

 𝑘𝑖
𝑗

= 𝑘𝑖−1
2 𝑘𝑖

𝑗−1
, 1 × 𝑖 × (𝑛 − 2); where 1 × 𝑗 × 𝐼. (4.48)

In this generalized formulation system, the final block, which in turn is the source keystream

block, is generated when 𝑗 = 𝐼.

Figure 4.13 shows the different color side, black side represents the original key, red and blue

side represents the left and right side of square.

Figure 4.13: Different color side, black side represents the original key, red and blue side

represents the left and right side of square

Any of the intermediate state is attached at the front and end of the original keystream. The

new expanded keystream shown in figure 4.14.

 1 1 1 0 1 1 0 0 1 0 0 0

 Left extended key Original key Right extended key

Figure 4.14: Expanded keystream

Bits of the left edge of the square (i.e. 1110) is generated at the front of the original key and

bits of the right edge of the square (i.e. 1000) is attached at the end. As per keystream

expansion strategy the new expand key will be three times longer than original one.

 Arindam Sarkar, University of Kalyani, India 150

4.2.1.4 Session Key based Encryption

During final step of the technique a cascaded Exclusive-OR operation between CDHLP

synchronized session key and GA encrypted cipher text is performed to generate final

encoded cipher text.

The decryption algorithm takes the cipher text as a binary stream of bits and perform first

level of operation using CDHLP generated synchronized session key to produce intermediate

decrypted text. Finally, GA generated fittest keystream based decryption is performed on the

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete

process is given in section 4.2.2.

4.2.2 CDHLPSCT Algorithm at Receiver

 Input : Encrypted file/encrypted stream i.e. cipher text

 Output : Source file/source stream i.e. plaintext

Method : The process operates on encrypted binary stream and generates decrypted bit

stream through Chaos based DHLP guided Genetic algorithm (GA) based

decryption operations.

Step 1. Perform cascaded Exclusive-OR operation between CDHLP based

session key and cipher text.

Step 2. Perform Genetic Algorithm (GA) based decryption on the outcomes of

the step 1 to regenerate starting combination i.e. plaintext.

Step 1 of the algorithm is discussed in section 4.2.2.1. Step 2 of the algorithm for performing

Genetic Algorithm based decryption is discussed in section 4.2.2.2.

 Arindam Sarkar, University of Kalyani, India 151

4.2.2.1 Session Key based Decryption

Initially cascaded Exclusive-OR operation between CDHLP synchronized session key and

cipher text is performed to produce session key decrypted text. Outcomes of this operation

used as an input of GA based decryption algorithm discussed in 4.2.2.2 to regenerate the

plaintext.

 In the decryption process the GA based cipher text is divided into blocks. Modulo-2

guided odd even based decryption is performed on each block. After that all blocks are

merged together. The GA generated keystream is use to Exclusive-OR with the merged

blocks to regenerate the plaintext. The detail step of GA based decryption process is given in

section 4.2.2.2.

4.2.2.2 GA based Decryption Algorithm

Input : GA encrypted file/ GA encrypted stream

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on GA encrypted bit stream and regenerates the plaintext

through GA based decryption.

Step 1. Divide the GA encrypted text into different blocks.

Step 2. Perform decryption operation on each block of step 1. For each block

𝑇 = 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 … 𝑡𝐿−1of length 𝐿 bits, the following scheme is

followed in a stepwise manner.

Step 2. 1. Set 𝑃 = 𝐿 – 1 and 𝑇 = 1.

Step 2. 2. Repeat step 3.3 and step 3.4 for the value of P ranging

from (𝐿 − 1) to 0.

Step 2. 3. If 𝑡𝑃 = 0, 𝑇 = 𝑇th
 even number in the series of natural

even numbers;

 If 𝑡𝑃 = 1, 𝑇 = 𝑇th
 odd number in the series of natural

even numbers.

Step 2. 4. Set 𝑃 = 𝑃 – 1.

 Arindam Sarkar, University of Kalyani, India 152

Step 2. 5. Convert 𝑇 into the corresponding stream of bits

𝑆 = 𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 … 𝑠𝐿−1.

Step 3. Merge outcomes of step 2.

Step 4. Check if the length of the GA based keystream is less than the length of

outcomes of step 3 then perform triangle edge based key expansion

method to enhance the length of the keystream. Otherwise, select the

128 bit fittest keystream for decryption.

Step 1. Finally, perform Exclusive-OR operation between outcomes of step 3

and GA generated fittest encryption keystream of same length to

produce the plaintext.

4.3 Implementation

Consider Initial population size as 200 and randomly generated each keystream having 128

bits. The population gets evaluated with the help of fitness function using generations

through a fitness technique which consist of number of statistical tests to examine whether

the pseudorandom number sequences are sufficiently random or not.

On receipt of fittest generation the proposed GA based key generation algorithm let generate

the best fittest keystream having length of 128 bits. Let the binary form of 128 bits GA

based keystream is

10011011/01011110/11001101/10010111/01010100/11010001/10101010/10110011/

01001010/01110001/01010101/10011100/11111001/01101110/11011111/00110101

Consider the plaintext to be encrypted is “Network Security”, binary representation of the

ASCII value of plaintext is

01001110/01100101/01110100/01110111/01101111/01110010/01101011/00100000/

01010011/01100101/01100011/01110101/01110010/01101001/01110100/01111001

Here “/” is used as the separator between successive bytes.

Perform Exclusive-OR operation between plaintext and GA based keystream. So, GA based

key stream encoded intermediate cipher text is

11010101/00111011/10111001/11100000/00111011/10100011/11000001/10010011/

 Arindam Sarkar, University of Kalyani, India 153

00011001/00010100/00110110/11101001/10001011/00000111/10101011/01001100

Divide the intermediate cipher text into different segments illustrate below. Here segment of

variable size has been chosen. Say, following are the different stream segments constructed

from S (level 1 encoded text):

S1 = 11010101001110111011100111100000 (32 bits)

S2 = 00111011101000111100000110010011 (32 bits)

S3 = 00011001000101000011011011101001 (32 bits)

S4 = 10001011000001111010101101001100 (32 bits)

For the segment S1, corresponding to which the decimal value is (3577461216)10, the process

of encryption is shown below:

3577461216 1788730608
0
 894365304

0
 447182652

0
 223591326

0

111795663
0
 55897832

1
 27948916

0
 13974458

0
 6987229

0
 3493615

1

1746808
1
 873404

0
 436702

0
 218351

0
 109176

1
 54588

0
 27294

0

13647
0
 6824

1
 3412

0
 1706

0
 853

0
427

1
 214

1
 107

0
 54

1
 27

0
14

1

7
0
 4

1
 2

0
 1

0
 1

1
.

So, T1 =000001000110001000100011010101001

For the segment S2, corresponding to which the decimal value is (1000587667)10, the process

of encryption is shown below:

1000587667 500293834
1
 250146917

0
 125073459

1
 62536730

1
 31268365

0

 15634183
1
 7817092

1
 3908546

0
 1954273

0
 977137

1
 488569

1
 244285

1

 122143
1
 61072

1
 30536

0
 15268

0
 7634

0
 3817

0
 1909

1
 955

1
 478

1

 239
0
120

1
 60

0
 30

0
 15

0
 8

1
 4

0
 2

0
 1

0
 1

1
.

So, T2 =1011011001111100001110100010001

For the segment S3, corresponding to which the decimal value is (420755177)10, the process

of encryption is shown below:

420755177 210377589
1
 105188795

1
 52594398

1
 26297199

0
 13148600

1

6574300
0
 3287150

0
 1643575

0
 821788

1
 410894

0
 205447

0
 102724

1

51362
0
 25681

0
 12841

1
 6420

1
 3210

0
 1605

0
 803

1
 402

1
 201

1
 101

1

51
1
 26

1
 13

0
 7

1
 4

1
 2

0
 1

0
 1

1
.

So, T3 =111010001001001100111111011001

 Arindam Sarkar, University of Kalyani, India 154

For the segment S4, corresponding to which the decimal value is (2332535628)10, the process

of encryption is shown below:

2332535628 1166267814
0
 583133907

0
 291566954

1
 145783477

0

72891738
0
 36445869

0
 18222935

1
 9111468

1
 4555734

0
 2277867

0

1138934
1
 569467

0
 284734

1
 142367

0
 71184

1
 35592

0
 17796

0
 8898

0

4449
0
 2225

1
 1113

1
 557

1
279

1
 140

1
 70

0
 35

0
 18

1
 9

0
 5

1
3

1

2
1
 1

0
 1

1
.

So, T4 =001000110010101000011111001011101

The following stream is constructed on merging segments T1, T2, T3 and T4.

00000010/00110001/00010001/10101010/01101101/10011111/00001110/10001000/

11110100/01001001/10011111/10110010/01000110/01010100/00111110/01011101

Let Chaos based Double Layer Perceptron (CDHLP) generated 128 bits following session

key is generated

11100011/01001100/11011101/01100110/01010011/11000010/10010101/11010110/

01101101/01011001/01101101/01100111/11010101/01011110/01001101/11101010

Session key encrypted final cipher text produce on performing Exclusive-OR operation

between merged segments T1, T2, T3 and T4and session key.

10100101/01101110/11101000/00101011/11100000/00100011/01000100/11001000/

10011001/00010000/11110010/11010101/10010011/00001010/01110011/10110111.

4.4 Security Analysis

The security of DHLP based technique proposed in chapter 3 has been enhanced in chapter 4

by introducing chaos synchronization and authentication step during synchronization to

prevent synchronization of unauthorized entity. In this section some of the attacks are

considered to check the immunity power of the proposed cryptographic technique against the

attack. In key exchange protocol the major threat is the attacker who resides in the middle of

the sender and receiver has access to all the messages exchanged by both synchronizing

parties, also he/she knows all about the protocol details. The following standard attacks are

considered to ensure the robustness of the proposed technique.

 Arindam Sarkar, University of Kalyani, India 155

 Attacks during synchronization attempts: In this type of attack, the attacker tries to

synchronize with the chaotic system by eavesdropping on all the messages exchanged by

sender and receiver. This type of attack will not work as the attacker does not know the

initial conditions of any of the 𝑧 components of any of the chaotic systems, and also the

parameters 𝑎 and 𝑟 are hidden too. By nature, the Lorenz system is very sensitive to

initial conditions meaning that the error between attacker and receiver is going to grow

exponentially if there is a very slight difference between their initial conditions. The main

difference between receiver and attacker is that the output of receiver (𝑦2) influences the

sender chaotic system and hence affects its output (𝑥1) resulting in a lack of

synchronization between sender and attacker.

 Attacks by solving the chaotic system differential equations: As the nature of chaotic

systems, the problem of solving the system of differential equations representing the

system is proven to be very hard. Numerical solution is of no use due to the

approximation nature of the numerical methods and the butter fly effect of chaotic

systems.

 Cipher text only Attack: This technique nullifies the success rate of this attack by

producing a completely random GA based encryption/decryption keystream. The strength

of resisting exhaustive key search attack relies on a large key space. Initially, GA based

large keystream is used to encrypt the plaintext after that, outcomes of this passes through

CDHLP guided encryption. So, cipher text produces by this proposed technique is

mathematically difficult to break. This method makes it difficult for the hacker to find out

the keystream used for encryption. Proposed methodology helps to generate long period

of random keystreams along with no obvious relationship between the individual bits of

the sequence. Also the generated keystreams are of large linear complex. Finally key

stream have high degrees of correlation immunity. Thus it is practically difficult to

perform a brute-force search in a key-space.

 Known Plaintext Attack: The technique offers better floating frequency of characters and

in GA based encryption technique cycle formation operation also enhance the security of

the technique. So, known plaintext attack is difficult in this proposed technique.

 Arindam Sarkar, University of Kalyani, India 156

 Chosen Plaintext Attack: Proposed technique passes the frequency (monobit) test, runs

test, binary matrix rank test and in each session a fresh CDHLP based session key is used

for encryption which confirms that chosen plaintext attack is very difficult in this

technique.

 Chosen Cipher text Only Attack: Proposed technique passes the discrete Fourier

transform test, approximate entropy test, overlapping (periodic) template matching test

which confirms that chosen plaintext attack is difficult in this technique.

 Brute Force Attack: In CDHLPSCT, security is improve by increasing the synaptic depth

𝐿 of the CDHLP. The security increases proportional to 𝐿2
 while the probability of a

successful attack decreases exponentially with 𝐿. The approach is thus regarded

computationally secure with respect to these attacks for sufficiently large 𝐿. For a brute

force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For

example, the configuration 𝐾1 = 3, 𝐾2 = 3, 𝐿 = 3 and 𝑁 = 100 gives (2 × 3 +

1)(3×100+3×3) key possibilities, making the attack difficult.

 Consider an attack where eavesdropper E just trains a third CDHLP with the examples

consisting of input vector 𝑌 and output bits 𝜏A
. These can be obtained easily by

intercepting the messages transmitted by the partners over the public channel. E‟s

CDHLP has the same structure as A‟s and B‟s and starts with random initial weights, too.

In each time step the attacker calculates the output of his/her CDHLP. Afterwards E uses

the same learning rule as the partners, but 𝜏E
 is replaced by 𝜏A

. Thus the update of the

weights is given by one of the following equations 4.49, 4.50 and 4.51:

 Hebbian learning rule: BAAE
i

A
ji

E
ji

E xwgw ji
,,, (4.49)

 Anti-Hebbian learning rule: BAAE
i

A
ji

E
ji

E xwgw ji
,,, (4.50)

 Random Walk learning rule: BAAE
iji

E
ji

E xwgw ji
,,, (4.51)

 Arindam Sarkar, University of Kalyani, India 157

So, E uses the internal representation (𝜎1, 𝜎2, . . . , 𝜎K) of his/her own network in order to

estimate A‟s, even if the total output is different. As 𝜏𝐴 ≠ 𝜏𝐸 indicates that there is at least

one hidden unit with 𝜎𝑖
𝐴 ≠ 𝜎𝑖

𝐸 , this is certainly not the best algorithm available for an

attacker.

 Consider an attack at the time of CDHLP synchronization process where the attacker (E)

can imitates one of the parties (A or B), but if attacker output disagrees with the imitated

party‟s output 𝜏𝐸 ≠ 𝜏𝐴, attacker certainly knows that either one or all hidden units are

mistaken. In order to get 𝜏𝐸 = 𝜏𝐴 attacker negates the sign of one of attacker‟s hidden

units. As 𝜎 = 𝑠𝑔𝑛 the unit most likely to be wrong is the one with the minimal ,

therefore that is the unit which is negate. This policy results a immense enhancement in

the attacker‟s achievement. It can be seen that the success rate is quite high for all 𝐿

values presented, but it drops exponentially as 𝐿 increases. On the other hand parties‟

synchronization time increases like 𝐿2
, and therefore it can be conclude that in the

boundary of large 𝐿 values the proposed technique is secure against the this attack.

4.5 Discussions

The technique is simple and easy to implement in various high level language. The test results

show that the performance and security provided by the CDHLPSCT is good and comparable

to standard technique. The security provided by the proposed technique is comparable with

other techniques. To enhance the security of the technique, CDHLPSCT offers chaos

synchronization between sender and receiver for generating identical seed value for

generating common input vector. During chaos synchronization some parameters which take

major roles for synchronization of two end never get transmit through private channel, which

confirms the security against MITM attack. Also the technique introduces an authentication

step which nullifies the possibility of synchronization of unauthorized entity and also prevents

MITM attack. Since the encryption and decryption times are much lower, so processing speed

is very high. Proposed method takes minimum amount of resources which is greatly handle

the resource constraints criteria of wireless communication. CDHLPSCT outperform than

existing TPM, PPM and method proposed in chapter 2 and chapter 3. No platform specific

optimizations were done in the actual implementation, thus performance should be similar

 Arindam Sarkar, University of Kalyani, India 158

over varied implementation platform. The whole procedure is randomized, thus resulting in a

unique process for a unique session, which makes it harder for a cryptanalyst to find a base to

start with. This technique is applicable to ensure security in message transmission in any form

and in any size in wireless communication.

 Some of the salient features of CDHLPSCT are summarized as follows:

a) Session key generation and exchange – Identical session key can be generate after the

tuning of CDHLP in both sender and receiver side with the help of chaos

synchronization. So, no need to transfer the whole session key via vulnerable public

channel.

b) Degree of security – Proposed technique does not suffers from cipher text only attack,

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute

force attack and attacks during CDHLP synchronization process. It offers

authentication steps during synchronization.

c) Variable block size – Encryption algorithm can work with any block length and thus

not require padding, which result identical size of files both in original and encrypted

file. So, CDHLPSCT has no space overhead.

d) Variable key – 128/192/256 bit CDHLP based session key and 128/192/256 bits

GA based encrypted keystream with high key space can be used in different sessions.

Since the session key is used only once for each transmission, so there is a minimum

time stamp which expires automatically at the end of each transmission of

information. Thus the cryptanalyst may not be able guess the session key for that

particular session.

e) Complexity – The technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh

through wireless communication. So, the proposed technique is very much suitable in

wireless communication.

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value

have been performed between the source and corresponding cipher streams

generated using proposed technique. All measures indicate that the degree of non-

 Arindam Sarkar, University of Kalyani, India 159

homogeneity of the encrypted stream with respect to the source stream is good. This

technique has a better Chi-Square value than technique proposed in chapter 2 and 3.

g) Floating frequency – In CDHLPSCT it is observed that floating frequencies of

encrypted characters are indicates the high degree of security for the proposed

technique. This technique has a better floating frequency than technique proposed in

chapter 2 and 3.

h) Entropy – The entropy of encrypted characters is near to eight which indicate the

high degree of security of technique. This technique also has a better entropy value

than technique proposed in chapter 2 and 3.

i) Correlation – The cipher stream generated through CDHLPSCT is negligibly

correlated with the source stream. Therefore the proposed technique may effectively

resist data correlation statistical attack.

j) Key sensitivity – The technique generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

k) Security and performance trade-off – The technique may be ideal for trade-off

between security and performance of light weight devices having very low processing

capabilities or limited computing power in wireless communication.

Chapter 5

Chaos based Triple Hidden Layer Perceptron

Synchronized Cryptographic Technique

 (CTHLPSCT)

 Arindam Sarkar, University of Kalyani, India 162

5.1 Introduction

In this chapter a novel soft computing assisted cryptographic technique CTHLPSCT, based

on synchronization of Chaos based two Triple Hidden Layer Perceptron (CTHLP), one at

sender and another at receiver has been proposed. The CDHLPSCT technique proposed in

chapter 4 had some drawbacks like for the increased of length of the session key if number of

neurons in input layer get increased then it in turn increase the number of synaptic links

(weight) between input layer and hidden layer. So, the synchronization also get increased.

Again large diversity among each weight values generated randomly can slower down the

synchronization process. Also in the CDHLPSCT technique proposed in chapter 4,

authentication steps are performed after the synchronization steps which consumes

significant amount of time for authentication purpose. Proposed CTHLPSCT method of this

chapter eliminates all the above stated drawbacks of the CSHLPSCT in chapter 4. This novel

method of presented in this chapter introduces chaos based Triple Hidden Layer Perceptron

(CTHLP) synchronization mechanism where CTHLP uses three hidden layers.
[206]

 Addition

of one extra layer enhances the security by making the complex internal structure of the

CTHLP. It will be difficult for the attacker to guess the internal structure of the proposed

CTHLP. Here, number of neurons in input layer does not get increased as the increased of

length of the session key because neurons in extra hidden layers helps to increased the key

length. Also a novel parallel key exchange and authentication techniques using secret

common input vector has been proposed. So, attacker can‟t be able to make distinguish

between synchronization steps and authentication steps. At the time of key exchange

procedure key authentication technique is performed parallel by selecting last 𝑚 bits of the

identical input vector and transmitting directly as an output bit towards the other party over

public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of identical input

vector. If both the sequences are same then both are authenticated otherwise authentication

fails.

Here, CTHLP based synchronization is performed for tuning both sender and receiver.

On the completion of the tuning phase identical session keys is generated at the both end with

the help of synchronized CTHLP. This synchronized network can be used for transmitting

message using any light weight encryption/decryption technique with the help of session key

of the synchronized network. To illustrate the cryptographic technique using CTHLP in

 Arindam Sarkar, University of Kalyani, India 163

wireless communication one of the simple and secure encryption/decryption technique has

been presented. A plaintext is considered as a stream of binary bits. Ant Colony Intelligence

(ACI) guided enciphering technique
[207]

 with the help of CTHLP tuned session key is used to

generate the cipher text. The plaintext is regenerated from the cipher text using same

technique with the help of CTHLP tuned session key at the receiver.

 Section 5.2 represents a description of proposed technique in detail. Section 5.3 deals

with the implementation of the proposed cryptographic technique. Section 5.4 discussed the

security issues related to the proposed technique. Discussions are presented in section 5.5.

5.2 The Technique

The technique performs the CTHLP based synchronization for generation of secret session

key at both ends. This synchronized session key of the tuned network is used for the

transmission of secured message through wireless network with the help of any light weight

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless

communication one of the simple and secure encryption/decryption technique has been

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is

encrypted using ACI generated fittest encryption/decryption keystream. The session key

based on CTHLP is used to encrypt intermediate output which produces final cipher text.

Identical CTHLP is used to tune sender and receiver to generate the secret session at both

end. Session key is generated by performing CTHLP based synchronization and

authentication procedure in parallel between sender and receiver side using secret common

input vector. In this proposed technique for key generation purpose both sender and receiver

uses its own CTHLP having identical structure of three hidden layers. Both parties‟ uses

identical input vector with the help of Chaos synchronized common seed value and use

anonymous random weight vector to initializes the weights of the synaptic links of CTHLP.

Identical input vector for both the parties kept secret for security reason. Depending on these

input vector and weights value both the machine produces some output value. Then these

output values is transmitted to the receiver over public channel. If output values are same for

both the sender and receiver machine then CTHLP learning step is applied to both machines

 Arindam Sarkar, University of Kalyani, India 164

for synchronization purpose. When the full synchronization is achieved both machines then

produce identical weights vector which is used as a secret session key.

Ant Colony Intelligence (ACI) based encryption/decryption procedure is used to produce

group of characters based on distribution of characters in the plaintext known as keystream

having a size less than or equal to the length of the plaintext. As the ants move, they deposit a

chemical substance called pheromone on their path. In the ACI based keystream generation

technique pheromone composed of characters that imply the key. In this technique an ant

agent having a pheromone deposition consisting of a group of alphanumeric characters is

called a keystream and each character in the key stream is known as key. Plaintext is

examined to find out total number of characters matched with the characters presents in

pheromone of an ant agent. Each ant has an energy level which is computed by counting

number of characters in the plaintext matched with the pheromone characters (key) divided

by the total number of character in the pheromone (key). A threshold value is selected to

evaluate against energy level of each ant agent. Ant agent having highest energy level more

than predefined threshold value is selected as a keystream for encryption. If the length of the

plaintext is grater than the length of the ACI based keystream then the values of the

keystream are added to a predetermined value to generate the keys for the characters in the

plaintext which is at a position grater than the length of the keystream. Stream of plaintext is

then encrypted using the ACI based keystream/extended keystream. Finally a cascaded

Exclusive-OR operation is performed between ACI encrypted text and the CTHLP based

session key to generate final cipher text.

Receiver has same CTHLP synchronized session key. This session key is used to perform

first step of the deciphering technique. In the next step, ACI guided keystream based

deciphering operation gets performed to regenerate the plaintext.

The CTHLPSCT does not cause any storage overhead. This greatly handles the resource

constraints criteria of wireless communication. A comparison of CTHLPSCT with previously

proposed technique in chapter 4, chapter 3, chapter 2, existing Tree Parity Machine (TPM),

Permutation Parity Machine (PPM), and industry accepted AES, RC4, Vernam Cipher,

Triple DES (TDES) and RSA have been done. Analyses of results are given in chapter 7.

In CTHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits which is

encrypted using ACI generated fittest encryption keystream based encryption process. Chaos

 Arindam Sarkar, University of Kalyani, India 165

based THLP synchronized session key is used to further encrypt the ACI encoded text to

produce final cipher text. The algorithm for the complete process is given in section 5.2.1.

5.2.1 CTHLPSCT Algorithm at Sender

Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

CTHLP guided Ant Colony Intelligence (ACI) based encryption operations.

Step 1. Perform tuning of sender’s and receiver’s CTHLP to generate

common secret session key.

Step 2. Generates ACI based fittest encryption keystream.

Step 3. Perform ACI based encryption operation on the plaintext.

Step 4. Perform cascaded Exclusive-OR operation between CTHLP based

session key and outcomes of step 3.

Step 1 of the algorithm generate common session key through synchronization of CTHLP at

both end. The detailed step is discussed in section 5.2.1.1. Step 2 of the algorithm generates

ACI based fittest encryption keystream. The detailed description of the process is given in

section 5.2.1.2. Algorithm for performing ACI based encryption operation (step 3) on the

plaintext is discussed in 5.2.1.3. The technique of cascading encryption process (step 4)

which takes the intermediate output generated in step 3 is given in details in section 5.2.1.4.

5.2.1.1 Chaos based Triple Hidden Layer Perceptron (CTHLP) Synchronization and Session

Key Generation

Chaos based Triple Hidden Layer (CTHLP) guided synchronization mechanism has been

proposed to improve the efficiency and enhance the security of the Chaos based Double

Hidden Layer (CDHLP) guided synchronization, proposed in chapter 4. For the increased of

length of the session key if number of neurons in input layer get increased then it in turn

increase the number of synaptic links between input layer and hidden layer. So, the

synchronization steps also get increased. Again large diversity among each weight values

 Arindam Sarkar, University of Kalyani, India 166

generated randomly can slower down the synchronization process. Also in the previously

proposed CDHLPSCT method in chapter 4, authentication steps are performed after the

synchronization steps which consumes significant amount of time for authentication purpose.

The proposed method of the current chapter introduces chaos based two Triple Hidden Layer

Perceptron (CTHLP) synchronization mechanism where CTHLP uses three hidden layers

instead of two. Addition of this extra layer enhances the security by making the complex

internal architecture. So, it will be difficult for the attacker to guess the internal architecture

of the CTHLP. In CTHLP technique number of neurons in input layer does not get increased

as the increased of length of the session key because neurons in extra hidden layers helps to

increased the key length. So, number of input required in each iteration also gets minimized

by minimizing the number of neurons in input layer. This also significantly improves the

synchronization time. In this technique for key generation both sender and receiver uses its

own machine having identical structure of three hidden layers. Both parties‟ uses identical

input vector generated using Chaos synchronized seed and use anonymous random weight

vector to initializes the weights of the synaptic links of CTHLP. Identical input vector for

both the parties kept secret for security reason. Attackers has no idea about the internal state

of both the machines at a particular instant of time and this is achievable by keeping secret

the common input vector and internal state of the machine. Depending on these input vector

and random weights value both the machine produces some output value. Then these output

values is transmitted to the receiver over public channel. If output values are same for both

the sender and receiver machine then CTHLP learning step is applied to both machines for

synchronization purpose. When the full synchronization is achieved both machines then

produce identical weights vector and which is use as a secret session key. At the time of key

exchange key authentication technique is also performed parallel by selecting last 𝑚 bits of

the identical input vector and transmitting directly as an output bit towards the other party

over public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of identical

input vector. If both the sequences are same then both are authenticated otherwise not.

Attacker does not have identical input vector like sender and receiver. By sniffing the public

channel attacker can gets some bits but from them attacker will not be able to understand

which one is output bit of the machine and which one is one of the bits of 𝑚 bits sequence of

the identical input vector. Even if attacker hacks the 𝑚 bits then for getting the rest of the

 Arindam Sarkar, University of Kalyani, India 167

(𝑑 − 𝑚) bits of the identical input vector attacker has to perform checking with all (𝑑 − 𝑚)

combination that is computationally infeasible. Here 𝑑 is the total number of bits in the

identical input vector of proposed technique offers synchronization and authentication step in

parallel. An attacker also cannot distinguish an authentication step from a synchronization

step from observing the exchanged outputs. Attacker thus does not know, whether the

currently observed output bit is used for either of the two purposes if the attacker does not

know the secret identical common input vector. The figure 5.1 shows the single path from

input neuron to the output neuron.

Figure 5.1: Snapshot of the single path from input neuron to the output neuron.

The figure 5.2 shows a perceptron with three hidden layers. Here the 𝐾1 = 8 and 𝐾2 = 4

and 𝐾3 = 2. So, the first hidden layer from the top has 𝐾1 = 8 hidden neurons. The second

hidden layer has 𝐾2 = 4 hidden neurons. The third hidden layer has 𝐾3 = 2 hidden neurons.

The total number of inputs neurons = 𝑁 × 𝐾1, where 𝑁 is the number of inputs to each

hidden neuron in layer 1.

σ3
1

σ2
1

σ1
2

𝑊2,𝑁

∑

 ∏

𝑋2,𝑁

∑

∑

 Arindam Sarkar, University of Kalyani, India 168

 𝜎1
1 𝜎2

1 𝜎1
1 𝜎2

1

Figure 5.2: A CTHLP with three hidden layers

The CTHLP consist of one input layer, one output layer and three hidden layers instead of

two hidden layers in DHLP and CDHLP technique in chapter 3 and chapter 4 respectively.

Here, the parameter 𝐾 is being divided into 𝐾1, 𝐾2 and 𝐾3 value. 𝐾1 hidden neurons resides

in the hidden layer adjacent to the input layer. 𝐾2 represents number of hidden neurons in the

middle hidden layer. For each 𝐾1 hidden neurons there are N inputs possible. So, finally it

can be stated that, the input layer has 𝑁 × 𝐾1 input neurons. The size of the CTHLP is

represented by 𝑁 × 𝐾1 × 𝐾2 × 𝐾3. Each hidden neuron in hidden layer number 1 produces

𝜎1
i values. Similarly, each hidden neuron in hidden layer number 2 produces 𝜎2

i value. Each

hidden neuron in hidden layer number 3 produces 𝜎3
i value. These can be represented using

equation 5.1, 5.2 and 5.3.

 𝜎1
3 𝜎𝐾3

3

 𝜎1
2 𝜎2

2 𝜎3
2 𝜎𝐾2

2

 𝜎1
1 𝜎2

1 𝜎3
1 𝜎4

1 𝜎5
1 𝜎6

1 𝜎7
1 𝜎𝐾1

1

 W1,1 W1,2W1,N W2,1W2,2W2,N W3,1W3,2W3,N X4,1W4,2 W4,N W5,1W5,2 W5,N W6,1W6,2 W6,N W7,1W7,2 W7,N WK1,1 WK1,2 WK1,N

 X1,1 X1,2 X1,N X2,1 X2,2 X2,N X3,1 X3,2 X3,N X4,1 X4,2 X4,N X5,1 X5,2 X5,N X6,1 X6,2 X6,N X7,1 X7,2 X7,N XK1,1 XK1,2 XK1,N

Input Layer

HhhhHidden Layer 3

Hidden Layer 2

 Hidden
 Layer 1

 Hidden Layer 2

 Hidden Layer 3

…

𝜏

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

𝜋

…

…

 Arindam Sarkar, University of Kalyani, India 169

 𝜎1
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝑊𝑖 ,𝑗 𝑋𝑖 ,𝑗 (5.1)

 𝜎2
i = 𝑠𝑔𝑛 𝑁

𝑗 =1 𝜎𝑖
1 (5.2)

 𝜎3
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝜎𝑖
2 (5.3)

𝑆𝑔𝑛 is a function, which returns −1, 0 or 1 illustrate in equation 5.4.

 𝑠𝑔𝑛 =

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 (5.4)

The output of CTHLP is then computed as the multiplication of all values produced by

hidden elements given in equation 5.5.

 𝜏 = 𝜎𝑖
3𝐾2

𝑖=1 (5.5)

Total number of weights generated by the CTHLP is (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each

weight decimal value can be represented in eight bits binary. So, total (𝑁 × 𝐾1 + 𝐾1 ×

𝐾2+𝐾2×𝐾3×8) numbers of bits present in a weight (length of a session key). If 𝑁= 2,

𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2, 𝐿 = 5 then 2 × 2 + 2 × 3 + 3 × 2 × 8 = 128 bits weight

value act as a session key. Consider the synaptic depth i.e. weight limits 𝐿 = ±127. So, eight

binary bits are needed to represents each weight, where the MSB represents the sign bit and

rest of the seven bits represents the magnitude of the weight.

In CTHLP based session key generation technique if sender‟s (A) and receiver‟s (B) do

not have the identical input vector i.e.∀𝑡: 𝑋𝐴(𝑡) ≠ 𝑋𝐵(𝑡) then synchronization is not

achievable between them. If the inputs are identical for both parties then only two parties can

be trained using each other outputs. Given diverse inputs, the two parties are trying to learn

totally dissimilar relations between inputs 𝑋𝐴/𝐵(𝑡) and output 𝜏𝐴/𝐵(𝑡) as result

synchronization is not possible and thus in turn prevent the generation of time-dependent

equal weights. The development of normalized sum of absolute differences

𝑑𝑖𝑓𝑓 𝑊𝐴 𝑡 , 𝑊𝐵 𝑡 ∈ 0,1
 over time for different offsets .∀𝑡: 𝑋𝐴 𝑡 = 𝑋𝐵 𝑡 + 𝜑 , 𝜑 ∈ 𝑁

in the input vector and for completely different input vector. If attackers are deals with

completely different set of inputs then attacker never synchronized with two parties. Because

the distance between attackers and two parties that do not acquire the same inputs remains

fluctuating within a certain limited range and never decreases towards zero. Two parties A

 Arindam Sarkar, University of Kalyani, India 170

and B with entirely diverse inputs illustrate the same qualitative performance. Taking into

consideration the number of repulsive and attractive steps, it can be observed that on average

there must be as many repulsive as attractive steps for such performance. Two parties A and

B having the same inputs (offset zero) soon decrease their distance and synchronies. If both

parties A and B uses identical inputs but a certain proportion of uniformly scattered „noise‟

has been imposed on the transmitted outputs of either party. Despite of presence of noise in a

certain time, the system would synchronies with a delay of approximately the duration of the

noisy period plus the time used up for unproductive synchronization before the noisy period.

So, if dissimilar random input vector are considered for two parties then the distance between

the weights value of A and B is therefore not going to zero after each bounding action and

the two parties deviate. So, no common inputs lead to the non-synchronization. For this

reason common input of both parties i.e. 𝑋𝐴/𝐵(𝑡) kept secret between the two parties in

addition to their own arbitrarily assigned secret initial weights 𝑊𝐴/𝐵(𝑡). Here, brute force

attacks become computationally very costly because of 2K1×N − 1 computations are needed

for finding out possible common inputs. By this authentication scheme attack likes Man-In-

The-Middle (MITM) attack and all other known attacks can be prevented.

The CTHLP technique usually allows splitting a protocol into an iterative procedure of

comparatively light communication, as an alternative of a single (heavy) transmission which

is not feasible in wireless communication because of resource constraints. Typically such a

principle depends on random numbers in some way. The security that can be achieved is

probabilistic, i.e. depending on the number of interactions, but security can always be

increased beyond some acceptable variable security threshold. In CTHLP input of both

parties acts as a common secret. The probability of an input vector 𝑋𝐴/𝐵(𝑡) having a

particular parity 𝑝 ∈ {0, 1} is 0.5. For authentication purpose this parity will at this moment

use the output bit 𝜏𝐴/𝐵(𝑡). At any given time 𝑡 with common inputs for both parties, the

probability of identical output is given in equation 5.6.

 𝑃(𝜏𝐴 𝑡 = 𝑝 = 𝜏𝐵(𝑡)) =
1

2
 (5.6)

Given a number 𝑛 (1 ≤ 𝑛 ≤ 𝛼) of pure authentication steps, in which one transmits the

parity of the consequent input vector as output 𝜏𝐴/𝐵(𝑡) directly, the probability that the two

parties subsequently produce the same output 𝑛 times (and thus are likely to have the same 𝑛

 Arindam Sarkar, University of Kalyani, India 171

inputs) decreases exponentially with 𝑛 i.e. 𝑃(𝜏𝐴 𝑡 = 𝑝 = 𝜏𝐵(𝑡)) =
1

2𝑛

For statistical

security of 𝜀 ∈ [0, 1] select 𝑛 = 𝛼 authentication steps such that 1 −
1

2𝛼 ≥ 𝜀

which can be

computed as 𝛼 = 𝑙𝑜𝑔2
1

1−𝜀

With 𝛼 = 14 the achievable statistical security

𝜀 = 0.9999 (𝑖. 𝑒. 99.9999 %). The synchronization period for this technique therefore

increases by 𝛼 authentication steps depending on the necessary level of security 𝜀. Select

certain bit sub pattern in the input vector used for authentication only, such that the security

threshold will be reached soon enough with a certain probability. Inputs are uniformly

distributed so last 𝑚 bit are also uniformly distributed. Now select those entries that possess

a defined bit sub-pattern (e.g. ‘0101’ for 𝑚 = 4). The probability of such a fixed bit sub

pattern of 𝑚 bit to occur is
1

2𝑚 , because each bit has a fixed value with a probability of 0.5.

Thus for four bit, on average every sixteenth input would be used for authentication.

Authentication step is performed when the sub pattern arise and then one of the party send

out the parity of the consequent input vector as output 𝜏𝐴/𝐵(𝑡). This will only occur at the

other party if it has the same inputs. Such an authentication does not manipulate the learning

process at all. Because of the truth that the inputs are secret, an attacker cannot know when

exactly such an authentication procedure takes place. Let the 64 bits identical input vector is

11011001/11010101/00010111/11100101/01011010/11110100/10100010/10100011.

Select the last fifteen bits of the identical input vector (where 𝑚 = 15) 010001010100011

and transmit towards the other party. Attacker can have access the 𝑚 bits from the public

channel. Then for getting the rest of the (𝑑 − 𝑚) bits of the identical input vector attacker

has to perform checking with all (𝑑 − 𝑚) combination. That is computationally difficult.

Where, 𝑑 is the total number of bits in the identical input vector. In this technique A always

succeeds in convincing B by synchronies within a finite time if A knows the common secret

i.e. the same inputs. In the case of the authentication principle, A will reach the security

threshold in the specified α authentication steps. If A does not know the secret input of B

then success probability of A becomes very small. As a result synchronization will be

unsuccessful. The two parties will always be diverse by the repulsive steps. In the case of

authentication principle, A will not reach the security threshold 𝜀 in the specified 𝛼

authentication steps and will be rejected. At the time of synchronization procedure No

information on the common secret is seep out at all. The only information transmitted is the

 Arindam Sarkar, University of Kalyani, India 172

unknown bit-strings. In the case of the authentication the inputs are randomly chosen only for

authentication principle. An attacker also cannot differentiate an authentication step from a

synchronization step from observing the exchanged outputs. Attackers are not able to know

whether the currently observed output bit is used for authentication or synchronization

purpose if attackers do not know the common input vector.

In the CTHLP technique CTHLPs start synchronization by exchanging control frames.

The process involves message integrity and synchronization test. CTHLP synchronization

uses transmission of control frames at the time of three way handshaking based TCP

connection establishment phase, as given in table 5.1.

Table 5.1

Control frames of CTHLP synchronization
Frame Description

𝑆𝑌𝑁
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment

phase

𝐴𝐶𝐾_𝑆𝑌𝑁
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁

frame

𝑁𝐴𝐾_𝑆𝑌𝑁
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁

frame

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a

timer and waits for a reply from the receiver. If the receiver does not take any action until a

certain time limit and number of attempts exceeded a certain value, the sender restarts the

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, the it carry out the

integrity test. If the messages are received as sent (with no replication, incorporation,

alteration, reordering, or replay) the receiver will execute the synchronization check. The

sender and receiver have an identical 𝑇 variable formally store in their respective memory.

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256

bits weights to decrypt the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the

networks are synchronized. This is the best case solution where sender and receiver

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial

 Arindam Sarkar, University of Kalyani, India 173

stage. The receiver should send the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to alert the sender. But most of the time

this best case is not achievable. If decryption algorithm does not produce predictable result,

the receiver should use the Chaos synchronized secret seed to generate the input vector (𝑋)

which is identical to sender. With this input vector the receiver will work out its

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟). If the receiver‟s and sender‟s outputs are different, the receiver should

not fine-tune its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁

frame to notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this

methodology is used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁

frame. If receiver‟s output is equal to sender‟s output i.e. (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then receiver

update it weights. At the end of weights update, the receiver should report the sender that

outputs are equal. The receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same

𝐼𝐷 value received from sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this methodology is used

for providing the positive acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt

of 𝐴𝐶𝐾_𝑆𝑌𝑁, the sender also updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should

update its weights. The sender will create new synchronization frame until receive the

𝐹𝐼𝑁_𝐴𝐶𝐾 frame from receiver. When the sender receives the frame 𝐹𝐼𝑁_𝐴𝐶𝐾, it stops the

further synchronization. The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this methodology is used for

closing the connection. At end of synchronization, both networks provide the identical

weight vector which acts as a session key identical to both end. The figure 5.3 shows the

exchange of frames during CTHLP synchronization process.

 Arindam Sarkar, University of Kalyani, India 174

Figure 5.3: Exchange of control frames between sender and receiver during CTHLP

synchronization

Table 5.2 shows the different frames and their corresponding command codes.

Table 5.2

CTHLP control frames and their command codes
Frame Command

𝑆𝑌𝑁 0000

𝐹𝐼𝑁_𝑆𝑌𝑁 0001

𝐴𝐶𝐾_𝑆𝑌𝑁 0010

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011

𝐴𝑈𝑇𝐻 0100

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111

Sender‟s CTHLP
Receiver‟s CTHLP

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

.

.

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

𝜋

.

.

.

∑

∑

∑

∑

 .

 .

 .

∑

∑

∑

∑

∑

∑

∑

∑

𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟

 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇))

𝐴𝐶𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝑁𝐴𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝐹𝐼𝑁_𝑆𝑌𝑁

 Arindam Sarkar, University of Kalyani, India 175

The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the

sender sends a synchronization frame. The detailed frame format of 𝑆𝑌𝑁 frame is discussed

in section 5.2.1.1.1. The detailed frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section

5.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame has been discussed in section 5.2.1.1.3. The

frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 5.2.1.1.4.

5.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in

connection establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 𝐶𝑅𝐶. 𝑆𝑌𝑁

frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits.

𝑆𝑌𝑁 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and

𝐶𝑅𝐶 needs eight bits, one bits, 128 bits, 𝑚 bits and sixteen bits respectively. When the

receiver receive 𝑆𝑌𝑁 frame, the receiver should carry out integrity test. Receiver performs

Integrity test on receiving the 𝑆𝑌𝑁 frame. If the messages are received as sent (with no

replication, incorporation, alteration, reordering, or replay) the receiver will execute the

synchronization test. In synchronization test receiver utilize its 128 first weights as key for

decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from the sender. After decryption

operation if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are

synchronized. Figure 5.3 shows the complete frame format of 𝑆𝑌𝑁 frame.

 4 8 1 128 𝑚 16 (𝑏𝑖𝑡𝑠)

Figure 5.3: Synchronization (𝑆𝑌𝑁) frame

𝐶𝑜𝑚𝑚𝑎𝑛𝑑
 𝐶𝑜𝑑𝑒
0000

𝑆𝑌𝑁 𝐼𝐷 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇
𝐴𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑖𝑜𝑛

bits

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦
𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 176

5.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶

needs sixteen bits for error checking purpose. Now check the condition i.e. If

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑

received from sender to produce the receiver input vector (𝑋) identical to sender input vector

(𝑋) and calculates the output 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then receiver should update

their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using learning rule. At end of weight

updation of the receiver, then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the sender for

updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. Figure 5.4

shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 5.4: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame

5.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative

acknowledgement of the parameters value. This proposed frame comprises of three fields,

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣 𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then the

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver and sender outputs

are different, the receiver should not fine-tune its weights and inform the sender. The receiver

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure 5.5 shows

the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0010

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 177

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 5.5: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame

5.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four

bits. The 𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose.

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

Receiver sends the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to the sender. Figure 5.6 shows the complete frame

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 5.6: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame

 The CTHLP synchronization algorithm for generating synchronized session key is discussed

in section 5.2.1.1.5. Section 5.2.1.1.6 presents the computational complexity of the CTHLP

synchronization algorithm and CTHLP learning is discussed in section 5.2.1.1.7.

5.2.1.1.5 CTHLP Synchronization

Sender and receiver initially initiate Chaos synchronization between them to construct a

common seed value at both sides. The Chaos synchronized identical seed value is used to

generate the common input vector for sender and receiver. Two CTHLPs start with identical

input vector and anonymous random weight vector. In each time both CTHLPs compute their

final output based on input and weight vector, and communicate to each other. If both are be

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0011

𝑆𝑌𝑁_𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0001

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 178

in agreement on the mapping between the present input and the output, their weights are

updated according to an appropriate learning rule. In the case of discrete weight values this

process leads to full synchronization in a finite number of steps. After synchronization

procedure weight vector of both CTHLP‟s become identical. This indistinguishable weight

vector forms the session key for a particular session. Authentication steps also get performed

parallel to the synchronization steps.

 Input : Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2), random weights

 Output : Sender’s and receiver’s synchronized CTHLP along with synchronized session key

Method : Sender’s and receiver’s CTHLPs both are be in agreement on the mapping

between the present input and the output, their weights are updated according to

an appropriate learning rule. After synchronization procedure weight vector of

both CTHLPs become identical. These indistinguishable weight vector forms the

session key for a particular session.

Step 1. Sender initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to

the receiver.

Step 2. Receiver initializes the value of 𝑟.

Step 3. Sender generates the point 𝑥1 and 𝑧1.

Step 4. Receiver generates the point 𝑦2and 𝑧2.

Step 5. Sender sends 𝑥1 to receiver and receiver sends 𝑦2 and 𝑧2 to sender.

Step 6. Receiver calculates the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and

𝑏 using the equations 5.7 and 5.8 then returns the value of 𝑦2 and

 𝑧2 to the sender.

 𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2 (5.7)

 𝑧2 = 𝑥𝑦2 − 𝑏𝑧2 (5.8)

Step 7. Sender calculates the value of 𝑥1 and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏

using equations 5.9 and 5.10 then sends the value of 𝑥1 to the receiver

and so on.

 𝑥1 = 𝜎 𝑥1 − 𝑦2 (5.9)

 𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1 (5.10)

 Arindam Sarkar, University of Kalyani, India 179

Step 8. Sender generates a nonce. This nonce gets encrypted using a

symmetric cipher with 𝑧1 as the key and sends the results of the

encryption using equation 5.11.

 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒 (5.11)

Step 9. The receiver decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key, performs a

defined function on it using equation 5.12 and 5.13.

 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒

 (5.12)

 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 (5.13)

Step 10. The receiver encrypts the result of the previous step using 𝑧2 as the key

and sends the result to the sender illustrated in equation 5.14.

 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 (5.14)

Step 11. The sender decrypts this message using 𝑧1 as the key, performs the

inverse of the pre-defined function and checks if the original nonce is

obtained as shown in equation 5.15.

 𝑁𝑜𝑛𝑐𝑒 = 𝑓−1 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 (5.15)

Step 12. If synchronization is not achieved, the process is repeated from step 5.

Step 13. If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1 is used as a seed for

a pseudo random number generator to generate identical

input vector(𝑋) at both end.

Step 14. Initialization of synaptic links between input layer and first hidden

layer and between first hidden layer and second hidden layer using

random weights values. Where,𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .

 Repeat step 15 to step 24 until the full synchronization is achieved,

Step 15. The input vector(𝑋) is generated both end using the Chaos

synchronized seed value.

Step 16. Computes the values of hidden neurons by the weighted sum over the

current input values. Each hidden neuron in first Hidden layer

produces 𝜎1
i values. Similarly, each hidden neuron in second hidden

layer produces 𝜎2
i value. Each hidden neuron in hidden layer number

 Arindam Sarkar, University of Kalyani, India 180

3 produces 𝜎3
i value. These can be represented using equation 5.16,

5.17 and 5.18.

 𝜎1
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝑊𝑖 ,𝑗 𝑋𝑖,𝑗 (5.16)

 𝜎2
i = 𝑠𝑔𝑛 𝑁

𝑗 =1 𝜎𝑖
1 (5.17)

 𝜎3
i = 𝑠𝑔𝑛 𝑁

𝑗 =1 𝜎𝑖
2 (5.18)

 𝑠𝑔𝑛(𝑥) is a function represents in equation 5.19, which returns

 −1, 0 or 1:

 𝑠𝑔𝑛 𝑥 =

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 (5.19)

If the weighted sum over its inputs is negative then set 𝜎𝑖 = −1.

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0.

Step 17. Compute the value of the final output neuron by computing

multiplication of all values produced by 𝐾2 no. hidden neurons using

equation 5.20.

 𝜏 = 𝜎𝑖
3𝐾2

𝑖=1 (5.20)

Step 18. Sender utilizes its 128 weights as key for encryption of 𝑇 variable

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .

Step 19. Sender constructs a SYN frame and transmitted to the receiver for

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually

comprises of the 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑆𝑒𝑛𝑑𝑒𝑟),

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 and CRC (Cyclic Redundancy Checker) and

last 𝑚 bits of the identical input vector. In this way performed

authentication step parallel by selecting last 𝑚 bits of the identical

input vector and transmitting towards the other party over public

channel using 𝑆𝑌𝑁 frame.

Step 20. Receiver performs Integrity test after receiving the 𝑆𝑌𝑁 frame. Then

receiver perform authentication step to

 Arindam Sarkar, University of Kalyani, India 181

 Check 𝑖𝑓 (𝑆𝑒𝑛𝑑𝑒𝑟 (𝑚 𝑏𝑖𝑡𝑠) = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 (𝑚 𝑏𝑖𝑡𝑠)) 𝑡𝑒𝑛

 𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸

𝐸𝑙𝑠𝑒

𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐹𝐴𝐿𝑆𝐸

If authentication is true then receiver utilize its 128 first weights as

key for decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from

the sender.

If authentication is false then receiver sends 𝐴𝐶𝐾_𝑁𝐴𝐾 to sender.

Step 21. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then

networks are synchronized. Go to step 25.

Step 22. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ then receiver

use the Chaos based secret seed to produce the receiver input

vector(𝑋) identical to sender input vector(𝑋) and calculates the

output 𝜏Receiver
 using step 16 and step 17

Step 23. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒 𝑟) then performs the following steps.

Step 23.1 Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules discussed

in chapter 1 section 1.8.

Step 23.2 At the end of receivers weights update, the receiver sends

ACK_SYN to instruct the sender for updating the weights

using step 23.1.

Step 23.3 Sender transmits

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 to receiver.

Step 23.4 Receiver checks
if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇

 then networks are synchronized. Go to step 25.

Step 23.5 Perform the following checking

 if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇

 then networks are still not synchronized. Go to step 23.1.

 Arindam Sarkar, University of Kalyani, India 182

Step 24. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟) then the receiver sends the message

NAK_SYN to notify the sender. Go to step 15.

Step 25. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to

finish the synchronization phase.

5.2.1.1.6 Complexity Analysis

In CTHLP synchronization algorithm sender initialization of the value of 𝜎 and 𝑏 takes needs

unit amount of computation. Receiver initialization of the value of 𝑟 also takes unit amount

of computation. Generation of the point 𝑥1 and 𝑧1 takes unit amount of computation.

Generation of the point 𝑦2 and 𝑧2 takes unit amount of computation. Receiver calculates the

new value of 𝑦2 and 𝑧2 with the help of 𝑟 and 𝑏. This step also takes unit amount of

computation. Sender calculates the value of 𝑥1 and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏. This step

also takes unit amount of computation. Sender generates a nonce having a random value.

This nonce is encrypted using a symmetric cipher with 𝑧1 as the key and sends the results of

the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The receiver

decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key. It also takes 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 amount of

computation. The receiver encrypts the result of the previous step using 𝑧2 as the key. It

takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The sender decrypts this message using 𝑧1

as the key, performs the inverse of the pre-defined function and checks if the original nonce

is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. Initialization of

weight vector takes (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) amount of computations. For

example, if 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then total numbers of synaptic links (weights)

are (2 × 2 + 2 × 3 + 3 × 2) = 16. So, it takes sixteen amount of computations. Generation

of 𝑁 number of input vector for each 𝐾1 number of hidden neurons takes (𝑁 × 𝐾1) amount

of computations. Computation of the hidden neuron outputs takes 𝐾1 + 𝐾2 + 𝐾3 amount

of computations. Where 𝐾1,𝐾2 and 𝐾3 are the number of hidden units in 1
st
, 2

nd
 and 3

rd
 layer

respectively. Computation of final output value takes unit amount of computation because it

needs only a single operation to compute the value. Encryption of 𝑇 using Exclusive-OR

operation also takes unit amount of computations. Decryption of 𝑇 using Exclusive-OR

operation also takes unit amount of computations. Checking 𝑖𝑓

 Arindam Sarkar, University of Kalyani, India 183

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 or not takes unit amount of

computation. In CTHLP the weight updating procedure takes place where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules which takes 𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

 amount of computations.

In best case of CTHLP synchronization algorithm, sender’s and receiver’s arbitrarily

chosen weight vectors are identical. So, networks are synchronized at initial stage do not

needs to update the weight using learning rule. Here, (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + (𝑁 × 𝐾1) + (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) + (𝐾1 +

𝐾2 + 𝐾3)) amount of computation is needed in best case which is in form of

𝑂 Generation of common seed value + initialization of input vector +

initialization of weight vector + Computation of the hidden neuron outputs .

If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in

each iteration the weight vectors of the hidden unit which has a value equivalent to the

pereceptron output are updated according to the learning rule. This scenario leads to average

and worst case situation where 𝐼 number of iteration to be performed to generate the identical

weight vectors at both ends. So, the total computation for the average and worst case is

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑁 × 𝐾1 +

 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 + 𝐾1 + 𝐾2 + 𝐾3 + 𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

) which is can be expressed in O Time complexity in first iteration +

(No. of iteration × No. of weight updation) .

5.2.1.1.7 CTHLP Learning Mechanism

In learning mechanism if the output bits are different for sender (A) and receiver (B) i.e.

𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with

𝜎𝑘

𝐴

𝐵 = 𝜏
𝐴

𝐵 will be updated. The weight vector of this hidden unit is adjusted using any of the

learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes less

synchronization steps than other two learning rules in the range of 2 − 2 − 3 − 2 − 5

 𝑁 − 𝐾1 − 𝐾2 − 𝐾3 − 𝐿 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases Hebbian rule

takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules take

 Arindam Sarkar, University of Kalyani, India 184

fewer steps than the other two learning rules in the range of 2 − 2 − 3 − 2 − 8 − 20 to 2 −

2 − 3 − 2 − 30. Random walk outperform from 3 − 2 − 2 − 8 − 35 and beyond that. The

most vital findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the

complexity of a successful attack grows exponentially, but there is only a polynomial

increase of the effort needed to generate a key. So, increasing the 𝐿 value security of the

system can be increased.

5.2.1.2 Ant Colony Intelligence (ACI) based Fittest Keystream Generation

In this section Ant Colony Intelligence (ACI) based keystream generation technique for

message encryption/decryption has been presented to illustrate the complete cryptographic

technique. Instead of this technique any other light weight encryption/decryption technique

also may use for exchanging message between sender and receiver.

In the Ant Colony Intelligence (ACI) based approach an ant agent is used to denote a

keystream (collection of alphanumeric characters). Each Ant can have multiple dimensions.

Each dimension denotes an individual key within that keystream. The dimensions in the

keystream can be filled or unfilled. For example if the ceiling of dimension of each Ant is

equal to 192 then it is represented by equation 5.21.

 𝐴𝑛𝑡𝑖 𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1, 𝐾𝑒𝑦2, … , 𝐾𝑒𝑦192) (5.21)

This signifies a keystream comprises of 192 keys i.e. 192 alphanumeric characters.

Keystream length can be obtained by counting number of dimensions are filled in the

keystream. Generally keystream length is less than or equal to the plaintext. With 192

alphanumeric characters multiple keystream can be generated of predetermined fixed length

by permutation of these predetermined fixed length characters ordering all feasible ways

without any reappearance. So, for example if total number of alphanumeric characters = 192

and keystream length = 128 then among 192 alphanumeric characters 128 alphanumeric

characters are elected such a way so that by ordering all possible ways without any

duplication these 128 characters forms multiple keystream having fixed length i.e. 128. For

an example if five characters A, C, M, H, R are taken to form keystream of length four among

192 alphanumeric characters. Then there are 120 possible ways of obtaining keystream

which are as follows.

 Arindam Sarkar, University of Kalyani, India 185

ACMHR, CAMHR, MACHR, HACMR, RACMH

ACMRH, CAMRH, MACRH, HACRM, RACHM

ACHMR, CAHMR, MAHCR, HAMCR, RAMCH

ACHRM, CAHRM, MAHRC, HAMRC, RAMHC

ACRMH, CARMH, MARCH, HARCM, RAHCM

ACRHM, CARHM, MARHC, HARMC, RAHMC

AMCHR, CMAHR, MCAHR, HCAMR, RCAMH

AMCRH, CMARH, MCARH, HCARM, RCAHM

AMHCR, CMHAR, MCHAR, HCMAR, RCMAH

AMHRC, CMHRA, MCHRA, HCMRA, RCMHA

AMRCH, CMRAH, MCRAH, HCRAM, RCHAM

AMRHC, CMRHA, MCRHA, HCRMA, RCHMA

AHCMR, CHMRA, MHACR, HMACR, RMACH

AHCRM, CHMAR, MHARC, HMARC, RMAHC

AHMCR, CHRMA, MHCAR, HMCAR, RMCAH

AHMRC, CHRAM, MHCRA, HMCRA, RMCHA

AHRCM, CHAMR, MHRAC, HMRAC, RMHAC

AHRMC, CHARM, MHRCA, HMRCA, RMHCA

ARCMH, CRAMH, MRACH, HRACM, RHACM

ARCHM, CRAHM, MRAHC, HRAMC, RHAMC

ARMCH, CRMAH, MRCAH, HRCAM, RHCAM

ARMHC, CRMHA, MRCHA, HRCMA, RHCMA

ARHCM, CRHAM, MRHAC, HRMAC, RHMAC

ARHMC, CRHMA, MRHCA, HRMCA, RHMCA

Using 192 characters total number of generated possible keystream is given in equation 5.22.

192!

 192−𝑐 !

192
𝑐=1 ≈ 192! 𝑒 ≈ 192! × 2.718 (5.22)

According to Ant Colony Intelligence technique each ant should have an allied energy. The

ACI technique also offers energy for each and every ant or keystream. The energy value of

the ant agent is computed by taking the number of characters in the keystream occurring in

the plaintext divided by the keystream length. The pheromone deposition of the ant agent

 Arindam Sarkar, University of Kalyani, India 186

with a maximum energy value greater than a specified threshold value is the solution and the

keystream is chosen for encryption i.e. 𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛

𝑟𝑒𝑡𝑢𝑟𝑛 (𝐴𝑛𝑡i 𝑤𝑖𝑡 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) = 𝑚𝑎𝑥 𝑒𝑛𝑒𝑟𝑔𝑦 𝑣𝑎𝑙𝑢𝑒). Energy value for each ant agent

is computed by the equation 5.23.

 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑛𝑡𝑖 = (𝑐𝑜𝑢𝑛𝑡 (𝑘𝑒𝑦 𝑗 𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡))/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖)) (5.23)

 𝑤𝑒𝑟𝑒 𝑗 = 1, 2, … , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖)

In the pheromone updating phase of Ant agent 𝑊𝑖𝑙𝑒 (𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) < 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒)

change the keystream i.e. update the pheromone deposition of 𝐴𝑛𝑡𝑖 agent until

𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖𝑖𝑛 𝑎 𝑡𝑟𝑖𝑎𝑙) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒). For update the pheromone deposition at first

energy value for each ant agent in the current trial is evaluated. Next select the ant agent

where, 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒) and return 𝐴𝑛𝑡𝑖 in current trial

with 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) = 𝑚𝑎𝑥 𝑒𝑛𝑒𝑟𝑔𝑦 value in current trial.

In ACI based keystream generation technique following parameters are used

 Maximum length of ACI based keystream i.e. maximum number of character represents a

keystream is 𝐿 = 192. 𝑁 is the number of characters to represents keystream. Maximum

value of 𝑁 is 𝐿 i.e. 192.

 A predefined threshold value for describing energy factor of Ant agent. This scheme used

0.65 as a threshold value.

 A predetermined value to generate the keys for the characters in the plaintext which is at

a position greater than the length of the keystream. The technique uses equation 5.24 to

compute the predetermined value.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (5.24)

The figure 5.8 shows the flowchart of ACI based keystream generation and section 5.2.1.2.1

presents the complete encryption/decryption keystream generation algorithm.

 Arindam Sarkar, University of Kalyani, India 187

Figure 5.8: Flow chart of Ant Colony Intelligence (ACI) based fittest keystream generation

Select Anti

or Keystreami(Key1 , Key2 , … , Key192)

Start

Yes

No

Evaluate Energy Anti = (count (key j plain text))/(lengthof(Anti))

Evaluate Energy Anti

Update the pheromone by changing the character composition in the keystream.

Select the ant agent where,Energy(Antiin current trial) > threshold value)

Where n = pheromone dimension
Set pheromone = (Energy_char1, Energy_char2, … , Energy_charn)

Highest Energy Anti
>

Predefined Threshold

Is

Stop

return Anti in current trial with
max energy value in current trial

 Arindam Sarkar, University of Kalyani, India 188

5.2.1.2.1 Ant Colony Intelligence (ACI) based Fittest Keystream Generation Algorithm

ACI based encryption/decryption keystream generation algorithm a threshold value is

selected to weigh against energy level of each ant agent. Ant agent having highest energy

level more than predefined threshold value is selected as a keystream.

 Input : Ant agent with Pheromone

 Output : ACI based keystream

 Method : A threshold value is selected to weigh against energy level of each ant agent. Ant

agent having highest energy level more than predefined threshold value is

selected as a keystream.

Step 1. Set length of a keystream as 𝐿. Choose arbitrary 𝑁 characters to

representing pheromone deposition.

Step 2. Perform possible permutation by choosing arbitarily 𝑁 characters to

represents keystream denoting the pheromone deposition of length 𝐿.

Step 3. Evaluate energy value of each ant agent iAnt according to the

following equation 5.25.

𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑛𝑡𝑖 = (𝑐𝑜𝑢𝑛𝑡 (𝑘𝑒𝑦𝑗 𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡))/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖))

(5.25)

Step 4. Check, 𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑛𝑡𝑖 > 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑) then chooses

keystream for encryption having maximum energy value grater than

threshold.

Step 5. Else repeat the following steps until

 (𝐻𝑖𝑔𝑒𝑠𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎 𝑡𝑟𝑖𝑎𝑙 > 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑)

Step 5. 1. Update the pheromone by changing the character

composition in the keystream.

Step 5. 2. Compute the energy value for updated pheromone

deposition.

Step 5. 3. Select the ant agent,

𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑛𝑡𝑖 > 𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑)

then return ant agent having maximum energy value.

 Arindam Sarkar, University of Kalyani, India 189

Step 6. If the length of the text is greater than the length of the keystream then

the values of the keystream are added to a predetermined value to

generate the keys for the characters in the text which is at a position

greater than the length of the keystream.

The ACI based fittest keystream is used to perform the encryption operation on the plaintext.

The detail step of ACI based encryption process is given in section 5.2.1.3.

5.2.1.3 Encryption Algorithm

 Input : Source file/source stream i.e. plaintext

Output : Encrypted file/encrypted stream i.e. cipher text

Method : The process operates on binary stream and generates encrypted bit stream through

Ant Colony Intelligence (ACI) based encryption.

Step 1. If the length of the plaintext is grater than the length of the ACI based

keystream then the values of the keystream are added to a

predetermined value to generate the keys for the characters in the

plaintext which is at a position grater than the length of the key

stream. Predetermined value is calculated using the equation 5.26.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (5.26)

Step 2. For the very first plaintext block keys are form by the values of the

characters in the ACI based keystream.

Step 3. For the successive plaintext blocks ACI based keys are generated by

adding predetermined value with the keys of the previous block given

in equation 5.27 for reducing the key storage load that in turn reduces

the space complexity.

 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 = 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 − 1 + 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,

 𝑤𝑒𝑟𝑒 𝑖 >= 2 (5.27)

Step 4. Perform Exclusive-OR operation between plaintext block with key in

the ACI based keystream.

 Arindam Sarkar, University of Kalyani, India 190

Step 5. Considers the outcomes of step 4 as a stream of finite number of bits

𝑁, and is divided into a finite number of blocks, each also containing a

finite number of bits 𝑛, where 1 ≤ 𝑛 ≤ 𝑁. Consider the block

𝐶 = 𝑐0
𝑗
𝑐1

𝑗
𝑐2

𝑗
𝑐3

𝑗
𝑐4

𝑗
… 𝑐𝑛−1

𝑗
 of size 𝑛 in the outcomes of step 4.

Step 6. Perform cycle formation techniques on 𝐶 = 𝑐0
𝑗
𝑐1

𝑗
𝑐2

𝑗
𝑐3

𝑗
𝑐4

𝑗
… 𝑐𝑛−1

𝑗
 of

block of size 𝑛. In the following cases is used to represents the

Exclusive-OR operation. Perform the operations given in equation

5.34 to 5.37 for generating the intermediate block

𝐼𝑗 = 𝑐0
𝑗+1

𝑐1
𝑗 +1

𝑐2
𝑗+1

𝑐3
𝑗+1

𝑐4
𝑗+1

… 𝑐𝑛−1
𝑗 +1

 from 𝐶 in the following way:

 𝑐𝑛−1
𝑗 +1

= 𝑐𝑛−1
𝑗

 (5.28)

 𝑐𝑛−2
𝑗 +1

=𝑐𝑛−2
𝑗

 𝑐𝑛−1
𝑗 +1

 (5.29)

 𝑐1
𝑗 +1

= 𝑐1
𝑗
 𝑐2

𝑗 +1
 (5.30)

 𝑐0
𝑗 +1

= 𝑐0
𝑗
 𝑐1

𝑗+1
 (5.31)

The process continues for a finite number of iterations, which depends

on the value of n, the source block 𝐶 is regenerated. If the number of

iterations required regenerating the source block is assumed to be 𝐼,

then any of the intermediate block is considered as a encrypted block.

5.2.1.4 Session Key based Encryption

During final step of the technique a cascaded Exclusive-OR operation between CTHLP

synchronized session key and ACI encrypted cipher text is performed to generate final

encoded cipher text.

The decryption algorithm takes the cipher text as a binary stream of bits and perform first

level of operation using CTHLP generated synchronized session key to produce intermediate

decrypted text. Finally, ACI generated fittest keystream based decryption is performed on the

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete

process is given in section 5.2.2.

 Arindam Sarkar, University of Kalyani, India 191

5.2.2 CTHLPSCT Algorithm at Receiver

 Input : Encrypted file/encrypted stream i.e. cipher text

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on encrypted binary stream and generates decrypted bit

stream through Chaos based CTHLP guided Genetic algorithm (ACI) based

decryption operations.

Step 1. Perform cascaded Exclusive-OR operation between CTHLP based

session key and cipher text.

Step 2. Perform Ant Colony Intellogence (ACI) based decryption on the

outcomes of the step 1 to regenerate starting combination i.e.

plaintext.

Step 1 of the algorithm is discussed in section 5.2.2.1. Step 2 of the algorithm for performing

Genetic Algorithm based decryption is discussed in section 5.2.2.2.

5.2.2.1 Session Key based Decryption

Initially cascaded Exclusive-OR operation between CTHLP synchronized session key and

cipher text is performed to produce session key decrypted text. Outcomes of this operation

used as an input of ACI based decryption algorithm discussed in 5.2.2.2 to regenerate the

plaintext.

 In the decryption process the ACI based cipher text is divided into blocks. Exclusive-OR

guided cycle formation based decryption is performed on each block. After that all blocks are

merged together. The ACI generated keystream is use to Exclusive-OR with the merged

blocks to regenerate the plaintext. The detail step of ACI based decryption process is given in

section 5.2.2.2.

 Arindam Sarkar, University of Kalyani, India 192

5.2.2.2 Decryption Algorithm

Input : ACI Encrypted file/ ACI encrypted stream

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on ACI encrypted bit stream and regenerates the plaintext

through ACI based decryption.

Step 1. Divide the ACI encrypted text into different blocks.

Step 2. Perform operation given in equation 5.42 to 5.45 upto

(𝑃 – 𝑖) steps on each block 𝑇 = 𝑡0
𝑖 𝑡1

𝑖 𝑡2
𝑖 𝑡3

𝑖 𝑡4
𝑖 … 𝑡𝑛−1

𝑖 if the total

number of iterations required to complete the cycle is 𝑃 and the 𝑖th

step is considered to be the encrypted block.

 𝑡𝑛−1
𝑖 = 𝑡𝑛−1

𝑖−1 (5.32)

 𝑡𝑛−2
𝑖 = 𝑡𝑛−2

𝑖 𝑡𝑛−1
𝑖 (5.33)

 𝑡1
𝑖 = 𝑡1

𝑖−1 𝑡2
𝑖 (5.34)

 𝑡0
𝑖 = 𝑡0

𝑖−1 𝑡1
𝑖 (5.35)

Step 3. Merge outcomes of step 2.

Step 4. Compute the predetermined value.

Step 5. Using predetermined value and keys in the ACI based keystream

receiver generates the keys for the portion of the text exceeding the

length of the ACI based keystream.

Step 6. Generate plaintext by performing Exclusive-OR operation between

outcomes of step 3 and ACI based keystream.

5.3 Implementation

Consider the plaintext to be encrypted is “antcolonyintelligence” threshold value is assumed

to be 0.65. Each ant agent has a pheromone deposition comprising of characters representing

the keystream. The energy level of the ant agent is a count of the characters in the keystream

occurring in the plaintext divided by the length of the keystream. The ant agent with a

maximum energy level greater than the specified threshold value is chosen as the key stream

for text encryption. Table 5.3 show the pheromone deposition of ant agents denoting the

 Arindam Sarkar, University of Kalyani, India 193

keystream and their corresponding energy value. Since the second ant agent in second

iteration has the maximum energy value 0.66 which is greater than the threshold value, the

keystream “ueigunscaoblyt” corresponding to that ant agent is chosen for encryption. Each

character in the keystream is chosen as the key for encryption. Since the keystream is smaller

than the length of the plaintext to be encoded, the values of the keys of the keystream are

added to a predetermined value to generate the keys for the remaining portion of the

plaintext. The predetermined value can be generated by dividing the length of the plaintext

by half of its length. Here the value is chosen as 15. Thus the keys for the portion of the

plaintext exceeding the length of the keystream is generated by adding the values of the keys

in the keystream with the value 15.

Table 5.3

ACI based keystream generation
Iteration 1 Energy Iteration 2 Energy

ckyaptseifdorgq 0.46 cyusadkleownjgm 0.53

anwghqbcletzduo 0.53 ueigunscaoblyt 0.66

yurtdfbnczfsvam 0.33 tedcbkhouesxvaq 0.40

rqewcalkygtxifo 0.60 ivbjtwaxrdgnzpu 0.33

Highest energy 𝟎. 𝟔𝟎 Highest energy 𝟎. 𝟔𝟔

Binary representations of ASCII value of the plaintext is

01100001/01101110/01110100/01100011/01101111/01101100/01101111/01101110/011110

01/01101001/01101110/01110100/01100101/01101100/01101100/01101001/01100111/011

00101/01101110/01100011/01100101

The ACI based keystream “ueigunscaoblyt” has 14 characters. The plaintext

“antcolonyintelligence” has 21 characters. So, for the extra seven characters ACI based keys

are generated by adding predetermined value with the keys of the previous block for reducing

the key storage load that in turn reduces the space complexity. Predetermined value gets

calculated by the equation 5.36.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (5.36)

So, the predetermined value will be
21

2
 = 10

So, binary representation of ASCII value of the ACI based keystream is

01110101/01100101/01101001/01100111/01110101/01101110/01110011/01100011/011000

01/01101111/01100010/01101100/01111001/01110100/01111111/01101111/01110011/011

10001/01111111/01111000/01111101

 Arindam Sarkar, University of Kalyani, India 194

On performing ACI keystream based encryption operation the new intermediate encoded text

is

00010100/00001011/00011101/00000100/00011010/00000010/00011100/00001101/

00011000/00000110/00001100/00011000/00011100/00011000/00010011/00000110/

00010100/00010100/00010001/00011011/00011000

Binary representations of ASCII value of the ACI encrypted text are divided into variable

size segments. Following are the different segments constructed from S.

S1 = 0001010000001011 (16 bits)

S2 = 0001110100000100 (16 bits)

S3 = 0001101000000010 (16 bits)

S4 = 0001110000001101 (16 bits)

S5 = 0001100000000110 (16 bits)

S6 = 0000110000011000 (16 bits)

S7 = 0001110000011000 (16 bits)

S8 = 0001001100000110 (16 bits)

S9 = 00010100 (8 bits)

S10 = 0001010000010001 (16 bits)

S11 = 00011011 (8 bits)

S12 = 00011000 (8 bits)

Cycle formation operation is now performed on S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12

segments respectively. For each of the segments, an arbitrary intermediate stream segment is

considered as the encrypted stream segment.

The formation of cycles for segments S1 (0001010000001011) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0110001100100111) after iteration-6 considered as an encrypted segment for the segment

S1.

00010100000010111111001111111001
1
0101000101010111

2
0011000011001101

3

1110111110111011
4
1010010101101001

5
0110001100100111

6
0010000100011101

7

0001111100001011
8
0000101011111001

9
0000011001010111

10
1111110111001101

11

0101010010111011
12
1100110001101001

13
0100010000100111

14

 Arindam Sarkar, University of Kalyani, India 195

0011110000011101
15
0001010000001011

16

The formation of cycles for segments S2 (0001110100000100) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1111100001010100) after iteration-10 considered as an encrypted segment for the segment

S2.

00011101000001001111010011111100
1
1010110001010100

2
1001101111001100

3

1000100101000100
4
1000011100111100

5
0111110100010100

6
0010101100001100

7

0001100100000100
8
0000100011111100

9
1111100001010100

10
0101011111001100

11

1100110101000100
12
1011101100111100

13
0110100100010100

14

0010011100001100
15
0001110100000100

16

The formation of cycles for segments S3 (0001101000000010) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1010100001100110) after iteration-3 considered as an encrypted segment for the segment

S3.

00011010000000100000100111111110
1
1111100010101010

2
1010100001100110

3

1001100000100010
4
1000100000011110

5
0111100000001010

6
0010100000000110

7

0001100000000010
8
1111011111111110

9
0101001010101010

10
1100111001100110

11

1011101000100010
12
1001011000011110

13
0111001000001010

14

0010111000000110
15
0001101000000010

16

The formation of cycles for segments S4 (0001110000001101) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0001000100001101) after iteration-8 considered as an encrypted segment for the segment

S4.

00011100000011010000101111111011
1
0000011010101001

2
0000001001100111

3

0000000111011101
4
1111111101001011

5
0101010100111001

6
0011001100010111

7

0001000100001101
8
1111000011111011

9
1010111110101001

10
0110010101100111

11

1101110011011101
12
1011010001001011

13
0110110000111001

14

0010010000010111
15
0001110000001101

16

 Arindam Sarkar, University of Kalyani, India 196

The formation of cycles for segments S5 (0001100000000110) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1111111001100110) after iteration-4 considered as an encrypted segment for the segment

S5.

00011000000001100000100000000010
1
0000011111111110

2
0000001010101010

3

1111111001100110
4
1010101000100010

5
0110011000011110

6
0010001000001010

7

0001111000000110
8
0000101000000010

9
1111100111111110

10
1010100010101010

11

1001100001100110
12
1000100000100010

13
0111100000011110

14

0010100000001010
15
0001100000000110

16

The formation of cycles for segments S6 (0000110000011000) is shown below. After 8 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1100110010001000) after iteration-5 considered as an encrypted segment for the segment

S6.

00001100000110000000010000001000
1
0000001111111000

2
1111111010101000

3

0101010110011000
4
1100110010001000

5
0100010001111000

6
0011110000101000

7

0001010000011000
8
0000110000001000

9
1111101111111000

10
0101011010101000

11

1100110110011000
12
0100010010001000

13
0011110001111000

14

0001010000101000
15
0000110000011000

16

The formation of cycles for segments S7 (0001110000011000) is shown below. After 8 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0101001111111000) after iteration-2 considered as an encrypted segment for the segment

S7.

00011100000110001111010000001000
1
0101001111111000

2
1100111010101000

3

0100010110011000
4
0011110010001000

5
0001010001111000

6
0000110000101000

7

0000010000011000
8
1111110000001000

9
1010101111111000

10
0110011010101000

11

1101110110011000
12
1011010010001000

13
0110110001111000

14

0010010000101000
15
0001110000011000

16

 Arindam Sarkar, University of Kalyani, India 197

The formation of cycles for segments S8 (0001001100000110) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(1111001100000010) after iteration-9 considered as an encrypted segment for the segment

S8.

00010011000001101111000100000010
1
0101000011111110

2
1100111110101010

3

0100010101100110
4
1100001100100010

5
0100000100011110

6
0011111100001010

7

0001010100000110
8
1111001100000010

9
1010111011111110

10
0110010110101010

11

0010001101100110
12
1110000100100010

13
0101111100011110

14

0011010100001010
15
0001001100000110

16

The formation of cycles for segments S9 (00010100) is shown below. After 8 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (11001100)

after iteration-5 considered as an encrypted segment for the segment S9.

0001010000001100
1
00000100

2
11111100

3
01010100

4
11001100

5
01000100

6

00111100
7
00010100

8

The formation of cycles for segments S10 (0001010000010001) is shown below. After 8 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0000010000000101) after iteration-2 considered as an encrypted segment for the segment

S10.

00010100000100010000110000001111
1
0000010000000101

2
1111110000000011

3

0101010000000001
4
0011001111111111

5
0001000101010101

6
0000111100110011

7

0000010100010001
8
0000001100001111

9
0000000100000101

10
1111111100000011

11

0101010100000001
12
1100110011111111

13
0100010001010101

14

0011110000110011
15
0001010000010001

16

The formation of cycles for segments S11 (00011011) is shown below. After 16 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (10011001)

after iteration-5 considered as an encrypted segment for the segment S11.

0001101100001001
1
00000111

2
11111101

3
10101011

4
10011001

5
01110111

6

00101101
7
00011011

8

 Arindam Sarkar, University of Kalyani, India 198

The formation of cycles for segments S12 (00011000) is shown below. After 16 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (10011000)

after iteration-4 considered as an encrypted segment for the segment S12.

0001100000001000
1
11111000

2
10101000

3
10011000

4
10001000

5
01111000

6

00101000
7
00011000

8

On completion of the cycle formation technique on each segment twelve intermediate

segments are considered as the encrypted segments. After merging the above twelve

encrypted segments following ACI based encrypted text is generated.

01100011/00100111/11111000/01010100/10101000/01100110/00010001/00001101/111111

10/01100110/11001100/10001000/01010011/11111000/11110011/00000010/11001100/000

00100/00000101/10011001/10011000

For example CTHLP based following session key is generated

10100101/01101110/11101000/00101011/11100000/00100011/01000100/11001000/100110

01/00010000/11110010/11010101/100100110/00010100/11101010/00101111/00101000/00

101010/10111111/1010111/01101110

Following is the session key encrypted final cipher text produce on performing

Exclusive-OR operation between ACI based encrypted text and CTHLP based session key.

11000110/01001001/00010000/01111111/01001000/01000101/01010101/11000101/011001

11/01110110/00111110/01011101/11000000/11110010/10000110/00010101/01011000/000

10001/01011010/01001110/11110110

5.4 Security Analysis

In CTHLPSCT, identical input vector for both the parties kept secret for security reason.

Attackers has no idea about the internal state of both the machines at a particular instant of

time and this is achievable by keeping secret the common input vector. At the time of key

exchange procedure key authentication technique is also performed parallel by selecting last

𝑚 bits of the identical input vector and transmitting directly as an output bit towards the

other party over public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of

identical input vector. If both the sequences are same then both are authenticated otherwise

 Arindam Sarkar, University of Kalyani, India 199

not. Attacker does not have identical input vector like sender and receiver. By sniffing the

public channel attacker can gets some bits but from them attacker will not be able to

understand which one is output bit of the machine and which one is one of the bits of 𝑚 bits

sequence of the identical input vector. Even if attacker hacks the m bits then for getting the

rest of the (𝑑 − 𝑚) bits of the identical input vector attacker has to perform checking with all

(𝑑 − 𝑚) combination that is computationally infeasible. Where 𝑑 is the total number of bits

in the identical input vector. The security aspects of the algorithm are discussed based on the

attack model. It is assumed that the detail of encryption or decryption algorithm is known to

the cryptanalyst. The following standard attacks are considered to ensure the robustness of

the CTHLPSCT.

 Cipher text only Attack: The technique nullifies the success rate of this attack by

producing a robust Chaos based Group session key and ACI based encrypted cipher text.

The strength of resisting exhaustive key search attack relies on a large key space. The

cryptanalyst has only the cipher text to work with. In this ACI technique the key is

changed for each character of the plaintext to produce a cipher text that is mathematically

difficult to break. Since 192 characters are taken and a permutation of these characters is

done to get groups of characters of all possible orderings without any repetition forming

the keystream, the total number of keystreams will be 192! × 2.718. Thus the possible

number of combinations to be searched is 192! × 2.718. Thus a hacker has to try all such

keystreams to find an appropriate one. This method makes it difficult for the hacker to

find out the keystream used for encryption. Thus the size of the key space is 192! ×

2.718. The technique helps to generate long period of random keystreams along with no

obvious relationship between the individual bits of the sequence. Also the generated

keystreams are of large linear complex. Finally keystream have high degrees of

correlation immunity. Thus it is practically difficult to perform a brute-force search in a

key-space.

 Known Plaintext Attack: The plaintext is encoded using the cycle formation technique.

This would increase the security in such a manner that it is difficult to know the values

assigned for the characters in the plaintext. This is because there are 2𝑙
possible

combination and the hacker has to search those combinations for the values. Here,

 Arindam Sarkar, University of Kalyani, India 200

𝑙 denotes the length of block. Also the keys used for encryption has to be found by the

cryptanalyst. The technique offers better floating frequency of characters. So, known

plaintext attack is difficult in this technique.

 Chosen Plaintext Attack: The objective of this attack is to find the secret key. This attack

is difficult because there is no obvious relationship between the individual bits of the

sequence in plaintext and cipher text. In the technique the cipher text is obtained by

performing an Exclusive-OR operation between the encoded plaintext and the characters

in the key stream. This technique is not vulnerable to chosen-plaintext attack, since the

plaintext is encoded first using cycle generation technique then outcomes of this get

Exclusive-OR with ACI based keystream and the outcomes of this is Exclusive-OR with

the session key. It is difficult for the hacker to find the key chosen for encryption. So, it

is difficult to choose a plaintext of his/her choice and get the corresponding cipher text.

The technique passes the frequency (monobit) test, runs test, binary matrix rank test and

in each session a fresh CTHLP based session key is used for encryption which confirms

that chosen plaintext attack is very difficult in this technique.

 Chosen Cipher text Only Attack: The technique has a good Chi-Square value this

confirms good degree of non-homogeneity and also it passes the discrete Fourier

transform test, approximate entropy test, overlapping (periodic) template matching test

which confirms that chosen plaintext attack is difficult in this technique. So, it will be

difficult get plaintext from the cipher text.

 Brute Force Attack: The ACI based key is changed for each character of the plaintext to

produce a cipher text that is mathematically impossible to break. Since 192 characters are

chosen the total number of keystreams will be 192! × 2.718. Thus a hacker has to try all

such keystreams to find an appropriate one. This method makes it difficult for the hacker

to find out the keystream used for encryption. Encryption is an important issue in

wireless communication since it is carried out over the air interface, and is more

vulnerable to fraud and eavesdropping. Also the keystream is used to generate the keys

for the portion of the plaintext exceeding the length of the keystream. This method of

encryption reduces the number of keys to be stored and distributed. Due to high

complexity brute force attack will not be feasible. The technique has a good entropy

 Arindam Sarkar, University of Kalyani, India 201

value near to eight which indicates that brute force attack is not be possible in this

technique.

 Consider an attack where E takes 𝜏𝐸 and the local fields of his/her hidden units into

account. In fact, it is the most successful method for an attacker using only a single

CTHLP. E tries to imitate B without being able to interact with A. As long as 𝜏𝐴 = 𝜏𝐸 ,

this can be done by just applying the same learning rule as the partners A and B. But in

the case of 𝜏𝐸 ≠ 𝜏𝐴 . E cannot stop A‟s update of the weights. Instead the attacker tries to

correct the internal representation of his/her own DHLP using the local fields 1
𝐸 ,

2
𝐸 , … , 𝑘

𝐸 as additional information. These quantities can be used to determine the level

of confidence associated with the output of each hidden unit. As a low absolute value

 𝑖
𝐸 indicates a high probability of 𝜎𝑖

𝐴 ≠ 𝜎𝑖
𝐸 , the attacker changes the output 𝜎𝑖

𝐸 of the

hidden unit with minimal 𝑖
𝐸 and the total output 𝜏𝐸 before applying the learning rule.

Of course, this attack does not always succeed in estimating the internal representation of

A‟s CTHLP correctly. Sometimes there are several hidden units with 𝜎𝑖
𝐴 ≠ 𝜎𝑖

𝐸 . In this

case the change of one output bit is not enough. It is also possible that 𝜎𝑖
𝐴 = 𝜎𝑖

𝐸for the

hidden unit with minimal 𝑖
𝐸 , so that the correction makes the result worse than before.

5.5 Discussions

The technique is very simple and easy to implement in various high level language. The test

results also show that the performance and security provided by the technique is good and

comparable to standard technique. The security provided by the CTHLPSCT is comparable

with other techniques. To enhance the security of the technique, CTHLPSCT offers changes

of some parameters randomly in each session. To generate the secret session key index mask

get exchanged between sender and receiver. This technique has a unique ability to construct

the secret key at both sides using this exchanged information. Since the encryption and

decryption times are much lower, so processing speed is very high. The method takes

minimum amount of resources which is greatly handle the resource constraints criteria of

wireless communication. This method generates a large number of keys which is the same

number of neurons in the map. For ensuring the randomness in every session, some of the

 Arindam Sarkar, University of Kalyani, India 202

parameters get change randomly at each session. CTHLPSCT outperform than existing TPM,

PPM, Diffie-Hellman Key exchange methods and does not suffers from Brute Force or Man-

In-The-Middle (MITM) attack. No platform specific optimizations were done in the actual

implementation, thus performance should be similar over varied implementation platform.

The whole procedure is randomized, thus resulting in a unique process for a unique session,

which makes it harder for a cryptanalyst to find a base to start with. This technique is

applicable to ensure security in message transmission in any form and in any size in wireless

communication. Some of the salient features of CTHLPSCT are summarized as follows:

a) Session key generation and exchange – Identical session key can be generate after the

tuning of CTHLP in both sender and receiver side with the help of chaos

synchronization. So, no need to transfer the whole session key via vulnerable public

channel.

b) Degree of security – The technique does not suffers from cipher text only attack,

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute

force attack and attacks during CTHLP synchronization process. It offers

authentication steps during synchronization.

c) Variable block size – Encryption algorithm can work with any block length and thus

not require padding, which result identical size of files both in original and encrypted

file. So, CTHLPSCT has no space overhead.

d) Variable key – 128/192/256 bit CTHLP based session key and 128/192/256 bits

ACI based keystream with high key space can be used in different sessions. Since the

session key is used only once for each transmission, so there is a minimum time stamp

which expires automatically at the end of each transmission of information. Thus the

cryptanalyst may not be able guess the session key for that particular session.

e) Complexity – The technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh

through wireless communication. So, the CTHLPSCT may be suitable in wireless

communication.

 Arindam Sarkar, University of Kalyani, India 203

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value

have been performed between the source and corresponding cipher streams

generated using proposed technique. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good. This

technique has a better Chi-Square value than technique proposed in chapter 2, 3 and

4.

g) Floating frequency – In the CTHLPSCT it is observed that floating frequencies of

encrypted characters are indicates the high degree of security for the proposed

technique. This technique has a better floating frequency than technique proposed in

chapter 2, 3 and 4.

h) Entropy – The entropy of encrypted characters is near to eight which indicate the

high degree of security of technique. This technique also has a better entropy value

than technique proposed in chapter 2, 3 and 4.

i) Correlation – The cipher stream generated through the technique is negligibly

correlated with the source stream. Therefore the the technique may effectively resist

data correlation statistical attack.

j) Key sensitivity – The technique generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

k) Security and performance trade-off – The technique may be ideal for trade-off

between security and performance of light weight devices having very low processing

capabilities or limited computing power in wireless communication.

Chapter 6

Chaos based Grouped Triple Hidden Layer Perceptron

Synchronized Cryptographic Technique

 (CGTHLPSCT)

 Arindam Sarkar, University of Kalyani, India 206

6.1 Introduction

In this chapter a novel soft computing assisted cryptographic technique CGTHLPSCT, based

on synchronization of Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP)
[208]

,

has been proposed. The CTHLPSCT technique proposed in chapter 5 are only considered

synchronization among two parties for generation of session key. Since in CTHLP technique

each communicating party has to synchronize with other. So, if there are 𝑛 parties then total

number of synchronizations needed is 𝑂(𝑛2). This is quite computationally complicated

especially in wireless communication where the computational power and the resource

constrain is a major issue. CGTHLPSCT of this chapter eliminates all the above stated

drawbacks of the CTHLPSCT in chapter 5. CGTHLPSCT of the present chapter introduces

Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) synchronization

mechanism for offering synchronization of group of parties. In CGTHLPSCT a key swap

over by synchronization among cluster of CTHLP has been proposed which is a fresh

addition to the field of cryptography. The proposed technique implements the key swap over

technique with the help of complete binary tree framework which makes the technique scales

logarithmically with the number of parties participating in the key swap over protocol. In the

previous chapter it has been shown how two parties can swap over a common key using

synchronization between their own CTHLP. But the problem crop up when group of 𝑛

parties desire to swap over a key. Using proposed technique a set of 𝑛 parties can be able to

share a common key with only 𝑂(𝑙𝑜𝑔2 𝑛) synchronization steps. This is logarithmic

complexity and feasible in wireless communication with limited amount of resources.

Here, CGTHLP based synchronization is performed for tuning of group of parities by

placing on the complete binary tree framework. On the completion of the tuning phase

identical session key is generated for the entire group with the help of synchronized

CGTHLP. This synchronized network can be used for transmitting message using any light

weight encryption/decryption technique with the help of session key of the synchronized

network. To illustrate the cryptographic technique using CGTHLP in wireless

communication one of the simple and secure encryption/decryption technique has been

presented. A plaintext is considered as a stream of binary bits. Particle Swarm Intelligence

(PSI) guided enciphering technique
[209]

 with the help of CGTHLP tuned session key is used

 Arindam Sarkar, University of Kalyani, India 207

to generate the cipher text. The plaintext is regenerated from the cipher text using same

technique with the help of CGTHLP tuned session key.

Section 6.2 represents a description of proposed technique. Section 6.3 deals with the

implementation of the proposed cryptographic technique. Section 6.4 discussed the security

issue related to the proposed technique. Discussions are presented in section 6.5.

6.2 The Technique

The technique performs the CGTHLP based synchronization for generation of secret session

key for the entire group. This synchronized group session key of the tuned network is used

for the transmission of secured message through wireless network with the help of any light

weight encryption/decryption algorithm. To illustrate the cryptographic technique in wireless

communication one of the simple and secure encryption/decryption technique has been

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is

encrypted using PSI generated fittest encryption/decryption keystream. The session key

based on CGTHLP is used to encrypt intermediate output which produces final cipher text.

The technique uses Chaos based Grouped of THLP to generate the group session key. This

scheme implements the key swap over algorithm with the help of complete binary tree

framework which makes the algorithm scales logarithmically with the number of parties

participating in the key swap over protocol.

In Particle Swarm Intelligence (PSI) based encryption/decryption technique, particle and

velocity vector are formed for generation of keystream by setting up the maximum

dimension of each particle and velocity vector. Each particle position and probability value is

evaluated. Probability value of each particle can be determined by dividing the position of a

particular particle by its length. If probability value of a particle is less than minimum

probability value then a velocity is applied to move each particle in a new position. After that

probability value of the particle at new position is calculated. A threshold value is selected to

evalutae against velocity level of each particle. Particle having highest velocity more than

predefined threshold value is selected as a keystream for encryption. If the length of the

plaintext is grater than the length of the PSI based keystream then the values of the keystream

are added to a predetermined value to generate the keys for the characters in the plaintext

 Arindam Sarkar, University of Kalyani, India 208

which is at a position grater than the length of the keystream. Stream of plaintext is then

encrypted using the PSI based keystream/extended keystream. Finally a cascaded Exclusive-

OR operation is performed between PSI encrypted text and the CGTHLP based session key

to generate final cipher text.

All the parties in the group have the same CGTHLP synchronized group session key.

This session key is used to perform first step of the deciphering technique. In the next step,

PSI guided keystream based deciphering operation is performed to regenerate the plaintext.

The CGTHLPSCT does not cause any storage overhead. This greatly handles the

resource constraints criteria of wireless communication. A comparison of CGTHLPSCT with

previously proposed technique in chapter 5, chapter 4, chapter 3, chapter 2, existing Tree

Parity Machine (TPM), Permutation Parity Machine (PPM), and industry accepted AES,

RC4, Vernam Cipher, Triple DES (TDES) and RSA have been done. Analyses of results are

given in chapter 7.

In CGTHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits

which is encrypted using PSI generated fittest encryption keystream based encryption

process. CGTHLP synchronized group session key is used to further encrypt the PSI encoded

text to produce final cipher text. The algorithm for the complete process is given in section

6.2.1.

6.2.1 CGTHLPSCT Algorithm at Sender

Input : Source file/source stream i.e. plaintext

 Output : Encrypted file/encrypted stream i.e. cipher text

 Method : The process operates on binary stream and generates encrypted bit stream through

CGTHLP guided Ant Colony Intelligence (PSI) based encryption operations.

Step 1. Perform tuning of CGTHLPs to generate common group secret session

key.

Step 2. Generates PSI based fittest encryption keystream.

Step 3. Perform PSI based encryption operation on the plaintext.

Step 4. Perform cascaded Exclusive-OR operation between CGTHLP based

session key and outcomes of step 3.

 Arindam Sarkar, University of Kalyani, India 209

Step 1 of the algorithm generate common session key through synchronization of CGTHLP

at both end. The detailed step is discussed in section 6.2.1.1. Step 2 of the algorithm

generates PSI based fittest encryption keystream. The detailed description of the process is

given in section 6.2.1.2. Algorithm for performing PSI based encryption operation (step 3) on

the plaintext is discussed in 6.2.1.3. The technique of cascading encryption process (step 4)

which takes the intermediate output generated in step 3 is given in details in section 6.2.1.4.

6.2.1.1 Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) Synchronization

and Session Key Generation

Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) guided synchronization

mechanism has been proposed here to improve the efficiency and enhance the security of the

Chaos based Triple Hidden Layer Perceptron (CTHLP) guided synchronization between two

parties, proposed in chapter 5. The most important hazard of cryptography is how to firmly

swap over the shared secrets between the parties. As a result, key exchange protocols are

mandatory for transferring keys in a protected manner. As the same time as key exchange

protocols are developed for exchanging key between two parties, many applications do

necessitate the need of swapping over a secret key among group of parties. So, if there are 𝑛

parties then total number of synchronizations needed is 𝑂(𝑛2). Which is quite

computationally complicated especially in wireless communication where the computational

power and the memory constrain is a major issue. The method of this chapter eliminates all

the above stated drawbacks of the method of chapter 5. The method of the current chapter

introduces CGTHLP synchronization mechanism for offering synchronization of group of

parties. Here, a complete binary tree framework is used to synchronize group of CTHLP,

which makes the algorithm scales logarithmically with the number of parties participating in

the key swap over protocol. In the CGTHLP synchronized group key exchange algorithm, 𝑛

CTHLP need to synchronize together and they are represented by an 𝑚 number of leaves of a

complete binary tree where 𝑚 is defined as 𝑚 = 2𝑙𝑜𝑔2 𝑛 . In the technique 𝑛 CTHLP having

identical structure of three hidden layers are participated for group key generation purpose.

Here, each CTHLP considered as a node of a complete binary tree framework. CTHLP in the

group initially start Chaos synchronization between two pair of leaves to construct a common

seed value at both sides. This Chaos synchronized identical seed values is used to generate

 Arindam Sarkar, University of Kalyani, India 210

the common input vector for the two nodes 𝑛𝑜𝑑𝑒𝑖(sending node) and 𝑛𝑜𝑑𝑒𝑗 (receiving node)

of the complete binary tree framework participating in the synchronization process. Now,

two nodes 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 in the same pair start synchronization with common input

vector and completely random weight vector. In each time both 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 compute

their final output based on input and weight vector, and communicate to each other. If both

are be in agreement on the mapping between the present input and the output, their weights

are updated according to an appropriate learning rule. After synchronization procedure

weight vector of both 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 become identical. Now one of these two

synchronized 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 is elected for proceed further synchronization steps with the

elected 𝑛𝑜𝑑𝑒𝑖 form other branch of the tree. If all the nodes in the group are synchronized in

this manner then indistinguishable weight vector forms the group session key for a particular

session. Authentication steps also get performed parallel to the synchronization steps. Both

parties’ uses identical input vector generated using Chaos synchronized seed and use

anonymous random weight vector to initializes the weights of the synaptic links of CTHLP.

Identical input vector for both the parties kept secret for security reason. Attackers has no

idea about the internal state of both the CTHLPs of 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 at a particular instant of

time and this is achievable by keeping secret the common input vector and internal state of

the CTHLP. At the time of key exchange procedure key authentication technique is also

performed parallel by selecting last 𝑚 bits of the identical input vector and transmitting

directly as an output bit towards the other party over public channel. Receiving party checks

these last 𝑚 bits to its last 𝑚 bits of identical input vector. If both the sequences are same

then both are authenticated otherwise not. Attacker does not have identical input vector like

sender and receiver. By sniffing the public channel attacker can gets some bits but from them

attacker will not be able to understand which one is output bit of the machine and which one

is one of the bits of 𝑚 bits sequence of the identical input vector. Even if attacker hacks the

𝑚 bits then for getting the rest of the (𝑑 −𝑚) bits of the identical input vector attacker has to

perform checking with all (𝑑 −𝑚) combination that is computationally infeasible. Here 𝑑 is

the total number of bits in the identical input vector of the technique offers synchronization

and authentication step in parallel. An attacker also cannot distinguish an authentication step

from a synchronization step from observing the exchanged outputs. Attacker thus does not

 Arindam Sarkar, University of Kalyani, India 211

know, whether the currently observed output bit is used for either of the two purposes if the

attacker does not know the secret identical common input vector.

In a complete binary tree a node with no child is called leaf node. Figure 6.1 represents

the scenario when 𝑙𝑒𝑎𝑣𝑒𝑠 = 8 (number of leaves in the figure 6.1) 𝑗 = 1 (𝑗 is the round

number). Then complete binary tree is divided into 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑎𝑣𝑒𝑠/2𝑗

subtrees each

with 2𝑗 leaves i.e. four sub trees with two leaves each represented by red oval. Each pair of

leaves sharing the same parent (two leaves in a single red oval) involved in mutual learning

at height four.

Figure 6.1: Initial state of group synchronization

After round 1 each pair of leaves sharing the same parent become synchronized using mutual

learning step. Figure 6.2 represents the scenario where same colored leaves become

synchronized. From each sub tree a node is nominated as a leader among the nodes having

same parents to perform the next round of operation.

Height 1

Height 2

Height 3

Height4

 Arindam Sarkar, University of Kalyani, India 212

Figure 6.2: First round of group synchronization

At round 2 when 𝑗 = 2, 𝑙𝑒𝑎𝑣𝑒 = 8 (number of leaves in a complete binary tree framework).

Then tree is divided into two sub trees with four leaves at height 3 shown in figure 6.3.

Figure 6.3: Second round of group synchronization

In this way next rounds are performed until the root node at height 1 is synchronized. On the

completion of the synchronization process all the nodes in the group become synchronized

based on a common group session key. In proposed technique CTHLPs start synchronization

by exchanging control frames. The process involves message integrity and synchronization

Elected
Leader

Elected
Leader

Elected
Leader

Sub tree 2
Sub tree 1

Height 1

Height 2

Height 3

Height4

Height 1

Height 2

Height 3

Height4

 Arindam Sarkar, University of Kalyani, India 213

test. CGTHLP synchronization uses transmission of control frames at the time of three way

handshaking based TCP connection establishment phase, as given in table 6.1.

Table 6.1

Control frames of CGTHLP synchronization
Frame Description

𝑆𝑌𝑁
𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑗 for synchronization in connection establishment

phase

𝐴𝐶𝐾_𝑆𝑌𝑁
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑖 for positive acknowledgement respect to 𝑆𝑌𝑁

frame

𝑁𝐴𝐾_𝑆𝑌𝑁
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑖 for negative acknowledgement respect to 𝑆𝑌𝑁

frame

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the 𝑛𝑜𝑑𝑒𝑖 starts a

timer and waits for a reply from the receiver. If the 𝑛𝑜𝑑𝑒𝑗 does not take any action until a

certain time limit and number of attempts exceeded a certain value, the 𝑛𝑜𝑑𝑒𝑖 restarts the

synchronization procedure. When the 𝑛𝑜𝑑𝑒𝑗 receives the 𝑆𝑌𝑁 frame, it carry out the integrity

test. If the messages are received as sent (with no replication, incorporation, alteration,

reordering, or replay) the 𝑛𝑜𝑑𝑒𝑗 will execute the synchronization check. The 𝑛𝑜𝑑𝑒𝑖 and

𝑛𝑜𝑑𝑒𝑗 have an identical 𝑇 variable formally store in their respective memory. The

𝑛𝑜𝑑𝑒𝑖 sends the encrypted 𝑇 to the receiver. Here the 𝑛𝑜𝑑𝑒𝑗 utilizes its 128/192/256 bits

weights to decrypt the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in 𝑛𝑜𝑑𝑒𝑗

memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the networks are

synchronized. This is the best case solution where 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 arbitrarily choose weight

vector which are identical. So, networks are synchronized at initial stage. The 𝑛𝑜𝑑𝑒𝑗 should

send the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to alert the sender. But most of the time this best case is not

achievable. If decryption algorithm does not produce predictable result, the 𝑛𝑜𝑑𝑒𝑗 should use

the chaos synchronized secret seed of 𝑛𝑜𝑑𝑒𝑖’s produce the input vector (𝑋) which is identical

to 𝑛𝑜𝑑𝑒𝑖 . With this input vector the 𝑛𝑜𝑑𝑒𝑗 will work out its 𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑛𝑜𝑑𝑒 𝑗). If the 𝑛𝑜𝑑𝑒𝑖

and 𝑛𝑜𝑑𝑒𝑗 outputs are different, the 𝑛𝑜𝑑𝑒𝑗 should not fine-tune its weights and inform the

 Arindam Sarkar, University of Kalyani, India 214

𝑛𝑜𝑑𝑒𝑖 its output. The 𝑛𝑜𝑑𝑒𝑗 sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the 𝑛𝑜𝑑𝑒𝑖 , with the same

𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this methodology is used for providing the

negative acknowledgement in respect to the 𝑆𝑌𝑁 frame. If 𝑛𝑜𝑑𝑒𝑗 ’s output is equal to

𝑛𝑜𝑑𝑒𝑖’s output i.e. (𝜏 𝑛𝑜𝑑𝑒 𝑗 = 𝜏 𝑛𝑜𝑑𝑒 𝑖) then 𝑛𝑜𝑑𝑒𝑗 update it weights. At the end of weights

update, the 𝑛𝑜𝑑𝑒𝑗 should report the 𝑛𝑜𝑑𝑒𝑖 that outputs are equal. The 𝑛𝑜𝑑𝑒𝑗 uses the

𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the 𝑛𝑜𝑑𝑒𝑖 , with the same 𝐼𝐷 value received from 𝑛𝑜𝑑𝑒𝑖 . The

proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this methodology is used for providing the positive

acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the 𝑛𝑜𝑑𝑒𝑖 also

updates its weight. If 𝑛𝑜𝑑𝑒𝑖 receives 𝐴𝐶𝐾 _𝑆𝑌𝑁 it should update its weights. The 𝑛𝑜𝑑𝑒𝑖 will

create new synchronization frame until receive the frame 𝐹𝐼𝑁_𝐴𝐶𝐾 from 𝑛𝑜𝑑𝑒𝑗 . When the

𝑛𝑜𝑑𝑒𝑖 receives the frame 𝐹𝐼𝑁_𝐴𝐶𝐾, it stops the further synchronization. The proposed

𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this methodology is used for closing the connection. At end of

synchronization, both nodes provide the identical weight vector which acts as a session key

identical to both. Table 6.2 shows the different frames and their corresponding command

codes

Table 6.2

CGTHLP control frames and their command codes
Frame Command

𝑆𝑌𝑁 0000

𝐹𝐼𝑁_𝑆𝑌𝑁 0001

𝐴𝐶𝐾_𝑆𝑌𝑁 0010

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011

𝐴𝑈𝑇𝐻 0100

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111

The identifier is the function of informing the 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗where the message is a recent

message. The variable 𝐼𝐷 starts with zero and is incremented every time that the 𝑛𝑜𝑑𝑒𝑖 sends

a synchronization frame. The figure 6.4 shows the exchange of frames during CGTHLP

synchronization process.

 Arindam Sarkar, University of Kalyani, India 215

Figure 6.4: Exchange of control frames between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗during CGTHLP

synchronization

The detailed frame format of 𝑆𝑌𝑁 frame is discussed in section 6.2.1.1.1. The detailed frame

format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 6.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁

frame has been discussed in section 6.2.1.1.3. The frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is

discussed in section 6.2.1.1.4.

𝑛𝑜𝑑𝑒𝑖’s CTHLP
𝑛𝑜𝑑𝑒𝑗 ’s CTHLP

∑

∑

𝜋

 .

 .

 .

∑

∑

∑

∑

.

.

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

𝜋

.

.

.

∑

∑

∑

∑

 .

 .

 .

∑

∑

∑

∑

∑

∑

∑

∑

𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟
 ,𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇))

𝐴𝐶𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝑁𝐴𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷)

𝐹𝐼𝑁_𝑆𝑌𝑁

 Arindam Sarkar, University of Kalyani, India 216

6.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame

During synchronization process 𝑛𝑜𝑑𝑒𝑖 constructs a 𝑆𝑌𝑁 frame and transmit to the 𝑛𝑜𝑑𝑒𝑗 for

handshaking in connection establishment phase. 𝑛𝑜𝑑𝑒𝑖 utilizes its initial 128 weights as key

for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 . 𝑛𝑜𝑑𝑒𝑖

constructs a 𝑆𝑌𝑁 frame and transmitted to the 𝑛𝑜𝑑𝑒𝑗 for handshaking purpose in connection

establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝑛𝑜𝑑𝑒𝑖

 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑛𝑜𝑑𝑒 𝑖), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has the

fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, number of bits required for 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 is four.

𝑆𝑌𝑁 𝐼𝐷,𝑛𝑜𝑑𝑒𝑖 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑛𝑜𝑑𝑒 𝑖),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 𝐶𝑅𝐶 needs

eight bits, one bits, 128 bits, 𝑚 bits and sixteen bits respectively. When the 𝑛𝑜𝑑𝑒𝑗 receive

𝑆𝑌𝑁 frame, the receiver should carry out integrity test. 𝑛𝑜𝑑𝑒𝑗 performs Integrity test on

receiving the 𝑆𝑌𝑁 frame. If the messages are received as sent (with no replication,

incorporation, alteration, reordering, or replay) the 𝑛𝑜𝑑𝑒𝑗 will execute the synchronization

test. In synchronization test 𝑛𝑜𝑑𝑒𝑗 utilize its 128 first weights as key for decryption of

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 that was received from the 𝑛𝑜𝑑𝑒𝑖 . After decryption operation if

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

Figure 6.5 shows the complete frame format of 𝑆𝑌𝑁 frame.

 4 8 1 128 𝑚 16 (𝑏𝑖𝑡𝑠)

Figure 6.5: Synchronization (𝑆𝑌𝑁) frame

6.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the 𝑛𝑜𝑑𝑒𝑗 to the 𝑛𝑜𝑑𝑒𝑖 in respect of 𝐴𝐶𝐾 frame for positive

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame has

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶

needs sixteen bits for error checking purpose. Now check the condition i.e. If

𝐶𝑜𝑚𝑚𝑎𝑛𝑑
 𝐶𝑜𝑑𝑒
0000

𝑆𝑌𝑁 𝐼𝐷 𝜏 𝑛𝑜𝑑𝑒𝑖 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇
𝐴𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑖𝑜𝑛

 𝑏𝑖𝑡𝑠

𝐶𝑅𝐶
(𝐶𝑦𝑐𝑙𝑖𝑐
𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦
𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 217

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇 then 𝑛𝑜𝑑𝑒𝑗 use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑

received from 𝑛𝑜𝑑𝑒𝑖 to produce the 𝑛𝑜𝑑𝑒𝑗 inputs (𝑋) identical to 𝑛𝑜𝑑𝑒𝑖 input (𝑋) and

calculates the output 𝜏 𝑛𝑜𝑑𝑒 𝑗 . If (𝜏 𝑛𝑜𝑑𝑒 𝑗 = 𝜏 𝑛𝑜𝑑𝑒 𝑖) then 𝑛𝑜𝑑𝑒𝑗 should update their weights

where 𝜎𝑘
𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 = 𝜏𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 using learning rule. At end of weight updation of the

𝑛𝑜𝑑𝑒𝑗 , then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the 𝑛𝑜𝑑𝑒𝑖 for updating the

weights. If 𝑛𝑜𝑑𝑒𝑖 receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. Figure 6.6 shows the

complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 6.6: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame

6.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the 𝑛𝑜𝑑𝑒𝑗 to the 𝑛𝑜𝑑𝑒𝑖 in respect of 𝐴𝐶𝐾 frame for negative

acknowledgement of the parameters value. This proposed frame comprises of

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The 𝐴𝐶𝐾_𝑆𝑌𝑁 frame

has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏 𝑛𝑜𝑑𝑒 𝑗 ≠ 𝜏 𝑛𝑜𝑑𝑒 𝑖) then the

𝑛𝑜𝑑𝑒𝑗 sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the 𝑛𝑜𝑑𝑒𝑖 . If the 𝑛𝑜𝑑𝑒𝑗 ’s and 𝑛𝑜𝑑𝑒𝑖 ’s outputs

are different, the 𝑛𝑜𝑑𝑒𝑗 should not fine-tune its weights and inform the 𝑛𝑜𝑑𝑒𝑖 . The

𝑛𝑜𝑑𝑒𝑗 sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the 𝑛𝑜𝑑𝑒𝑖 , with the same 𝐼𝐷 value. Figure 6.7

shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 6.7: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0010

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0011

𝑆𝑌𝑁_𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 218

6.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four

bits. The 𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose.

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇 then networks are synchronized.

𝑛𝑜𝑑𝑒𝑗 sends the FIN_SYN frame to the 𝑛𝑜𝑑𝑒𝑖 . Figure 6.8 shows the complete frame format

of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame.

 4 8 16 (𝑏𝑖𝑡𝑠)

Figure 6.8: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame

 The CGTHLP synchronization algorithm for generating synchronized session key is

discussed in section 6.2.1.1.5. Section 6.2.1.1.6 presents the computational complexity of the

CGTHLP synchronization algorithm and CGTHLP learning is discussed in section 6.2.1.1.7.

6.2.1.1.5 CGTHLP Synchronization

Chaos synchronization initiated between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 to construct a common seed value

at both sides. The Chaos synchronized identical seed value is used to generate the common

input vector for 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒𝑗 . Two CTHLPs one at 𝑛𝑜𝑑𝑒𝑖 and another at 𝑛𝑜𝑑𝑒𝑗 start

with identical input vector and anonymous random weight vector. In each time both CTHLPs

compute their final output based on input and weight vector, and communicate to each other.

If both are be in agreement on the mapping between the present input and the output, their

weights are updated according to an appropriate learning rule. After synchronization

procedure of all parties (nodes in a complete binary tree) in the group weight vector of the

group CTHLPs become identical. These indistinguishable weight vector forms the session

key for a particular session. Authentication steps also get performed parallel to the

synchronization steps.

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒
0001

𝑆𝑌𝑁 𝐼𝐷
𝐶𝑅𝐶

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝐶𝑒𝑐𝑘𝑒𝑟)

 Arindam Sarkar, University of Kalyani, India 219

 Input : Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1,𝑦2 and 𝑧2), random weights, group of 𝑛 CTHLPs

with 𝑙 leaves in a complete binary tree framework

 Output : Secret session key through group synchronization

Method : Two CTHLPs in a pair are be in agreement on the mapping between the present

input and the output, their weights are updated according to an appropriate

learning rule. After synchronization procedure weight vector of both CTHLPs

become identical. Now one of these two synchronized CTHLPs is elected for

proceed further synchronization steps with the elected CTHLP form other branch

of the tree. If all the CTHLP are synchronized in this manner then

indistinguishable weight vector forms the group session key for a particular

session.

Step 1. Represents the 𝑛 CTHLPs by the 𝑙 leaves node in a complete binary

tree.

Step 2. Set = height of the complete binary tree and 𝑝𝑜𝑠 = − 1 where

𝑝𝑜𝑠 denotes the initial starting position of the mutual learning

algorithm

Step 3. 𝑛𝑜𝑑𝑒𝑖 initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to

the 𝑛𝑜𝑑𝑒𝑗 .

Step 4. 𝑛𝑜𝑑𝑒𝑗 initializes the value of 𝑟.

Step 5. 𝑛𝑜𝑑𝑒𝑖 generates the point 𝑥1 and 𝑧1.

Step 6. 𝑛𝑜𝑑𝑒𝑗 generates the point 𝑦2and 𝑧2.

Step 7. 𝑛𝑜𝑑𝑒𝑖 sends 𝑥1 to 𝑛𝑜𝑑𝑒𝑗 and 𝑛𝑜𝑑𝑒𝑗 sends 𝑦2 and 𝑧2 to 𝑛𝑜𝑑𝑒𝑖 .

Step 8. 𝑛𝑜𝑑𝑒𝑗 calculates the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and 𝑏

using the equations 6.1 and 6.2 then returns the value of 𝑦2 and 𝑧2 to

the 𝑛𝑜𝑑𝑒𝑖 .

 𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2 (6.1)

 𝑧2 = 𝑥𝑦2 − 𝑏𝑧2 (6.2)

Step 9. 𝑛𝑜𝑑𝑒𝑖 calculates the value of 𝑥1 and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏

using equations 6.3 and 6.4 then sends the value of 𝑥1 to the 𝑛𝑜𝑑𝑒𝑗

and so on.

 Arindam Sarkar, University of Kalyani, India 220

 𝑥1 = 𝜎 𝑥1 − 𝑦2 (6.3)

 𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1 (6.4)

Step 10. 𝑛𝑜𝑑𝑒𝑖 generates a nonce. This nonce gets encrypted using a symmetric

cipher with 𝑧1 as the key and sends the results of the encryption using

equation 6.5.

 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒 (6.5)

Step 11. The 𝑛𝑜𝑑𝑒𝑗 decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key, performs a defined

function on it using equation 6.6 and 6.7.

 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒

 (6.6)

 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 (6.7)

Step 12. The 𝑛𝑜𝑑𝑒𝑗 encrypts the result of the previous step using 𝑧2 as the key

and sends the result to the sender illustrated in equation 6.8.

 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 (6.8)

Step 13. The 𝑛𝑜𝑑𝑒𝑖 decrypts this message using 𝑧1 as the key, performs the

inverse of the pre-defined function and checks if the original nonce is

obtained as shown in equation 6.9.

 𝑁𝑜𝑛𝑐𝑒 = 𝑓−1 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒

 (6.9)

Step 14. If synchronization is not achieved, the process is repeated from step 5.

Step 15. If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1 is used as a seed for

a pseudo random number generator to generate identical

input vector 𝑋 at both node.

Step 16. Initialization of synaptic links between input layer and first hidden

layer and between first hidden layer and second hidden layer using

random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿,−𝐿 + 1,… , +𝐿 .

 Repeat step 17 to step 26 until the full synchronization is achieved,

Step 17. The input vector(𝑋) is generated both end using the Chaos

synchronized seed value.

Step 18. Computes the values of hidden neurons by the weighted sum over the

current input values. Each hidden neuron in first Hidden layer

 Arindam Sarkar, University of Kalyani, India 221

produces 𝜎1
i values. Similarly, each hidden neuron in second hidden

layer produces 𝜎2
i value. Each hidden neuron in third hidden layer

produces 𝜎3
i value. These can be represented using equation 6.10,

6.11 and 6.12.

 𝜎1
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝑊𝑖 ,𝑗 𝑋𝑖,𝑗 (6.10)

 𝜎2
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝜎𝑖
1 (6.11)

 𝜎3
i = 𝑠𝑔𝑛 𝑁

𝑗=1 𝜎𝑖
2 (6.12)

 𝑠𝑔𝑛(𝑥) is a function represents in equation 6.13, which returns

 −1, 0 or 1:

 𝑠𝑔𝑛 𝑥 =

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 (6.13)

If the weighted sum over its inputs is negative then set 𝜎𝑖 = −1.

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0.

Step 19. Compute the value of the final output neuron by computing

multiplication of all values produced by 𝐾2 no. hidden neurons using

equation 6.14.

 𝜏 = 𝜎𝑖
3𝐾2

𝑖=1 (6.14)

Step 20. 𝑛𝑜𝑑𝑒𝑖 utilizes its 128 weights as key for encryption of 𝑇 variable

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇 .

Step 21. 𝑛𝑜𝑑𝑒𝑖 constructs a SYN frame and transmitted to the 𝑛𝑜𝑑𝑒𝑗 for

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually

comprises of the fields 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, ID,𝑛𝑜𝑑𝑒𝑖 output (𝜏 𝑛𝑜𝑑𝑒 𝑖),

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 and 𝐶𝑅𝐶 (Cyclic Redundancy Checker) and

last 𝑚 bits of the identical input vector. In this way performed

authentication step parallel by selecting last m bits of the identical

input vector and transmitting towards the other party over public

channel using 𝑆𝑌𝑁 frame.

 Arindam Sarkar, University of Kalyani, India 222

Step 22. 𝑛𝑜𝑑𝑒𝑗 performs Integrity test after receiving the 𝑆𝑌𝑁 frame. Then

𝑛𝑜𝑑𝑒𝑗 perform authentication step to

 Check 𝑖𝑓 (𝑛𝑜𝑑𝑒𝑖 (𝑚 𝑏𝑖𝑡𝑠) = 𝑛𝑜𝑑𝑒𝑗 (𝑚 𝑏𝑖𝑡𝑠)) 𝑡𝑒𝑛

 𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸

𝐸𝑙𝑠𝑒

𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐹𝐴𝐿𝑆𝐸

If authentication is true then receiver utilize its 128 weights as key for

decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡
 𝑇 that was received from the

sender.

If authentication is false then 𝑛𝑜𝑑𝑒𝑗 sends 𝐴𝐶𝐾_𝑁𝐴𝐾 to sender.

Step 23. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇) = 𝑇 then networks

are synchronized. Go to step 25.

Step 24. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇) ≠ then 𝑛𝑜𝑑𝑒𝑗 use

the Chaos based secret seed to produce the 𝜏 𝑛𝑜𝑑𝑒 𝑗 input vector (𝑋)

identical to sender input vector(𝑋) and calculates the output 𝜏 𝑛𝑜𝑑𝑒 𝑗

using step 18 and step 19

Step 25. If (𝜏 𝑛𝑜𝑑𝑒 𝑗 = 𝜏 𝑛𝑜𝑑𝑒 𝑖) then performs the following steps.

Step 25.1 𝑛𝑜𝑑𝑒𝑗 update their weights where 𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 =

𝜏 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗using any of the learning rules discussed in

chapter 1 section 1.8.

Step 25.2 At the end of 𝑛𝑜𝑑𝑒𝑗 weights update, the 𝑛𝑜𝑑𝑒𝑗 sends

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights

using step 25.1.

Step 25.3 𝑛𝑜𝑑𝑒𝑖 transmits

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 to 𝑛𝑜𝑑𝑒𝑗 .

Step 25.4 𝑛𝑜𝑑𝑒𝑗 checks
if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) = 𝑇

 then networks are synchronized. Go to step 27.

Step 25.5 Perform the following checking

 Arindam Sarkar, University of Kalyani, India 223

 if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇) ≠ 𝑇

 then networks are still not synchronized. Go to step 25.1.

Step 26. If (𝜏 𝑛𝑜𝑑𝑒 𝑗 ≠ 𝜏 𝑛𝑜𝑑𝑒 𝑖) then the 𝑛𝑜𝑑𝑒𝑗 sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to

notify the 𝑛𝑜𝑑𝑒𝑖 . Go to step 17.

Step 27. Finally, the 𝑛𝑜𝑑𝑒𝑗 sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the 𝑛𝑜𝑑𝑒𝑖 to

finish the synchronization phase.

Step 28. Increment 𝑗 by 1 and from each sub tree, a node is nominated and the

mutual learning algorithm is executed by the nominated nodes and the

rest if the nodes follow then goto step 3.

Step 29. Terminates when the algorithm reaches the root. Hence, CTHLPs are

synchronized and share the same weight vector. Otherwise, go to step

1.

6.2.1.1.6 Complexity Analysis

For every step 𝑗 (starting at 𝑗 = 1) of the CGTHLP algorithm the complete binary tree is

divided into
𝑚

2𝑗
 sub trees each with 2𝑗 leaves, where 𝑚 is the total number of leaves. When

𝑗 = 1 number of sub tree will be
𝑚

2

along with two leaves. When 𝑗 = 2 number of sub tree

will be
𝑚

4

along with four leaves so on. In this way a structure of complete binary tree get

form and the height of the binary tree will be 𝑙𝑜𝑔2𝑛. In CGTHLP synchronization algorithm

 node i initialization of the value of σ and b takes needs unit amount of computation.

 𝑛𝑜𝑑𝑒𝑗 initialization of the value of 𝑟 also takes unit amount of computation. Generation of

the point 𝑥1 and 𝑧1 takes unit amount of computation. Generation of the point 𝑦2 and 𝑧2 takes

unit amount of computation. 𝑛𝑜𝑑𝑒𝑗 calculates the new value of 𝑦2 and 𝑧2 with the help of

𝑟 and 𝑏. This step also takes unit amount of computation. 𝑛𝑜𝑑𝑒𝑖 calculates the value of 𝑥1

and 𝑧1 with the help of 𝑦2, 𝜎 and 𝑏. This step also takes unit amount of computation.

 𝑛𝑜𝑑𝑒𝑖 generates a nonce. This nonce is encrypted using a symmetric cipher with 𝑧1 as the

key and sends the results of the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of

computation. The 𝑛𝑜𝑑𝑒𝑗 decrypts En_Nonce using 𝑧2 as the key. It also takes

(𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The 𝑛𝑜𝑑𝑒𝑗 encrypts the result of the previous step

 Arindam Sarkar, University of Kalyani, India 224

using 𝑧2 as the key. It takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The 𝑛𝑜𝑑𝑒𝑖 decrypts

this message using 𝑧1 as the key, performs the inverse of the pre-defined function and checks

if the original nonce is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of

computation. Initialization of weight vector takes (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) amount

of computations. For example, if 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then total numbers of

synaptic links (weights) are (2 × 2 + 2 × 3 + 3 × 2) = 16. So, it takes 16 amount of

computations. Generation of 𝑁 number of input vector for each 𝐾1 number of hidden

neurons takes (𝑁 × 𝐾1) amount of computations. Computation of the hidden neuron outputs

takes 𝐾1 + 𝐾2 + 𝐾3 amount of computations. Where 𝐾1, 𝐾2 and 𝐾3 are the number of

hidden units in 1
st
, 2

nd
 and 3

rd
 layer respectively. Computation of final output value takes unit

amount of computation because it needs only a single operation to compute the value.

Encryption of 𝑇 variable using Exclusive-OR operation also takes unit amount of

computations. Decryption of 𝑇 variable using Exclusive-OR operation also takes unit amount

of computations. Checking if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡

 𝑇) = 𝑇 or not

takes unit amount of computation. Weight updating procedure takes place where

𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 = 𝜏 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 using any of the learning rules which

takes 𝑛𝑜. 𝑜𝑓 𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 = 𝜏 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 amount of computations. Increment 𝑗 by 1 and

from each sub tree, a node is nominated and the chaos synchronization and mutual learning

algorithm is executed by the nominated nodes and the rest if the nodes follow. This take

O(no. of pair in mutual learning) computation. Terminates when the algorithm reaches the

root. Hence, all the CTHLPs are synchronized and share the same weight vector. From the

above complexity analysis it can be observed that each level of complete binary tree needs at

most O(no. of pair in mutual learning) computation complexity and height of the complete

binary tree is 𝑙𝑜𝑔2𝑛.

In best case of CGTHLP synchronization algorithm, 𝑛𝑜𝑑𝑒𝑖 ’s and 𝑛𝑜𝑑𝑒𝑗 ’s arbitrarily

chosen weight vectors are identical. So, networks are synchronized at initial stage do not

needs to update the weight using learning rule. Here, 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑁 × 𝐾1 + 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 +

 𝐾1 + 𝐾2 + 𝐾3 × 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑖𝑛 𝑚𝑢𝑡𝑢𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 × 𝑙𝑜𝑔2𝑛 amount of computation is

needed in best case which is in form of O Generation of common seed value +

 Arindam Sarkar, University of Kalyani, India 225

initialization of input vector + initialization of weight vector +

Computation of the hidden neuron outputs × no. of pair in mutual learning × log2n .

If the 𝑛𝑜𝑑𝑒𝑖 ’s and 𝑛𝑜𝑑𝑒𝑗 ’s arbitrarily chosen weight vector are not identical then in each

iteration the weight vectors of the hidden unit which has a value equivalent to the

pereceptron output are updated according to the learning rule. This scenario leads to average

and worst case situation where 𝐼 number of iteration to be performed to generate the identical

weight vectors at both ends. So, the total computation for the average and worst case is

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑁 × 𝐾1 +

 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 + 𝐾1 + 𝐾2 + 𝐾3 + 𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 × 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑖𝑛 𝑚𝑢𝑡𝑢𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 × 𝑙𝑜𝑔2𝑛

) which is can be expressed

O Time complexity in first iteration + (No. of iteration × No. of weight updation ×

 no. of pair in mutual learning × log2n) .

6.2.1.1.7 CGTHLP Learning Mechanism

In learning mechanism if the output bits are different for 𝑛𝑜𝑑𝑒𝑖 (A) and 𝑛𝑜𝑑𝑒𝑗 (B) i.e.

𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with

𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated. The weight vector of this hidden unit is adjusted using any of

the following learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian

takes less synchronization steps than other two learning rules in the range of 2 − 2 − 3 −

2 − 5 𝑁 − 𝐾1 − 𝐾2 − 𝐾3 − 𝐿 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases Hebbian

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules

take fewer steps than the other two learning rules in the range of 2 − 2 − 3 − 2 − 8 −

20 to 2 − 2 − 3 − 2 − 30. Random walk outperform from 3 − 2 − 2 − 8 − 35 and beyond

that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is increased,

the complexity of a successful attack grows exponentially, but there is only a polynomial

increase of the effort needed to generate a key. So, increasing the 𝐿 value security of the

system can be increased.

 Arindam Sarkar, University of Kalyani, India 226

6.2.1.2 Particle Swarm Intelligence (PSI) based Fittest Keystream Generation

In this section Particle Swarm Intelligence (PSI) based kestream generation technique for

message encryption/decryption has been presented to illustrate the complete cryptographic

technique. Instead of this technique any other light weight encryption/decryption technique

also may use for exchanging message between sender and receiver.

The PSI technique begins with an initial population comprises of set of valid and

complete set of particles. Then some operators like particles local best and global best

positions along with velocity updating rules are used to generate feasible valid particle from

the existing one. In this technique a collection of alphanumeric characters is called a

keystream and each character in the keystream is known as key. The keystream measurement

lengthwise constantly be less than or equal to the plaintext to be encrypt and production of

keystream is based on sharing of characters in the plaintext for encryption principle.

In PSI based approach a particle is used to designate a keystream (set of alphanumeric

characters). Each particle can have numerous dimensions. Each dimension signifies an

individual key inside that keystream. The dimensions in the keystream can be packed or

unpacked. For example if the ceiling of dimension of each particle is equal to 256 then it is

characterized by equation 6.15.

 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1,𝐾𝑒𝑦2,… ,𝐾𝑒𝑦256) (6.15)

Which actually indicate a keystream comprises of 256 keys i.e. 256 alphanumeric

characters. Keystream length can be attained by counting number of dimensions are packed

in the keystream. Usually keystream length is less than or equal to the plaintext. With 256

alphanumeric characters various keystream can be generated of preset rigid length by

variation of these prearranged set length characters ordering all viable ways devoid of any

recurrence. So, for example if total number of alphanumeric characters = 256 and if key

stream length = 192 then among 256 alphanumeric characters 192 alphanumeric characters

are nominated such a way so that by ordering all achievable ways with no replication these

192 characters forms multiple keystream having monotonous length i.e. 192. For an

example if four characters 𝐴, 𝑆,𝑀,𝐾 are taken to structure keystream of length four among

256 alphanumeric characters. Then there are 24 doable ways of obtaining keystream which

are as follows.

 Arindam Sarkar, University of Kalyani, India 227

𝐴𝑆𝑀𝐾,𝐴𝑆𝐾𝑀,𝐴𝑀𝑆𝐾,𝐴𝑀𝐾𝑆,𝐴𝐾𝑀𝑆 𝐴𝐾𝑆𝑀,

𝑆𝐴𝑀𝐾, 𝑆𝐴𝐾𝑀, 𝑆𝑀𝐴𝐾, 𝑆𝑀𝐾𝐴, 𝑆𝐾𝑀𝐴, 𝑆𝐾𝐴𝑀,

𝑀𝐴𝑆𝐾,𝑀𝐴𝐾𝑆,𝑀𝑆𝐴𝐾,𝑀𝑆𝐾𝐴,𝑀𝐾𝑆𝐴,𝑀𝐾𝐴𝑆,

𝐾𝐴𝑆𝑀,𝐾𝐴𝑀𝑆,𝐾𝑆𝐴𝑀,𝐾𝑆𝑀𝐴,𝐾𝑀𝑆𝐴,𝐾𝑀𝐴𝑆

Using 256 characters total number of generated potential keystream is given in equation

6.16.

256!

 256−𝑐 !

256
𝑐=1 ≈ 256! 𝑒 ≈ 256! × 2.718 (6.16)

According to PSI technique each particle should have an allied velocity. The PSI

technique also offers velocity for each and every particle or keystream. This velocity vector

also has multiple dimensions. The number of velocity dimension is calculated using

following logic.

𝐼𝑓 𝑙𝑒𝑛𝑔𝑡𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑛 ≤ (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) − (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚))

 𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑛

≤ (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) − (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚))

The dimensions in the velocity vector can be filled or unfilled. Total number of engaged

dimension in the velocity vector denotes the length of the velocity vector. Velocity vector of

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 is denoted by 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 which is a set of 𝑛 velocity values one for each character

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟1,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟2,… ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟𝑛). Group of velocity

characters form a velocity vector. In this technique maximum keystream dimension is 256.

So,

 𝐼𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) ≤ 256 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤ (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) − (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚))

 𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 256 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤ 256 − (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚))

 Arindam Sarkar, University of Kalyani, India 228

Each particle position is evaluated by counting number of characters in the keystream

belonging to a plaintext. Using equation 6.17 particle position is evaluated.

 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑒𝑦𝑗 ∈ 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡), (6.17)

𝑤𝑒𝑟𝑒 𝑗 = 1, 2,… , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)

Likelihood of characters in the keystream appearing in the plaintext is calculated using

equation 6.18.

 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) (6.18)

𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛

 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒)

 𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) < 𝑚𝑖𝑛 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛

 𝑟𝑒𝑝𝑒𝑎𝑡 𝑎𝑝𝑝𝑙𝑦 𝑎 𝑛𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒 𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑜𝑡𝑖𝑜𝑛

Each particle having an old velocity 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 and can be moved to a new location by

applying a new velocity (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘) on it. The velocity applied to a particle is a number of

characters in the velocity vector occurring in the plaintext and characters are chosen such a

way so that these group of characters not occurring in the keystream and velocity vector.

Once applying velocity on a particle the velocity characters occupy the dimension which is

vacant in the velocity vector given in equation 6.19.

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 1
,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 2

,… ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 𝑚 ,

 𝑤𝑒𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 ∉ (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and

𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑛 𝑝𝑟𝑒𝑣𝑜𝑖𝑢𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 −

 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) (6.19)

The current position of a particle is found by toting up the previous position with the applied

velocity given in equation 6.20.

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) + 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 (6.20)

The current likelihood value can be computed by dividing the particle current position with

the summation of particle length and velocity vector length.

𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) +

 𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)) (6.21)

 Arindam Sarkar, University of Kalyani, India 229

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 & 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 (6.22)

𝑅𝑒𝑡𝑢𝑟𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑎𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒 (6.23)

This velocity updating phase continued

𝑢𝑛𝑡𝑖𝑙 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒)

In this PSI based keystream generation technique following parameters are used

 Maximum length of PSI based keystream i.e. maximum number of character represents a

keystream is 𝐿 = 256. 𝑁 is the number of characters to represents keystream. Maximum

value of 𝑁 is 𝐿 i.e. 256.

 A predefined threshold value for describing energy factor of Ant agent. This scheme used

0.75 as a threshold value.

 A predetermined value to generate the keys for the characters in the plaintext which is at

a position greater than the length of the key stream. The technique uses equation 6.24 to

compute the predetermined value.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (6.24)

The figure 6.9 shows the flowchart of PSI based keystream generation and section 6.2.1.2.1

presents the complete encryption/decryption keystream generation algorithm.

 Arindam Sarkar, University of Kalyani, India 230

Figure 6.9: Flow chart of Particle Swarm Intelligence (PSI) based fittest keystream generation

Select Particlei

or Keystreami(Key1 , Key2 ,… , Key256)

Start

where j = 1, 2,… , lengthof(Particlei)

Evaluate Particle_Position(Particlei) = count (Keyj ∈ Plaintext),

Compute Current_position(Particlei) = previous_position(Particlei) + Velocityk

Compute Velocityi = Velocityi& Velocityk

lengthof (Velocityi))

Compute Prob(Particlei) = Current_position(Particlei)/(lengthof(Particlei) +

Where n = Velocity dimension
Set Velocity1 = (Velocity_char1, Velocity_char2,… , Velocity_charn)

Stop

Yes No
Is

lengthof Plaintext
≤

keystream dimension ?

Set

velocity dimension =
 (lengthof(Plaintext)) −
 key stream dimension dimension

Set

velocity dimension =
 maximum keystream

 Prob(Particlei) = Particle_Position(Particlei)/lengthof (Particlei) .

Yes No
Is

(Prob(Particlei)
≥ min probability

?

 Set Velocityk = Velocitychar 1
, Velocitychar 2

,… , Velocitychar m
 ,

 where Velocityk ∉ (Particlei , Velocityi) and

 current velocity dimension = prevoius velocity dimension − lengthof(Velocityi)

Return
(Particlei and Velocityi)

with Prob(Particlei)
= max prob value

 Arindam Sarkar, University of Kalyani, India 231

6.2.1.2.1 PSI based Keystream Generation Algorithm

PSI based keystream generation algorithm a threshold value is selected to weigh against

velocity level of each Particle. Particle having highest energy level more than predefined

threshold value is selected as a keystream.

Input : Particle with velocity

Output : PSI based keystream

Method : A threshold value is selected to weigh against velocity level of each particle.

Particle having highest probability more than predefined threshold value is

selected as a keystream.

Step 1. Select particle and velocity vector for generation of keystream. Set the

maximum dimension of each particle (keystream) equal to 256. Where

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1,𝐾𝑒𝑦2,… ,𝐾𝑒𝑦256) (6.25)

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟1,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟2,… ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟𝑛)

 (6.26)

 𝐼𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) ≤ 256 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑛 ≤ 𝑙𝑒𝑛𝑔𝑡𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 −

 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚) (6.27)

 𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 256 𝑡𝑒𝑛

 𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤ 256 − (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)) (6.28)

Step 2. Evaluate particle position using following function

 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑒𝑦𝑗 ∈ 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡), (6.29)

𝑤𝑒𝑟𝑒 𝑗 = 1, 2,… , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)

 Evaluate the probability value using following equation

𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) =

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) (6.30)

Step 3. 𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛

 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒

 (6.31)

 Arindam Sarkar, University of Kalyani, India 232

Step 4. 𝑊𝑖𝑙𝑒 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) < 𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) do

 repeat apply a 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 1
,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 2

,… ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 𝑚 ,

(6.32)

 𝑤𝑒𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 ∉ (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and

 𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =

 𝑛 𝑝𝑟𝑒𝑣𝑜𝑖𝑢𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)

(6.33)

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) +

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 (6.34)

 𝑃𝑟𝑜𝑏 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 =

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 /(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)

 +𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)) (6.35)

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 & 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 (6.36)

 𝑢𝑛𝑡𝑖𝑙 𝑃𝑟𝑜𝑏 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ≥ 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒

 𝑅𝑒𝑡𝑢𝑟𝑛

 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 𝑎𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)

 = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒 (6.37)

Step 5. If the length of the plaintext is grater than the length of the keystream

then the values of the keystream are added to a predetermined value to

generate the keys for the characters in the plaintext which is at a

position grater than the length of the ke stream.

The PSI based fittest keystream is used to perform the encryption operation on the plaintext.

The detail step of PSI based encryption process is given in section 6.2.1.3.

 Arindam Sarkar, University of Kalyani, India 233

6.2.1.3 Encryption Algorithm

Input : Source file/source stream i.e. plaintext

Output : Encrypted file/encrypted stream i.e. cipher text

Method : The process operates on binary stream and generates encrypted bit stream through

Particle Swarm Intelligence (PSI) based encryption.

Step 1. If the length of the plaintext is grater than the length of the PSI based

keystream then the values of the keystream are added to a

predetermined value to generate the keys for the characters in the

plaintext which is at a position grater than the length of the keystream.

Predetermined value is calculated using the equation 6.38.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (6.38)

Step 2. For the very first plaintext block keys are form by the values of the

characters in the PSI based keystream.

Step 3. For the successive plaintext blocks PSI based keys are generated by

adding predetermined value with the keys of the previous block given

in equation 6.39 for reducing the key storage load that in turn reduces

the space complexity.

 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 = 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 − 1 + 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,

 𝑤𝑒𝑟𝑒 𝑖 >= 2 (6.39)

Step 4. Perform Exclusive-OR operation between plaintext block with key in

the PSI based keystream.

Step 5. Considers the outcomes of step 4 as a stream of finite number of bits

N, and is divided into a finite number of blocks, each also containing a

finite number of bits 𝑛, where 1 ≤ 𝑛 ≤ 𝑁. Consider the block

𝐶 = 𝑐0
𝑗
𝑐1
𝑗
𝑐2
𝑗
𝑐3
𝑗
𝑐4
𝑗
… 𝑐𝑛−1

𝑗
 having size 𝑛 in the outcomes of step 4.

Step 6. Perform cycle formation techniques on 𝐶 = 𝑐0
𝑗
𝑐1
𝑗
𝑐2
𝑗
𝑐3
𝑗
𝑐4
𝑗
… 𝑐𝑛−1

𝑗
 of

block of size 𝑛. In the following cases is used to represents the

Exclusive-OR operation. Perform the operations given in equation

6.40 to 6.43 for generating the first intermediate block

 𝐼1 = 𝑐0
𝑗+1

𝑐1
𝑗+1

𝑐2
𝑗+1

𝑐3
𝑗+1

𝑐4
𝑗+1

… 𝑐𝑛−1
𝑗+1

 from 𝐶 in the following way:

 Arindam Sarkar, University of Kalyani, India 234

 𝑐𝑛−1
𝑗+1

= 𝑐𝑛−1
𝑗

 (6.40)

 𝑐𝑛−2
𝑗+1

=𝑐𝑛−2
𝑗

 𝑐𝑛−1
𝑗+1

 (6.41)

 𝑐1
𝑗+1

= 𝑐1
𝑗
 𝑐2

𝑗+1
 (6.42)

 𝑐0
𝑗+1

 = 𝑐0
𝑗

 (6.43)

 This process continues for a finite number of iterations, which

depends on the value of n, the source block 𝐶 is regenerated. If the

number of iterations required regenerating the source block is

assumed to be 𝐼, then any of the intermediate block is considered as a

encrypted block.

6.2.1.4 Session Key based Encryption

During final step of the technique a cascaded Exclusive-OR operation between CGTHLP

synchronized group session key and PSI encrypted cipher text is performed to generate final

encoded cipher text.

The decryption algorithm takes the cipher text as a binary stream of bits and perform first

level of operation using CGTHLP generated synchronized session key to produce

intermediate decrypted text. Finally, PSI generated fittest keystream based decryption is

performed on the intermediate decrypted text to regenerate the plaintext. The algorithm for

the complete process is given in section 6.2.2.

6.2.2 CGTHLPSCT Algorithm at Receiver

 Input : Encrypted file/encrypted stream i.e. cipher text

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on encrypted binary stream and generates decrypted bit

stream through Chaos based CGTHLP guided Particle Swarm Intelligence (PSI)

based decryption operations.

Step 1. Perform cascaded Exclusive-OR operation between CGTHLP based

session key and cipher text.

 Arindam Sarkar, University of Kalyani, India 235

Step 2. Perform Particle Swarm Intelligence (PSI) based decryption on the

outcomes of the step 1 to regenerate starting combination i.e.

plaintext.

Step 1 of the algorithm is discussed in section 6.2.2.1. Step 2 of the algorithm for performing

Particle Swarm Intelligence (PSI) based decryption is discussed in section 6.2.2.2.

6.2.2.1 Session Key based Decryption

Initially cascaded Exclusive-OR operation between CGTHLP synchronized session key and

cipher text is performed to produce session key decrypted text. Outcomes of this operation

used as an input of PSI based decryption algorithm discussed in 6.2.2.2 to regenerate the

plaintext.

 In the decryption process the PSI based cipher text is divided into blocks. Exclusive-OR

guided cycle formation based decryption is performed on each block. After that all blocks are

merged together. The PSI generated keystream is use to Exclusive-OR with the merged

blocks to regenerate the plaintext. The detail step of PSI based decryption process is given in

section 6.2.2.2.

6.2.2.2 Decryption Algorithm

Input : PSI Encrypted file/ PSI encrypted stream

 Output : Source file/source stream i.e. plaintext

 Method : The process operates on PSI encrypted bit stream and regenerates the plaintext

through PSI based decryption.

Step 1. Divide the PSI encrypted text into different blocks.

Step 2. Perform operation given in equation 6.44 to 6.47 upto

(𝑃 – 𝑖) steps on each block 𝑇 = 𝑡0
𝑖 𝑡1

𝑖 𝑡2
𝑖 𝑡3

𝑖 𝑡4
𝑖 … 𝑡𝑛−1

𝑖 if the total

number of iterations required to complete the cycle is 𝑃 and the 𝑖th

step is considered to be the encrypted block.

 Arindam Sarkar, University of Kalyani, India 236

 𝑡𝑛−1
𝑖 = 𝑡𝑛−1

𝑖−1 (6.44)

 𝑡𝑛−2
𝑖 = 𝑡𝑛−2

𝑖 𝑡𝑛−1
𝑖 (6.45)

 𝑡1
𝑖 = 𝑡1

𝑖−1 𝑡2
𝑖 (6.46)

 𝑡0
𝑖 = 𝑡0

𝑖−1 (6.47)

Step 3. Merge outcomes of step 2.

Step 4. Compute the predetermined value.

Step 5. Using predetermined value and keys in the PSI based keystream

receiver generates the keys for the portion of the text exceeding the

length of the PSI based keystream.

Step 6. Generate plaintext by performing Exclusive-OR operation between

outcomes of step 3 and PSI based keystream.

6.3 Implementation

Consider the text to be encrypted is “softcomputing”. The minimum probability value is

assumed to be 0.75. Each particle comprises of characters representing the particle

keystream. The position of the particle is computed by counting the number of characters in

the particle key stream occurring in the plaintext. The probability value is found by dividing

the particle position by the length of the particle keystream. If the value is less than the

minimum probability value a velocity is applied to the particle to move to a new position and

the position of the new particle and the probability value is found. The particle having

maximum probability value greater than or equal to the minimum probability value in the

iteration is the solution. The corresponding particle keystream and velocity keystream are

concatenated which forms the keystream for encryption. Table 6.3 shows the process of

obtaining the keystream using PSI based approach. A group of particles denoting the key

stream are taken. In this the first particle has a particle keystream “hcv”. Since one character

in the particle keystream occurs in the plaintext to be encrypted the position of the particle is

one. The probability value of the particle is found to be 0.33 which is less than the minimum

probability value. Thus a velocity containing one character “gm” is given to the particle to

move the particle to a new position. Since the character in the group denoting the velocity

occurs in the plaintext, the velocity is found to be two. This is added to the old position of the

 Arindam Sarkar, University of Kalyani, India 237

particle and the new position of the particle is found to have a value of three. The characters

in the group denoting the velocity occupy the dimensions in the velocity keystream. The

probability value is found to be 0.6 by dividing the new position by the sum of particle

keystream length and the velocity keystream length. Since this is also lesser than the

minimum probability value a velocity is again given to the particle and the process is

repeated and the probability value is found to be 0.75 which is equal than the minimum

probability value. This procedure is repeated for other particles in the group. Since the first

particle in iteration three has the maximum probability value 0.75 which is greater than the

minimum probability value the particle keystream “hcv” and the velocity keystream “gmtof”

corresponding to that particle are concatenated to form the keystream “hcvgmtof” chosen for

encryption. Each character in the keystream is chosen as the key for encryption. The keys

used for encryption looks like a series of random numbers. Using this method the keys

cannot be cracked since the keys depends on the characters in the plaintext and a random

stream generator is not used for key generation.

Table 6.3

PSI based keystream generation

Consider the plaintext to be encrypted is “softcomputing”, binary representation of the

ASCII value of plaintext is

01110011/01101111/01100110/01110100/01100011/01101111/01101101/01110000/011101

01/01110100/01101001/01101110/01100111

Binary representations of ASCII value of the plaintext are divided into variable size

segments. Following are the different segments constructed from S.

Particle

Keystream

Position

Probability

Value

Velocity

New

Position

Velocity

Keystream

Probability

Value

Velocity

New

Position

Velocity

Keystream

Probability

Value

hcv

1 0.33

gm−2

3 gm
0.6

tof−3

6
gmtof

0.75

rbzlsy

1 0.16

pcu−3

4 pcu
0.44

ma−1

5
pcuma

0.45

csegdx

3 0.5

jb−0

3 jb
0.37

pm−2

5
jbpm

0.50

ecg

2 0.66

𝑢𝑣 − 1

3 uhv
0.50

gre−1

4
uhvgre

0.44

Maximum

Probability

Value

 𝟎.𝟔𝟔
𝟎.𝟔

𝟎.𝟕𝟓

 Arindam Sarkar, University of Kalyani, India 238

S1 = 0111001101101111 (16 bits)

S2 = 0110011001110100 (16 bits)

S3 = 0110001101101111 (16 bits)

S4 =0110110101110000 (16 bits)

S5 =0111010101110100 (16 bits)

S6 = 01101001 (8 bits)

S7 = 0110111001100111 (16 bits)

For each of the segments, an arbitrary intermediate segment, is considered as the encrypted

segment.

The formation of cycles for segments (0111001101101111) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0101001111100011) after iteration-10 considered as an encrypted segment for the segment

S1.

01110011011011110101000100100101
1
0011000011100011

2
0110111110100001

3

0101101010011111
4
0011011001110101

5
0110110111010011

6
0010010010110001

7

0001110001101111
8
0111010000100101

9
0101001111100011

10
0100111010100001

11

0100010110011111
12
0100001101110101

13
0011111011010011

14

0001010110110001
15
0111001101101111

16

The formation of cycles for segments S2 (0110011001110100) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0001001001110100) after iteration-8 considered as an encrypted segment for the segment

S2.

01100110011101000010001000101100
1
0110000111100100

2
0101111101011100

3

0011010100110100
4
0110110011101100

5
0101101110100100

6
0011011010011100

7

0001001001110100
8
0000111000101100

9
0000010111100100

10
0000001101011100

11

0000000100110100
12
0000000011101100

13
0111111110100100

14

0010101010011100
15
0110011001110100

16

 Arindam Sarkar, University of Kalyani, India 239

The formation of cycles for segments S3 (0110001101101111) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0101010110011111) after iteration-12 considered as an encrypted segment for the segment

S3.

01100011011011110010000100100101
1
0110000011100011

2
0101111110100001

3

0100101010011111
4
0100011001110101

5
0011110111010011

6
0001010010110001

7

0000110001101111
8
0000010000100101

9
0000001111100011

10
0111111010100001

11

0101010110011111
12
0011001101110101

13
0110111011010011

14

0010010110110001
15
0110001101101111

16

The formation of cycles for segments S4 (0110110101110000) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0100101001110000) after iteration-4 considered as an encrypted segment for the segment

S4.

01101101011100000010010011010000
1
0110001110110000

2
0101111010010000

3

0100101001110000
4
0011100111010000

5
0110100010110000

6
0010011110010000

7

0001110101110000
8
0111010011010000

9
0101001110110000

10
0100111010010000

11

0011101001110000
12
0110100111010000

13
0101100010110000

14

0011011110010000
15
0110110101110000

16

The formation of cycles for segments S5 (0111010101110100) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0110011001011100) after iteration-11 considered as an encrypted segment for the segment

S5.

01110101011101000101001100101100
1
0100111011100100

2
0011101001011100

3

0001011000110100
4
0000110111101100

5
0000010010100100

6
0000001110011100

7

0000000101110100
8
0111111100101100

9
0010101011100100

10
0110011001011100

11

0010001000110100
12
0110000111101100

13
0010000010100100

14

0001111110011100
15
0111010101110100

16

 Arindam Sarkar, University of Kalyani, India 240

The formation of cycles for segments S6 (01101001) is shown below. After 8 steps cycle is

complete and the plaintext is regenerated. An arbitrary intermediate segment (00011101)

after iteration-2 considered as an encrypted segment for the segment S6.

0110100100100111
1
00011101

2
00001011

3
01111001

4
01010111

5
01001101

6

00111011
7
01101001

8

The formation of cycles for segments S7 (0110111001100111) is shown below. After 16 steps

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment

(0010110011111011) after iteration-6 considered as an encrypted segment for the segment

S7.

01101110011001110010010111011101
1
0110001101001011

2
0010000100111001

3

0001111100010111
4
0111010100001101

5
0010110011111011

6
0001101110101001

7

0000100101100111
8
0111100011011101

9
0010100001001011

10
0001100000111001

11

0000100000010111
12
0111100000001101

13
0101011111111011

14

0011001010101001
15
0110111001100111

16

On completion of the cycle formation technique on each segment seven intermediate

segments are considered as the encrypted segments. On merging the above seven encrypted

segments following PSI based encrypted text is generated.

01010011/11100011/00010010/01110100/01010101/10011111/01001010/01110000/011001

10/01011100/00011101/00101100/11111011

The PSI based keystream “hcvgmtof” has eight characters. Whereas the plaintext

“softcomputing” has thirteen characters. So, for the extra five characters PSI based keys are

generated by adding predetermined value with the keys of the previous block for reducing the

key storage load that in turn reduces the space complexity. Predetermined value is calculated

by the equation 6.48.

 𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2 (6.48)

So, the predetermined value will be
13

2
 = 6

So binary representation of ASCII value of the PSI based keystream is

01101000/01100011/01110110/01100111/01101101/01110100/01101111/01100110/011011

10/01101001/01111100/01101101/01110011

 Arindam Sarkar, University of Kalyani, India 241

On performing PSI keystream based encryption operation new intermediate encoded text is

00111011/10000000/01100100/00010011/00111000/11101011/00100101/00010110/000010

00/00110101/01100001/01000001/10001000

For example CGTHLP based following group session key is generated

10010101/01010010/11111000/01010101/01011101/01111110/00110101/01001111/100010

10/00011100/10001010/10010010/11011100

Following is the session key encrypted final cipher text produce after performing

Exclusive-OR operation between PSI based encrypted text and CGTHLP based session key.

10101110/11010010/10011100/01000110/01100101/10010101/00011010/00101100/000100

00/01101010/11000010/10000011/00010000

6.4 Security Analysis

The security of CGTHLPSCT can be analyzed by considering an attacker E with a CTHLP

of identical structure to the CTHLP of parties A and B in the group, as well as with identical

output generation as, can never remain synchronous with A or B having different inputs from

the synchronizing parties A and B. Consider the two CTHLPs A and B and a third CTHLP of

Attacker E all with identical structure. Suppose parties A and B are not synchronous at

iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 ≠ 𝑊𝑖𝑗

𝐵 𝑡𝑠
for at least one component 𝑗 in an arbitrary summation

unit 𝑖. Let the attacker E already be synchronous to A (or B) at iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 =

𝑊𝑖𝑗
𝐸 𝑡𝑠

∀𝑖, 𝑗. Note that if the attacker is synchronous to A and B, the two parties themselves

would be synchronous already. Again, two CTHLPs can only become synchronous, when all

their corresponding summation units become synchronous. Assume only one component

remains that is not identical at iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 ≠ 𝑊𝑖𝑗

𝐵 𝑡𝑠 for a particular component

𝑗. As inputs are considered to be different for any subsequent iteration for at least one

arbitrary component 𝑗 in each summation unit 𝑖, E cannot remain synchronous even if E is

synchronous (by guessing e.g.) in one iteration. For different inputs, the two parties are trying

to adapt completely different non-linear relations between (different) inputs 𝑥𝐴(𝑡) ≠ 𝑥𝐵(𝑡)

and outputs 𝜏𝐴/𝐵(𝑡). The random walks with reflecting boundaries performed by the

coefficients in the iterative process now make uncorrelated moves. Even moves in the wrong

 Arindam Sarkar, University of Kalyani, India 242

direction with regard to the aim of learning common outputs are made. Two corresponding

components 𝑊𝑖𝑗
𝐴 𝑡 and 𝑊𝑖𝑗

𝐴 𝑡 now receive a different random component 𝑥𝑖𝑗
𝐴 𝑡 ≠ 𝑥𝑖𝑗

𝐵 𝑡 of

their (differing) input vector. The distance between the components is thus no longer

successively reduced to zero after each bounding operation and the two parties’ coefficients

remain different. Parties with identical inputs always converge to the dynamic common

trajectory. Parties with differing always diverge. Partner A and B have the advantage over an

attacker E in because only A and B have the Chaos synchronized seed values for generating

identical input vector. The following standard attacks are considered to ensure the robustness

of the CGTHLPSCT.

 Cipher text only Attack: The technique nullifies the success rate of this attack by

producing a robust Chaos based Grouped session key and ACI based encrypted cipher

text. The strength of resisting exhaustive key search attack relies on a large key space.

The cryptanalyst has only the cipher text to work with. In this PSI technique the key is

changed for each character of the plaintext to produce a cipher text that is mathematically

difficult to break. Since 256 characters are taken and a permutation of these characters is

done to get groups of characters of all possible orderings without any repetition forming

the key stream, the total number of key streams will be 256! × 2.718. Thus the possible

number of combinations to be searched is 256! × 2.718. Thus a hacker has to try all such

key streams to find an appropriate one. This method makes it difficult for the hacker to

find out the key stream used for encryption. Thus the size of the key space is 256! ×

2.718. The technique helps to generate long period of random key streams along with no

obvious relationship between the individual bits of the sequence. Also the generated

keystreams are of large linear complex. Finally keystream have high degrees of

correlation immunity. Thus it is practically difficult to perform a brute-force search in a

key-space.

 Known Plaintext Attack: The plaintext is encoded using the cycle formation technique.

This would increase the security in such a manner that it is difficult to know the values

assigned for the characters in the plaintext. This is because there are 2𝑙𝑒𝑛𝑔𝑡 𝑜𝑓𝑏𝑙𝑜𝑐𝑘

possible combination and the hacker has to search those combinations for the values.

Also the keys used for encryption has to be found by the cryptanalyst. The technique

 Arindam Sarkar, University of Kalyani, India 243

offers better floating frequency of characters. So, known plaintext attack is difficult in

this technique.

 Chosen Plaintext Attack: The objective of this attack is to find the secret key. This attack

is difficult because there is no obvious relationship between the individual bits of the

sequence in plaintext and cipher text. In the technique the cipher text is obtained by

performing an Exclusive-OR operation between the encoded plaintext and the characters

in the key stream. This technique is not vulnerable to chosen-plaintext attack, since the

plaintext is encoded first using cycle generation technique then outcomes of this get

Exclusive-OR with PSI based keystream and the outcomes of this is Exclusive-OR with

the session key. It is difficult for the hacker to find the key chosen for encryption. So, it

is difficult to choose a plaintext of his/her choice and get the corresponding cipher text.

The technique passes the frequency (monobit) test, runs test, binary matrix rank test and

in each session a fresh CGTHLP based session key is used for encryption which confirms

that chosen plaintext attack is very difficult in this technique.

 Chosen Cipher text Only Attack: This technique has a good Chi-Square value this

confirms good degree of non-homogeneity and also it passes the discrete Fourier

transform test, approximate entropy test, overlapping (periodic) template matching test

which confirms that chosen plaintext attack is difficult in this technique. So, it will be

difficult get plaintext from the cipher text.

 Brute Force Attack: The PSI based key is changed for each character of the plaintext to

produce a cipher text that is mathematically impossible to break. Since 256 characters are

chosen the total number of keystreams will be 256! × 2.718. Thus a hacker has to try all

such keystreams to find an appropriate one. This method makes it difficult for the hacker

to find out the keystream used for encryption. Encryption is an important issue in

wireless communication since it is carried out over the air interface, and is more

vulnerable to fraud and eavesdropping. Also the keystream is used to generate the keys

for the portion of the plaintext exceeding the length of the keystream. This method of

encryption reduces the number of keys to be stored and distributed. Due to high

complexity brute force attack will not be feasible. The technique has a good entropy

 Arindam Sarkar, University of Kalyani, India 244

value near to eight which indicates that brute force attack is not be possible in this

technique.

6.5 Discussions

The technique is very simple and easy to implement in various high level language. The test

results also show that the performance and security provided by the technique is good and

comparable to standard technique. The security provided by the CGTHLPSCT is comparable

with other techniques. To enhance the security of the technique, CGTHLPSCT offers

changes of some parameters randomly in each session. To generate the secret session key

index mask get exchanged between sender and receiver. This technique has a unique ability

to construct the secret key at both sides using this exchanged information. Since the

encryption and decryption times are much lower, so processing speed is very high. The

method takes minimum amount of resources which is greatly handle the resource constraints

criteria of wireless communication. This method generates a large number of keys which is

the same number of neurons in the map. For ensuring the randomness in every session, some

of the parameters get change randomly at each session. CGTHLPSCT outperform than

existing TPM, PPM, Diffie-Hellman Key exchange methods and does not suffers from Brute

Force or Man-In-The-Middle (MITM) attack. No platform specific optimizations were done

in the actual implementation, thus performance should be similar over varied implementation

platform. The whole procedure is randomized, thus resulting in a unique process for a unique

session, which makes it harder for a cryptanalyst to find a base to start with. This technique is

applicable to ensure security in message transmission in any form and in any size in wireless

communication.

 Some of the salient features of CGTHLPSCT are summarized as follows:

a) Session key generation and exchange – Identical session key can be generate after the

tuning of group CTHLPs with the help of chaos synchronization. So, no need to

transfer the whole session key via vulnerable public channel.

b) Degree of security – The technique does not suffers from cipher text only attack,

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute

 Arindam Sarkar, University of Kalyani, India 245

force attack and attacks during CGTHLP synchronization process. It offers

authentication steps during synchronization.

c) Variable block size – Encryption algorithm can work with any block length and thus

not require padding, which result identical size of files both in original and encrypted

file. So, CGTHLPSCT has no space overhead.

d) Variable key – 128/192/256 bits CGTHLP based session key and 128/192/256

bits PSI based keystream with high key space can be used in different sessions. Since

the session key is used only once for each transmission, so there is a minimum time

stamp which expires automatically at the end of each transmission of information.

Thus the cryptanalyst may not be able guess the session key for that particular

session.

e) Complexity – The technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh

through wireless communication. So, the proposed technique may be suitable in

wireless communication.

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value

have been performed between the source and corresponding cipher streams

generated using proposed technique. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good. This

technique has a better Chi-Square value than technique proposed in chapter 2, 3, 4

and 5.

g) Floating frequency – In CGTHLPSCT it is observed that floating frequencies of

encrypted characters are indicates the high degree of security of proposed technique.

This technique has a better floating frequency than technique proposed in chapter 2,

3 , 4 and 5.

h) Entropy – The entropy of encrypted characters is near to eight which indicate the

high degree of security of technique. This technique also has a better entropy value

than technique proposed in chapter 2, 3 , 4 and 5.

 Arindam Sarkar, University of Kalyani, India 246

i) Correlation – The cipher stream generated through CGTHLPSCT is negligibly

correlated with the source stream. Therefore the proposed technique may effectively

resist data correlation statistical attack.

j) Key sensitivity – The technique generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

k) Security and performance trade-off – The technique may be ideal for trade-off

between security and performance of light weight devices having very low processing

capabilities or limited computing power in wireless communication.

Chapter 7

Results and Analysis

 Arindam Sarkar, University of Kalyani, India 249

7.1 Introduction

In this chapter results of the techniques proposed in different chapters are computed on

different types of files with extensive analysis. The comparative study among proposed

techniques, Tree Parity Machine (TPM) and Permutation Parity Machine (PPM), RSA,

Triple-DES (168 bits), AES (128 bits), RC4 and Vernam Cipher has been done based on

twenty files by performing different types of experiment.

 All statistical analysis of the NIST test suite have been performed to evaluate randomness

of the synchronized session key proposed in different chapters. These tests focused on a

variety of different types of non-randomness that could exist in a sequence. Some tests are

decomposable into a variety of subtests. All fifteen tests are performed for the proposed

techniques along with existing TPM and results of these tests compared and analyzed in

section 7.2. Section 7.3 presented the performance comparisons among proposed and existing

techniques for generation of session key through tuning. Analysis of the average time (in

cycle) needed for generating variable size session key through synchronization between two

machines and group of machines, memory heap used, relative time spent in GC and thread

required in synchronization phase, trends of average fitness values in different number of

generations, length of plan text vs. encryption/decryption key storage has been analyzed and

compared with proposed and existing techniques. Twenty files each of four different types

(.dll, .exe, .txt, .doc) with sizes varying from 1KB to 6.3MB (approx.) have been taken.

Results are generated using proposed techniques, RSA, TDES (168 bits) and AES (128 bits)

for all files. Using these results, comparison of encryption and decryption time presented in

section 7.4. Avalanche, Strict Avalanche effects and Bit independence has been done and

presented in section 7.5. Comparison based on Chi-Square values are presented in section

7.6. Nine different file types (.dll, .com, .exe, .cpp, .txt) with varying file sizes have been

taken to perform character frequency, entropy, floating frequency and autocorrelation test in

section 7.7. Section 7.8 presents the analysis based on the results.

 Arindam Sarkar, University of Kalyani, India 250

7.2 NIST Statistical Test and Analysis

A total of fifteen statistical tests recommended in the NIST

test Suite have been performed to

evaluate randomness of the synchronized session key proposed in different chapters. These

tests focused on a variety of different types of non-randomness that could exist in a sequence.

Some tests are decomposable into a variety of subtests. The fifteen tests are performed for the

proposed and existing TPM scheme and results of these tests get compared and analyzed.

The fifteen tests are following:

1. The Frequency (Monobit) Test

2. The Test for Frequency within a Block

3. The Runs Test

4. The Longest Run of Ones in a Block

5. The Binary Matrix Rank Test

6. The Discrete Fourier Transform Test

7. The Non-overlapping Template Matching Test

8. The Overlapping (Periodic) Template Matching Test

9. Maurer's "Universal Statistical" Test

10. The Linear Complexity Test

11. The Serial Test

12. The Approximate Entropy Test

13. The Cumulative Sums (Cusums) Test

14. The Random Excursions Test

15. The Random Excursions Variant Test

For analysis of the statistical test, a large number of samples of bit sequences in the key has

been considered. For 𝑚 samples of bit sequences obtained from the key of a technique are

tested by producing one P-value, a statistical threshold value is defined using equation 7.1.

 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = 1 − 𝛼 − 3
𝛼×(1−𝛼)

𝑚
 (7.1)

 Arindam Sarkar, University of Kalyani, India 251

In frequency (monobits) test, frequency within a block test, runs test, longest run of ones in a

block test, binary matrix rank test, discrete Fourier transom test, non-overlapping (aperiodic)

template matching test, overlapping (periodic) template matching test, Maurer’s universal

statistical test, linear complexity test, approximate entropy test, the value of significance

level(𝛼) = 0.01. The size of 𝑚 is grater than inverse of 𝛼. If 𝑚 = 300 the

𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.972766. This means that such a test is considered statistically

successful, if at least 292 sequences out of the given 300 sequences do pass the test. For a

serial and cumulative sums test producing 𝑛 P-values, for the calculation of

𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider 𝑚 × 𝑛 instead of 𝑚. With same values of 𝛼 and m,

the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.977814 such a test is considered statistically successful if at least

294 sequences out of the given 300 sequences do pass the test. Random excursions test

producing n P-values, for the calculation of 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider 𝑚 ×

𝑛 instead of m. With same values of 𝛼 and 𝑚, the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.983907 such a

test is considered statistically successful if at least 296 sequences out of the given 300

sequences do pass the test. Random excursions variant test producing 𝑛 P-values, for the

calculation of 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider 𝑚 × 𝑛 instead of 𝑚. With same

values of 𝛼 and m, the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.985938 such a test is considered statistically

successful if at least 297 sequences out of the given 300 sequences do pass the test. A

methodology has been stipulated in NIST document to calculate the P-value of P-values,

where it is stated that P-values for a particular test can be considered uniformly distributed, if

it’s P-value of P-values≥ 0.0001.

 Arindam Sarkar, University of Kalyani, India 252

7.2.1 Frequency (Monobits) Test

The objective of the test is to find proportion of zeroes and ones for the entire sequence

which determine whether the number of ones and zeros in a sequence are approximately the

same as would be expected for a truly random sequence. The test assesses the closeness of

the fraction of ones to ½, that is, the number of ones and zeroes in a sequence should be

about the same. In this experiment expected proportion for passing the test has been set

to 0.972766 using equation 7.1. Table 7.1 and 7.2 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

Table: 7.1

Proportion of passing and uniformity of distribution for frequency

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.973333 Success 2.781309e-08 Non-uniform

KSOMSCT 0.976329 Success 2.835246e-03 Uniform

DHLPSCT 0.979437 Success 3.122711e-10 Non-uniform

CDHLPSCT 0.983333 Success 3.571386e-01 Uniform

CTHLPSCT 0.984871 Success 3.915294e-07 Non-uniform

CGTHLPSCT 0.986667 Success 4.122711e-10 Non-uniform

Table: 7.2

Counting of P-values lying in the given ranges for frequency

Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 5 34 29 26 20 30 37 47 0 43 29

KSOMSCT 8 23 42 26 34 31 33 43 0 43 17

DHLPSCT 4 18 25 20 34 37 46 40 0 49 27

CDHLPSCT 6 29 41 21 25 33 38 46 0 47 20

CTHLPSCT 5 20 28 18 35 35 35 42 0 42 23

CGTHLPSCT 8 32 37 27 32 39 40 47 0 43 26

From table 7.1 and 7.2 it is seen that all proposed techniques along with existing TPM based

technique passed the frequency (monobits) test successfully because observed proportion

values of all the proposed techniques are grater than expected proportion value. It is also

noticed that in case of proposed techniques, observed proportion for passing the test are in

increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

 Arindam Sarkar, University of Kalyani, India 253

CGTHLPSCT. It can be concluded that all proposed techniques outperform than existing

TPM based technique.

7.2.2 Test for Frequency within a Block

The focus of the test is to find the proportion of zeroes and ones within M-bit blocks. This

test determine whether the frequency of ones in an 𝑀-bit block is approximately
𝑀

2
. In this

experiment expected proportion for passing the test has been set to 0.972766 using equation

7.1. Table 7.3 and 7.4 shows proportion of passing uniformity of distribution and counting of

P-values lying in the given ranges.

Table: 7.3

Proportion of passing and uniformity of distribution for frequency within a block

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.963333 Unsuccess 3.393663e+11 Non-uniform

KSOMSCT 0.972818 Success 3.407162e-04 Uniform

DHLPSCT 0.977942 Success 3.529802e-01 Uniform

CDHLPSCT 0.980000 Success 3.639271e-06 Non-uniform

CTHLPSCT 0.984792 Success 3.903719e-03 Uniform

CGTHLPSCT 0.990000 Success 3.949802e-01 Uniform

Table: 7.4

Counting of P-values lying in the given ranges for frequency within a block
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 6 48 44 30 35 26 30 22 16 26 17

KSOMSCT 11 44 41 52 32 25 28 19 23 12 13

DHLPSCT 3 22 27 38 32 37 25 33 35 23 25

CDHLPSCT 12 24 23 39 34 37 29 22 15 29 18

CTHLPSCT 10 39 35 48 31 26 23 34 32 17 27

CGTHLPSCT 8 47 45 51 33 29 30 31 37 21 24

 Arindam Sarkar, University of Kalyani, India 254

From table 7.3 and 7.4 it is seen that all the proposed techniques passed the frequency within

a block test successfully because observed proportion values of all the proposed techniques

are grater than expected proportion value, whereas existing TPM based technique does not. is

also noticed that in case of proposed techniques, observed proportion for passing the test are

in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT. It can be concluded that all proposed techniques outperform than existing

TPM based technique.

7.2.3 Runs Test

The focus of this test is the total number of zero and one runs in the entire sequence, where a

run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a run consists

of exactly k identical bits and is bounded before and after with a bit of the opposite value.

The purpose of the runs test is to determine whether the number of runs of ones and zeros of

various lengths is as expected for a random sequence. In particular, this test determines

whether the oscillation between such substrings is too fast or too slow. In this experiment

expected proportion for passing the test has been set to 0.972766 using equation 7.1. Table

7.5 and 7.6 shows proportion of passing and uniformity of distribution and counting of

P-values lying in the given ranges.

Table: 7.5

Proportion of passing and uniformity of distribution for runs

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.974275 Success 1.093862e-02 Uniform

KSOMSCT 0.975746 Success 0.321683e-01 Uniform

DHLPSCT 0.977263 Success 0.831790e-01 Uniform

CDHLPSCT 0.986997 Success 1.160128e-01 Uniform

CTHLPSCT 0.990000 Success 1.174101e-01 Uniform

CGTHLPSCT 0.993333 Success 1.191964e-01 Uniform

 Arindam Sarkar, University of Kalyani, India 255

Table: 7.6

Counting of P-values lying in the given ranges for runs
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 2 31 24 28 26 35 32 41 21 38 22

KSOMSCT 3 21 46 26 27 22 36 33 28 31 27

DHLPSCT 5 16 36 23 28 44 31 33 30 23 31

CDHLPSCT 7 14 42 26 23 32 28 37 29 37 32

CTHLPSCT 4 18 29 21 27 27 30 32 25 29 30

CGTHLPSCT 6 26 33 27 29 42 36 34 31 22 32

From table 7.5 and 7.2 it is seen that all the proposed techniques along with existing TPM

based technique passed the runs test successfully because observed proportion values of all

the proposed techniques are grater than expected proportion value. In case of proposed

techniques, observed proportion for passing the test are in increasing order in the sequence of

KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and all the proposed

techniques outperform than existing TPM based technique.

7.2.4 Longest Run of Ones in a Block

This test finds the longest run of ones within 𝑀-bit blocks. The purpose of this test is to

determine whether the length of the longest run of ones within the tested sequence is

consistent with the length of the longest run of ones that would be expected in a random

sequence. Note that an irregularity in the expected length of the longest run of ones implies

that there is also an irregularity in the expected length of the longest run of zeroes. Long runs

of zeroes were not evaluated separately due to a concern about statistical independence

among the tests. Expected proportion for passing the test has been set to 0.972766 using

equation 7.1.Table 7.7 and 7.8 shows proportion of passing and uniformity of distribution

and counting of P-values lying in the given ranges.

 Arindam Sarkar, University of Kalyani, India 256

Table: 7.7

Proportion of passing and uniformity of distribution for longest run of ones in a block

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.986667 Success 2.197745e-02 Uniform

KSOMSCT 0.97051 Unsuccess 1.491737e+02 Uniform

DHLPSCT 0.988026 Success 2.351830e-02 Uniform

CDHLPSCT 0.990000 Success 2.749211e-03 Uniform

CTHLPSCT 0.993174 Success 2.896945e-03 Uniform

CGTHLPSCT 0.996667 Success 3.100264e-02 Uniform

Table: 7.8

Counting of P-values lying in the given ranges for longest run of ones in a block
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 4 30 33 37 33 17 42 31 21 32 20

KSOMSCT 3 18 42 23 36 20 39 18 38 35 28

DHLPSCT 1 18 27 35 24 28 43 24 43 31 26

CDHLPSCT 3 19 37 31 35 19 39 28 24 33 27

CTHLPSCT 2 27 29 25 33 29 41 17 26 31 25

CGTHLPSCT 3 17 35 34 28 27 38 24 37 33 21

From table 7.7 and 7.8 it is seen that the proposed techniques except KSOMSCT passed the

longest run of ones in a block test successfully because observed proportion values of all the

proposed techniques are grater than expected proportion value. Existing TPM based

technique has also passed test. In case of proposed techniques, observed proportion for

passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT.

 Arindam Sarkar, University of Kalyani, India 257

7.2.5 Binary Matrix Rank Test

The purpose of this test is to check for linear dependence among fixed length substrings of

the original sequence. In this experiment expected proportion for passing the test has been set

to 0.972766 using equation 7.1. Table 7.9 and 7.10 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

Table: 7.9

Proportion of passing and uniformity of distribution for binary matrix rank test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.970173 Unsuccess 7.186328e+03 Uniform

KSOMSCT 0.990000 Success 7.491904e-02 Uniform

DHLPSCT 0.992619 Success 7.571843e-02 Uniform

CDHLPSCT 0.993333 Success 7.194751e-01 Uniform

CTHLPSCT 0.995493 Success 8.281049e-01 Uniform

CGTHLPSCT 0.996667 Success 8.378459e-02 Uniform

Table: 7.10

Counting of P-values lying in the given ranges for binary matrix rank test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 3 24 42 24 27 40 20 37 28 29 26

KSOMSCT 2 27 33 31 27 41 30 28 29 24 28

DHLPSCT 1 26 22 32 29 32 37 44 31 19 27

CDHLPSCT 1 23 37 31 28 34 28 41 32 29 28

CTHLPSCT 3 26 29 31 27 39 20 30 29 19 26

CGTHLPSCT 1 28 25 27 26 31 27 42 36 27 29

From table 7.9 and 7.10 it is seen that all the proposed techniques passed the binary matrix

rank test successfully because observed proportion values of all the proposed techniques are

grater than expected proportion value. But existing TPM based technique does not. In case of

proposed techniques, observed proportion for passing the test are in increasing order in the

sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT. This

confirms that one is outperform than other. It can be concluded that all the proposed

techniques outperform than existing TPM based technique.

 Arindam Sarkar, University of Kalyani, India 258

7.2.6 Discrete Fourier Transform Test

The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near

each other) in the tested sequence that would indicate a deviation from the assumption of

randomness. In this experiment expected proportion for passing the test has been set

to 0.972766 using equation 7.1. Table 7.11 and 7.12 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

Table: 7.11

Proportion of passing and uniformity of distribution for discrete Fourier transform test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.951467 Unsuccess 0.000000e+00 Non-uniform

KSOMSCT 0.968329 Unsuccess 0.000000e+00 Non-uniform

DHLPSCT 1.000000 Success 0.000000e+00 Non-uniform

CDHLPSCT 1.000000 Success 0.000000e+00 Non-uniform

CTHLPSCT 1.000000 Success 0.000000e+00 Non-uniform

CGTHLPSCT 1.000000 Success 0.000000e+00 Non-uniform

Table: 7.12

Counting of P-values lying in the given ranges for discrete Fourier transform test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 1 6 6 23 27 35 52 50 0 69 31

KSOMSCT 0 4 11 18 23 41 37 61 0 58 47

DHLPSCT 0 1 14 24 26 43 34 48 0 75 35

CDHLPSCT 2 2 13 24 28 44 36 52 0 57 37

CTHLPSCT 1 5 14 26 24 39 47 45 0 73 42

CGTHLPSCT 0 2 12 21 27 42 36 56 0 69 38

From table 7.11 and 7.12 it is seen that the proposed techniques except KSOMSCT passed

the discrete Fourier transform test successfully because observed proportion values of all the

proposed techniques are grater than expected proportion value. Also existing TPM based

technique does not passed. It is also noticed that in case of proposed techniques, observed

proportion for passing the test are in increasing order in the sequence of, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT.

 Arindam Sarkar, University of Kalyani, India 259

7.2.7 Non-overlapping (Aperiodic) Template Matching Test

The purpose of this test is to reject sequences that exhibit too many occurrences of a given

non-periodic (aperiodic) pattern. For this test and for the overlapping template matching test,

an 𝑚-bit window is used to search for a specific 𝑚-bit pattern. If the pattern is not found, the

window slides one bit position. For this test, when the pattern is found, the window is reset to

the bit after the found pattern, and the search resumes. In this experiment expected proportion

for passing the test has been set to 0.972766 using equation 7.1. Table 7.13 and 7.14 shows

proportion of passing and uniformity of distribution and counting of P-values lying in the

given ranges.

Table: 7.13

Proportion of passing and uniformity of distribution for non-overlapping (aperiodic) template

matching test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.987164 Success 7.309571e-05 Non-uniform

KSOMSCT 0.988891 Success 7.895104e-03 Uniform

DHLPSCT 0.992275 Success 8.218760e-01 Uniform

CDHLPSCT 0.994872 Success 8.592518e-01 Uniform

CTHLPSCT 0.998941 Success 8.698073e-01 Uniform

CGTHLPSCT 1.000000 Success 8.812965e-01 Uniform

Table: 7.14

Counting of P-values lying in the given ranges for non-overlapping

(aperiodic) template matching test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 3 29 36 29 29 20 34 32 27 29 32

KSOMSCT 8 36 31 29 25 24 26 30 29 34 28

DHLPSCT 1 13 24 30 29 31 23 30 27 37 55

CDHLPSCT 3 16 36 30 27 30 27 30 29 35 29

CTHLPSCT 1 31 32 28 29 28 32 31 26 31 32

CGTHLPSCT 1 15 26 29 25 30 34 30 28 36 48

 Arindam Sarkar, University of Kalyani, India 260

From table 7.13 and 7.14 it is seen that all the proposed techniques along with existing TPM

based technique passed the non-overlapping (aperiodic) template matching test successfully

because observed proportion values of all the proposed techniques are grater than expected

proportion value. It is also noticed that in case of proposed techniques, observed proportion

for passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT.

7.2.8 Overlapping (Periodic) Template Matching Test

The focus of this test is the number of pre-defined target substrings. The purpose of this test

is to reject sequences that show deviations from the expected number of runs of ones of a

given length. Note that when there is a deviation from the expected number of ones of a

given length, there is also a deviation in the runs of zeroes. Runs of zeroes were not

evaluated separately due to a concern about statistical independence among the tests. For this

test and for the non-overlapping template matching test, an m-bit window is used to search

for a specific m-bit pattern. If the pattern is not found, the window slides one bit position. For

this test, when the pattern is found, the window again slides one bit, and the search is

resumed. In this experiment expected proportion for passing the test has been set to

0.972766 using equation 7.1. Table 7.15 and 7.16 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

Table: 7.15

Proportion of passing and uniformity of distribution for overlapping (periodic) template

matching test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.970173 Unsuccess 7.037531e+03 Uniform

KSOMSCT 0.980201 Success 7.259823e-02 Uniform

DHLPSCT 0.982107 Success 7.573992e-02 Uniform

CDHLPSCT 0.983932 Success 7.729034e-01 Uniform

CTHLPSCT 0.985028 Success 7.750939e-01 Uniform

CGTHLPSCT 0.985739 Success 7.890822e-02 Uniform

 Arindam Sarkar, University of Kalyani, India 261

Table: 7.16

Counting of P-values lying in the given ranges for overlapping (periodic) template matching

test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 5 30 30 28 20 28 30 32 21 48 58

KSOMSCT 8 23 49 20 28 20 31 38 26 10 71

DHLPSCT 10 12 31 21 22 39 37 30 31 34 41

CDHLPSCT 14 15 42 27 29 36 22 32 22 62 29

CTHLPSCT 19 19 26 22 23 22 34 31 28 10 34

CGTHLPSCT 21 21 33 24 28 41 38 34 30 28 22

From table 7.15 and 7.16 it is seen that all the proposed techniques passed the overlapping

(periodic) template matching test successfully because observed proportion values of all the

proposed techniques are grater than expected proportion value. But existing TPM based

technique does not. is also noticed that in case of proposed techniques, observed proportion

for passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT. This confirms that one is outperform than other,

also from TPM.

7.2.9 Maurer’s “Universal Statistical” Test

The purpose of the test is to detect whether or not the sequence can be significantly

compressed without loss of information. An overly compressible sequence is considered to

be non-random. In this experiment expected proportion for passing the test has been set

to 0.972766 using equation 7.1. Table 7.17 and 7.18 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

 Arindam Sarkar, University of Kalyani, India 262

Table: 7.17

Proportion of passing and uniformity of distribution for Maurer’s “universal statistical” test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

1.000000 Success 7.828473e-01 Uniform

KSOMSCT 1.000000 Success 7.830128e-01 Uniform

DHLPSCT 1.000000 Success 7.830903e-01 Uniform

CDHLPSCT 1.000000 Success 7.831719e-01 Uniform

CTHLPSCT 1.000000 Success 7.839116e-01 Uniform

CGTHLPSCT 1.000000 Success 7.842736e-01 Uniform

Table: 7.18

Counting of P-values lying in the given ranges for Maurer’s “Universal Statistical” test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 2 31 37 37 36 32 24 21 29 29 31

KSOMSCT 7 34 31 35 32 21 23 11 22 25 33

DHLPSCT 4 27 29 33 38 24 38 34 23 38 35

CDHLPSCT 7 39 23 32 37 27 27 15 24 39 30

CTHLPSCT 2 32 34 39 36 30 25 27 26 26 32

CGTHLPSCT 1 30 31 30 3 21 32 22 21 24 32

From table 7.17 and 7.18 it is seen that all the proposed techniques along with existing TPM

based technique passed the Maurer’s “universal statistical” test successfully because

observed proportion values of all the proposed techniques are grater than expected proportion

value. It is also noticed that in case of proposed techniques, observed proportion for passing

the test are in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT,

CTHLPSCT, CGTHLPSCT.

7.2.10 Linear Complexity Test

The focus of this test is to find the length of a generating feedback register. The purpose of

this test is to determine whether or not the sequence is complex enough to be considered

random. Random sequences are characterized by a longer feedback register. A short feedback

register implies non-randomness. In this experiment expected proportion for passing the test

has been set to 0.972766 using equation 7.1. Table 7.19 and 7.20 shows proportion of

passing and uniformity of distribution and counting of P-values lying in the given ranges.

 Arindam Sarkar, University of Kalyani, India 263

Table: 7.19

Proportion of passing and uniformity of distribution for linear complexity test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.973333 Success 2.754287e-01 Uniform

KSOMSCT 0.975318 Success 2.945727e-01 Uniform

DHLPSCT 0.994763 Success 2.978459e-02 Uniform

CDHLPSCT 1.000000 Success 3.866280e-01 Uniform

CTHLPSCT 1.000000 Success 3.871537e-01 Uniform

CGTHLPSCT 1.000000 Success 3.873217e-02 Uniform

Table: 7.20

Counting of P-values lying in the given ranges for linear complexity test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 2 23 28 28 37 40 25 29 27 38 23

KSOMSCT 5 35 24 20 33 27 33 27 37 34 25

DHLPSCT 0 32 29 31 29 28 21 28 35 46 21

CDHLPSCT 2 32 28 33 28 29 29 27 33 44 26

CTHLPSCT 4 37 29 30 31 38 35 29 38 43 25

CGTHLPSCT 0 29 26 29 32 42 24 27 31 39 20

From table 7.19 and 7.20 it is seen that all the proposed techniques along with existing TPM

passed the linear complexity test successfully because observed proportion values of all the

proposed techniques are grater than expected proportion value. It is also noticed that in case

of proposed techniques, observed proportion for passing the test are in increasing order in the

sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT. This

confirms that one is outperform than other.

7.2.11 Serial Test

The focus of this test is to obtain the frequency of each and every overlapping m-bit pattern

across the entire sequence. The purpose of this test is to determine whether the number of

occurrences of the 2𝑚 𝑚-bit overlapping patterns is approximately the same as would be

expected for a random sequence. The pattern can overlap. In this experiment expected

proportion for passing the test has been set to 0.977814 using equation 7.1. Table 7.21 and

 Arindam Sarkar, University of Kalyani, India 264

7.22 shows proportion of passing and uniformity of distribution and counting of P-values

lying in the given ranges.

Table: 7.21

Proportion of passing and uniformity of distribution for serial test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.977814

0.971333 Unsuccess 0.000000e+00 Non-uniform

KSOMSCT 0.973903 Unsuccess 0.000000e+00 Non-uniform

DHLPSCT 0.979874 Success 2.049380e-03 Uniform

CDHLPSCT 0.980850 Success 2.160305e-03 Uniform

CTHLPSCT 0.981476 Success 2.142839e-03 Uniform

CGTHLPSCT 0.991667 Success 2.187234e-03 Uniform

Table: 7.22

Counting of P-values lying in the given ranges for serial test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 31 55 44 38 21 25 24 21 17 23 19

KSOMSCT 30 27 33 38 29 29 33 24 22 30 34

DHLPSCT 5 35 47 51 74 60 72 67 49 60 80

CDHLPSCT 10 46 43 36 58 57 69 64 48 62 79

CTHLPSCT 17 38 49 39 33 30 38 28 29 56 68

CGTHLPSCT 4 49 38 42 46 37 27 28 43 42 43

From table 7.21 and 7.22 it is seen that proposed techniques except KSOMSCT passed serial

test successfully because observed proportion values of the proposed techniques are grater

than expected proportion value. Also existing TPM based technique does not passed test. It is

also noticed that in case of proposed techniques, observed proportion for passing the test are

in increasing order in the sequence of, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT.

 Arindam Sarkar, University of Kalyani, India 265

7.2.12 Approximate Entropy Test

The focus of this test is to obtain the frequency of each and every overlapping m-bit pattern.

The purpose of the test is to compare the frequency of overlapping blocks of two

consecutive/adjacent lengths (𝑚 and 𝑚 + 1) against the expected result for a random

sequence. In this experiment expected proportion for passing the test has been set

to 0.972766 using equation 7.1. Table 7.23 and 7.24 shows proportion of passing and

uniformity of distribution and counting of P-values lying in the given ranges.

Table: 7.23

Proportion of passing and uniformity of distribution for approximate entropy test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.972766

0.983333 Success 2.490301e-01 Uniform

KSOMSCT 0.985830 Success 2.837463e-02 Uniform

DHLPSCT 0.987328 Success 2.977321e-01 Uniform

CDHLPSCT 0.991739 Success 3.219583e-01 Uniform

CTHLPSCT 0.9968372 Success 3.335839e-02 Uniform

CGTHLPSCT 0.998174 Success 3.473627e-01 Uniform

Table: 7.24

Counting of P-values lying in the given ranges for approximate entropy test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 2 32 30 33 37 36 19 20 29 29 33

KSOMSCT 5 38 36 33 32 23 32 16 25 25 35

DHLPSCT 5 28 22 31 31 28 32 30 27 31 35

CDHLPSCT 4 32 28 30 35 29 25 18 28 32 32

CTHLPSCT 6 35 32 33 34 32 24 28 27 27 38

CGTHLPSCT 3 31 33 32 35 25 32 27 26 28 35

From table 7.23 and 7.24 it is seen that all proposed techniques along with existing TPM

based technique passed the approximate entropy test successfully because observed

proportion values of all the proposed techniques are grater than expected proportion value. It

is also noticed that in case of proposed techniques, observed proportion for passing the test

are in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT,

CTHLPSCT, CGTHLPSCT.

 Arindam Sarkar, University of Kalyani, India 266

7.2.13 Cumulative Sums Test

The focus of this test is the maximal excursion (from zero) of the random walk defined by

the cumulative sum of adjusted (−1, +1) digits in the sequence. The purpose of the test is to

determine whether the cumulative sum of the partial sequences occurring in the tested

sequence is too large or too small relative to the expected behavior of that cumulative sum

for random sequences. This cumulative sum may be considered as a random walk. For a

random sequence, the random walk should be near zero. For non-random sequences, the

excursions of this random walk away from zero will be too large. In this experiment expected

proportion for passing the test has been set to 0.977814 using equation 7.1. Table 7.25 and

7.26 shows proportion of passing and uniformity of distribution and counting of P-values

lying in the given ranges.

Table: 7.25

Proportion of passing and uniformity of distribution for cumulative sums test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.977814

0.953762 Unsuccess 0.000000e+00 Non-uniform

KSOMSCT 0.971289 Unsuccess 0.000000e+00 Non-uniform

DHLPSCT 0.980000 Success 1.915204e-06 Uniform

CDHLPSCT 0.987291 Success 2.336568e-04 Uniform

CTHLPSCT 0.995218 Success 2.402179e-01 Uniform

CGTHLPSCT 0.998543 Success 2.526391e-01 Uniform

Table: 7.26

Counting of P-values lying in the given ranges for cumulative Sums test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 6 81 63 59 67 44 61 42 40 87 50

KSOMSCT 12 67 76 58 75 45 45 44 51 73 54

DHLPSCT 5 49 48 56 102 64 41 54 56 75 50

CDHLPSCT 9 75 47 53 94 62 54 49 52 83 54

CTHLPSCT 7 73 43 52 71 58 58 43 59 72 59

CGTHLPSCT 5 49 56 59 95 52 55 53 56 79 54

 Arindam Sarkar, University of Kalyani, India 267

From table 7.25 and 7.26 it is seen that proposed techniques except KSOMSCT passed the

cumulative sums test successfully because observed proportion values of the proposed

techniques are grater than expected proportion value. Also existing TPM based technique

does not passed test. It is also noticed that in case of proposed techniques, observed

proportion for passing the test are in increasing order in the sequence of, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT.

7.2.14 Random Excursions Test

The focus of this test is to find the number of cycles having exactly 𝐾 visits in a cumulative

sum random walk. The cumulative sum random walk is found if partial sums of the (0,1)

sequence are adjusted to (−1, +1). A random excursion of a random walk consists of a

sequence of n steps of unit length taken at random that begin at and return to the origin. The

purpose of this test is to determine if the number of visits to a state within a random walk

exceeds what one would expect for a random sequence. In this experiment expected

proportion for passing the test has been set to 0.983907 using equation 7.1. Table 7.27 and

7.28 shows proportion of passing and uniformity of distribution and counting of P-values

lying in the given ranges.

Table: 7.27

Proportion of passing and uniformity of distribution for random excursions test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.983907

0.935000 Unsuccess 0.000000e+00 Non-uniform

KSOMSCT 0.942500 Unsuccess 0.000000e+00 Non-uniform

DHLPSCT 0.987359 Success 2.020816e-01 Uniform

CDHLPSCT 0.993964 Success 2.090373e-01 Uniform

CTHLPSCT 0.996667 Success 2.135391e-01 Uniform

CGTHLPSCT 0.997274 Success 2.139863e-01 Uniform

 Arindam Sarkar, University of Kalyani, India 268

Table: 7.28

Counting of P-values lying in the given ranges for random excursions test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 156 275 181 187 170 185 196 200 227 245 378

KSOMSCT 138 274 169 185 167 224 200 202 235 260 346

DHLPSCT 32 246 241 223 255 226 250 244 235 220 228

CDHLPSCT 76 249 195 217 276 228 247 236 231 256 287

CTHLPSCT 80 267 231 201 287 221 243 244 233 249 321

CGTHLPSCT 94 281 223 196 265 227 257 253 235 232 236

From table 7.27 and 7.28 it is seen that the proposed techniques except KSOMSCT passed

the random excursions test successfully because observed proportion values of the proposed

techniques are grater than expected proportion value. Also existing TPM based technique

does not passed test. It is also noticed that in case of proposed techniques, observed

proportion for passing the test are in increasing order in the sequence of, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT.

7.2.15 Random Excursions Variant Test

The focus of this test is to find the number of times that a particular state occurs in a

cumulative sum random walk. The purpose of this test is to detect deviations from the

expected number of occurrences of various states in the random walk. In this experiment

expected proportion for passing the test has been set to 0.985938 using equation 7.1. Table

7.29 and 7.30 shows proportion of passing and uniformity of distribution and counting of

P-values lying in the given ranges.

 Arindam Sarkar, University of Kalyani, India 269

Table: 7.29

Proportion of passing and uniformity of distribution for random excursions variant test

Technique
Expected

Proportion

Observed

Proportion

Status for

Proportion

of passing

P-value of

P-values

Status for

Uniform/

Non-uniform

distribution

TPM

0.985938

0.972593 Unsuccess 0.000000e+00 Non-uniform

KSOMSCT 0.972963 Unsuccess 0.000000e+00 Non-uniform

DHLPSCT 0.986893 Success 1.370847e-01 Uniform

CDHLPSCT 0.988286 Success 1.406195e-01 Uniform

CTHLPSCT 0.989103 Success 1.429043e-01 Uniform

CGTHLPSCT 0.989928 Success 1.430975e-01 Uniform

Table: 7.30

Counting of P-values lying in the given ranges for random excursions variant test
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1

TPM 148 296 406 481 520 598 637 640 630 586 458

KSOMSCT 146 268 349 499 596 659 628 613 617 564 461

DHLPSCT 74 435 519 495 527 544 533 578 547 578 570

CDHLPSCT 95 327 403 521 535 634 597 632 619 568 557

CTHLPSCT 75 292 511 493 587 562 604 560 553 583 498

CGTHLPSCT 81 398 428 516 526 549 571 574 569 588 571

From table 7.29 and 7.30 it is seen that the proposed technique except KSOMSCT passed the

random excursions variant test successfully because observed proportion values of the

proposed techniques are grater than expected proportion value. Also existing TPM based

technique does not passed test. It is also noticed that in case of proposed techniques,

observed proportion for passing the test are in increasing order in the sequence of,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT.

 Arindam Sarkar, University of Kalyani, India 270

7.3 Performance Analysis

In this section performance of all the proposed and existing techniques are compared with

each other in terms of average synchronization time for generation of session key and

grouped session key consisting of variable bit using fixed weight range and different number

of neurons in input and hidden layer, different weight range and fixed number of neurons in

input and hidden layer, amount of heap used for generating 128 bit session key, amount of

relative time spent in GC used for generating 128 bit session key, amount of thread required

for generating 128 bit session key, number of generation vs. average fitness value in SA and

GA and key storage comparisons. The comparisons and analysis of performance of proposed

and existing techniques are made using following attributtes.

 Average synchronization time (in cycle) for generating 128/192/256 bit session key

among proposed and existing techniques

 Average synchronization time (in cycle) for generating 128/192/256 bit grouped

session key (Group size = 4) among proposed and existing techniques

 Average synchronization time (in cycle) for generating 128/192/256 bit session key

using fixed weight range (𝐿 = 5) and different number of neurons in input and hidden

layer for the proposed DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT techniques

 Average synchronization time (in cycle) for generating 128/192/256 bit session key

using proposed techniques

 Average synchronization time (in cycle) for generating 128 bit session key using

different weight range (𝐿 = 5 to 50) and fixed number of neurons in input and hidden

layer (2 − 4 − 2) using DHLPSCT, CDHLPSCT techniques

 Average synchronization time (in cycle) for generating 128 bit session key using

different weight range (𝐿 = 5 to 50) and fixed number of neurons in input and hidden

layer (2 − 2 − 3 − 2) using CTHLPSCT, CGTHLPSCT techniques

 Arindam Sarkar, University of Kalyani, India 271

 Average synchronization time (in cycle) for generating 128 bit session key using

Hebbian learning rule with different weight range (𝐿 = 5 to 50) and fixed number of

neurons in input and hidden layer (2 − 4 − 2) using DHLPSCT, CDHLPSCT,

techniques

 Average synchronization time (in cycle) for generating 128 bit session key using

Hebbian learning rule with different weight range (𝐿 = 5 to 50) and fixed number of

neurons in input and hidden layer (2 − 2 − 3 − 2) using CTHLPSCT, CGTHLPSCT

techniques

 Memory heap used in proposed and existing techniques for generation of 128 bit session

key

 Relative time spent in GC to generate 128 bit session key using proposed and existing

techniques

 Thread required to generate 128 bit session key using proposed and existing techniques

 Number of generations vs. average fitness value in Simulated Annealing based

encryption/decryption key generation in DHLPSCT technique

 Number of generations vs. average fitness value in Genetic Annealing based

encryption/decryption key generation in CDHLPSCT technique

 Length of plaintext vs. encryption/decryption key storage among proposed and existing

techniques

 Arindam Sarkar, University of Kalyani, India 272

7.3.1 Average Synchronization Time (in cycle) for Generating variable bit Session

Key

Table: 7.31

Average synchronization time (in cycle) for generating 128 bit session key
Key Length (128 bit) Average Synchronization time (in cycle)

CTHLPSCT (2-2-2-4-25)NS=32 2302,83

CDHLPSCT (4-4-2-25)NS=32 2397,02

DHLPSCT (4-4-2-25)NS=32 2421,71

KSOMSCT 2516,41

TPM (L=25) 2624,27

PPM 2811,04

Here, NS denotes Network Size.

Figure 7.1: 128 bit key length vs. average synchronization time (in cycle)

0 500 1000 1500 2000 2500 3000

CTHLPSCT (2-2-2-4-25)NS=32

CDHLPSCT (4-4-2-25)NS=32

DHLPSCT (4-4-2-25)NS=32

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
12

8
 b

it
)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 273

Table 7.31 and figure 7.1 shows the proposed CTHLPSCT (2 − 2 − 2 − 2 − 25),

CDHLPSCT 4 − 4 − 2 − 25 , DHLPSCT 4 − 4 − 2 − 25 and KSOMSCT requires

(2302,83), (2397,02), (2421,71), (2516,41) cycles respectively in average to generate

session key having a length of 128 bit. Whereas existing TPM (𝐿 = 25) and PPM needs

2624,27 and 2811,04 cycles respectively, which larger than all the proposed techniques.

From Table and figure it has been seen that CTHLPSCT takes minimum amount of time to

generate 128 bit session key compared to other proposed techniques and other two existing

techniques TPM and PPM. In architecture point of view though DHLPSCT, CDHLPSCT and

CTHLPSCT has the same network size i.e. 32 but in CTHLPSCT the input layer contains

only two input neurons. So, the overhead of input generation through PRNG for the input

layer is much lower than others. Because of this reason CTHLPSCT able to synchronize

faster than others CTHLPSCT outperforms over all the proposed techniques (CDHLPSCT,

DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is quite affordable in terms of

resources available in wireless communication.

Table: 7.32

Average synchronization time (in cycle) for generating 192 bit session key
Key Length (192 bit) Average Synchronization time (in cycle)

CTHLPSCT (2-2-5-2-25)NS=40 2463,21

CDHLPSCT (3-3-5-25)NS=45 2789,43

DHLPSCT (3-3-5-25)NS=45 2807,36

KSOMSCT 3173,41

TPM (L=25) 3347,15

PPM 3571,48

 Arindam Sarkar, University of Kalyani, India 274

Figure 7.2: 192 bit key length vs. average synchronization time (in cycle)

Table 7.32 and figure 7.2 shows the proposed soft computing based CTHLPSCT (2 − 2 −

5 − 2 − 25), CDHLPSCT (3 − 3 − 5 − 25), DHLPSCT (3 − 3 − 5 − 25) and KSOMSCT

needs (2463,21), 2789,43 , 2807,36 , 3173,41 cycles respectively in average to

generate session key having a length of 128 bit. Whereas existing TPM (𝐿 = 25) and PPM

needs 3347,15 and 3571,48 cycles respectively, which larger than all the proposed

techniques. From Table and figure it has been seen that CTHLPSCT takes minimum amount

of time to generate 192 bit session key compared to other proposed techniques and other two

existing techniques TPM and PPM. In the architectural point of view, network size of

CTHLPSCT is only 40 i.e. smaller than other techniques. So with smaller network size this

technique can synchronize faster than others. Also it has smaller number of neurons in its

input layer than others. This significantly reduces the overhead of input generations

compared to others. For this reason, CTHLPSCT outperforms over all the proposed

0 1000 2000 3000 4000

CTHLPSCT (2-2-5-2-25)NS=40

CDHLPSCT (3-3-5-25)NS=45

DHLPSCT (3-3-5-25)NS=45

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
19

2
 b

it
)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 275

techniques (CDHLPSCT, DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is

quite affordable in terms of resources available in wireless communication.

Table: 7.33

Average synchronization time (in cycle) for generating 256 bit session key
Key Length (256 bit) Average Synchronization time (in cycle)

CTHLPSCT (2-2-7-2-25)NS=56 3682,18

CDHLPSCT (4-4-4-25)NS=64 4208,42

DHLPSCT (4-4-4-25)NS=64 4233,62

KSOMSCT 4719,72

TPM (L=25) 4851,86

PPM 5193,03

Figure 7.3: 256 bit key length vs. average synchronization time (in cycle)

0 1000 2000 3000 4000 5000 6000

CTHLPSCT (2-2-7-2-25)NS=56

CDHLPSCT (4-4-4-25)NS=64

DHLPSCT (4-4-4-25)NS=64

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
2
5
6
 b

it
s)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 276

Table 7.33 and figure 7.3 shows CTHLPSCT 2 − 2 − 7 − 2 − 25 , CDHLPSCT 4 − 4 −

4−25, DHLPSCT 4−4−4−25 and KSOMSCT needs 3682,18, 4208,42, 4233,62,

(4719,72) cycles respectively in average to generate session key having a length of 128 bit.

Whereas existing TPM (𝐿 = 25) and PPM needs 4851,86 and 5193,03 cycles respectively,

which larger than all the proposed techniques. From Table and figure it has been seen that

CTHLPSCT takes minimum amount of time to generate 256 bit session key compared to

other proposed techniques and other two existing techniques TPM and PPM. In architecture

point of view though DHLPSCT, CDHLPSCT and CTHLPSCT has the network size 64 but

in CTHLPSCT the network size is only 56 also the input layer contains only two input

neurons in case of CTHLPSCT. So, the overhead of input generation through PRNG for the

input layer is much lower than others. Because of this reason CTHLPSCT able to

synchronize faster than others CTHLPSCT outperforms over all the proposed techniques

(CDHLPSCT, DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is quite

affordable in terms of resources available in wireless communication.

7.3.2 Average Synchronization Time (in cycle) for Generating variable bit

Grouped Session (Group size = 4) Key

Table: 7.34

Average synchronization time (in cycle) for generating 128 bit grouped

session (Group size = 4) key

Key Length (128 bit)

No. of Parties participating

in the Group

Synchronization

Average

Synchronization time

(in cycle)

CGTHLPSCT (2-2-2-4-25)NS=32 4 4394,91

CTHLPSCT (2-2-2-4-25)NS=32 4 13816,98

CDHLPSCT (4-4-2-25)NS=32 4 14382,12

DHLPSCT (4-4-2-25)NS=32 4 14530,26

KSOMSCT 4 15098,46

TPM (L=25) 4 15745,62

PPM 4 16866,24

 Arindam Sarkar, University of Kalyani, India 277

Figure 7.4: 128 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size = 4)

Table 7.34 and figure 7.4 shows CGTHLPSCT (2 − 2 − 2 − 4 − 25), CTHLPSCT 2 − 2 −

2 − 4 − 25 , CDHLPSCT 4 − 4 − 2 − 25 , DHLPSCT (4 − 4 − 2 − 25) and KSOMSCT

needs 4394,91 , 13816,98 , 14382,12 , 14530,26 , 15098,46 cycles respectively in

an average to generate session key having a length of 128 bit for synchronize group of four

parties. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this

technique use complete binary tree based framework for synchronizing n parties. Whereas

other proposed and existing techniques needs
𝑛(𝑛−1)

2
 number of synchronizations for

synchronizing n parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of

synchronizations. Whereas other techniques needs
4(4−1)

2
= 6 synchronizations steps. This

clearly indicates that proposed CGTHLPSCT outperforms than all other proposed and

existing techniques at the time of group synchronization.

0 5000 10000 15000 20000

CGTHLPSCT (2-2-2-4-
25)NS=32

CTHLPSCT (2-2-2-4-25)NS=32

CDHLPSCT (4-4-2-25)NS=32

DHLPSCT (4-4-2-25)NS=32

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
12

8
 b

it
)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 278

Table: 7.35

Average synchronization time (in cycle) for generating 192 bit grouped

session (Group size = 4) key

Key Length (192 bit)

No. of Parties participating

in the Group

Synchronization

Average

Synchronization time

(in cycle)

CGTHLPSCT (2-2-5-2-25)NS=40 4 4700,99

CTHLPSCT (2-2-5-2-25)NS=40 4 14779,26

CDHLPSCT (3-3-5-25)NS=45 4 16736,58

DHLPSCT (3-3-5-25)NS=45 4 16844,16

KSOMSCT 4 19040,46

TPM (L=25) 4 20082,90

PPM 4 21428,88

Figure 7.5: 192 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size= 4)

0 5000 10000 15000 20000 25000

CGTHLPSCT (2-2-5-2-
25)NS=40

CTHLPSCT (2-2-5-2-25)NS=40

CDHLPSCT (3-3-5-25)NS=45

DHLPSCT (3-3-5-25)NS=45

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
19

2
 b

it
)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 279

Table 7.35 and figure 7.5 shows CGTHLPSCT (2 − 2 − 5 − 2 − 25), CTHLPSCT (2 − 2 −

5 − 2 − 25), CDHLPSCT(3 − 3 − 5 − 25), DHLPSCT (3 − 3 − 5 − 25) and KSOMSCT

needs (4700,99), (14779,26), (16736,58), (16844,16), (19040,46) cycles respectively in

average to generate session key having a length of 192 bit for synchronize group of four

parties. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this

technique use complete binary tree based framework for synchronizing n parties. Whereas

other proposed and existing techniques needs
𝑛(𝑛−1)

2
 number of synchronizations for

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of

synchronizations. Whereas other techniques needs
4(4−1)

2
= 6 synchronizations steps. This

clearly indicates that proposed CGTHLPSCT outperforms than all other proposed and

existing techniques at the time of group synchronization.

Table: 7.36

Average synchronization time (in cycle) for generating 256 bit grouped

session (Group size = 4) key

Key Length (256 bit)

No. of Parties

participating in the

Group Synchronization

Average

Synchronization time

(in cycle)

CGTHLPSCT (2-2-7-2-25)NS=56 4 7027,38

CTHLPSCT (2-2-7-2-25)NS=56 4 22093,08

CDHLPSCT (4-4-4-25)NS=64 4 25250,52

DHLPSCT (4-4-4-25)NS=64 4 25401,72

KSOMSCT 4 28318,32

TPM (L=25) 4 29111,16

PPM 4 31158,18

 Arindam Sarkar, University of Kalyani, India 280

Figure 7.6: 256 bit key length vs. average synchronization time (in cycle) for grouped

synchronization (Group size= 4)

Table 7.36 and figure 7.6 shows CGTHLPSCT (2 − 2 − 5 − 2 − 25), CTHLPSCT (2 − 2 −

5 − 2 − 25), CDHLPSCT (3 − 3 − 5 − 25), DHLPSCT (3 − 3 − 5 − 25) and KSOMSCT

needs (7027,38), (22093,08), (25250,52), (25401,72), (28318,32) cycles respectively in

average to generate session key having a length of 192 bit for synchronize group of four

parties. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this

technique use complete binary tree based framework for synchronizing n parties. Whereas

other proposed and existing techniques needs
𝑛(𝑛−1)

2
 number of synchronizations for

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of

synchronizations. Whereas other techniques needs
4(4−1)

2
= 6 synchronizations steps. This

clearly indicates that proposed CGTHLPSCT outperforms than all other proposed and

existing techniques at the time of group synchronization.

0 10000 20000 30000

CGTHLPSCT (2-2-7-2-
25)NS=56

CTHLPSCT (2-2-7-2-25)NS=56

CDHLPSCT (4-4-4-25)NS=64

DHLPSCT (4-4-4-25)NS=64

KSOMSCT

TPM (L=25)

PPM

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
2
5
6
 b

it
)

Average Synchronization time (in
cycle)

 Arindam Sarkar, University of Kalyani, India 281

7.3.3 Average Synchronization Time (in cycle) for Generating 128 bit Session

Key using fixed Weight range (𝐿 = 5) with variable Neurons

Table: 7.37

 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

DHLPSCT

DHLP Size N-K1-K2-L
Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

8 1-8-1-5 112,73 139,18 148,62

16 2-4-2-5 209,94 233,36 241,49

24 2-2-6-5 306,97 329,19 348,07

24 6-2-2-5 309,49 337,45 356,32

32 4-2-4-5 410,13 432,69 451,28

Figure 7.7: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in DHLPSCT

100

150

200

250

300

350

400

450

1-8-1-5 2-4-2-5 2-2-6-5 6-2-2-5 4-2-4-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 282

Figure 7.8: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

DHLPSCT

From the table 7.37 and figure 7.7 it has been observed that several DHLPSCT configuration

(in terms of different neurons in different layers) can be use to generate 128 bit session key

with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 𝑁 × 𝐾1 is

number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the number of

hidden units in layer 2. For the first row in the table DHLPSCT size is eight where 𝑁 = 1,

𝐾1 = 8, 𝐾2 = 1, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight decimal value can be represented in eight bit binary. So,

total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session

key). If 𝑁 = 1, 𝐾1 = 8, 𝐾2 = 1 then 1 × 8 + 8 × 1 × 8 = 128 bits weight value act

as a session key. Among three learning rules Hebbian rules outperform over other two rules

(Anti-Hebbian and Random Walk). Hebbian rules perform better where network size is

comparatively small because weights are not getting well distributed in the Hebbian rules

shown in figure 7.8. So, small network with 128 bit session key Hebbian makes the

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much

more amount of synchronization time due to the weight distribution process.

1500

2500

3500

4500

5500

6500

7500

8500

9500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 283

Table: 7.38

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CDHLPSCT
CDHLP

Size
N-K1-K2-L

Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

8 1-8-1-5 95,42 118,73 127,12

16 2-4-2-5 192,06 212,58 223,86

24 2-2-6-5 288,13 310,79 331,14

24 6-2-2-5 289,72 311,18 332,94

32 4-2-4-5 383,96 407,05 422,89

Figure 7.9: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CDHLPSCT

75

125

175

225

275

325

375

425

1-8-1-5 2-4-2-5 2-2-6-5 6-2-2-5 4-2-4-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 284

Figure 7.10: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CDHLPSCT

From the table 7.38 and figure 7.9 it has been observed that several CDHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 128 bit

session key with fixed weight range 𝐿 = 5. CDHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the

number of hidden units in layer 2. For the first row DHLPSCT size is eight, where 𝑁 = 1,

𝐾1 = 8, 𝐾2 = 1, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight decimal value can be represented in eight bit binary. So,

total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session

key). If 𝑁 = 1, 𝐾1 = 8, 𝐾2 = 1 then 1 × 8 + 8 × 1 × 8 = 128 bits weight value act

as a session key. Among three learning rules Hebbian rules outperform over other two rules

(Anti-Hebbian and Random Walk). Hebbian rules perform better where network size is

comparatively small because weights are not getting well distributed in the Hebbian rules

shown in figure 7.10. So, small network with 128 bit session key Hebbian makes the

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much

more amount of synchronization time due to the weight distribution process.

1500

2500

3500

4500

5500

6500

7500

8500

9500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 285

Table: 7.39

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CTHLPSCT
CTHLP

Size
N-K1-K2-K3-L

Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

24 2-2-3-2-5 287,81 309,23 320,52

24 2-3-2-2-5 288,77 310,35 323,15

32 2-2-2-4-5 382,93 406,87 421,36

32 4-2-2-2-5 383,18 406,91 421,89

Figure 7.11: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CTHLPSCT

270

290

310

330

350

370

390

410

430

2-2-3-2-5 2-3-2-2-5 2-2-2-4-5 4-2-2-2-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-K3-L

Average Synchronization time (in
cycle) in Hebbian

Average Synchronization time (in
cycle) in Anti-Hebbian

Average Synchronization time (in
cycle) in Random Walk

 Arindam Sarkar, University of Kalyani, India 286

Figure 7.12: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CTHLPSCT

From the table 7.39 and figure 7.11 it has been observed that several CTHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 128 bit

session key with fixed weight range 𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3,

where 𝑁 × 𝐾1 is number of input, 𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the

number of hidden unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first

row CTHLPSCT size is 24, where 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2, 𝐿 = 5. Total number

of weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight

value represented in eight bit binary. So, total 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8

numbers of bits present in a weight (length of a session key). If 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3,

𝐾3 = 2 then ((2 × 2 + 2 × 3 + 3 × 2) × 8) = 128 bits weight value act as a session key.

Among three learning rules Hebbian rules outperform over other two rules (Anti-Hebbian

and Random Walk). Hebbian rules perform better where network size is comparatively small

because weights are not getting well distributed in the Hebbian rules shown in figure 7.12.

So, small network with 128 bit session key Hebbian makes the synchronization faster but for

the small network Anti-Hebbian and Random Walk takes much more amount of

synchronization time due to the weight distribution process.

1500

2500

3500

4500

5500

6500

7500

8500

9500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 287

Table: 7.40

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CGTHLPSCT

CGTHLP

Size
N-K1-K2-K3-L

No. of CGTHLP

Participated at

Group Session Key

Generation

Average Synchronization Steps

Hebbian Anti-Hebbian Random Walk

24 2-2-3-2-5 4 549,28 590,16 611,70

32 2-2-2-4-5 4 730,81 776,50 804,15

24 2-3-2-2-5 8 1952,31 2098,20 2184,74

32 4-2-2-2-5 8 2590,59 2751,03 2852,30

Figure 7.13: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CGTHLPSCT

500

1000

1500

2000

2500

3000

2-2-3-2-5 (4
GTHLPSCT)

2-2-2-4-5 (4
CGTHLPSCT)

2-3-2-2-5 (8
CGTHLPSCT)

4-2-2-2-5 (8
CGTHLPSCT)

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 S
te

p
s

N-K1-K2-K3-L

Average Synchronization time (in
cycle) in Hebbian

Average Synchronization time (in
cycle) in Anti-Hebbian

Average Synchronization time (in
cycle) in Random walk

 Arindam Sarkar, University of Kalyani, India 288

Figure 7.14: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in

CGTHLPSCT

From the table 7.40 and figure 7.13 it has been observed that group of CTHLPSCT with

configuration (in terms of different neurons in different layers) can be use to generate 128 bit

session key with fixed weight range 𝐿 = 5. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of

synchronizations because this technique use complete binary tree based framework for

synchronizing 𝑛 parties. Whereas other proposed and existing techniques needs
𝑛(𝑛−1)

2

number of synchronizations for synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs

only 4𝑙𝑜𝑔(4 − 1) number of synchronizations. Each CTHLPSCT in the group have the size

of 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁 × 𝐾1 is number of input, 𝐾1 is the number of hidden unit

in layer 1 , 𝐾2 is the number of hidden unit in layer 2 and 𝐾3 is the number of hidden unit in

layer 3. For the first row CTHLPSCT size is 24, where 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 =

2, 𝐿 = 5. Total number of weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 +

𝐾2 × 𝐾3). Each weight value represented in eight bit binary. So, total (𝑁 × 𝐾1 + 𝐾1 ×

𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of bits present in a weight (length of a session key). If

𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then 2 × 2 + 2 × 3 + 3 × 2 × 8 = 128 bits weight

value act as a session key. Among three learning rules Hebbian rules outperform over other

1500

2500

3500

4500

5500

6500

7500

8500

9500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 289

two rules (Anti-Hebbian and Random Walk). Hebbian rules perform better where network

size is comparatively small because weights are not getting well distributed in the Hebbian

rules shown in figure 7.14. So, small network with 128 bit session key Hebbian makes the

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much

more amount of synchronization time due to the weight distribution process.

7.3.4 Average Synchronization Time (in cycle) for Generating 192 bit Session

Key using fixed Weight range (𝐿 = 5) with variable Neurons

Table: 7.41

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

DHLPSCT

DHLP Size N-K1-K2-L
Average synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

24 2-6-2-5 328,73 346,23 374,89

32 2-4-4-5 419,26 441,64 457,08

32 4-4-2-5 417,39 438,48 453,11

36 3-4-3-5 452,73 469,91 481,03

45 3-3-5-5 598,27 573,62 588,18

45 5-3-3-5 607,42 581,83 597,39

48 4-3-4-5 643,61 609,10 623,27

72 6-2-6-5 956,71 904,28 909,37

 Arindam Sarkar, University of Kalyani, India 290

Figure 15: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in DHLPSCT

Figure 7.16: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in

DHLPSCT

300

400

500

600

700

800

900

2-6-2-52-4-4-54-4-2-53-4-3-53-3-5-55-3-3-54-3-4-56-2-6-5

A
ve

ra
g

e
 s

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

3500

4000

4500

5000

5500

6000

6500

7000

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 s

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 291

From the table 7.41 and figure 7.15 it has been observed that several DHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 192 bit

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the

number of hidden units in layer 2. For the first row DHLPSCT size is 24, where 𝑁 = 2,

𝐾1 = 6, 𝐾2 = 2, 𝐿 = 5. Total number of weights generated by the DHLPSCT are

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key). If

𝑁 = 2, 𝐾1 = 6, 𝐾2 = 2 then 2 × 6 + 6 × 2 × 8 = 192 bits weight value act as a

session key. Among three learning rules Anti-Hebbian rules outperform over other two rules

when network size is medium (45 to 72). Hebbian rules perform better where network size is

small (less than 45). In Anti-Hebbian rule weights are getting well distributed than Hebbian

rules shown in figure 7.16. So, network having medium size with 192 bit session key

Anti-Hebbian makes the synchronization faster but for this range Hebbian and Random Walk

takes much more amount of synchronization time.

Table: 7.42

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CDHLPSCT

CDHLP Size N-K1-K2-L
Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

24 2-6-2-5 289,35 311,62 332,14

32 2-4-4-5 383,78 406,89 422,17

32 4-4-2-5 384,10 406,15 421,08

36 3-4-3-5 418,69 427,83 435,86

45 3-3-5-5 559,18 538,59 546,13

45 5-3-3-5 560,23 539,26 547.64

48 4-3-4-5 602,76 574,35 581,08

72 6-2-6-5 923,85 862,19 866,11

 Arindam Sarkar, University of Kalyani, India 292

Figure 7.17: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CDHLPSCT

Figure 7.18: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in

CDHLPSCT

3500

4000

4500

5000

5500

6000

6500

7000

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

300

400

500

600

700

800

900

1000

2-6-2-5 2-4-4-5 4-4-2-5 3-4-3-5 3-3-5-5 5-3-3-5 4-3-4-5 6-2-6-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 293

From the table 7.42 and figure 7.17 it has been observed that several CDHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 192 bit

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the

number of hidden units in layer 2. For the first row CDHLPSCT size is 24, where

𝑁 = 2, 𝐾1 = 6, 𝐾2 = 2, 𝐿 = 5. Total numbers of weights generated by the CDHLPSCT

are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key). If

𝑁 = 2, 𝐾1 = 6, 𝐾2 = 2 then 2 × 6 + 6 × 2 × 8 = 192 bits weight value act as a

session key. Among three learning rules Anti-Hebbian rules outperform over other two rules

when network size is medium (45 to 72). Hebbian rules perform better where network size is

small (less than 45). In Anti-Hebbian rule weights are getting well distributed than Hebbian

rules shown in figure 7.18. So, network having medium size with 192 bit session key Anti-

Hebbian makes the synchronization faster but for this range Hebbian and Random Walk

takes much more amount of synchronization time.

Table: 7.43

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CTHLPSCT

CTHLP Size N-K1-K2-K3-L
Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

40 2-2-5-2-5 451,17 434,83 443,02

40 2-5-2-2-5 454,37 436,11 447,19

54 2-3-3-3-5 677,76 645,89 653,92

54 3-3-3-2-5 679,23 646,05 655,11

64 2-2-2-8-5 805.71 765,53 776,84

64 4-1-4-4-5 806.16 766,10 777,61

64 4-4-1-4-5 806.98 766,87 778,41

64 8-2-2-2-5 807.24 767,63 779,12

 Arindam Sarkar, University of Kalyani, India 294

Figure 7.19: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CTHLPSCT

Figure 7.20: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in

CTHLPSCT

3500

4000

4500

5000

5500

6000

6500

7000

7500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

400

450

500

550

600

650

700

750

800

850
A

ve
ra

g
e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-K3-L

Average Synchronization Steps in
Hebbian

Average Synchronization Steps in
Anti-Hebbian

Average Synchronization Steps in
Random walk

 Arindam Sarkar, University of Kalyani, India 295

From the table 7.43 and figure 7.19 it has been observed that several CTHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 128 bit

session key with fixed weight range 𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3,

where N is number of input, 𝐾1 is the number of hidden unit in layer 1 , 𝐾2 is the number of

hidden unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first row

CTHLPSCT size is 40, where 𝑁 = 2, 𝐾1 = 5, 𝐾2 = 2, 𝐾3 = 2, 𝐿 = 5. Total number of

weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight

value represented in eight bit binary. So, total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8)

numbers of bits present in a weight (length of a session key). If 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3,

𝐾3 = 2 then 2 × 5 + 5 × 2 + 2 × 2 × 8 = 192 bits weight value act as a session key.

Among three learning rules Anti-Hebbian rules outperform over other two rules (Hebbian

and Random walk). Anti-Hebbian rules perform better where network size is medium. In

Anti-Hebbian rule weights are getting well distributed than Hebbian rules shown in 7.20. So,

network having medium size with 192 bit session key Anti-Hebbian makes the

synchronization faster but for this range Hebbian and Random walk takes much more amount

of synchronization time.

Table: 7.44

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CGTHLPSCT

CTHLP

Size
N-K1-K2-K3-L

No. of CTHLP

Participated at

Group Session

Key Generation

Average Synchronization steps in cycle

Hebbian Anti-Hebbian Random Walk

40 2-2-5-2-5 4 861,05 829,86 845,49

40 2-5-2-2-5 8 3071,89 2948,44 3023,35

54 2-3-3-3-5 4 1293,49 1232,67 1247,99

54 3-3-3-2-5 8 4592,12 4367,80 4429,05

64 2-2-2-8-5 4 1537,68 1461,00 1482,58

64 4-1-4-4-5 8 5450,27 5179,43 5257,25

64 4-4-1-4-5 10 7700,54 7317,79 7427,91

64 8-2-2-2-5 12 10087,84 9592,84 9736,43

 Arindam Sarkar, University of Kalyani, India 296

Figure 7.21: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CGTHLPSCT

Figure 7.22: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in

CGTHLPSCT

0

2000

4000

6000

8000

10000

12000
A

ve
ra

g
e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 s
te

p
s

in
 c

y
c
le

N-K1-K2-K3-L

Average Syn. Steps in Hebbian

Average Syn. Steps in Anti-Hebbian

Average Syn. Steps in Random walk

3500

4000

4500

5000

5500

6000

6500

7000

7500

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
x

is
 T

it
le

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 297

From the table 7.44 and figure 7.21 it has been observed that several CTHLPSCT makes a

group and different or same configuration (in terms of different neurons in different layers)

of each CTHLPSCT can be use to generate 192 bit session key with fixed weight range

𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where N is number of input, 𝐾1 is the

number of hidden unit in layer 1, 𝐾2 is the number of hidden unit in layer 2 and 𝐾3 is the

number of hidden unit in layer 3. For the first row CTHLPSCT size is 40, where

 𝑁 = 2, 𝐾1 = 5, 𝐾2 = 2, 𝐾3 = 2, 𝐿 = 5. Total numbers of weights generated by the

CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value represented in eight

bit binary. So, total 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8 numbers of bits present in a

weight (length of a session key). If 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then 2 × 5 + 5 ×

2 + 2 × 2 × 8 = 192 bits weight value act as a session key. CGTHLPSCT needs

𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this technique use complete binary tree

based framework for synchronizing 𝑛 parties. Whereas other proposed and existing

techniques needs
𝑛(𝑛−1)

2
 number of synchronizations for synchronizing 𝑛 parties. If 𝑛 = 4

then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of synchronizations.Among three

learning rules Anti-Hebbian rules outperform over other two rules (Hebbian and Random

Walk). Anti-Hebbian rules perform better where network size is medium. In Anti-Hebbian

rule weights are getting well distributed than Hebbian rules shown in figure 7.22. So,

network having medium size with 192 bit session key Anti-Hebbian makes the

synchronization faster but for this range Hebbian and Random Walk takes much more

amount of synchronization time.

 Arindam Sarkar, University of Kalyani, India 298

7.3.5 Average Synchronization Time (in cycle) for Generating 256 bit Session

Key using fixed Weight range (𝐿 = 5) with variable Neurons

Table: 7.45

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

DHLPSCT
DHLPSCT

Size
N-K1-K2-L

Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

32 2-8-2-5 406,39 432,07 459,28

64 4-4-4-5 861,47 797,29 803,12

128 8-2-8-5 1752,83 1632,94 1573,48

256 16-1-16-5 3517,29 3339,08 3154,61

Figure 7.23: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in DHLPSCT

0

500

1000

1500

2000

2500

3000

3500

2-8-2-5 4-4-4-5 8-2-8-5 16-1-16-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 299

Figure 7.24: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in

DHLPSCT

From the table 7.45 and graph 7.23 it has been observed that several DHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 256 bit

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the

number of hidden units in layer 2. For the first row DHLPSCT size is 32, where 𝑁 = 2,

𝐾1 = 8, 𝐾2 = 2, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key).

𝑁 = 2, 𝐾1 = 8, 𝐾2 = 2 then 2 × 8 + 8 × 2 × 8 = 256 bits weight value act as a

session key. Among three learning rules Random Walk rules outperform over other two rules

(Hebbian and Anti-Hebbian) when network sixe is large (128 and more). In Random Walk

rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in

figure 7.24. So, network having size grater than equal to 128 Random Walk makes the

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount

of synchronization step.

3900

4100

4300

4500

4700

4900

5100

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 300

Table: 7.46

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CDHLPSCT

CDHLP Size N-K1-K2-L
Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

32 2-8-2-5 383,64 407,14 427,33

64 4-4-4-5 826,16 765,85 770,32

128 8-2-8-5 1687,28 1582,13 1531,42

256 16-1-16-5 3429,73 3248,29 3062,74

Figure 7.25: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CDHLPSCT

0

500

1000

1500

2000

2500

3000

3500

2-8-2-5 4-4-4-5 8-2-8-5 16-1-16-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 301

Figure 7.26: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in

CDHLPSCT

From the table 7.46 and graph 7.25 it has been observed that several CDHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 256 bit

session key with fixed weight range 𝐿 = 5. CDHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the

number of hidden units in layer 2. For the first row CDHLPSCT size is 32, where 𝑁 = 2,

𝐾1 = 8, 𝐾2 = 2, 𝐿 = 5. Total number of weights generated by the CDHLPSCT are

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total

 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8 numbers of bits present in a weight (length of a session key).

𝑁 = 2, 𝐾1 = 8, 𝐾2 = 2 then 2 × 8 + 8 × 2 × 8 = 256 bits weight value act as a

session key. Among three learning rules Random Walk rules outperform over other two rules

(Hebbian and Anti-Hebbian) when network sixe is large (128 and more). In Random Walk

rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in

figure 7.26. So, network having size greater than equal to 128 Random Walk makes the

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount

of synchronization step.

3900

4100

4300

4500

4700

4900

5100

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 302

Table: 7.47

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CTHLPSCT
CTHLP

Size
N-K1-K2-K3-L

Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

56 2-2-7-2-5 722,16 669,34 673,71

56 2-7-2-2-5 724,03 670,19 674,25

128 4-2-4-4-5 1686,93 1581,87 1519,18

128 4-4-2-4-5 1687,32 1582,17 1521,38

Figure 7.27: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CTHLPSCT

600

800

1000

1200

1400

1600

1800

2-2-7-2-5 2-7-2-2-5 4-2-4-4-5 4-4-2-4-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-K3-L

Average Synchronization time in
Hebbian (in cycle)

Average Synchronization time in
Anti-Hebbian (in cycle)

Average Synchronization time in
Random Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 303

Figure 7.28: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in

CTHLPSCT

From the table 7.47 and graph 7.27 it has been observed that several CTHLPSCT

configuration (in terms of different neurons in different layers) can be use to generate 128 bit

session key with fixed weight range 𝐿 = 5. CTHLP size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁

is number of input, 𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the number of hidden

unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first row CTHLPSCT

size is 40, where 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2, 𝐿 = 5. Total number of weights

generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value

represented in eight bit binary. So, total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of

bits present in a weight (length of a session key). If 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2 then

 2 × 2 + 2 × 7 + 7 × 2 × 8 = 256 bits weight value act as a session key. Among three

learning rules Random Walk rules outperform over other two rules (Hebbian and

Anti-Hebbian). Random Walk rules perform better where network size is big. In Random

Walk rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in

figure 7.28. So, network having size grater than equal to 128 Random Walk makes the

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount

of synchronization time.

4000

4200

4400

4600

4800

5000

5200

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 304

Table: 7.48

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in

CGTHLPSCT

CTHLP

Size

N-K1-K2-

K3-L

No. of CTHLP

Participated at

Group Session

Key Generation

Average Synchronization steps in cycle

Hebbian

Anti-Hebbian

Random walk

56 2-2-7-2-5 4 1378,23 1277,42 1285,76

128 4-2-4-4-5 4 3219,48 3018,97 2899,33

56 2-7-2-2-5 8 4895,01 4531,01 4558,45

128 4-4-2-4-5 8 11407,61 10696,71 10285,72

Figure 7.29: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable

neurons in CGTHLPSCT

0

2000

4000

6000

8000

10000

12000

2-2-7-2-5 (4
CGTHLP)

4-2-4-4-5 (4
CGTHLP)

2-7-2-2-5 (8
CGTHLP)

4-4-2-4-5 (8
CGTHLP)

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 s
te

p
s

in
 c

y
c
le

N-K1-K2-K3-L

Average Syn. Steps in Hebbian

Average Syn. Steps in Anti-
Hebbian

Average Syn. Steps in Random
walk

 Arindam Sarkar, University of Kalyani, India 305

Figure 7.30: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in

CGTHLPSCT

From the table 7.48 and graph 7.29 it has been observed that a group of CTHLPSCT can

synchronize together. Each CTHLPSCT configuration (in terms of different neurons in

different layers) can be use to generate 256 bit session key with fixed weight range 𝐿 = 5 in

the group. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this

technique use complete binary tree based framework for synchronizing 𝑛 parties. Whereas

other proposed and existing techniques needs
𝑛(𝑛−1)

2
 number of synchronizations for

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of

synchronizations. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁 is number of input,

𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the number of hidden unit in layer 2 and 𝐾3

is the number of hidden unit in layer 3. For the first row CTHLPSCT size is 40, where

𝑁 = 2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2, 𝐿 = 5. Total number of weights generated by the

CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value represented in eight

bit binary. So, total (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of bits present in a

weight (length of a session key). If 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2 then 2 × 2 + 2 ×

3900

4100

4300

4500

4700

4900

5100

5300

-5 -4 -3 -2 -1 0 1 2 3 4 5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

Weight range

Weight Distribution

 Arindam Sarkar, University of Kalyani, India 306

7 + 7 × 2 × 8 = 256 bits weight value act as a session key. Among three learning rules

Random Walk rules outperform over other two rules (Hebbian and Anti-Hebbian). Random

Walk rules perform better where network size is big. In Random Walk rule weights are

getting well distributed than Hebbian and Anti-Hebbian rules shown in figure 7.30. So,

network having size greater than equal to 128 Random Walk makes the synchronization

faster but for this range Hebbian and Anti-Hebbian takes much more amount of

synchronization time.

7.3.6 Average synchronization time (in cycle) for generating variable session key

Figure 7.31: Average synchronization time (in cycle) for generating variable session key in

KSOMSCT

From figure 7.31 it has been observed that if the length of the session key get increased then

the increased of average synchronization steps is linear.

0

1000

2000

3000

4000

5000

128 bit Key Length 192 bit Key Length 256 bit Key LengthA
ve

ra
g

e
 n

u
m

b
e
r

o
f

c
y
c
le

s

Key length

Average Number of cycles

 Arindam Sarkar, University of Kalyani, India 307

Figure 7.32: Average synchronization time (in cycle) for generating variable session key in

DHLPSCT

From figure 7.32 it has been observed that if the length of the session key get increased then

the increased of average synchronization steps is linear. This technique needs less amount of

iterations than KSOMSCT.

Figure 7.33: Average synchronization time (in cycle) for generating variable session key in

CDHLPSCT

From figure 7.33 it has been observed that if the length of the session key get increased then

the increased of average synchronization steps is linear. This technique needs less amount of

iterations than DHLPSCT and KSOMSCT.

0

1000

2000

3000

4000

5000

128 bit Key Length 192 bit Key Length 256 bit Key Length

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

c
y
c
le

s

Key length

Average Number of cycles

0

1000

2000

3000

4000

5000

128 bit Key Length 192 bit Key Length 256 bit Key Length

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

c
y
c
le

s

Key length

Average Number of cycles

 Arindam Sarkar, University of Kalyani, India 308

Figure 7.34: Average synchronization time (in cycle) for generating variable session key in

CTHLPSCT

From figure 7.34 it has been observed that if the length of the session key get increased then

the increased of average synchronization steps is linear. This technique needs less amount of

iterations than CDHLPSCT, DHLPSCT and KSOMSCT.

Figure 7.35: Average synchronization time (in cycle) for generating variable session key in

CGTHLPSCT

From figure 7.35 it has been observed that if the length of the session key get increased then

the increased of average synchronization steps is linear. This technique needs less amount of

iterations than CTHLPSCT, CDHLPSCT, DHLPSCT and KSOMSCT.

0

1000

2000

3000

4000

128 bit Key Length 192 bit Key Length 256 bit Key LengthA
ve

ra
g

e
 n

u
m

b
e
r

o
f

c
y
c
le

s

Key length

Average Number of cycles

0

2000

4000

6000

8000

128 bit Key Length 192 bit Key Length 256 bit Key Length

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

c
y
c
le

s

Key length

Average Number of Cycles

 Arindam Sarkar, University of Kalyani, India 309

7.3.7 Average Synchronization Time (in cycle) for Generating 128 bit Session

Key using variable Weight range (𝐿 = 5 to 50) with fixed Neurons

(2 − 4 − 2) in DHLPSCT, CDHLPSCT

Table: 7.49

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons

(2 − 4 − 2) in DHLPSCT

L value
Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

5 209,94 233,36 241,49

10 620,08 612,74 602,29

15 1267,79 1058,23 1025,02

20 2178,19 1635,79 1563,84

25 3307,86 2322,13 2214,71

30 4723,51 3145,35 2962,94

35 6198,27 4126,45 3872,46

40 7857,09 5278,97 4387,29

45 9619,53 6594,18 6017,38

50 12798,72 8073,05 7277,61

In the above table 7.49 and following figure 7.36 the graph shows a trend towards increase in

the synchronization steps as the range for weight values (𝐿) increases in all three learning

rules. For small L values Hebbian takes less synchronization steps than other two learning

rules in the range of 2 − 4 − 2 − 5 to 2 − 4 − 2 − 15 but as the L value increases Hebbian

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules

takes less time than the other two learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 −

2 − 30. Random Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital

findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the complexity of a

successful attack grows exponentially, but there is only a polynomial increase of the effort

needed to generate a key. So, increasing the 𝐿 value security of the system can be increased.

 Arindam Sarkar, University of Kalyani, India 310

 Figure 7.36: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50)

with fixed neurons (2 − 4 − 2) in DHLPSCT

200

2200

4200

6200

8200

10200

12200

S
y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

DHLP with different L value

Synchronization time in Hebbian
(in cycle)

Synchronization time in Anti-
Hebbian (in cycle)

Synchronization time in Random
Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 311

Table: 7.50

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons

(2 − 4 − 2) in CDHLPSCT

L value
Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

5 192,06 212,58 223,86

10 602,52 589,27 581,63

15 1251,17 1038,50 1006,91

20 2160,21 1612,13 1547,52

25 3288,74 2305,84 2193,02

30 4702,97 3121,68 2945,38

35 6179,08 4107,34 3834,17

40 7842,35 5257,17 4839,62

45 9601,01 6572,03 5996,09

50 12776,16 8051,38 7261,10

In the above table 7.51 and following figure 7.37 the graph shows a trend towards increase in

the synchronization steps as the range for weight values (𝐿) increases in all three learning

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning

rules in the range of 2 − 4 − 2 − 5 to 2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules

takes less time than the other two learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 −

2 − 30. Random Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital

findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the complexity of a

successful attack grows exponentially, but there is only a polynomial increase of the effort

needed to generate a key. So, increasing the L value security of the system can be increased.

 Arindam Sarkar, University of Kalyani, India 312

Figure 7.37: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with

fixed neurons (2 − 4 − 2) in CDHLPSCT

200

2200

4200

6200

8200

10200

12200

S
y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

CDHLP with different L value

Synchronization time in Hebbian
(in cycle)

Synchronization time in Anti-
Hebbian (in cycle)

Synchronization time in Random
Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 313

7.3.8 Average Synchronization Time (in cycle) for Generating 128 bit Session

Key using variable Weight range (𝐿 = 5 to 50) with fixed Neurons

(2 − 2 − 3 − 2) in CTHLPSCT, CGTHLPSCT

 Table: 7.51

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons

(2 − 2 − 3 − 2) in CTHLPSCT

L value
Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

5 287,81 309,23 320,52

10 664,59 682,25 675.47

15 1356,06 1136,92 1104,92

20 2271,32 1703,26 1648,13

25 3407,18 2411,15 2302,83

30 4836,97 3220,86 3074,10

35 6319,72 4192,53 3959,65

40 7987,63 5341,28 4978,72

45 9753,02 6662,07 6147,49

50 12980,17 8137,47 7423,34

In the above table 7.51 and following figure 7.38 the graph shows a trend towards increase in

the synchronization steps as the range for weight values (𝐿) increases in all three learning

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning

rules in the range of 2 − 2 − 3 − 2 − 5 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases

Hebbian rule takes more steps to synchronize than other two learning rules. Here, Anti-

Hebbian rules take fewer steps than the other two learning rules in the range of 2 − 2 − 3 −

2 − 8 − 20 to 2 − 2 − 3 − 2 − 30. Random Walk outperform from 3 − 2 − 2 − 8 − 35 and

beyond that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is

increased, the complexity of a successful attack grows exponentially, but there is only a

polynomial increase of the effort needed to generate a key. So, increasing the 𝐿 value

security of the system can be increased.

 Arindam Sarkar, University of Kalyani, India 314

Figure: 7.38 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with

fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT

200

2200

4200

6200

8200

10200

12200

S
y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

CTHLP with different L value

Synchronization time in Hebbian
(in cycle)

Synchronization time in Anti-
Hebbian (in cycle)

Synchronization time in Random
Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 315

 Table: 7.52

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons

(2 − 2 − 3 − 2) in CGTHLPSCT

L value

No. of CTHLP

Participated at Group

Session Key

Generation

Average Synchronization time in cycle

Hebbian Anti-Hebbian Random Walk

5 3 259,91 279,26 289,45

10 4 1325,61 1302,06 1289,12

15 5 1356,06 1136,92 1104,92

20 6 2271,32 1703,26 1648,13

25 7 3407,18 2411,15 2302,83

30 8 4836,97 3220,86 3074,10

35 9 6319,72 4192,53 3959,65

40 10 7987,63 5341,28 4978,72

45 11 9753,02 6662,07 6147,49

50 12 12980,17 8137,47 7423,34

In the above table 7.52 and following figure 7.39 the graph shows a trend towards increase in

the synchronization steps as the range for weight values (𝐿) increases in all three learning

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning

rules in the range of 2 − 2 − 3 − 2 − 5 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases

Hebbian rule takes more steps to synchronize than other two learning rules. Here, Anti-

Hebbian rules take fewer steps than the other two learning rules in the range of 2 − 2 − 3 −

2 − 8 − 20 to 2 − 2 − 3 − 2 − 30. Random Walk outperform from 3 − 2 − 2 − 8 − 35 and

beyond that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is

increased, the complexity of a successful attack grows exponentially, but there is only a

polynomial increase of the effort needed to generate a key. So, increasing the 𝐿 value

security of the system can be increased.

 Arindam Sarkar, University of Kalyani, India 316

Figure 7.39: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with

fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT

200

2200

4200

6200

8200

10200

12200

S
y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

CGTHLP with different L value

Synchronization time in Hebbian
(in cycle)

Synchronization time in Anti-
Hebbian (in cycle)

Synchronization time in Random
Walk (in cycle)

 Arindam Sarkar, University of Kalyani, India 317

7.3.9 Average Synchronization Time (in cycle) for Generating 128 bit Session

Key using Hebbian learning rule with variable Weight range (𝐿 = 5 to 50)

and fixed Neurons (2 − 4 − 2) in DHLPSCT, CDHLPSCT

Table: 7.53

Generation of 128 bit session key using Hebbian learning rule with variable weight range

(𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT

L value
Synchronization time in cycle in 1000 runs

Min Max Average

5 176,28 243,06 209,94

10 541,07 699,09 620,08

15 1217,16 1318,42 1267,79

20 2137,08 2219,30 2178,19

25 3229,98 3385,74 3307,86

30 4706,05 4740,97 4723,51

35 6176,41 6220,13 6198,27

40 7814,52 7899,66 7857,09

45 9605,48 9633,58 9619,53

50 12793,26 12804,18 12798,72

Table 7.53 and figure 7.40 shows the minimum, maximum and average synchronization steps

of 2 − 4 − 2 DHLPSCT using different weight range and Hebbian learning rule. From the

graph presented in the figure 7.40 it has been conclude that for the higher value of 𝐿

synchronization steps also get increased.

 Arindam Sarkar, University of Kalyani, India 318

Figure 7.40: Generation of 128 bit session key using Hebbian learning rule with variable weight

range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT

100

2100

4100

6100

8100

10100

12100

S
y
n

vh
ro

n
iz

a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

L value

Min Synchronization time in cycle
(1000 runs)

Max Synchronization time in cycle
(1000 runs)

Average Synchronization time in
cycle (1000 runs)

 Arindam Sarkar, University of Kalyani, India 319

Table: 7.54

Generation of 128 bit session key using Hebbian learning rule with variable weight range

(𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT

L value
Synchronization time in cycle in 1000 runs

Min Max Average

5 158,04 226,08 192,06

10 527,81 677,23 602,52

15 1193,20 1309,14 1251,17

20 2112,05 2208,37 2160,21

25 3208,87 3368,61 3288,74

30 4675,98 4729,96 4702,97

35 6153,09 6205,07 6179,08

40 7791,17 7893,53 7842,35

45 9584,01 9618,01 9601,01

50 12776,03 12785,29 12776,16

Table 7.54 and figure 7.41 shows the minimum, maximum and average synchronization steps

of 2 − 4 − 2 CDHLPSCT using different weight range and Hebbian learning rule. From the

graph presented in the figure 7.41 it has been conclude that for the higher value of 𝐿

synchronization steps also get increased.

 Arindam Sarkar, University of Kalyani, India 320

Figure 7.41: Generation of 128 bit session key using Hebbian learning rule with variable

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT

100

2100

4100

6100

8100

10100

12100

S
y
n

vh
ro

n
iz

a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

L value

Min Synchronization time in cycle
(1000 runs)

Max Synchronization time in cycle
(1000 runs)

Average Synchronization time in
cycle (1000 runs)

 Arindam Sarkar, University of Kalyani, India 321

7.3.10 Average Synchronization Time (in cycle) for Generating 128 bit Session

Key using Hebbian learning rule with variable Weight range

(𝐿 = 5 to 50) and fixed Neurons (2 − 2 − 3 − 2) in CTHLPSCT,

CGTHLPSCT

Table: 7.55

Generation of 128 bit session key using Hebbian learning rule with variable weight range

(𝐿 = 5 to 50) and fixed neurons 2 − 2 − 3 − 2 in CTHLPSCT
CTHLP Size

(128 bit Key)

Synchronization time in cycle (1000 runs)

Min Max Average

2-2-3-2-5 262,87 312,75 287,81

2-2-3-2-10 512,26 816,92 664,59

2-2-3-2-15 1163,03 1549,09 1356,06

2-2-3-2-20 2065,45 2477,19 2271,32

2-2-3-2-25 3147,07 3647,29 3407,18

2-2-3-2-30 4465,98 5207,96 4836,97

2-2-3-2-35 6041,86 6597,58 6319,72

2-2-3-2-40 7655,71 8319,55 7987,63

2-2-3-2-45 8479,03 11027,01 9753,02

2-2-3-2-50 11792,11 14168,23 12980,17

Table 7.55 and figure 7.42 shows the minimum, maximum and average synchronization steps

of 2 − 2 − 3 − 2 CTHLPSCT using different weight range and Hebbian learning rule. From

the graph presented in the figure 7.42 it has been conclude that for the higher value of 𝐿

synchronization steps also get increased.

 Arindam Sarkar, University of Kalyani, India 322

Figure 7.42: Generation of 128 bit session key using Hebbian learning rule with variable weight

range (𝐿 = 5 to 50) and fixed neurons 2 − 2 − 3 − 2 in CTHLPSCT

100

2100

4100

6100

8100

10100

12100

S
y
n

vh
ro

n
iz

a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

L value

Min Synchronization time in cycle
(1000 runs)

Max Synchronization time in cycle
(1000 runs)

Average Synchronization time in
cycle (1000 runs)

 Arindam Sarkar, University of Kalyani, India 323

Table: 7.56

Generation of 128 bit session key using Hebbian learning rule with variable weight range

(𝐿 = 5 to 50) , variable group size with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT

L value

No. of CTHLP Participated

at Group Session Key

Generation

Synchronization time in cycle

(1000 runs)

Min Max Average

5 4 237,39 282,44 259,91

10 5 1542,05 2450,76 1996,40

15 6 4877,53 6496,60 5856,76

20 7 11250,63 13493,40 12372,02

25 8 21276,66 19925,99 20601,32

30 9 36298,64 42329,31 39313,98

35 10 57654,00 62956,91 60305,45

40 11 84212,81 91515,05 87863,95

45 12 105959,98 137801,35 121880,60

50 13 165435,76 198771,20 182103,50

Table 7.56 and figure 7.43 shows the minimum, maximum and average synchronization steps

of 2 − 2 − 3 − 2 CGTHLPSCT using different weight range and Hebbian learning rule.

From the graph presented in the figure 7.43 it has been conclude that for the higher value of

𝐿 synchronization steps also get increased.

 Arindam Sarkar, University of Kalyani, India 324

Figure 7.43: Generation of 128 bit session key using Hebbian learning rule with variable weight

range (𝐿 = 5 to 50) and variable group size with fixed neurons (2 − 2 − 3 − 2) in

CGTHLPSCT

100 50100 100100 150100

2-2-3-2-5

2-2-3-2-10

2-2-3-2-15

2-2-3-2-20

2-2-3-2-25

2-2-3-2-30

2-2-3-2-35

2-2-3-2-40

2-2-3-2-45

2-2-3-2-50

Synvhronization time in cycle

L
 v

a
lu

e

Average Synchronization time in
cycle (1000 runs)

Max Synchronization time in cycle
(1000 runs)

Min Synchronization time in cycle
(1000 runs)

 Arindam Sarkar, University of Kalyani, India 325

7.3.11 Comparison of memory heap used in both proposed and existing

techniques for generation of 128 bit session key

Figure 7.44: Comparisons of memory used to generate 128 bit session key

From the figure 7.44 it has been shown that in group synchronization phase CGTHLPSCT

consumes less amount of memory compared to other techniques because it needs only

𝑛𝑙𝑜𝑔(𝑛 − 1) amount of synchronizations compared to 𝑛(𝑛 − 1) synchronizations steps in

others.

0 2 4 6 8 10 12

CGTHLPSCT(Group Size =4)

CTHLPSCT (Group Size =4)

CDHLPSCT (Group Size =4)

DHLPSCT (Group Size =4)

KSOMSCT (Group Size =4)

TPM (Group Size =4)

PPM

Heap size in MB

T
e
c
h

n
iq

u
e

Memory Heap used (MB)

 Arindam Sarkar, University of Kalyani, India 326

7.3.12 Comparison of relative time spent in GC to generate 128 bit session key

using both proposed and existing techniques

Figure 7.45: Comparisons of relative time spent in GC to generate 128 bit session key

From the figure 7.45 it has been shown that increasing order sequence of relative time spent

in GC in group synchronization phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT,

DHLPSCT, KSOMSCT, TPM and PPM.

2.4 2.45 2.5 2.55 2.6 2.65

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

TPM

PPM

Relative time

T
e
c
h

n
iq

u
e

Relative Time Spent in GC (%)

 Arindam Sarkar, University of Kalyani, India 327

7.3.13 Comparisons of thread required to generate 128 bit session key using both

proposed and existing techniques

Figure 7.46: Comparisons of number of threads required generating 128 bit session key

From the figure 7.46 it has been shown that increasing order sequence of number of thread

required in group synchronization phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT,

DHLPSCT, KSOMSCT, TPM and PPM.

0 5 10 15 20 25

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

TPM

PPM

Number of threads

T
e
c
h

n
iq

u
e
s

No. of Threads

 Arindam Sarkar, University of Kalyani, India 328

7.3.14 Analysis of dimension of KSOMSCT vs. average number of iterations

Figure 7.47: KSOMSCT dimension vs. average number of iterations

Figure 7.47 shows the average number of iterations to be needed for generating

128, 192 and 256 bit session key in 2𝐷 and 3𝐷 KSOMSCT. The above figure depicts that

3𝐷 KSOMSCT takes more iterations to train the map in compared to 2𝐷 KSOMSCT. So, the

energy consumption is more in 3𝐷 KSOMSCT than 2𝐷. For this reason 2𝐷 KSOMSCT is

the best alternative in wireless communication where resource constrains (in terms of energy,

memory) is a vital issues for generation of session key.

0

1000

2000

3000

4000

5000

6000

128 bit Key Length 192 bit Key Length 256 bit Key Length

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

it
e
ra

ti
o

n

Key length

Average Number of
Iterations in 2D KSOFM

Average Number of
Iterations in 3D KSOFM

 Arindam Sarkar, University of Kalyani, India 329

7.3.15 Analysis of number of generations vs. average fitness value in Simulated

Annealing guided fittest keystream generation in DHLPSCT

Table 7.57 and figure 7.48 depicts the average fitness values of different number of

generations. Table shows four set of entries where 40, 60 80, 100 numbers of generations are

considered. It is observed from the table that increasing the number of generation also

increased the fitness values in average.

Table: 7.57

Average of fitness values in SA
Number of Generations Average of fitness values

40 35.1486

60 35.8713

80 36.2581

100 36.7316

Figure 7.48: Number of generation vs. average of fitness values in SA guided fittest keystream

generation technique

34

34.5

35

35.5

36

36.5

37

No. of
Generations

40

No. of
Generations

60

No. of
Generations

80

No. of
Generations

100

A
ve

ra
g

e
 f

it
n

e
ss

 v
a
lu

e

Number of generation

Average of fitness values

 Arindam Sarkar, University of Kalyani, India 330

Table 7.58 tabulated the best fitness values of fifty different runs of SA. The average fitness

value of fifty runs is 34.89712. The proposed SA based encryption/decryption technique has

been run fifty different times on a identical source file and each time the fitness value

calculated by the SA based proposed technique is tabulated to show that each time a

completely random SA based keystream is generated with different fitness value. These

generated fitness values confirms the generation of random SA based keystream in each

different run of the technique.

Table: 7.58

List of best fitness values in 50 different runs of SA

Iteration Fitness Value

1 31.4377

2 37.5723

3 34.4687

4 36.3263

5 31.8379

6 39.5962

7 41.6294

8 32.6138

9 28.5972

10 32.2379

.

.

.

.

.

.

40 37.6817

41 36.8629

42 38.6328

43 36.1684

44 38.8292

45 32.9716

46 35.4094

47 29.6962

48 42.7356

49 34.8038

50 37.5792

 Arindam Sarkar, University of Kalyani, India 331

7.3.16 Analysis of number of generations vs. average fitness value in Genetic

Algorithm guided fittest keystream generation in CDHLPSCT

Table 7.59 and figure 7.49 represents the average fitness values of different number of

generations. Table shows four set of entries where 40, 60 80, 100 numbers of generations are

considered. It is observed from the table that increasing the number of generation also

increased the fitness values in average.

Table: 7.59

Average of fitness values in GA
Number of Generations Average of fitness values

40 35.8350

60 36.2346

80 36.9535

100 38.5472

Figure 7.49: Number of generation vs. average of fitness values in GA guided fittest keystream

generation technique

34.5

35

35.5

36

36.5

37

37.5

38

38.5

No. of
Generations

40

No. of
Generations

60

No. of
Generations

80

No. of
Generations

100

A
ve

ra
g

e
 f

it
n

e
ss

 v
a
lu

e

Number of generation

Average of fitness values

 Arindam Sarkar, University of Kalyani, India 332

Table 7.60 tabulated the best fitness values of fifty different runs of GA. The average fitness

value of fifty runs is 37.116146. The proposed GA based encryption/decryption technique

has been run fifty different times on a identical source file and each time the fitness value

calculated by the GA based proposed technique is tabulated to show that each time a

completely random GA based keystream is generated with different fitness value. These

generated fitness values confirms the generation of random GA based keystream in each

different run of the technique.

Table: 7.60

List of best fitness values in 50 different runs of GA
Iteration Fitness Value

1 34.1069

2 39.4297

3 32.9237

4 38.3263

5 29.5436

6 44.0764

7 43.3057

8 32.1490

9 31.4927

10 37.5192

.

.

.

.

.

.

40 30.2973

41 43.0401

42 27.5291

43 49.6033

44 25.0072

45 39.3781

46 32.6194

47 40.2051

48 42.6397

49 37.1893

50 50.2985

 Arindam Sarkar, University of Kalyani, India 333

7.3.17 Comparisons of length of plain text vs. Keystream storage between

proposed and existing techniques

Table 7.61 and figure 7.50 shows the comparisons of length of plan text vs. keystream

storage between proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT and existing AES, RC4, Vernam Cipher.

Table: 7.61

Comparisons of length of plan text vs. keystream storage between proposed and existing

techniques

In KSOMSCT based technique fractal triangle guided encryption/decryption technique has

been used. In this technique encryption/decryption key gets form from the KSOMSCT

synchronized session key and if the length of the plain text get increased then four bits

circular left shift operation get perform on the synchronized session key to generate the

encryption/decryption key for the rest of the portion. So, this technique does not need to store

encryption/decryption key.

In DHLPSCT and CDHLPSCT Simulated Annealing and Genetic Algorithm based

encryption/decryption technique has been performed respectively. These two techniques

generates fittest 128 bit key for encryption/decryption purpose and if the length of the plain

text is greater than 128 then triangle edge and square edge based key expansion technique

respectively is used to generate the key for the exceed portion. So, these two technique stores

only 128 bit fittest keystream which is at part AES but less compare to RC4 and Vernam

Cipher.

Length of

Plaintext

Key

Storage

(KSOM-

SCT)

Key

Storage

(DHLP-

SCT)

Key

Storage

(CDHLP-

SCT)

Key

Storage

(CTHLP-

SCT)

Key

Storage

(CGTHLP-

SCT)

Key

Storage

(AES)

Key

Storage

(RC4)

Key

Storage

(Vernam

Cipher)

64 - 128 128 15 15 128 52 60

120 - 128 128 17 15 128 106 120

500 - 128 128 20 15 128 437 500

1000 - 128 128 22 20 128 913 1000

 Arindam Sarkar, University of Kalyani, India 334

Figure 7.50: Comparisons of length of plain text vs. keystream storage between proposed and

existing techniques

0

100

200

300

400

500

600

700

800

900

1000

64 120 500 1000

K
e
y
 S

to
ra

g
e

Length of Plain text

Vernam Cipher

RC4

AES

DHLPSCT

CDHLPSCT

CTHLPSCT

CGTHLPSCT

 Arindam Sarkar, University of Kalyani, India 335

In CTHLPSCT, Ant Colony Intelligence (ACI) based technique is used for

encryption/decryption and in this technique the number of keys to be stored is less when

compared to AES, RC4, Vernam Cipher. In ACI keystream is generated based on the

distribution of characters in the plain text. A Comparatively smaller number of keys has to be

stored since the keys for the remaining portion of the text are generated using the keys in the

keystream. In ACI only fifteen bits keystream need to be store for plain text size

64, 120, 500 and for the plain text of length 1000 only 20 bits keystream need to be store. In

ACI if number of bits in a plain text is grater than the keystream then the values of the

keystream are added to a predetermined value to generate the keys for the characters in the

plain text which is at a position grater than the length of the key stream. In Ant Colony

Intelligence based technique, to generate the keystream for encryption/decryption based on

the distribution of characters in the plain text has several shortcomings. The drawback of this

method was that the pheromone deposition of the ant agent evaporates when it moves to the

next trail and therefore the ant agent needs to update the pheromone deposition representing

the keystream. The energy value denoting its attractiveness towards the solution is found by

counting the number of characters in the keystream occurring in the plain text. Let suppose

the minimum length of the keystream used by the ant agent is nine during each trail and the

solution is obtained in three trails. Then the minimum number of total comparisons of the

characters in the keystream with the plain text is 27, to obtain a keystream of length nine.

Due to the evaporation of the pheromone deposition in each trail the length of the keystream

may increase or decrease.

In the CGTHLPSCT, Particle Swarm Intelligence (PSI) based technique is used for

encryption/decryption. In the PSI, though the keys used for encryption looks like a series of

random numbers, the keys cannot be cracked because a random number generator is not used

to generate the keys. Also the keystream generation depends on the character distribution in

the plain text overcoming the drawback of Vernam Cipher. In addition to this the PSI method

reduces the number of keys to be stored and distributed compared to that of AES, RC4,

Vernam Cipher when the length of the plain text is large. The characters used for comparison

is stored and each time a velocity is given to the particle only the new characters denoting the

velocity are compared with the plain text. Consider the case where the length of the

keystream is nine. Since the characters in the keystream do not change until the solution is

 Arindam Sarkar, University of Kalyani, India 336

obtained it is not necessary that the particle keystream length should be nine initially. Let

suppose a particle keystream of length five is taken and a velocity whose keystream length is

two given to the particle during the first move of the particle. During the second move of the

particle a velocity keystream of length two is given and the solution is obtained. Then the

minimum number of total comparisons of the characters in the keystream with the plain text

is nine to obtain a keystream of length nine. Each time a velocity is given to the particle the

characters in the keystream are unique. This would ensure that unlike ACI method the same

characters are not compared with the plain text for their occurrence. So, PSI based

encryption/decryption is better than ACI based technique.

In RC4 the number of keys to be stored is less when compared to Vernam Cipher. This

stream cipher method is vulnerable to analytic attacks. 1 out of every 256 keys is a weak

key. These keys can be identified by cryptanalysis which can find whether the generated

bytes are strongly correlated with the bytes of the key.

In Vernam Cipher the keys are randomly generated using random stream generator. The

drawback is that the number of keys to be stored and distributed should be equal to the length

of the plain text. Also the keys used to encrypt the plain text can be found if the random

number generator is cracked.

In the PSI and ACI, though the keys used for encryption looks like a series of random

numbers, the keys cannot be cracked because a random number generator is not used to

generate the keys. Also the keystream generation depends on the character distribution in the

plain text overcoming the drawback of Vernam Cipher. In addition to this the PSI and ACI

method reduces the number of keys to be stored and distributed compared to that of Vernam

Cipher when the length of the plain text is large.

 Arindam Sarkar, University of Kalyani, India 337

7.4 Encryption/Decryption Time

All test programs for the algorithms were equipped to display the total encryption and

decryption time. Time taken is the difference between processor clock ticks in starting and

end. Times are computed in milliseconds (ms). The lower the time taken, the better is for a

typical end user. Since the CPU clock ticks taken as time, there might be a slight variation in

actual time. This variation is insignificant and may be ignored.

Section 7.4.1 shows the result on .dll files, section 7.4.2 shows the result on .exe files, section

7.4.3 shows the result on .txt files, section 7.4.4 shows the result on .doc files.

7.4.1 .dll files

Twenty .dll files of different sizes varying from 3,216 bytes to 5,456,704 bytes have been

taken to generate the data containing various attributes for evaluation of the proposed

technique. Table 7.62 shows the encryption times (Enc.) and decryption times (Dec.) of .dll

type files obtained using proposed and existing TDES, AES. Enc. varies from 16 m.sec. to

345 m.sec. for CGTHLPSCT, from 15 m.sec. to 479 m.sec. for CTHLPSCT, from 16 m.sec.

to 429 m.sec. for CDHLPSCT, from 15 m.sec. to 430 m.sec. for DHLPSCT, from 15 m.sec.

to 403 m.sec. for KSOMSCT, from 12 m.sec. to 154 m.sec. for AES, from 14 m.sec. to

1180 m.sec. for TDES. Dec. varies from 15 m.sec. to 350 m.sec. for CGTHLPSCT, from 15

m.sec. to 538 m.sec. for CTHLPSCT, from 15 m.sec. to 460 m.sec. for CDHLPSCT, from

15 m.sec. to 427 m.sec. for DHLPSCT, from 15 m.sec. to 670 m.sec. for KSOMSCT, from

11 m.sec. to 269 m.sec. for AES, from 15 m.sec. to 1168 m.sec. for TDES.

Figure 7.51 and 7.52 shows the graphical representation of the relationship between the

encryption times against the .dll type source files and the decryption times against the .dll

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for

proposed and AES are near equal but much lower than that of TDES. In both the figures, the

gradients of the curves for TDES are higher for larger source files.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
3
8

T
ab

le
:

7
.6

2

C
o
m

p
ar

is
o
n
s

o
f

en
cr

y
p
ti

o
n
 a

n
d
 d

ec
ry

p
ti

o
n
 t

im
es

 f
o
r

.d
ll

 f
il

es

S
l.

n
o

.

S
o

u
rc

e
 f

il
e

n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

C
T

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

C
D

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

D
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

K
S

O
M

S
C

T

(
in

 m
.s

ec
.

)

A
E

S

(
in

 m
.s

ec
.

)

T
D

E
S

(
in

 m
.s

ec
.

)

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.

1

a0
1

.d
ll

3

,2
1

6

1
6

1
5

1
5

1
5

1
6

1
6

1
5

3
0

1
5

1
5

1
2

1
1

1
4

1
5

2

a0
2

.d
ll

6

,6
5

6

3
2

1
6

1
5

3
0

3
2

1
5

1
6

1
5

3
0

3
3

1
6

1
6

1
6

1
5

3

a0
3

.d
ll

1

2
,2

8
8

1
7

1
5

1
6

1
5

3
0

3
3

3
8

3
8

1
7

1
7

1
9

1
7

1
5

1
5

4

a0
4

.d
ll

2

4
,5

7
6

3
0

1
6

3
3

3
3

1
6

4
9

3
3

1
6

4
3

3
4

1
3

3
6

3
9

1
3

5

a0
5

.d
ll

5

8
,7

8
4

1
6

1
5

3
0

4
0

4
3

3
3

4
9

4
6

3
9

1
7

1
2

3
0

3
4

1
2

6

a0
6

.d
ll

8

5
,0

2
0

3
3

1
6

3
0

1
5

4
8

4
8

6
2

4
0

3
2

3
8

1
6

3
1

3
3

1
4

7

a0
7

.d
ll

1

6
9

,4
7

2

1
7

3
2

3
1

3
0

9
2

7
2

6
9

4
5

3
7

3
0

1
5

1
3

4
9

3
8

8

a0
8

.d
ll

3

5
9

,9
3

6

3
3

3
0

7
9

6
2

6
8

7
0

6
1

6
4

4
2

6
5

1
8

3
4

7
1

7
6

9

a0
9

.d
ll

5

9
3

,9
2

0

5
0

5
3

1
0

4

1
3

0

7
9

9
9

7
8

1
0

1

1
0

7

1
2

9

3
3

4
8

2
1

8

2
3

2

1
0

a1
0

.d
ll

9

0
9

,3
1

2

7
4

6
2

1
2

0

1
1

8

1
5

2

1
2

2

1
1

9

1
1

2

1
4

4

1
1

2

3
0

6
6

1
8

9

1
8

4

1
1

a1
1

.d
ll

1

,2
9

3
,8

2
4

8

1

9
7

1
7

7

1
5

8

1
5

6

1
4

7

1
7

3

1
7

3

1
8

2

1
5

7

7
4

1
2

0

2
6

0

4
5

9

1
2

a1
2

.d
ll

1

,9
2

5
,1

8
5

1

2
0

1
4

2

2
1

9

2
6

1

1
0

7

1
8

1

1
5

4

2
3

9

2
1

6

2
5

3

4
2

9
5

3
9

3

5
0

1

1
3

a1
3

.d
ll

2

,4
9

8
,5

6
0

1

7
8

1
6

4

2
0

3

2
9

2

2
1

6

2
1

9

1
5

2

2
3

6

2
0

1

2
9

4

7
9

1
2

9

5
3

2

5
1

8

1
4

a1
4

.d
ll

3

,4
8

5
,9

6
8

2

1
8

2
3

0

3
8

2

3
2

7

1
7

1

2
3

3

2
3

9

2
8

0

3
9

8

3
2

9

1
0

2

1
7

4

8
1

2

7
5

2

1
5

a1
5

.d
ll

3

,7
9

0
,3

3
6

2

4
0

2
5

1

3
6

0

4
2

0

3
6

6

2
6

2

4
3

0

3
2

2

3
4

9

4
2

8

1
0

7

1
7

8

8
9

7

9
2

3

1
6

a1
6

.d
ll

4

,2
5

3
,8

1
6

2

7
8

2
8

3

2
8

7

6
5

1

3
5

3

3
7

9

3
4

1

3
1

7

2
9

4

6
8

2

1
2

8

2
0

1

9
0

8

8
9

0

1
7

a1
7

.d
ll

4

,5
7

5
,2

3
2

2

8
2

2
8

8

3
7

9

4
3

9

4
2

9

3
1

2

4
0

5

2
3

3

3
9

2

4
2

4

1
4

9

2
6

9

9
2

3

9
6

4

1
8

a1
8

.d
ll

4

,8
8

3
,4

5
6

3

1
9

3
2

2

3
7

3

4
0

3

4
0

8

3
2

3

3
2

2

4
2

7

3
2

7

4
0

5

1
4

3

2
1

2

9
6

4

1
0

5
1

1
9

a1
9

.d
ll

5

,0
5

4
,4

6
4

3

4
5

3
3

7

4
3

2

3
8

6

3
5

5

2
5

7

2
6

4

4
0

1

4
0

3

2
8

7

1
5

4

2
1

3

1
1

8
0

1
1

6
2

2
0

a2
0

.d
ll

5

,4
5

6
,7

0
4

3

3
7

3
5

0

4
7

9

5
3

8

3
5

8

4
6

0

2
8

0

3
4

3

3
7

6

6
7

0

1
5

2

2
5

6

1
1

7
2

1
1

6
8

 Arindam Sarkar, University of Kalyani, India 339

Figure 7.51: Graphical representation of encryption time against the varying size of input stream

of .dll files

Figure 7.52: Graphical representation of decryption time against the varying size of input stream

of .dll files

0

200

400

600

800

1000

1200

1400

3
,2

1
6

6
,6

5
6

1
2
,2

8
8

2
4
,5

7
6

5
8
,7

8
4

8
5
,0

2
0

1
6
9
,4

7
2

3
5
9
,9

3
6

5
9
3
,9

2
0

9
0
9
,3

1
2

1
,2

9
3
,8

2
4

1
,9

2
5
,1

8
5

2
,4

9
8
,5

6
0

3
,4

8
5
,9

6
8

3
,7

9
0
,3

3
6

4
,2

5
3
,8

1
6

4
,5

7
5
,2

3
2

4
,8

8
3
,4

5
6

5
,0

5
4
,4

6
4

5
,4

5
6
,7

0
4

E
n

cr
yp

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

0

200

400

600

800

1000

1200

1400

3
,2

1
6

6
,6

5
6

1
2
,2

8
8

2
4
,5

7
6

5
8
,7

8
4

8
5
,0

2
0

1
6
9
,4

7
2

3
5
9
,9

3
6

5
9
3
,9

2
0

9
0
9
,3

1
2

1
,2

9
3
,8

2
4

1
,9

2
5
,1

8
5

2
,4

9
8
,5

6
0

3
,4

8
5
,9

6
8

3
,7

9
0
,3

3
6

4
,2

5
3
,8

1
6

4
,5

7
5
,2

3
2

4
,8

8
3
,4

5
6

5
,0

5
4
,4

6
4

5
,4

5
6
,7

0
4

D
ec

ry
p

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

 Arindam Sarkar, University of Kalyani, India 340

7.4.2 .exe files

Twenty .exe files of different sizes varying from 1,063 bytes to 6,735,934 bytes have been

taken to generate the data containing various attributes for evaluation of the proposed

technique. Table 7.63 shows the encryption times (Enc.) and decryption times (Dec.) of .exe

type files obtained using proposed and existing TDES, AES. Enc. varies from 16 m.sec. to

458 m.sec. for CGTHLPSCT, from 16 m.sec. to 589 m.sec. for CTHLPSCT, from 15 m.sec.

to 562 m.sec. for CDHLPSCT, from 15 m.sec. to 402 m.sec. for DHLPSCT, from 15 m.sec.

to 674 m.sec. for KSOMSCT, from 12 m.sec. to 374 m.sec. for AES, from 12 m.sec. to

1379 m.sec. for TDES. Dec. varies from 15 m.sec. to 438 m.sec. for CGTHLPSCT, from 15

m.sec. to 395 m.sec. for CTHLPSCT, from 12 m.sec. to 646 m.sec. for CDHLPSCT, from

15 m.sec. to 433 m.sec. for DHLPSCT, from 15 m.sec. to 377 m.sec. for KSOMSCT, from

15 m.sec. to 399 m.sec. for AES, from 15 m.sec. to 1767 m.sec. for TDES.

Figure 7.53 and 7.54 shows the graphical representation of the relationship between the

encryption times against the .exe type source files and the decryption times against the .exe

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for

proposed and AES are near equal but much lower than that of TDES. In both the figures, the

gradients of the curves for TDES are higher for larger source files.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
4
1

T
ab

le
:

7
.6

3

C
o
m

p
ar

is
o
n
s

o
f

en
cr

y
p
ti

o
n
 a

n
d
 d

ec
ry

p
ti

o
n
 t

im
es

 f
o
r

.e
xe

 f
il

es

S
l.

n
o

.

S
o

u
rc

e
 f

il
e

n
a

m
e

S
o

u
rc

e
fi

le

si
ze

(
in

 b
y

te
s

)

C
G

T
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

C
T

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

C
D

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

D
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

K
S

O
M

S
C

T

(
in

 m
.s

ec
.

)

A
E

S

(
in

 m
.s

ec
.

)

T
D

E
S

(
in

 m
.s

ec
.

)

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.

1

a0
1

.
ex

e
1

,0
6

3

1
6

1
5

1
6

1
5

1
5

1
7

1
6

1
5

1
7

1
5

1
2

1
6

1
5

1
6

2

a0
2

.
ex

e
2

,5
1

8

1
6

1
5

1
6

1
5

1
5

1
2

3
9

3
5

1
9

1
5

1
6

1
6

1
5

1
5

3

a0
3

.
ex

e
8

,2
5

0

3
0

1
5

1
5

3
0

1
6

1
7

1
5

1
6

1
6

3
4

4
6

1
5

1
5

1
5

4

a0
4

.
ex

e
1

5
,9

3
7

1
5

1
6

3
0

1
5

1
5

1
6

1
6

1
7

1
5

1
7

4
8

1
5

1
6

1
5

5

a0
5

.
ex

e
2

2
,8

7
4

1
7

1
5

4
4

3
3

1
7

1
2

1
6

1
8

3
0

3
1

4
9

1
5

1
7

1
5

6

a0
6

.
ex

e
3

5
,1

0
6

1
6

3
9

3
9

4
9

3
9

3
7

3
8

3
7

3
7

4
8

4
9

1
6

1
7

1
5

7

a0
7

.
ex

e
5

2
,0

3
2

3
6

1
6

3
3

3
1

4
3

4
1

4
2

4
3

3
4

3
6

5
3

1
5

3
9

1
5

8

a0
8

.
ex

e
1

4
5

,3
8

7

3
3

3
3

6
7

4
8

4
2

3
0

3
1

6
9

3
2

4
3

6
2

4
4

4
2

3
2

9

a0
9

.
ex

e
2

4
8

,2
7

3

3
9

3
6

7
2

7
6

9
7

9
9

7
5

9
1

7
1

7
5

6
3

3
1

9
8

9
4

1
0

a1
0

.
ex

e
4

7
8

,3
2

1

4
2

3
1

7
9

6
0

1
1

1

9
2

7
5

7
3

6
6

6
1

1
6

4
6

9
4

1
0

0

1
1

a1
1

.
ex

e
7

3
8

,2
7

5

5
0

6
8

1
0

3

1
2

2

1
2

0

1
2

4

1
2

3

1
1

5

1
0

8

1
2

4

7
9

1
0

2

1
7

1

1
8

9

1
2

a1
2

.
ex

e
1

,5
9

4
,2

7
6

1

1
3

9
5

1
0

4

1
4

4

1
7

5

1
4

9

1
7

7

1
2

2

1
4

3

1
0

0

9
5

7
4

2
9

6

3
2

7

1
3

a1
3

.
ex

e
2

,2
7

3
,6

7
0

1

7
7

1
7

2

1
5

8

2
0

7

2
1

3

2
0

8

2
8

3

2
1

7

1
0

7

2
0

6

1
4

7

1
0

0

5
0

4

5
6

1

1
4

a1
4

.
ex

e
2

,9
8

5
,3

0
6

2

3
9

1
8

0

2
5

1

2
6

1

2
5

7

1
7

7

2
3

8

3
2

7

2
5

9

2
9

5

2
3

8

2
5

9

6
4

2

7
3

8

1
5

a1
5

.
ex

e
3

,4
1

2
,6

3
9

2

3
2

2
3

9

2
6

9

2
3

2

3
5

8

3
4

2

3
6

9

2
3

3

2
6

6

2
3

2

1
4

7

1
5

1

6
7

8

7
1

4

1
6

a1
6

.
ex

e
3

,8
7

2
,9

8
4

2

5
1

2
8

8

2
5

4

2
6

3

3
6

3

2
8

0

2
6

7

1
7

9

2
3

3

2
6

9

1
5

9

1
7

8

7
6

6

1
1

5
7

1
7

a1
7

.
ex

e
4

,0
3

8
,3

8
7

2

9
9

3
1

4

3
2

9

2
9

9

3
1

5

3
7

2

4
0

2

3
1

4

3
2

2

3
1

7

1
7

6

1
8

2

1
0

6
4

1
0

0
3

1
8

a1
8

.
ex

e
5

,2
8

4
,7

9
6

3

4
0

3
2

2

3
7

6

2
9

8

2
9

1

5
7

5

3
9

8

3
1

7

3
9

7

2
9

8

2
6

8

3
1

3

1
1

7
7

1
4

0
4

1
9

a1
9

.
ex

e
5

,6
2

8
,0

3
7

3

9
3

3
8

3

4
9

2

3
2

6

5
0

5

3
7

1

3
1

6

4
0

6

4
8

9

2
9

8

2
9

6

2
9

6

1
1

4
7

1
3

2
9

2
0

a2
0

.
ex

e
6

,7
3

5
,9

3
4

4

5
8

4
3

8

5
8

9

3
9

5

5
6

2

6
4

6

3
7

9

4
3

3

6
7

4

3
7

7

3
7

4

3
9

9

1
3

7
9

1
7

6
7

 Arindam Sarkar, University of Kalyani, India 342

Figure 7.53: Graphical representation of encryption time against the varying size of input

stream of .exe files

Figure 7.54: Graphical representation of decryption time against the varying size of input

stream of .exe files

0

200

400

600

800

1000

1200

1400

1600

1
,0

6
3

2
,5

1
8

8
,2

5
0

1
5
,9

3
7

2
2
,8

7
4

3
5
,1

0
6

5
2
,0

3
2

1
4
5
,3

8
7

2
4
8
,2

7
3

4
7
8
,3

2
1

7
3
8
,2

7
5

1
,5

9
4
,2

7
6

2
,2

7
3
,6

7
0

2
,9

8
5
,3

0
6

3
,4

1
2
,6

3
9

3
,8

7
2
,9

8
4

4
,0

3
8
,3

8
7

5
,2

8
4
,7

9
6

5
,6

2
8
,0

3
7

6
,7

3
5
,9

3
4

E
n

cr
yp

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
,0

6
3

2
,5

1
8

8
,2

5
0

1
5
,9

3
7

2
2
,8

7
4

3
5
,1

0
6

5
2
,0

3
2

1
4
5
,3

8
7

2
4
8
,2

7
3

4
7
8
,3

2
1

7
3
8
,2

7
5

1
,5

9
4
,2

7
6

2
,2

7
3
,6

7
0

2
,9

8
5
,3

0
6

3
,4

1
2
,6

3
9

3
,8

7
2
,9

8
4

4
,0

3
8
,3

8
7

5
,2

8
4
,7

9
6

5
,6

2
8
,0

3
7

6
,7

3
5
,9

3
4

D
ec

ry
p

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

 Arindam Sarkar, University of Kalyani, India 343

7.4.3 .txt files

Twenty .txt files of different sizes varying from 1,504 bytes to 6,702,831 bytes have been

taken to generate the data containing various attributes for evaluation of the proposed

technique. Table 7.64 shows the encryption times (Enc.) and decryption times (Dec.) of .txt

type files obtained using proposed and existing TDES, AES. Enc. varies from 32 m.sec. to

421 m.sec. for CGTHLPSCT, from 16 m.sec. to 539 m.sec. for CTHLPSCT, from 31 m.sec.

to 603 m.sec. for CDHLPSCT, from 15 m.sec. to 400 m.sec. for DHLPSCT, from 16 m.sec.

to 542 m.sec. for KSOMSCT, from 16 m.sec. to 215 m.sec. for AES, from 16 m.sec. to

1428 m.sec. for TDES. Dec. varies from 15 m.sec. to 421 m.sec. for CGTHLPSCT, from 16

m.sec. to 629 m.sec. for CTHLPSCT, from 16 m.sec. to 530 m.sec. for CDHLPSCT, from

15 m.sec. to 508 m.sec. for DHLPSCT, from 16 m.sec. to 685 m.sec. for KSOMSCT, from

15 m.sec. to 356 m.sec. for AES, from 15 m.sec. to 1817 m.sec. for TDES.

Figure 7.55 and 7.56 shows the graphical representation of the relationship between the

encryption times against the .txt type source files and the decryption times against the .txt

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for

proposed and AES are near equal but much lower than that of TDES. In both the figures, the

gradients of the curves for TDES are higher for larger source files.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
4
4

T
ab

le
:

7
.6

4

C
o
m

p
ar

is
o
n
s

o
f

en
cr

y
p
ti

o
n
 a

n
d
 d

ec
ry

p
ti

o
n
 t

im
es

 f
o
r

.t
xt

 f
il

es

S
l.

n
o

.

S
o

u
rc

e

fi
le

n
a

m
e

S
o

u
rc

e
fi

le

si
ze

(
in

 b
y

te
s

)

C
G

T
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

C
T

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

C
D

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

D
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

K
S

O
M

S
C

T
C

T

(
in

 m
.s

ec
.

)

A
E

S

(
in

 m
.s

ec
.

)

T
D

E
S

(
in

 m
.s

ec
.

)

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.

1

a0
1

.t
x
t

1
,5

0
4

3
2

1
6

1
6

1
6

3
2

1
6

1
5

1
5

1
6

3
3

1
6

1
5

1
6

1
6

2

a0
2

.t
x
t

7
,9

2
1

3
3

1
7

3
8

1
6

3
3

3
2

1
7

3
2

3
2

4
8

6
7

1
5

1
6

1
6

3

a0
3

.t
x
t

1
7

,0
3
6

3
3

3
0

1
7

3
0

3
2

3
0

1
6

3
3

1
6

1
6

3
2

1
5

1
7

1
5

4

a0
4

.t
x
t

4
4

.6
2
4

4
8

1
5

3
5

3
1

3
0

4
9

3
2

3
2

3
2

3
3

4
4

1
6

1
8

1
5

5

a0
5

.t
x
t

6
8

,8
2
3

3
0

3
0

3
7

3
2

3
1

4
2

3
2

4
6

3
3

1
7

3
4

1
6

1
6

1
1

6

6

a0
6

.t
x
t

1
6

1
,9

3
5

3
7

3
2

3
1

3
3

3
3

3
9

6
7

6
5

3
3

3
3

3
9

3
9

3
4

3
8

7

a0
7

.t
x
t

3
2

8
,0

1
7

4
4

3
3

4
4

4
6

7
9

6
8

6
8

6
8

4
6

4
4

4
0

3
8

1
2

7

1
4

5

8

a0
8

.t
x
t

5
8

7
,2

9
0

6
7

7
7

6
0

9
9

9
3

7
3

1
0

2

9
9

7
8

1
0

8

6
3

4
7

2
5

7

1
7

8

9

a0
9

.t
x
t

1
,0

4
9
,7

6
3

7

9

7
7

1
4

1

1
4

7

1
7

6

1
0

6

1
7

8

1
7

6

1
4

6

1
4

7

7
5

6
4

1
8

3

2
1

7

1
0

a1
0

.t
x
t

1
,4

1
8
,0

2
5

9

6

7
1

1
7

9

1
5

8

2
5

3

2
1

1

1
4

9

2
0

4

1
5

4

1
5

6

7
7

7
0

2
8

5

3
2

6

1
1

a1
1

.t
x
t

1
,6

8
1
,3

2
9

1

1
3

1
2

9

1
8

7

1
7

9

1
7

8

1
7

9

2
0

5

2
0

7

1
8

3

1
7

5

9
4

9
8

3
4

7

3
6

3

1
2

a1
2

.t
x
t

2
,0

5
9
,3

1
8

1

4
1

1
5

7

2
0

2

2
0

1

2
6

9

2
6

7

1
4

6

2
1

2

2
0

3

2
0

4

1
0

5

1
2

9

4
3

8

4
5

0

1
3

a1
3

.t
x
t

2
,6

1
8
,4

9
2

2

1
7

2
0

5

2
0

3

2
6

2

2
1

0

2
1

5

2
6

8

2
0

9

2
0

5

2
6

3

1
8

4

2
3

5

5
6

6

6
4

7

1
4

a1
4

.t
x
t

3
,1

5
4
,9

3
7

2

1
3

2
3

2

2
8

4

3
9

9

3
1

3

4
2

2

2
1

9

3
7

8

2
8

7

3
9

0

1
4

3

1
5

8

7
1

3

7
6

6

1
5

a1
5

.t
x
t

4
,0

7
3
,8

2
9

2

6
2

2
5

9

3
5

0

3
5

2

2
3

5

2
5

9

2
0

4

2
8

7

4
2

8

3
5

9

2
9

7

3
1

1

9
5

3

1
1

0
2

1
6

a1
6

.t
x
t

4
,9

3
6
,5

2
1

3

1
0

2
9

2

3
9

1

4
3

8

3
1

1

4
0

8

1
7

2

2
9

0

3
9

9

4
6

9

1
7

8

2
0

4

1
0

0
2

9
5

9

1
7

a1
7

.t
x
t

5
,1

2
5
,8

4
7

3

6
2

3
4

3

2
6

6

4
6

3

4
2

7

3
4

7

4
0

0

5
4

4

2
6

0

4
3

8

2
6

4

2
1

5

1
0

0
7

1
1

2
8

1
8

a1
8

.t
x
t

5
,5

9
3
,2

1
9

4

0
8

4
2

4

4
5

6

3
7

6

4
0

8

4
3

2

3
1

3

3
7

2

4
3

3

3
7

7

2
0

2

2
5

5

1
3

5
8

1
1

5
6

1
9

a1
9

.t
x
t

5
,8

9
8
,3

0
2

3

6
3

3
7

7

4
7

5

4
5

3

6
0

3

4
3

5

3
9

6

4
0

4

3
7

2

4
5

6

2
1

4

3
2

7

1
2

1
0

1
2

6
2

2
0

a2
0

.t
x
t

6
,7

0
2
,8

3
1

4

2
1

4
3

9

5
3

9

6
2

9

3
6

5

5
3

0

3
9

5

5
0

8

5
4

2

6
8

5

2
1

5

3
5

6

1
4

2
8

1
8

1
7

 Arindam Sarkar, University of Kalyani, India 345

Figure 7.55: Graphical representation of encryption time against the varying size of input stream

of .txt files

Figure 7.56: Graphical representation of decryption time against the varying size of input stream

of .txt files

0

200

400

600

800

1000

1200

1400

1600

1
,5

0
4

7
,9

2
1

1
7
,0

3
6

4
4
.6

2
4

6
8
,8

2
3

1
6
1
,9

3
5

3
2
8
,0

1
7

5
8
7
,2

9
0

1
,0

4
9
,7

6
3

1
,4

1
8
,0

2
5

1
,6

8
1
,3

2
9

2
,0

5
9
,3

1
8

2
,6

1
8
,4

9
2

3
,1

5
4
,9

3
7

4
,0

7
3
,8

2
9

4
,9

3
6
,5

2
1

5
,1

2
5
,8

4
7

5
,5

9
3
,2

1
9

5
,8

9
8
,3

0
2

6
,7

0
2
,8

3
1

E
n

cr
yp

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1
,5

0
4

7
,9

2
1

1
7
,0

3
6

4
4
.6

2
4

6
8
,8

2
3

1
6
1
,9

3
5

3
2
8
,0

1
7

5
8
7
,2

9
0

1
,0

4
9
,7

6
3

1
,4

1
8
,0

2
5

1
,6

8
1
,3

2
9

2
,0

5
9
,3

1
8

2
,6

1
8
,4

9
2

3
,1

5
4
,9

3
7

4
,0

7
3
,8

2
9

4
,9

3
6
,5

2
1

5
,1

2
5
,8

4
7

5
,5

9
3
,2

1
9

5
,8

9
8
,3

0
2

6
,7

0
2
,8

3
1

D
ec

ry
p

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

 Arindam Sarkar, University of Kalyani, India 346

7.4.4 .doc files

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have been

taken to generate the data containing various attributes for evaluation of the proposed

technique. Table 7.65 shows the encryption times (Enc.) and decryption times (Dec.) of .doc

type files obtained using proposed and existing TDES, AES. Enc. varies from 15 m.sec. to

331 m.sec. for CGTHLPSCT, from 17 m.sec. to 432 m.sec. for CTHLPSCT, from 32 m.sec.

to 519 m.sec. for CDHLPSCT, from 17 m.sec. to 430 m.sec. for DHLPSCT, from 13 m.sec.

to 549 m.sec. for KSOMSCT, from 12 m.sec. to 265 m.sec. for AES, from 15 m.sec. to

1043 m.sec. for TDES. Dec. varies from 15 m.sec. to 327 m.sec. for CGTHLPSCT, from 32

m.sec. to 466 m.sec. for CTHLPSCT, from 32 m.sec. to 536 m.sec. for CDHLPSCT, from

17 m.sec. to 483 m.sec. for DHLPSCT, from 11 m.sec. to 429 m.sec. for KSOMSCT, from

15 m.sec. to 218 m.sec. for AES, from 15 m.sec. to 1378 m.sec. for TDES.

Figure 7.57 and 7.58 shows the graphical representation of the relationship between the

encryption times against the .doc type source files and the decryption times against the .doc

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for

proposed and AES are near equal but much lower than that of TDES. In both the figures, the

gradients of the curves for TDES are higher for larger source files.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
4
7

T
ab

le
:

7
.6

5

C
o
m

p
ar

is
o
n
s

o
f

en
cr

y
p
ti

o
n
 a

n
d
 d

ec
ry

p
ti

o
n
 t

im
es

 f
o
r

.d
o
c

fi
le

s

S
l.

n
o

.

S
o

u
rc

e

fi
le

n
a

m
e

S
o

u
rc

e
 f

il
e

si
ze

(
in

 b
y

te
s

)

C
G

T
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

C
T

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

C
D

H
L

P
S

C
T

(
in

 m
.s

ec
.

)

D
H

L
P

S
C

T

(
in

 m
.s

ec
.

)

K
S

O
M

S
C

T

(
in

 m
.s

ec
.

)

A
E

S

(
in

 m
.s

ec
.

)

T
D

E
S

(
in

 m
.s

ec
.

)

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.
E

n
c.

D

ec
.

E
n

c.

D
ec

.

1

a0
1

.
d
o

c
2

1
,0

5
2

1
7

1
6

1
7

3
2

3
2

3
2

1
7

1
7

3
3

3
5

1
2

3
3

1
5

1
5

2

a0
2

.
d
o

c
3

3
,8

9
7

1
5

1
6

1
8

3
3

4
8

3
7

1
7

3
2

1
6

1
1

1
5

1
5

1
6

1
5

3

a0
3

.
d
o

c
4

5
,7

3
8

1
5

1
5

3
4

4
9

6
9

6
8

4
8

4
3

3
7

3
3

1
5

1
6

1
6

1
6

4

a0
4

.
d
o

c
7

5
,0

9
3

1
6

1
5

3
9

3
3

4
3

4
1

4
4

3
5

1
3

3
2

1
6

1
5

1
6

1
7

5

a0
5

.
d
o

c
1

0
6

,8
7

2

1
6

1
6

4
3

3
6

6
7

6
9

3
3

3
8

4
7

4
5

1
6

1
5

3
7

3
6

6

a0
6

.
d
o

c
3

2
7

.0
5

4

1
6

3
3

7
8

7
3

6
8

6
2

6
6

7
4

9
8

7
6

1
5

3
5

1
0

8

7
2

7

a0
7

.
d
o

c
5

8
2

,8
3

1

3
4

1
6

7
0

6
0

7
3

7
9

6
5

6
0

6
4

4
4

1
6

4
4

1
2

5

1
1

3

8

a0
8

.
d
o

c
7

2
9

,9
1

6

3
7

3
4

1
0

4

1
2

9

9
6

9
8

9
3

1
2

9

9
9

9
9

3
7

4
3

1
4

1

1
5

9

9

a0
9

.
d
o

c
1

,1
7

0
,2

5
1

7

8

3
2

1
2

6

1
5

8

1
0

8

1
1

7

1
2

8

1
5

8

1
1

3

1
2

6

3
4

6
8

2
3

5

3
2

8

1
0

a1
0

.
d
o

c
1

,7
4

9
,2

7
2

9

6

1
1

3

1
9

7

2
0

4

2
0

4

1
5

1
7

9

2
0

2

2
1

6

2
3

1

6
3

7
7

5
6

6

3
2

7

1
1

a1
1

.
d
o

c
2

,0
4

5
,8

0
5

1

3
9

1
3

0

2
6

8

2
3

1

2
9

3

2
3

7

2
6

1

2
3

4

2
1

7

2
1

2

6
9

9
5

4
0

7

4
2

3

1
2

a1
2

.
d
o

c
2

,3
7

2
,0

1
4

1

4
5

1
4

9

2
2

4

2
8

4

2
1

7

2
5

2

2
1

0

2
8

1

2
0

9

2
6

6

1
2

7

1
8

7

6
7

8

4
8

5

1
3

a1
3

.
d
o

c
2

,8
6

9
,2

7
5

1

8
7

2
2

8

2
5

8

2
1

6

2
3

9

1
8

3

2
1

3

2
0

0

2
1

3

3
4

4

7
5

1
2

9

6
7

5

5
6

2

1
4

a1
4

.
d
o

c
3

,1
6

1
,3

5
3

1

9
9

2
0

2

2
6

2

2
9

9

2
9

6

1
7

8

2
6

7

2
6

8

3
2

7

3
2

8

7
3

1
2

4

8
1

2

6
5

0

1
5

a1
5

.
d
o

c
3

,5
7

0
,2

9
5

2

1
3

2
1

3

3
2

7

2
9

8

3
4

3

3
7

3

3
1

3

2
9

6

4
0

4

3
2

3

1
7

4

1
4

8

7
6

1

8
6

4

1
6

a1
6

.
d
o

c
3

,8
3

4
,4

2
7

2

4
4

2
5

6

2
8

4

4
6

6

3
7

2

4
2

8

2
5

8

4
8

3

4
2

9

3
1

0

1
0

2

1
7

4

7
5

6

9
2

5

1
7

a1
7

.
d
o

c
4

,0
1

1
,9

8
6

2

6
6

2
4

8

3
4

2

3
5

3

3
1

8

2
8

7

3
5

9

3
5

9

2
6

8

3
6

5

1
2

9

1
7

9

1
0

0
4

8
4

7

1
8

a1
8

.
d
o

c
4

,5
6

2
,3

8
5

3

0
7

2
9

7

3
5

8

4
1

9

5
1

9

5
1

3

3
5

3

4
3

8

5
4

9

4
2

9

1
2

0

2
0

7

8
9

9

9
3

0

1
9

a1
9

.
d
o

c
4

,8
3

9
,1

0
2

3

2
3

3
2

7

3
8

9

3
7

7

4
5

3

5
3

6

3
5

9

3
7

5

3
5

3

3
2

3

1
4

2

2
0

4

1
0

3
7

1
3

7
8

2
0

a2
0

.d
o
c

5
,4

7
2
,2

9
8

3

3
1

3
1

5

4
3

2

4
4

6

4
8

3

4
8

9

4
3

0

4
2

4

3
2

9

3
4

5

2
6

5

2
1

8

1
0

4
3

1
1

3
7

 Arindam Sarkar, University of Kalyani, India 348

Figure 7.57: Graphical representation of encryption time against the varying size of input

stream of .doc files

Figure 7.58: Graphical representation of decryption time against the varying size of input

stream of .doc files

0

200

400

600

800

1000

1200

2
1
,0

5
2

3
3
,8

9
7

4
5
,7

3
8

7
5
,0

9
3

1
0
6
,8

7
2

3
2
7
.0

5
4

5
8
2
,8

3
1

7
2
9
,9

1
6

1
,1

7
0
,2

5
1

1
,7

4
9
,2

7
2

2
,0

4
5
,8

0
5

2
,3

7
2
,0

1
4

2
,8

6
9
,2

7
5

3
,1

6
1
,3

5
3

3
,5

7
0
,2

9
5

3
,8

3
4
,4

2
7

4
,0

1
1
,9

8
6

4
,5

6
2
,3

8
5

4
,8

3
9
,1

0
2

5
,4

7
2
,2

9
8

E
n

cr
yp

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

0

200

400

600

800

1000

1200

1400

1600

2
1
,0

5
2

3
3
,8

9
7

4
5
,7

3
8

7
5
,0

9
3

1
0
6
,8

7
2

3
2
7
.0

5
4

5
8
2
,8

3
1

7
2
9
,9

1
6

1
,1

7
0
,2

5
1

1
,7

4
9
,2

7
2

2
,0

4
5
,8

0
5

2
,3

7
2
,0

1
4

2
,8

6
9
,2

7
5

3
,1

6
1
,3

5
3

3
,5

7
0
,2

9
5

3
,8

3
4
,4

2
7

4
,0

1
1
,9

8
6

4
,5

6
2
,3

8
5

4
,8

3
9
,1

0
2

5
,4

7
2
,2

9
8

D
ec

ry
p

ti
o

n
 t

im
e

(i
n

m

.
se

c.
)

Input stream size (in bytes)

CGTHLPSCT

CTHLPSCT

CDHLPSCT

DHLPSCT

KSOMSCT

AES

TDES

 Arindam Sarkar, University of Kalyani, India 349

7.5 Avalanche, strict Avalanche and Bit Independence

Comparison between the source and encrypted byte has been made and changed of bits in

encrypted bytes has been observed for a single bit change in the original message byte for

the entire or a relative large number of bytes. The standard deviation from the expected

values calculated. Subtract the ratio of the calculated standard deviation with expected

value from 1.0 to get the avalanche and Strict Avalanche on a 0.0 – 1.0 scale.

A function 𝑓 ∶ {0,1}𝑛 {0,1}𝑛 satisfies the Bit Independence criteria if ∀ 𝑖, 𝑗,𝑘 ∈

{1,2,… ,𝑛}, with 𝑗 ≠ 𝑘, inverting input bit 𝑖 cause output bits 𝑗 and 𝑘 to change

independently. To measure the Bit Independence concept, the correlation coefficient

between the 𝑗th
 and 𝑘th

 components of the output difference string is needed, which is

called the Avalanche vector 𝐴𝑒ᵢ.

The higher and closer value to 1.0, the better Avalanche and Strict Avalanche is said to be

satisfied. In case of files contacting only text messages in plain format, there are no bytes

in the range of byte 128 to byte 255. That is the reason for which the values of Bit

Independence test for text files are very low. Section 7.5.1 deals with .dll files and section

7.5.2 deals with .exe files and results of .txt and .doc files are shown in section 7.5.3 and

7.5.4 respectively.

7.5.1 .dll files

Twenty .dll files of different sizes varying from 3216 bytes to 5,456,704 bytes have been

taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.67, 7.68, 7.69

and 7.70 shows the Avalanche, Strict Avalanche and Bit Independence test of .dll type

files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche

test value for each file are very close to the value 1 for all four techniques. Bit

Independence values vary from 0.4041078 to 0.8273190 for KSOMSCT, from

0.4329089 to 0.8439064 for DHLPSCT, from 0.4890656 to 0.8328754 for

CDHLPSCT, from 0.4739069 to 0.8729859 for CTHLPSCT, from 0.4389025 to

0.8673657 for CGTHLPSCT, from 0.4029032 to 0.8310369 for RSA, from

0.3859391 to 0.8187284 for TDES and from 0.4143399 to 0.8255937 for AES

respectively.

Figure 7.59 and 7.60 show the graphical representation of the comparison of results of

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average

 Arindam Sarkar, University of Kalyani, India 350

values) respectively of the .dll type source files for using proposed KSOMSCT,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES and AES

techniques. Average Avalanche values of proposed KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.9980800, 0.9926640, 0.9884830, 0.97320534, 0.97189467, 0.9999469,

0.9999142, and 0.9998914 respectively. Average Strict Avalanche values of proposed

KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA,

TDES, AES are 0.9967630, 0.9911350, 0.9865620, 0.9705220, 0.9687704,

0.9996540, 0.9996324, 0.9996890 respectively. Average Bit Independence values of

proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing

RSA, TDES, AES are 0.7262960, 0.7330390, 0.7419000, 0.7556560, 0.7569857,

0.7211989, 0.7147735, and 0.7190952 respectively. Proposed CGTHLPSCT has the

highest average Bit Independence value which indicates that this technique provides

better degree of security.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
1

T
ab

le
:

7
.6

6

C
o
m

p
ar

is
o
n
s

o
f

A
v
al

an
ch

e
o
f

.d
ll

 f
il

es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.d
ll

3

2
1

6

0
.9

2
4
0

3
8
5

0

.9
7

8
9

0
7
2

0

.9
8

8
3

7
6
5

0

.9
9

3
6

4
3

0

.9
9

4
2

8
9
4

0

.9
9

9
9

8
0
1

0

.9
9

9
1

9
1
6

0

.9
9

9
7

6
9
4

2

a0
2

.d
ll

6

,6
5

6

0
.9

7
9
2

8
4
6

0

.9
7

4
7

4
1
8

0

.9
8

4
1

9
6
2

0

.9
9

2
8

6
7

0

.9
9

9
7

1
2
0

0

.9
9

9
8

2
4
2

0

.9
9

9
9

7
2
3

0

.9
9

9
3

6
0
2

3

a0
3

.d
ll

1

2
,2

8
8

0
.9

7
0
1

2
3
9

0

.9
6

8
2

1
0
1

0

.9
8

5
7

2
0
8

0

.9
9

4
2

3
1
8

0

.9
9

6
7

3
0
6

0

.9
9

9
9

4
2
7

0

.9
9

9
6

6
2
8

0

.9
9

9
4

5
6
3

4

a0
4

.d
ll

2

4
,5

7
6

0
.9

7
7
3

8
9
4

0

.9
6

9
8

2
9
7

0

.9
8

6
2

7
1
4

0

.9
9

6
3

4
2
7

0

.9
9

8
2

5
4
3

0

.9
9

9
8

1
6
7

0

.9
9

9
8

7
7
6

0

.9
9

9
8

4
5
9

5

a0
5

.d
ll

5

8
,7

8
4

0
.9

7
8
1

4
0
6

0

.9
5

0
0

3
4
2

0

.9
9

6
3

0
9
2

0

.9
9

7
2

9
0
6

0

.9
9

8
5

2
3
8

0

.9
9

9
7

9
5
6

0

.9
9

9
9

5
8
1

0

.9
9

9
7

9
6
5

6

a0
6

.d
ll

8

5
,0

2
0

0
.9

7
7
1

0
5
3

0

.9
7

1
3

8
9
6

0

.9
8

8
1

3
1

0

.9
9

0
3

2
7
7

0

.9
9

9
3

0
7
4

0

.9
9

9
8

6
0
3

0

.9
9

9
9

6
3
0

0

.9
9

9
9

4
1
7

7

a0
7

.d
ll

1

6
9

,4
7

2

0
.9

6
8
2

6
1
8

0

.9
7

1
0

4
2
8

0

.9
9

6
2

1
8
8

0

.9
9

5
1

2
0
7

0

.9
9

7
4

2
9
3

0

.9
9

9
9

4
9
5

0

.9
9

9
9

5
1
1

0

.9
9

9
9

4
7
7

8

a0
8

.d
ll

3

5
9

,9
3

6

0
.9

6
6
3

9
5
2

0

.9
8

9
2

1
8
7

0

.9
9

5
6

5
4
3

0

.9
9

8
4

3
2
9

0

.9
9

9
8

7
6
2

0

.9
9

9
9

6
0
2

0

.9
9

9
9

2
6
3

0

.9
9

9
9

6
3
4

9

a0
9

.d
ll

5

9
3

,9
2

0

0
.9

6
8
1

5
2
0

0

.9
7

4
1

9
8
5

0

.9
8

7
2

7
5
4

0

.9
9

1
7

9
8
4

0

.9
9

6
9

8
2
7

0

.9
9

9
9

4
2
4

0

.9
9

9
9

6
4
2

0

.9
9

9
9

3
5
0

1
0

a1
0

.d
ll

9

0
9

,3
1

2

0
.9

7
0
2

8
9
4

0

.9
6

3
2

6
3
9

0

.9
9

6
6

4
3
9

0

.9
9

5
1

0
9
3

0

.9
9

7
1

0
9
3

0

.9
9

9
9

5
0
6

0

.9
9

9
9

8
9
6

0

.9
9

9
9

7
8
5

1
1

a1
1

.d
ll

1

,2
9

3
,8

2
4

0

.9
6

9
8

2
5
7

0

.9
7

3
3

8
7
6

0

.9
9

0
3

1
0
1

0

.9
9

5
3

4
3
3

0

.9
9

7
2

9
0
5

0

.9
9

9
9

7
2
0

0

.9
9

9
9

6
9
9

0

.9
9

9
9

3
4
9

1
2

a1
2

.d
ll

1

,9
2

5
,1

8
5

0

.9
6

8
2

6
5
3

0

.9
7

8
1

0
9
5

0

.9
8

9
4

7
6
3

0

.9
9

4
2

8
9
5

0

.9
9

6
9

3
7
4

0

.9
9

9
9

9
8
7

0

.9
9

9
9

8
8
6

0

.9
9

9
9

7
5
9

1
3

a1
3

.d
ll

2

,4
9

8
,5

6
0

0

.9
6

8
1

4
5
0

0

.9
8

2
3

7
3
2

0

.9
8

5
8

6
4
5

0

.9
9

0
3

4
2

0

.9
9

9
1

0
8
6

0

.9
9

9
9

9
8
8

0

.9
9

9
9

8
1
6

0

.9
9

9
9

8
7
5

1
4

a1
4

.d
ll

3

,4
8

5
,9

6
8

0

.9
7

1
0

5
3
6

0

.9
7

3
6

9
4
2

0

.9
8

8
1

1
9
3

0

.9
9

4
7

7
2
1

0

.9
9

9
3

2
1
7

0

.9
9

9
9

9
3
3

0

.9
9

9
9

7
4
9

0

.9
9

9
9

8
0
9

1
5

a1
5

.d
ll

3

,7
9

0
,3

3
6

0

.9
7

8
2

8
7
9

0

.9
8

0
9

4
2

0

.9
8

1
2

2
6
7

0

.9
9

7
5

6
4
9

0

.9
9

8
9

4
7
0

0

.9
9

9
9

9
1
9

0

.9
9

9
9

8
4
4

0

.9
9

9
9

9
4
9

1
6

a1
6

.d
ll

4

,2
5

3
,8

1
6

0

.9
6

8
1

1
2
9

0

.9
7

5
8

4
7
8

0

.9
8

7
0

5
8
3

0

.9
9

5
4

3
0
9

0

.9
9

7
4

4
0
5

0

.9
9

9
9

8
3
0

0

.9
9

9
9

8
0
2

0

.9
9

9
9

7
6
4

1
7

a1
7

.d
ll

4

,5
7

5
,2

3
2

0

.9
8

8
5

9
3
6

0

.9
6

8
7

9
8
7

0

.9
8

1
1

6
4
2

0

.9
8

7
5

5
3
8

0

.9
9

8
4

8
2
9

0

.9
9

9
9

9
8
5

0

.9
9

9
9

9
8
6

0

.9
9

9
9

9
0

1
8

a1
8

.d
ll

4

,8
8

3
,4

5
6

0

.9
7

8
0

1
6
6

0

.9
7

5
1

0
9
5

0

.9
8

8
3

5
4

0

.9
6

5
7

2
4
5

0

.9
9

6
7

6
6
9

0

.9
9

9
9

9
7
1

0

.9
9

9
9

8
3
8

0

.9
9

9
9

8
8
8

1
9

a1
9

.d
ll

5

,0
5

4
,4

6
4

0

.9
8

9
0

4
6
7

0

.9
7

5
5

9
8
3

0

.9
8

8
1

9
5
7

0

.9
9

5
1

2
8
6

0

.9
9

9
5

8
2
1

0

.9
9

9
9

8
7
0

0

.9
9

9
9

7
3
8

0

.9
9

9
9

9
8

2
0

a2
0

.d
ll

5

,4
5

6
,7

0
4

0

.9
7

9
3

6
5
4

0

.9
6

9
4

0
9
5

0

.9
8

5
0

8
7
6

0

.9
9

1
9

6
7
3

0

.9
9

9
4

9
9
0

0

.9
9

9
9

9
5
9

0

.9
9

9
9

9
1
8

0

.9
9

9
9

9
4
9

A
v
er

ag
e

0
.9

7
1
8

9
4
6

7

0
.9

7
3
2

0
5
3

4

0
.9

8
8
4

8
3

0

0
.9

9
2
6

6
4
0

0

.9
9

8
0

8
0
0

0

.9
9

9
9

4
6
9

0

.9
9

9
9

1
4
2

0

.9
9

9
8

9
1
4

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
2

T
ab

le
:

7
.6

7

C
o
m

p
ar

is
o
n
s

o
f

S
tr

ic
t

A
v
al

an
ch

e
o

f
.d

ll
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.d
ll

3

2
1

6

0
.9

2
2
6

4
9
8

0

.9
9

5
0

9
4
8

0

.9
8

6
7

3
9
3

0

.9
8

3
6

9
6
4

0

.9
9

3
8

7
4
9

0

.9
9

6
9

5
9
9

0

.9
9

7
1

6
4
2

0

.9
9

7
8

0
7
6

2

a0
2

.d
ll

6

,6
5

6

0
.9

7
7
4

3
6
7

0

.9
7

1
0

9
3
7

0

.9
8

1
7

3
8
2

0

.9
9

1
3

7
7
3

0

.9
9

8
4

6
5
3

0

.9
9

8
6

9
1
5

0

.9
9

9
0

3
6
5

0

.9
9

8
7

3
7
4

3

a0
3

.d
ll

1

2
,2

8
8

0
.9

6
9
3

6
2
1

0

.9
6

3
9

4
7
4

0

.9
8

4
7

8
3
0

0

.9
9

3
7

8
4
3

0

.9
9

5
3

7
2
8

0

.9
9

9
4

0
3
3

0

.9
9

9
2

3
1
3

0

.9
9

9
3

4
5
9

4

a0
4

.d
ll

2

4
,5

7
6

0
.9

7
2
4

0
8
7

0

.9
6

7
3

0
4
9

0

.9
8

4
7

6
2
8

0

.9
9

4
7

3
8
2

0

.9
9

7
2

8
7
4

0

.9
9

9
5

1
9
1

0

.9
9

9
4

0
8
7

0

.9
9

9
4

5
9
0

5

a0
5

.d
ll

5

8
,7

8
4

0
.9

7
1
3

4
7
6

0

.9
4

7
9

3
8
3

0

.9
9

3
7

8
2
1

0

.9
9

6
6

2
5
3

0

.9
9

6
3

8
7
9

0

.9
9

9
6

9
9
7

0

.9
9

9
5

1
2
5

0

.9
9

9
6

5
3
3

6

a0
6

.d
ll

8

5
,0

2
0

0
.9

7
0
7

6
3
5

0

.9
6

8
3

3
8
9

0

.9
8

7
3

0
9
4

0

.9
8

8
6

4
1
9

0

.9
9

8
3

8
7
5

0

.9
9

9
6

8
8
7

0

.9
9

9
6

3
3
6

0

.9
9

9
7

1
8
5

7

a0
7

.d
ll

1

6
9

,4
7

2

0
.9

5
9
3

2
1
0

0

.9
6

8
3

7
3
6

0

.9
9

5
8

7
9
2

0

.9
9

3
7

7
5
3

0

.9
9

6
2

8
7
4

0

.9
9

9
8

3
7
0

0

.9
9

9
7

4
5
7

0

.9
9

9
7

7
8
5

8

a0
8

.d
ll

3

5
9

,9
3

6

0
.9

6
5
3

2
8
0

0

.9
8

6
0

3
8
1

0

.9
9

3
7

8
4
6

0

.9
9

6
3

7
8
2

0

.9
9

8
3

6
3
4

0

.9
9

9
8

9
2
3

0

.9
9

9
7

5
7
2

0

.9
9

9
9

0
1
3

9

a0
9

.d
ll

5

9
3

,9
2

0

0
.9

6
3
9

5
1
8

0

.9
7

1
9

2
8
3

0

.9
8

4
6

3
8
2

0

.9
9

0
4

7
4
7

0

.9
9

5
3

7
5
3

0

.9
9

9
8

7
6
4

0

.9
9

9
8

5
6
5

0

.9
9

9
8

8
5
1

1
0

a1
0

.d
ll

9

0
9

,3
1

2

0
.9

6
9
3

8
7
9

0

.9
6

1
9

3
9
8

0

.9
9

5
0

9
3
7

0

.9
9

4
6

7
2
2

0

.9
9

5
7

3
6
4

0

.9
9

9
9

0
5
9

0

.9
9

9
9

3
1
0

0

.9
9

9
9

2
2
3

1
1

a1
1

.d
ll

1

,2
9

3
,8

2
4

0

,9
6

8
0

6
4
2

0

.9
7

0
2

8
6
5

0

.9
8

7
3

9
4
8

0

.9
9

4
7

8
8
3

0

.9
9

6
2

8
7
2

0

.9
9

9
9

2
7
0

0

.9
9

9
7

9
9
7

0

.9
9

9
9

0
8
0

1
2

a1
2

.d
ll

1

,9
2

5
,1

8
5

0

.9
6

3
4

9
6
5

0

.9
7

5
9

2
2
8

0

.9
8

8
4

7
3
6

0

.9
9

3
7

8
0
9

0

.9
9

5
9

3
4
8

0

.9
9

9
9

4
8
3

0

.9
9

9
9

3
3
8

0

.9
9

9
9

2
6
7

1
3

a1
3

.d
ll

2

,4
9

8
,5

6
0

0

.9
6

5
3

9
8
6

0

.9
7

9
0

4
5
6

0

.9
8

3
4

7
5
1

0

.9
8

9
3

7
2
1

0

.9
9

8
3

7
5
6

0

.9
9

9
9

6
0
7

0

.9
9

9
9

5
2
8

0

.9
9

9
9

5
1
9

1
4

a1
4

.d
ll

3

,4
8

5
,9

6
8

0

.9
6

9
2

1
0
1

0

.9
7

1
8

4
7
4

0

.9
8

5
9

0
3
8

0

.9
9

3
8

8
0
1

0

.9
9

8
4

7
5
5

0

.9
9

9
9

4
7
7

0

.9
9

9
9

2
0
9

0

.9
9

9
9

5
2
8

1
5

a1
5

.d
ll

3

,7
9

0
,3

3
6

0

.9
7

7
4

7
0
7

0

.9
6

0
9

5
4
3

0

.9
7

8
3

6
7
3

0

.9
9

6
8

3
8
2

0

.9
9

6
7

3
6
4

0

.9
9

9
9

7
6
7

0

.9
9

9
9

6
4
8

0

.9
9

9
9

8
3
2

1
6

a1
6

.d
ll

4

,2
5

3
,8

1
6

0

.9
5

9
7

4
8
0

0

.9
7

3
0

9
6
7

0

.9
8

5
0

9
3
9

0

.9
9

4
7

7
2
2

0

.9
9

6
7

8
4
6

0

.9
9

9
9

4
5
7

0

.9
9

9
9

5
5
1

0

.9
9

9
9

6
0
4

1
7

a1
7

.d
ll

4

,5
7

5
,2

3
2

0

.9
8

4
2

7
6
4

0

.9
6

5
0

9
4
9

0

.9
7

8
3

6
7
0

0

.9
8

6
7

0
0
3

0

.9
9

7
2

6
3
7

0

.9
9

9
9

7
5
0

0

.9
9

9
9

6
0
1

0

.9
9

9
9

6
5
5

1
8

a1
8

.d
ll

4

,8
8

3
,4

5
6

0

.9
7

8
4

3
2
8

0

.9
7

2
9

8
7
5

0

.9
8

6
3

5
3
7

0

.9
6

4
2

2
9
1

0

.9
9

5
1

0
9
3

0

.9
9

9
9

7
0
2

0

.9
9

9
9

6
4
8

0

.9
9

9
9

6
6
2

1
9

a1
9

.d
ll

5

,0
5

4
,4

6
4

0

.9
8

9
9

4
3
1

0

.9
7

3
2

9
8
6

0

.9
8

6
9

8
7
4

0

.9
9

4
7

7
8
3

0

.9
9

7
3

6
4
5

0

.9
9

9
9

8
0
6

0

.9
9

9
9

4
7
7

0

.9
9

9
9

8
0
5

2
0

a2
0

.d
ll

5

,4
5

6
,7

0
4

0

.9
7

7
4

1
0
8

0

.9
6

5
9

0
7
3

0

.9
8

2
3

0
9
1

0

.9
8

9
3

8
7
4

0

.9
9

7
3

8
5
6

0

.9
9

9
9

7
4
2

0

.9
9

9
9

7
1
6

0

.9
9

9
9

7
5
0

A
v
er

ag
e

0
.9

6
8
7

7
0
4

0

.9
7

0
5

2
2
0

0

.9
8

6
5

6
2
0

0

.9
9

1
1

3
5
0

0

.9
9

6
7

6
3
0

0

.9
9

9
6

5
4
0

0

.9
9

9
6

3
2
4

0

.9
9

9
6

8
9
0

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
3

T
ab

le
:

7
.6

8

C
o
m

p
ar

is
o
n
s

o
f

B
it

 I
n
d
ep

en
d
en

ce
 o

f
.d

ll
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.d
ll

3

2
1

6

0
.6

1
8
2

7
4
8

0

.5
8

9
3

8
4
7

0

.5
9

5
6

3
9
9

0

.5
6

4
3

9
0
8

0

.5
4

8
1

2
6
2

0

.5
4

2
0

8
5
2

0

.5
4

9
6

1
5
3

0

.5
5

4
5

9
3
1

2

a0
2

.d
ll

6

,6
5

6

0
.7

3
0
2

8
5
7

0

.7
6

3
0

9
6
3

0

.7
1

2
8

9
6
7

0

.7
6

3
4

9
2
1

0

.7
2

8
6

3
1
8

0

.7
4

9
7

1
7
0

0

.7
4

5
7

8
7
6

0

.7
4

3
4

4
6
1

3

a0
3

.d
ll

1

2
,2

8
8

0
.8

1
7
4

3
9
6

0

.8
6

4
9

0
6
3

0

.8
3

2
8

7
5
4

0

.7
7

6
0

5
4
8

0

.8
1

3
9

0
4
5

0

.8
0

3
9

7
4
2

0

.8
0

4
2

2
5
9

0

.8
0

5
5

4
2
6

4

a0
4

.d
ll

2

4
,5

7
6

0
.4

3
8
9

0
2
5

0

.4
7

3
9

0
6
9

0

.7
8

6
3

4
2
9

0

.4
3

2
9

0
8
9

0

.4
0

4
1

0
7
8

0

.4
0

2
9

0
3
2

0

.3
8

5
9

3
9
1

0

.4
1

4
3

3
9
9

5

a0
5

.d
ll

5

8
,7

8
4

0
.8

3
0
2

4
3
9

0

.8
7

2
9

8
5
9

0

.4
8

9
0

6
5
6

0

.8
0

4
5

6
7
3

0

.7
7

9
1

3
3
5

0

.7
8

3
8

6
3
4

0

.7
7

5
2

8
0
0

0

.7
7

9
2

7
5
9

6

a0
6

.d
ll

8

5
,0

2
0

0
.8

6
7
3

6
5
7

0

.8
1

8
9

4
3
4

0

.6
9

2
7

4
5
2

0

.8
1

4
0

9
3
0

0

.8
2

7
3

1
9
0

0

.8
1

6
8

3
7
4

0

.8
0

5
5

2
8
5

0

.8
1

4
6

8
2
4

7

a0
7

.d
ll

1

6
9

,4
7

2

0
.7

8
0
2

5
6
9

0

.7
9

5
0

9
5
3

0

.7
9

3
9

8
7
4

0

.7
5

2
9

1
7
7

0

.7
2

9
8

6
3
1

0

.7
3

8
0

5
9
6

0

.7
3

1
3

3
0
4

0

.7
3

1
4

1
6
7

8

a0
8

.d
ll

3

5
9

,9
3

6

0
.8

0
9
3

7
5
3

0

.8
3

8
2

9
8
7

0

.7
9

3
8

7
5
6

0

.7
6

4
2

0
9
8

0

.7
5

9
4

5
0
4

0

.7
4

0
9

4
5
8

0

.7
4

8
5

5
8
5

0

.7
4

8
1

3
0
8

9

a0
9

.d
ll

5

9
3

,9
2

0

0
.7

9
4
3

1
3
7

0

.7
9

2
7

6
4
2

0

.7
9

3
7

6
5
4

0

.7
7

2
6

3
4
7

0

.7
4

2
9

8
2
0

0

.7
6

3
1

6
7
9

0

.7
6

4
6

5
1
7

0

.7
6

3
9

6
7
1

1
0

a1
0

.d
ll

9

0
9

,3
1

2

0
.7

3
4
1

1
2
4

0

.7
9

5
8

3
4

0

.7
6

3
9

8
2
2

0

.7
3

9
9

8
3
4

0

.7
1

7
4

2
8
9

0

.7
1

6
5

1
1
9

0

.7
1

2
4

0
5
7

0

.7
1

6
1

2
9
3

1
1

a1
1

.d
ll

1

,2
9

3
,8

2
4

0

.7
2

7
3

9
0
2

0

.7
8

4
9

5
4
3

0

.7
7

3
9

8
2
7

0

.6
9

6
7

5
4
0

0

.7
1

1
7

4
3
9

0

.6
7

6
4

7
7
2

0

.6
2

1
4

0
3
3

0

.6
4

2
0

6
8
5

1
2

a1
2

.d
ll

1

,9
2

5
,1

8
5

0

.6
4

6
1

9
4
7

0

.6
9

0
4

8
7
8

0

.7
8

2
7

4
6
4

0

.6
1

2
9

6
5
0

0

.6
5

2
9

0
4
5

0

.6
3

2
5

1
6
9

0

.5
8

8
4

4
6
7

0

.6
0

5
8

6
5
1

1
3

a1
3

.d
ll

2

,4
9

8
,5

6
0

0

.7
9

5
1

0
0
3

0

.8
1

7
5

7
8
5

0

.6
9

4
8

7
3
8

0

.7
8

4
0

4
3
5

0

.7
6

3
9

5
3
1

0

.7
7

1
0

9
7
8

0

.7
6

7
6

9
2
1

0

.7
6

9
5

5
7
7

1
4

a1
4

.d
ll

3

,4
8

5
,9

6
8

0

.8
0

3
5

6
7
2

0

.8
3

0
9

7
6
5

0

.7
9

6
3

9
7
4

0

.7
5

1
9

4
2
4

0

.7
3

1
9

0
5
7

0

.7
3

0
6

2
7
9

0

.7
4

5
6

3
6
0

0

.7
4

8
4

4
9
4

1
5

a1
5

.d
ll

3

,7
9

0
,3

3
6

0

.7
8

8
3

7
5
3

0

.7
0

4
9

8
4
8

0

.7
8

3
7

8
7
1

0

.7
7

4
0

9
4
6

0

.7
7

3
2

9
8
5

0

.7
6

5
2

3
7
5

0

.7
6

2
8

8
6
8

0

.7
6

2
3

6
4
4

1
6

a1
6

.d
ll

4

,2
5

3
,8

1
6

0

.7
8

2
5

5
3
9

0

.7
8

6
3

9
7
6

0

.7
2

5
3

8
4
5

0

.7
6

4
0

9
3
4

0

.7
7

2
6

0
4
5

0

.7
5

5
7

3
3
9

0

.7
5

3
9

7
8
5

0

.7
5

4
6

7
3
1

1
7

a1
7

.d
ll

4

,5
7

5
,2

3
2

0

.8
1

4
2

0
0
4

0

.7
1

8
6

5
4
8

0

.7
7

3
6

4
5
9

0

.7
9

9
5

6
3
0

0

.7
9

0
4

5
8
3

0

.7
7

2
2

7
4
2

0

.7
7

1
3

9
1
3

0

.7
7

0
1

9
8
4

1
8

a1
8

.d
ll

4

,8
8

3
,4

5
6

0

.7
9

5
3

9
1
2

0

.6
8

6
4

7
8
4

0

.7
7

2
8

7
4
5

0

.7
7

3
2

1
1
9

0

.7
5

2
9

6
3
1

0

.7
5

0
3

4
4
4

0

.7
5

5
0

7
6
2

0

.7
4

9
8

2
0
8

1
9

a1
9

.d
ll

5

,0
5

4
,4

6
4

0

.8
5

7
1

0
6
2

0

.7
3

4
2

9
3
2

0

.7
5

2
7

6
9
9

0

.8
4

3
9

0
6
4

0

.8
1

6
4

0
4
7

0

.8
3

1
0

3
6
9

0

.8
1

8
7

2
8
4

0

.8
2

5
6

9
3
7

2
0

a2
0

.d
ll

5

,4
5

6
,7

0
4

0

.7
0

9
2

6
4
5

0

.7
5

3
0

9
2
9

0

.7
2

6
3

5
5

0

.6
7

4
9

4
3
8

0

.7
0

8
7

2
7
9

0

.6
8

0
5

6
6
4

0

.6
8

6
9

0
8
1

0

.6
8

1
6

8
8
3

A
v
er

ag
e

0
.7

5
6
9

8
5
7

0

.7
5

5
6

5
6

0

0
.7

4
1
9

0
0
0

0

.7
3

3
0

3
9
0

0

.7
2

6
2

9
6
0

0

.7
2

1
1

9
8
9

0

.7
1

4
7

7
3
5

0

.7
1

9
0

9
5
2

 Arindam Sarkar, University of Kalyani, India 354

Table: 7.69

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of

.dll files

Figure 7.59: Pictorial representation of the average values of Avalanche and Strict

Avalanche of .dll type bit stream

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
a
lu

e
s

Techniques

Avalanche

Strict Avalanche

Techniques
Average values of

Avalanche Strict Avalanche Bit Independence

CGTHLPSCT 0.97189467 0.9687704 0.7569857

CTHLPSCT 0.97320534 0.9705220 0.7556560

CDHLPSCT 0.9884830 0.9865620 0.7419000

DHLPSCT 0.9926640 0.9911350 0.7330390

KSOMSCT 0.9980800 0.9967630 0.7262960

RSA 0.9999469 0.9996540 0.7211989

TDES 0.9999142 0.9996324 0.7147735

AES 0.9998914 0.9996890 0.7190952

 Arindam Sarkar, University of Kalyani, India 355

Figure 7.60: Pictorial representation of the average values of Bit Independence of .dll type

bit stream

7.5.2 .exe files

Twenty .exe files of different sizes varying from 1,063 bytes to 6,735,934 bytes have

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.71, 7.72,

7.73 and 7.74 shows the Avalanche, Strict Avalanche and Bit Independence test of .exe

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche

test value for each file are very close to the value 1 for all four techniques. Bit

Independence values vary from 0.0639870 to 0.9942170 for KSOMSCT, from

0.0464390 to 0.9956390 for DHLPSCT, from 0.0729941 to 0.9328874 for

CDHLPSCT, from 0.5189645 to 0.9874045 for CTHLPSCT, from 0.3442897 to

0.9999287 for CGTHLPSCT, from 0.0214885 to 0.9846006 for RSA, from

0.2405326 to 0.9844929 for TDES and from 0.1741851 to 0.9845419 for AES

respectively.

Figure 7.61 and 7.62 show the graphical representation of the comparison of results of

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average

values) respectively of the .exe type source files for using proposed KSOMSCT,

0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76
V

a
lu

e
s

Techniques

Bit Independence

 Arindam Sarkar, University of Kalyani, India 356

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES and AES

techniques. Average Avalanche values of proposed KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.9988140, 0.9850070, 0.9773440, 0.9659739, 0.9651026, 0.9997574, 0.9992658,

and 0.9996030 respectively. Average Strict Avalanche values of proposed KSOMSCT,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.9978890, 0.9839850, 0.9747220, 0.9616580, 0.9623935, 0.9992551, 0.9983186

and 0.9987340 respectively. Average Bit Independence values of proposed KSOMSCT,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.7057480, 0.7098500, 0.7248790, 0.7568470, 0.7709169, 0.7330390, 0.7042388,

and 0.7002145 respectively. Proposed CGTHLPSCT has the highest average Bit

Independence value which indicates that this technique provides better degree of security.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
7

T
ab

le
:

7
.7

0

C
o
m

p
ar

is
o
n
s

o
f

A
v
al

an
ch

e
o
f

.e
xe

 f
il

es

S
er

ia
l

n
o

.

S
o

u
rc

e

fi
le

n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
ex

e
1

,0
6

3

0
.9

1
3
0

8
7
4

0

.9
5

7
2

6
5
1

0

.9
6

7
2

9
0
8

0

.9
7

5
2

0
9
8

0

.9
9

9
3

8
7
4

0

.9
9

7
5

4
6
5

0

.9
9

0
3

1
1
6

0

.9
9

5
5

0
3
2

2

a0
2

.
ex

e
2

,5
1

8

0
.9

1
2
9

0
4
1

0

.9
6

7
3

8
9
2

0

.9
7

8
3

7
6
4

0

.9
8

4
2

9
0
2

0

.9
9

9
2

9
5
7

0

.9
9

8
7

8
6
4

0

.9
9

6
7

1
8
1

0

.9
9

8
8

7
5
4

3

a0
3

.
ex

e
8

,2
5

0

0
.8

7
6
2

7
8
3

0

.9
5

2
1

8
9
4

0

.9
6

4
3

9
8
7

0

.9
7

1
4

7
6
5

0

.9
9

6
4

2
9
2

0

.9
9

9
5

7
5
2

0

.9
9

9
0

8
6
0

0

.9
9

8
6

5
1
4

4

a0
4

.
ex

e
1

5
,9

3
7

0
.9

5
1
8

3
4
6

0

.9
5

9
8

3
7
6

0

.9
7

1
6

4
5
3

0

.9
8

0
4

5
8
7

0

.9
9

9
4

2
7
8

0

.9
9

9
6

3
3
1

0

.9
9

9
8

2
6
6

0

.9
9

9
5

8
2
7

5

a0
5

.
ex

e
2

2
,8

7
4

0
.9

8
5
1

8
7
3

0

.9
5

6
2

2
1
8

0

.9
6

8
3

7
6
4

0

.9
7

6
3

5
4
4

0

.9
9

9
2

8
6
4

0

.9
9

9
9

3
0
8

0

.9
9

9
8

3
9
2

0

.9
9

9
8

4
5
5

6

a0
6

.
ex

e
3

5
,1

0
6

0
.9

5
6
1

9
0
4

0

.9
6

5
3

0
9
4

0

.9
8

2
6

5
4
8

0

.9
9

0
7

8
5
6

0

.9
9

9
3

4
7
6

0

.9
9

9
9

1
2
6

0

.9
9

9
8

9
9
9

0

.9
9

9
9

3
2
6

7

a0
7

.
ex

e
5

2
,0

3
2

0
.9

8
1
5

7
8
2

0

.9
7

1
6

2
2
9

0

.9
8

6
3

6
5
4

0

.9
9

2
3

8
4
2

0

.9
9

8
4

2
8
9

0

.9
9

9
9

9
9
9

0

.9
9

9
9

1
4
4

0

.9
9

9
9

6
0
8

8

a0
8

.
ex

e
1

4
5

,3
8

7

0
.9

9
9
4

0
9
3

0

.9
5

4
2

9
8
7

0

.9
6

8
9

3
7
6

0

.9
7

1
7

8
4
5

0

.9
9

9
1

4
2
7

0

.9
9

9
9

6
3
8

0

.9
9

9
9

0
9
1

0

.9
9

9
8

9
0
2

9

a0
9

.
ex

e
2

4
8

,2
7

3

0
.9

8
2
5

7
8
2

0

.9
7

5
1

0
9
5

0

.9
8

9
2

8
7
3

0

.9
9

4
3

7
6
7

0

.9
9

8
4

9
6
3

0

.9
9

9
8

9
7
1

0

.9
9

9
9

7
4
0

0

.9
9

9
9

6
8
9

1
0

a1
0

.
ex

e
4

7
8

,3
2

1

0
.9

5
7
0

2
7
4

0

.9
6

7
2

6
3
3

0

.9
7

8
3

2
1
5

0

.9
8

9
7

8
4
2

0

.9
9

8
4

5
2
4

0

.9
9

9
9

9
5
7

0

.9
9

9
9

5
7
1

0

.9
9

9
9

8
7
4

1
1

a1
1

.
ex

e
7

3
8

,2
7

5

0
.9

6
6
2

9
0
7

0

.9
6

5
2

9
8
2

0

.9
7

2
4

6
5
7

0

.9
8

1
3

6
4
9

0

.9
9

8
2

6
3
1

0

.9
9

9
9

9
9
9

0

.9
9

9
9

6
7
5

0

.9
9

9
9

7
2
6

1
2

a1
2

.
ex

e
1

,5
9

4
,2

7
6

0

.9
3

9
4

8
7
2

0

.9
8

7
2

0
6
4

0

.9
9

5
2

9
8
2

0

.9
9

7
3

8
6
4

0

.9
9

8
3

2
7
4

0

.9
9

9
9

6
5
1

0

.9
9

9
9

9
6
8

0

.9
9

9
9

8
5
6

1
3

a1
3

.
ex

e
2

,2
7

3
,6

7
0

0

.9
7

4
2

9
0
3

0

.9
5

9
8

7
3
6

0

.9
6

8
3

7
6
4

0

.9
7

5
2

7
4
5

0

.9
9

7
2

7
5
4

0

.9
9

9
9

9
2
0

0

.9
9

9
9

7
1
3

0

.9
9

9
9

8
0
5

1
4

a1
4

.
ex

e
2

,9
8

5
,3

0
6

0

.9
7

7
3

7
6
3

0

.9
5

3
1

8
0
8

0

.9
6

4
2

1
9
4

0

.9
7

1
2

7
3
6

0

.9
9

9
3

6
7
2

0

.9
9

9
9

9
3
9

0

.9
9

9
9

8
9
0

0

.9
9

9
9

8
0
9

1
5

a1
5

.
ex

e
3

,4
1

2
,6

3
9

0

.9
8

6
9

0
3
6

0

.9
7

2
1

7
6
6

0

.9
8

5
4

3
8
8

0

.9
9

1
3

5
4
9

0

.9
9

9
3

8
7
8

0

.9
9

9
9

9
0
5

0

.9
9

9
9

9
3
3

0

.9
9

9
9

9
1
4

1
6

a1
6

.
ex

e
3

,8
7

2
,9

8
4

0

.9
8

8
3

7
8
5

0

.9
7

8
3

2
2
9

0

.9
8

7
3

0
9
5

0

.9
9

3
2

6
3
5

0

.9
9

9
1

8
7
2

0

.9
9

9
9

9
3
2

0

.9
9

9
9

9
2
5

0

.9
9

9
9

9
6
2

1
7

a1
7

.
ex

e
4

,0
3

8
,3

8
7

0

.9
9

4
1

8
7
4

0

.9
7

6
3

8
6
1

0

.9
8

3
6

7
2
4

0

.9
9

1
4

9
0
7

0

.9
9

9
3

7
8
3

0

.9
9

9
9

8
8
0

0

.9
9

9
9

9
9
8

0

.9
9

9
9

9
8
0

1
8

a1
8

.
ex

e
5

,2
8

4
,7

9
6

0

.9
8

8
5

6
7
3

0

.9
6

7
3

5
2
5

0

.9
7

8
3

7
5
5

0

.9
8

5
2

8
4
5

0

.9
9

9
1

5
2
6

0

.9
9

9
9

9
0
2

0

.9
9

9
9

9
7
5

0

.9
9

9
9

9
4
9

1
9

a1
9

.
ex

e
5

,6
2

8
,0

3
7

0

.9
8

5
1

8
7
3

0

.9
5

8
9

6
5
4

0

.9
6

9
3

8
7
4

0

.9
9

3
1

0
9
4

0

.9
9

8
5

2
1
2

0

.9
9

9
9

9
8
4

0

.9
9

9
9

9
2
5

0

.9
9

9
9

9
3
5

2
0

a2
0

.
ex

e
6

,7
3

5
,9

3
4

0

.9
8

5
3

0
9
5

0

.9
7

4
2

0
9
8

0

.9
8

6
6

7
3
3

0

.9
9

3
4

2
8
7

0

.9
9

9
7

3
4
1

0

.9
9

9
9

9
6
6

0

.9
9

9
9

8
0
4

0

.9
9

9
9

8
5
1

A
v
er

ag
e

0
.9

6
5
1

0
2
6

0

.9
6

5
9

7
3
9

0

.9
7

7
3

4
4
0

0

.9
8

5
0

0
7
0

0

.9
9

8
8

1
4
0

0

.9
9

9
7

5
7
4

0

.9
9

9
2

6
5
8

0

.9
9

9
6

0
3
8

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
8

T
ab

le
:

7
.7

1

C
o
m

p
ar

is
o
n
s

o
f

S
tr

ic
t

A
v
al

an
ch

e
o

f
.e

xe
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
ex

e
1

,0
6

3

0
.8

9
8
0

4
8
7

0

.9
5

3
8

7
4
8

0

.9
6

3
0

9
8
2

0

.9
7

3
9

8
4
9

0

.9
9

8
6

7
3
2

0

.9
9

3
3

1
1
0

6

0
.9

7
9
2

7
0
2

0

.9
8

3
8

4
7
8

2

a0
2

.
ex

e
2

,5
1

8

0
.9

0
6
4

9
0
3

0

.9
6

2
6

4
8
4

0

.9
7

5
3

8
8
3

0

.9
8

3
7

6
5
5

0

.9
9

8
3

7
6
4

0

.9
9

7
6

2
0
6

0

.9
9

4
6

5
1
4

0

.9
9

6
2

4
2
9

3

a0
3

.
ex

e
8

,2
5

0

0
.8

6
7
2

6
5
4

0

.9
4

7
8

2
9
3

0

.9
6

1
6

6
3
8

0

.9
7

0
3

7
7
1

0

.9
9

4
7

8
3
6

0

.9
9

7
3

4
8
3

0

.9
9

6
6

0
2
9

0

.9
9

7
6

1
9
9

4

a0
4

.
ex

e
1

5
,9

3
7

0
.9

5
0
2

8
9
1

0

.9
5

2
6

1
5
1

0

.9
6

9
6

3
0
3

0

.9
7

8
4

7
7
3

0

.9
9

8
3

7
6
4

0

.9
9

8
9

7
1
6

0

.9
9

8
6

0
1
8

0

.9
9

9
0

5
9
7

5

a0
5

.
ex

e
2

2
,8

7
4

0
.9

8
5
2

8
9
7

0

.9
5

1
4

3
9
8

0

.9
6

6
3

4
3
6

0

.9
7

5
2

4
4
5

0

.9
9

7
8

7
3
2

0

.9
9

9
6

1
6
2

0

.9
9

9
1

3
2
6

0

.9
9

9
5

0
7
6

6

a0
6

.
ex

e
3

5
,1

0
6

0
.9

5
4
1

9
4
2

0

.9
6

1
2

9
3
4

0

.9
7

9
0

3
7
3

0

.9
8

9
4

6
6
2

0

.9
9

8
3

6
3
5

0

.9
9

9
6

8
6
4

0

.9
9

9
6

1
6
2

0

.9
9

9
5

6
0
9

7

a0
7

.
ex

e
5

2
,0

3
2

0
.9

8
0
2

6
7
5

0

.9
6

7
2

9
0
2

0

.9
8

4
6

1
0
1

0

.9
9

1
6

7
3
2

0

.9
9

7
3

9
0
8

0

.9
9

9
6

2
8
0

0

.9
9

9
7

1
3
4

0

.9
9

9
7

6
4
4

8

a0
8

.
ex

e
1

4
5

,3
8

7

0
.9

9
7
2

7
6
5

0

.9
4

9
8

3
6
6

0

.9
6

5
0

9
6
4

0

.9
7

0
4

8
8
3

0

.9
9

8
7

6
1
0

0

.9
9

9
8

0
9
1

0

.9
9

9
7

6
6
4

0

.9
9

9
8

1
2
5

9

a0
9

.
ex

e
2

4
8

,2
7

3

0
.9

8
2
5

6
9
6

0

.9
7

1
6

3
0
9

0

.9
8

7
5

6
4
3

0

.9
9

3
8

7
7
4

0

.9
9

7
3

8
7
6

0

.9
9

9
8

2
5
0

0

.9
9

9
7

6
0
8

0

.9
9

9
8

8
0
5

1
0

a1
0

.
ex

e
4

7
8

,3
2

1

0
.9

5
6
2

3
8
5

0

.9
6

2
5

0
5
8

0

.9
7

5
9

4
7
5

0

.9
8

8
1

0
8
8

0

.9
9

7
1

7
6
2

0

.9
9

9
8

9
5
4

0

.9
9

9
8

6
4
0

0

.9
9

9
9

2
8
9

1
1

a1
1

.
ex

e
7

3
8

,2
7

5

0
.9

6
4
2

3
4
1

0

.9
5

9
3

7
6
3

0

.9
6

9
7

3
3
4

0

.9
8

0
3

8
4
6

0

.9
9

7
8

3
6
7

0

.9
9

9
9

3
8
9

0

.9
9

9
8

8
0
6

0

.9
9

9
8

9
4
7

1
2

a1
2

.
ex

e
1

,5
9

4
,2

7
6

0

.9
3

8
9

0
4
5

0

.9
8

5
7

2
5
0

0

.9
9

1
9

8
4
5

0

.9
9

6
7

8
3
6

4

0
.9

9
7
6

5
1
4

0

.9
9

9
9

3
5
6

0

.9
9

9
9

4
5
1

0

.9
9

9
9

2
1
9

1
3

a1
3

.
ex

e
2

,2
7

3
,6

7
0

0

.9
7

2
5

4
0
9

0

.9
5

6
1

0
9
3

0

.9
6

5
3

9
9
4

0

.9
7

3
7

8
3
6

0

.9
9

6
8

9
3
4

0

.9
9

9
9

4
5
4

0

.9
9

9
9

4
8
0

0

.9
9

9
9

4
1
0

1
4

a1
4

.
ex

e
2

,9
8

5
,3

0
6

0

.9
7

8
6

5
3
2

0

.9
4

9
8

3
0
2

0

.9
6

3
5

5
4
0

0

.9
7

0
3

9
8
5

0

.9
9

8
6

5
6
3

0

.9
9

9
9

5
2
6

0

.9
9

9
9

3
5
2

0

.9
9

9
9

6
2
6

1
5

a1
5

.
ex

e
3

,4
1

2
,6

3
9

0

.9
8

6
7

0
5
4

0

.9
6

7
3

6
2
9

0

.9
8

1
7

6
4
5

0

.9
9

0
3

8
8
3

0

.9
9

8
3

7
6
2

0

.9
9

9
9

6
0
8

0

.9
9

9
9

7
4
2

0

.9
9

9
9

6
8
8

1
6

a1
6

.
ex

e
3

,8
7

2
,9

8
4

0

.9
8

7
0

9
6
5

0

.9
7

3
5

1
9
8

0

.9
8

4
6

7
7
3

0

.9
9

2
7

8
4
6

0

.9
9

8
7

1
0
6

0

.9
9

9
9

8
0
8

0

.9
9

9
9

4
1
9

0

.9
9

9
9

4
4
0

1
7

a1
7

.
ex

e
4

,0
3

8
,3

8
7

0

.9
8

7
6

5
0
9

0

.9
7

1
6

3
0
9

0

.9
8

1
7

0
5
6

0

.9
9

0
3

8
8
1

0

.9
9

8
3

7
6
5

0

.9
9

9
9

7
3
2

0

.9
9

9
9

5
8
8

0

.9
9

9
9

6
9
6

1
8

a1
8

.
ex

e
5

,2
8

4
,7

9
6

0

.9
8

6
3

4
7
6

0

.9
6

5
9

0
4
6

0

.9
7

5
9

4
7
4

0

.9
8

3
7

7
6
2

0

.9
9

8
3

7
6
1

0

.9
9

9
9

5
8
2

0

.9
9

9
9

5
6
4

0

.9
9

9
9

6
3
0

1
9

a1
9

.
ex

e
5

,6
2

8
,0

3
7

0

.9
8

3
5

6
9
4

0

.9
5

2
8

9
4
7

0

.9
6

7
4

0
9
5

0

.9
9

2
7

7
4
0

0

.9
9

7
3

6
5
4

0

.9
9

9
9

7
3
1

0

.9
9

9
9

7
5

0

.9
9

9
9

6
3
1

2
0

a2
0

.
ex

e
6

,7
3

5
,9

3
4

0

.9
8

4
2

3
9
7

0

.9
6

9
8

3
6
9

0

.9
8

3
8

7
4
7

0

.9
9

2
7

8
3
3

0

.9
9

8
3

7
6
6

0

.9
9

9
9

7
1
4

0

.9
9

9
8

7
7
2

0

.9
9

9
9

2
6
4

 A

v
er

ag
e

0
.9

6
2
3

9
3
5

0

.9
6

1
6

5
8
0

0

.9
7

4
7

2
2
0

0

.9
8

3
9

8
5
0

0

.9
9

7
8

8
9
0

0

.9
9

9
2

5
5
1

0

.9
9

8
3

1
8
6

0

.9
9

8
7

3
4
0

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
5
9

T
ab

le
:

7
.7

2

C
o
m

p
ar

is
o
n
s

o
f

B
it

 I
n
d
ep

en
d
en

ce
 o

f
.e

xe
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
ex

e
1

,0
6

3

0
.6

1
0
8

7
6
3

0

.5
2

8
9

7
1
9

0

.4
9

2
0

0
9
4

0

.4
7

8
3

4
3
6

0

.5
2

8
9

5
4

0

0
.3

6
3
6

7
2
4

0

.5
4

1
6

9
6
9

0

.4
9

7
1

2
1
4

2

a0
2

.
ex

e
2

,5
1

8

0
.3

4
4
2

8
9
7

0

.6
3

0
9

3
8
7

0

.0
7

2
9

9
4
1

0

.0
4

6
4

3
9
0

0

.0
6

3
9

8
7

0

0
.0

2
1
4

8
8
5

0

.2
4

0
5

3
2
6

0

.1
7

4
1

8
5
1

3

a0
3

.
ex

e
8

,2
5

0

0
.6

6
4
4

3
9
0

0

.5
8

1
7

8
4
3

0

.4
2

7
7

4
6
4

0

.3
3

2
8

9
7
4

0

.3
6

3
2

9
8

0

0
.3

3
5
6

3
9
1

0

.2
9

0
3

8
6
1

0

.3
2

5
2

1
8
1

4

a0
4

.
ex

e
1

5
,9

3
7

0
.8

0
5
6

4
2
4

0

.5
1

8
9

6
4
5

0

.8
1

7
8

8
3
5

0

.7
1

2
9

0
7
6

0

.7
3

2
2

9
0

0

0
.7

2
3
6

5
6
9

0

.7
2

5
4

4
9
6

0

.7
2

4
7

6
8
8

5

a0
5

.
ex

e
2

2
,8

7
4

0
.8

0
6
7

5
4
8

0

.5
7

3
4

2
9

0

.7
6

2
8

9
3
4

0

.8
3

4
8

7
3
9

0

.7
8

1
5

0
9

0

0
.7

7
0
3

2
7
0

0

.7
6

6
4

0
0
0

0

.7
6

9
5

3
2
0

6

a0
6

.
ex

e
3

5
,1

0
6

0
.8

3
4
0

9
8
6

0

.5
9

8
0

4
3
5

0

.8
1

7
7

4
5
3

0

.8
5

3
9

0
8
5

0

.8
2

1
8

7
3

0

0
.8

1
6
6

9
2
1

0

.8
0

0
1

0
5
7

0

.8
1

4
8

5
3
7

7

a0
7

.
ex

e
5

2
,0

3
2

0
.7

9
0
5

6
7
4

0

.7
1

8
7

4
0
9

0

.7
2

6
1

0
9
8

0

.7
8

3
4

2
9
0

0

.7
5

2
9

8
7

0

0
.7

4
6
5

0
4
1

0

.7
4

7
5

0
7
2

0

.7
4

9
2

7
2
8

8

a0
8

.
ex

e
1

4
5

,3
8

7

0
.7

4
4
2

3
8
1

0

.6
0

4
0

9
5
3

0

.7
5

6
0

1
0
9

0

.6
8

5
3

0
5
4

0

.7
0

4
3

8
7

0

0
.7

0
5
5

4
5
0

0

.7
0

5
7

9
4
1

0

.7
0

4
7

4
5
7

9

a0
9

.
ex

e
2

4
8

,2
7

3

0
.7

8
5
6

3
2
7

0

.6
3

8
6

0
9
7

0

.9
3

2
8

8
7
4

0

.7
7

5
6

4
3
9

0

.7
3

2
1

7
2

0

0
.7

4
6
8

6
8
8

0

.7
3

9
0

2
6
9

0

.7
4

9
4

6
5
7

1
0

a1
0

.
ex

e
4

7
8

,3
2

1

0
.8

7
9
3

0
8
4

0

.9
9

2
7

4
3
2

0

.8
1

7
7

3
0
2

0

.8
9

5
0

9
3
4

0

.8
6

0
1

1
8

0

0
.8

5
8
5

8
5
9

0

.8
5

6
7

0
5
9

0

.8
5

9
6

8
2
7

1
1

a1
1

.
ex

e
7

3
8

,2
7

5

0
.8

3
9
8

7
4
5

0

.9
1

7
4

0
4
5

0

.7
2

1
8

8
4
9

0

.8
1

2
8

0
5
6

0

.8
3

1
9

5
3

0

0
.8

3
1
7

7
4
5

0

.8
2

2
8

4
2
4

0

.8
2

9
7

9
5
3

1
2

a1
2

.
ex

e
1

,5
9

4
,2

7
6

0

.6
6

3
5

4
9
0

0

.8
1

7
8

3
4

0

.6
5

2
9

9
8
4

0

.6
9

4
3

2
0
9

0

.6
4

0
3

2
8

0

0
.6

2
8
0

2
6
7

0

.6
3

4
5

5
5
3

0

.6
2

8
8

7
8
8

1
3

a1
3

.
ex

e
2

,2
7

3
,6

7
0

0

.6
5

8
9

3
7
8

0

.9
6

3
0

7
3
8

0

.6
9

0
3

9
1
5

0

.6
7

1
0

9
6
3

0

.6
4

2
9

0
7

0

0
.6

1
3
9

1
9
9

0

.6
1

5
4

7
8
2

0

.6
1

3
4

7
8
4

1
4

a1
4

.
ex

e
2

,9
8

5
,3

0
6

0

.8
1

2
4

6
5
0

0

.5
2

1
9

4
5
7

0

.8
5

1
0

9
8
8

0

.7
9

4
2

9
0
8

0

.7
8

3
4

2
0

0

0
.7

8
1
7

6
2
2

0

.7
7

9
1

6
1
9

0

.7
8

3
0

2
1
6

1
5

a1
5

.
ex

e
3

,4
1

2
,6

3
9

0

.9
9

9
9

8
4
6

0

.9
7

1
0

9
5
4

0

.8
3

7
7

2
9
4

0

.9
9

8
5

6
3
2

0

.9
9

4
2

1
7

0

0
.9

8
4
6

0
0
6

0

.9
8

4
4

9
2
9

0

.9
8

4
5

4
1
9

1
6

a1
6

.
ex

e
3

,8
7

2
,9

8
4

0

.8
2

0
8

4
6
5

0

.9
5

4
3

0
9
3

0

.8
9

4
7

5
6
6

0

.7
9

2
1

7
6
4

0

.7
9

4
3

9
2

0

0
.7

7
8
0

2
4
8

0

.7
8

5
2

7
2
0

0

.7
7

7
4

2
6
6

1
7

a1
7

.
ex

e
4

,0
3

8
,3

8
7

0

.9
9

9
9

2
8
7

0

.8
8

2
7

6
0
9

0

.8
7

2
7

7
1
4

0

.9
9

5
6

3
9
0

0

.9
9

2
3

9
6

0

0
.9

9
7
1

8
5
1

0

.9
9

8
1

9
8
2

0

.9
9

7
3

7
4
4

1
8

a1
8

.
ex

e
5

,2
8

4
,7

9
6

0

.8
8

5
3

0
0
5

0

.9
5

7
6

4
1
2

0

.7
8

2
7

3
6
1

0

.7
7

4
3

2
9
8

0

.7
5

7
3

7
8
9

0

.7
4

9
7

5
5
0

0

.7
6

0
6

7
5
8

0

.7
5

9
3

8
3
9

1
9

a1
9

.
ex

e
5

,6
2

8
,0

3
7

0

.8
0

1
8

4
7
5

0

.7
8

9
0

6
4
6

0

.7
9

2
8

8
4
4

0

.6
7

5
4

9
0
0

0

.7
2

3
0

9
6
5

0

.6
9

8
7

9
8
2

0

.7
1

2
8

1
1
3

0

.7
0

1
8

0
1
7

2
0

a2
0

.
ex

e
6

,7
3

5
,9

3
4

0

.6
6

9
7

5
6
9

0

.9
7

5
4

8
9
3

0

.7
7

6
3

2
6
3

0

.5
8

9
4

5
3
6

0

.5
7

3
2

9
8
7

0

.5
6

5
8

3
9
4

0

.5
7

7
6

8
2
0

0

.5
5

9
7

4
1
0

 A

v
er

ag
e

0
.7

7
0
9

1
6
9

0

.7
5

6
8

4
7
0

0
.7

2
4
8

7
9
0

0

.7
0

9
8

5
0
0

0

.7
0

3
7

4
8

0

0
.7

3
3
0

3
9
0

0

.7
0

4
2

3
8
8

0

.7
0

0
2

1
4
5

 Arindam Sarkar, University of Kalyani, India 360

Table: 7.73

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of

.exe files

Figure 7.61: Pictorial representation of the average values of Avalanche and Strict

Avalanche of .exe type bit stream

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

V
a
lu

e
s

Techniques

Avalanche

Strict Avalanche

Techniques
Average values of

Avalanche Strict Avalanche Bit Independence

CGTHLPSCT 0.9651026 0.9623935 0.7709169

CTHLPSCT 0.9659739 0.9616580 0.7568470

CDHLPSCT 0.9773440 0.9747220 0.7248790

DHLPSCT 0.9850070 0.9839850 0.7098500

KSOMSCT 0.9988140 0.9978890 0.703748

RSA 0.9997574 0.9992551 0.7330390

TDES 0.9992658 0.9983186 0.7042388

AES 0.9996038 0.9987340 0.7002145

 Arindam Sarkar, University of Kalyani, India 361

Figure 7.62: Pictorial representation of the average values of Bit Independence of .exe type

bit stream

7.5.3 .txt files

Twenty .txt files of different sizes varying from 1,504 bytes to 6,702,831 bytes have

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.75, 7.76,

7.77 and 7.78 shows the Avalanche, Strict Avalanche and Bit Independence test of .txt

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche

test value for each file are very close to the value 1 for all four techniques. Bit

Independence values vary from 0.0328965 to 0.5923987 for KSOMSCT, from

0.0425987 to 0.5983409 for DHLPSCT, from 0.0873611 to 0.5983774 for

CDHLPSCT, from 0.1209735 to 0.5920943 for CTHLPSCT, from 0.0296755 to

0.5932186 for CGTHLPSCT, from 0.0214885 to 0.9971851 for RSA, from

0.2405326 to 0.9981982 for TDES and from 0.1741851 to 0.9973744 for AES

respectively.

Figure 7.63 and 7.64 show the graphical representation of the comparison of results of

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average

values) respectively of the .txt type source files for proposed KSOMSCT, DHLPSCT,

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78
V

a
lu

e
s

Techniques

 Arindam Sarkar, University of Kalyani, India 362

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES techniques.

Average Avalanche values of proposed KSOMSCT, DHLPSCT, CDHLPSCT,

CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 0.9980140, 0.9948260,

0.9919460, 0.9823468, 0.9786178, 0.9998823, 0.9997381, and 0.9998726

respectively. Average Strict Avalanche value of proposed KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.9966320, 0.9922320, 0.9866200, 0.9814860, 0.9754595, 0.9994315, 0.9992106

and 0.9996183 respectively. Average Bit Independence values of proposed KSOMSCT,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.3304380, 0.3531750, 0.4097800, 0.4214050, 0.4426890, 0.3234268, 0.3016146,

and 0.3112921 respectively. Proposed technique has the highest average

Bit Independence value which indicates that proposed technique provides better degree of

security and comparable to other techniques.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
6
3

T
ab

le
:

7
.7

4

C
o
m

p
ar

is
o
n
s

o
f

A
v
al

an
ch

e
o
f

.t
xt

 f
il

es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.t
x
t

1
,5

0
4

0
.8

9
5
6

4
7
8

0

.9
7

7
3

2
9
9

0

.9
9

0
0

5
3
8

0

.9
9

1
8

7
4
5

0

.9
9

2
8

5
4
3

0

.9
9

9
9

6
2
3

0

.9
9

6
8

7
6
1

0

.9
9

9
1

5
5
3

2

a0
2

.t
x
t

7
,9

2
1

0
.9

1
8
6

5
6
9

0

.9
7

8
3

4
2
1

0

.9
9

3
0

2
5
6

0

.9
9

4
3

8
7
6

0

.9
9

6
5

4
8
9

0

.9
9

7
9

8
9
4

0

.9
9

9
3

7
9
0

0

.9
9

9
0

6
7
6

3

a0
3

.t
x
t

1
7

,0
3
6

0
.8

8
8
5

6
4
6

0

.9
9

2
2

9
0
7

0

.9
9

5
2

0
9
3

0

.9
9

7
2

6
4
5

0

.9
9

2
1

7
5
6

0

.9
9

9
9

0
0
4

0

.9
9

9
3

5
8
7

0

.9
9

9
9

5
5
7

4

a0
4

.t
x
t

4
4

.6
2
4

0
.9

9
2
8

9
5
1

0

.9
9

3
2

1
9
8

0

.9
9

6
3

0
8
7

0

.9
9

7
8

3
7
4

0

.9
9

9
5

4
3
9

0

.9
9

9
9

8
3
1

0

.9
9

9
9

3
3
4

0

.9
9

9
8

8
1
1

5

a0
5

.t
x
t

6
8

,8
2
3

0
.9

8
6
4

3
5
0

0

.9
9

2
3

1
9
7

0

.9
9

5
2

9
0
1

0

.9
9

6
2

9
3
7

0

.9
9

7
4

2
9
8

0

.9
9

9
9

4
5
6

0

.9
9

9
8

6
2
1

0

.9
9

9
7

8
2
0

6

a0
6

.t
x
t

1
6

1
,9

3
5

0
.9

9
2
6

7
9
6

0

.9
7

9
4

5
3
1

0

.9
9

3
1

0
9
7

0

.9
9

8
3

7
6
4

0

.9
9

9
2

3
7
6

0

.9
9

9
9

8
6
5

0

.9
9

9
8

4
5
5

0

.9
9

9
9

4
1
8

7

a0
7

.t
x
t

3
2

8
,0

1
7

0
.9

9
2
7

7
8
5

0

.9
6

2
1

9
8
6

0

.9
8

9
4

2
9

0

.9
9

7
3

6
4
5

0

.9
9

9
7

5
4
3

0

.9
9

9
9

8
0
2

0

.9
9

9
9

8
5
2

0

.9
9

9
9

1
0
4

8

a0
8

.t
x
t

5
8

7
,2

9
0

0
.9

9
3
4

7
0
5

0

.9
6

4
2

9
8

0

.9
8

9
3

8
6
4

0

.9
9

2
7

4
6
4

0

.9
9

8
5

6
4
0

0

.9
9

9
9

6
7
1

0

.9
9

9
8

5
3
8

0

.9
9

9
9

5
6
8

9

a0
9

.t
x
t

1
,0

4
9
,7

6
3

0

.9
9

3
3

0
9
8

0

.9
7

6
2

8
6
3

0

.9
8

5
3

0
9
5

0

.9
8

9
3

7
4
6

0

.9
9

9
6

5
4
8

0

.9
9

9
9

9
0
8

0

.9
9

9
9

0
6
0

0

.9
9

9
9

2
8
3

1
0

a1
0

.t
x
t

1
,4

1
8
,0

2
5

0

.9
9

1
2

9
0
6

0

.9
8

7
3

1
9
7

0

.9
9

3
2

9
0
4

0

.9
9

6
3

8
7
4

0

.9
9

9
7

8
6
5

0

.9
9

9
9

9
5
3

0

.9
9

9
9

9
9
2

0

.9
9

9
9

9
8
4

1
1

a1
1

.t
x
t

1
,6

8
1
,3

2
9

0

.9
9

4
6

8
7
9

0

.9
7

5
2

0
9
5

0

.9
8

2
9

0
7
6

0

.9
8

7
2

6
4
5

0

.9
9

8
7

6
9
8

0

.9
9

9
9

9
8
0

0

.9
9

9
9

4
4
2

0

.9
9

9
9

9
3
5

1
2

a1
2

.t
x
t

2
,0

5
9
,3

1
8

0

.9
9

2
7

8
4
7

0

.9
8

3
1

9
8
7

0

.9
9

1
8

6
3
9

0

.9
9

6
3

8
6
5

0

.9
9

9
2

3
6
5

0

.9
9

9
9

9
1
8

0

.9
9

9
9

8
2
6

0

.9
9

9
9

6
3
9

1
3

a1
3

.t
x
t

2
,6

1
8
,4

9
2

0

.9
9

4
8

0
4
1

0

.9
8

7
2

0
9
2

0

.9
9

6
3

0
9
3

0

.9
9

7
3

8
7
4

0

.9
9

9
7

6
5
8

0

.9
9

9
9

9
9
6

0

.9
9

9
9

6
6
9

0

.9
9

9
9

8
5
5

1
4

a1
4

.t
x
t

3
,1

5
4
,9

3
7

0

.9
9

2
8

7
6
8

0

.9
9

1
2

8
6
5

0

.9
9

6
3

0
9
4

0

.9
9

7
2

8
6
4

0

.9
9

8
0

7
6
7

0

.9
9

9
9

9
0
2

0

.9
9

9
9

4
9
4

0

.9
9

9
9

9
6
4

1
5

a1
5

.t
x
t

4
,0

7
3
,8

2
9

0

.9
9

1
8

7
3
9

0

.9
8

6
3

9
8
6

0

.9
9

4
2

0
9
5

0

.9
9

5
2

9
8

0

.9
9

9
5

6
4
7

0

.9
9

9
9

9
0
1

0

.9
9

9
9

8
5
7

0

.9
9

9
9

9
9
1

1
6

a1
6

.t
x
t

4
,9

3
6
,5

2
1

0

.9
9

1
9

3
7
8

0

.9
8

7
2

9
8
7

0

.9
9

4
2

9
8
5

0

.9
9

7
3

8
7
5

0

.9
9

9
3

2
1
4

0

.9
9

9
9

9
0
5

0

.9
9

9
9

9
7
2

0

.9
9

9
9

8
3
4

1
7

a1
7

.t
x
t

5
,1

2
5
,8

4
7

0

.9
9

2
7

8
0
9

0

.9
8

3
4

2
9

0

.9
9

1
2

7
5
3

0

.9
9

6
2

8
7
4

0

.9
9

8
6

7
5
4

0

.9
9

9
9

8
8
5

0

.9
9

9
9

8
4
6

0

.9
9

9
9

9
8
3

1
8

a1
8

.t
x
t

5
,5

9
3
,2

1
9

0

.9
9

3
7

8
9
2

0

.9
8

9
3

4
2
1

0

.9
9

4
2

9
0
7

0

.9
9

5
1

0
9
4

0

.9
9

7
5

6
7
9

0

.9
9

9
9

9
9
8

0

.9
9

9
9

7
4
0

0

.9
9

9
9

8
5
8

1
9

a1
9

.t
x
t

5
,8

9
8
,3

0
2

0

.9
8

9
3

0
9
2

0

.9
8

5
2

9
7
6

0

.9
9

1
3

8
6
5

0

.9
9

3
1

0
9
3

0

.9
9

7
1

6
4
8

0

.9
9

9
9

9
6
8

0

.9
9

9
9

8
4
0

0

.9
9

9
9

7
6
1

2
0

a2
0

.t
x
t

6
,7

0
2
,8

3
1

0

.9
9

1
7

8
3
2

0

.9
7

5
2

0
9
8

0

.9
8

5
6

4
9
0

0

.9
8

9
0

9
4
7

0

.9
9

6
5

8
9
0

0

.9
9

9
9

9
9
1

0

.9
9

9
9

9
1
0

0

.9
9

9
9

9
3
4

 A

v
er

ag
e

0
.9

7
8
6

1
7
8

0

.9
8

2
3

4
6
8

0

.9
9

1
9

4
6
0

0

.9
9

4
8

2
6
0

0

.9
9

8
0

1
4
0

0

.9
9

9
8

8
2
3

0

.9
9

9
7

3
8
1

0

.9
9

9
8

7
2
6

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
6
4

T
ab

le
:

7
.7

5

C
o
m

p
ar

is
o
n
s

o
f

S
tr

ic
t

A
v
al

an
ch

e
o

f
.t

xt
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.t
x
t

1
,5

0
4

0
.8

8
1
7

3
8
3

0

.9
7

6
9

3
7
4

0

.9
9

7
5

6
4
4

0

.9
8

9
3

7
7
4

0

.9
9

0
8

7
3
6

0

.9
9

2
8

4
5
8

0

.9
9

1
4

1
3
9

0

.9
9

7
0

2
7
2

2

a0
2

.t
x
t

7
,9

2
1

0
.9

0
2
9

0
4
9

0

.9
7

7
1

0
9
3

0

.9
9

1
8

7
3
6

0

.9
9

2
8

9
4
7

0

.9
9

5
7

8
3
5

0

.9
9

7
2

0
9
3

0

.9
9

7
2

4
7
5

0

.9
9

8
3

1
2
7

3

a0
3

.t
x
t

1
7

,0
3
6

0
.8

7
4
2

9
8
4

0

.9
9

1
1

0
9
1

0

.9
9

2
8

7
4
5

0

.9
9

6
2

8
8
3

0

.9
9

1
8

7
4
2

0

.9
9

9
3

8
3
1

0

.9
9

8
8

5
5
0

0

.9
9

8
9

3
3
7

4

a0
4

.t
x
t

4
4

.6
2
4

0
.9

9
2
7

8
4
0

0

.9
9

2
6

8
4
3

0

.9
9

2
8

7
6
4

0

.9
9

5
7

8
3
6

0

.9
9

8
2

8
3
6

0

.9
9

9
8

6
2
8

0

.9
9

9
8

1
6
6

0

.9
9

9
7

2
1
9

5

a0
5

.t
x
t

6
8

,8
2
3

0
.9

8
5
9

3
0
3

0

.9
9

1
3

7
3
2

0

.9
9

3
7

7
4
1

0

.9
9

4
1

0
2
1

0

.9
9

5
7

8
3
7

0

.9
9

9
8

7
1
9

0

.9
9

9
4

1
3
0

0

.9
9

9
6

2
9
8

6

a0
6

.t
x
t

1
6

1
,9

3
5

0
.9

9
0
3

8
7
4

0

.9
7

8
0

1
8
6

0

.9
9

1
0

8
3
7

0

.9
9

7
8

2
0
3

0

.9
9

8
2

6
2
1

0

.9
9

9
8

4
1
2

0

.9
9

9
4

9
9
2

0

.9
9

9
7

2
0
8

7

a0
7

.t
x
t

3
2

8
,0

1
7

0
.9

9
2
8

4
6
7

0

.9
6

1
7

3
5
5

0

.9
8

6
7

3
6
8

0

.9
9

6
7

9
2
5

0

.9
9

8
3

1
1
9

0

.9
9

9
9

2
9
3

0

.9
9

9
6

6
0
6

0

.9
9

9
7

9
3
2

8

a0
8

.t
x
t

5
8

7
,2

9
0

0
.9

9
3
0

8
4
9

0

.9
6

3
9

0
3
7

0

.9
8

7
2

9
8
2

0

.9
9

0
3

8
2
2

0

.9
9

7
3

6
5
3

0

.9
9

9
9

3
7
6

0

.9
9

9
6

2
3
0

0

.9
9

9
8

1
4
9

9

a0
9

.t
x
t

1
,0

4
9
,7

6
3

0

.9
9

2
8

7
6
8

0

.9
7

4
8

2
0
8

0

.9
1

8
3

9
8
6

0

.9
6

2
5

2
9
2

0

.9
9

4
6

7
3
2

0

.9
9

9
9

4
8
8

0

.9
9

9
6

6
8
0

0

.9
9

9
8

5
2
4

1
0

a1
0

.t
x
t

1
,4

1
8
,0

2
5

0

.9
9

0
4

8
4
3

0

.9
8

6
3

9
3
2

0

.9
9

0
8

1
1
7

0

.9
9

5
0

9
2
3

0

.9
9

8
2

6
6
3

0

.9
9

9
9

8
7
7

0

.9
9

9
9

0
3
4

0

.9
9

9
9

3
3
6

1
1

a1
1

.t
x
t

1
,6

8
1
,3

2
9

0

.9
9

3
8

9
4
9

0

.9
7

4
6

4
8
9

0

.9
7

9
3

7
6
3

0

.9
8

5
6

9
3
0

0

.9
9

6
3

6
7
2

0

.9
9

9
9

7
8
4

0

.9
9

9
9

0
0
8

0

.9
9

9
9

6
6
7

1
2

a1
2

.t
x
t

2
,0

5
9
,3

1
8

0

.9
9

0
4

9
5
5

0

.9
8

1
7

3
9
3

0

.9
8

7
3

6
3
5

0

.9
9

3
7

2
9
9

0

.9
9

8
1

0
9
5

0

.9
9

9
9

7
7
0

0

.9
9

9
8

9
4
9

0

.9
9

9
9

4
7
5

1
3

a1
3

.t
x
t

2
,6

1
8
,4

9
2

0

.9
9

3
8

0
5
4

0

.9
8

6
6

2
8
9

0

.9
9

3
8

9
2
7

0

.9
9

5
6

3
8
3

0

.9
9

8
4

7
6
3

0

.9
9

9
9

8
7
9

0

.9
9

9
9

1
4
6

0

.9
9

9
9

5
5
2

1
4

a1
4

.t
x
t

3
,1

5
4
,9

3
7

0

.9
8

9
3

0
4
9

0

.9
9

0
8

3
7
3

0

.9
9

3
8

7
0
9

0

.9
9

6
0

9
3
7

0

.9
9

7
0

9
2
0

0

.9
9

9
9

7
7
7

0

.9
9

9
9

0
9
7

0

.9
9

9
9

7
4
8

1
5

a1
5

.t
x
t

4
,0

7
3
,8

2
9

0

.9
9

1
7

4
7
8

0

.9
8

5
1

0
9
4

0

.9
9

1
0

9
5
7

0

.9
9

4
7

8
3
6

0

.9
9

8
2

7
6
4

0

.9
9

9
9

8
1
8

0

.9
9

9
9

3
2
8

0

.9
9

9
9

7
9
2

1
6

a1
6

.t
x
t

4
,9

3
6
,5

2
1

0

.9
9

1
8

4
9
4

0

.9
8

6
2

0
1
8

0

.9
9

2
8

7
4
6

0

.9
9

6
9

0
3
7

0

.9
9

8
2

7
7
6

0

.9
9

9
9

7
7
2

0

.9
9

9
9

1
6
7

0

.9
9

9
9

6
9
2

1
7

a1
7

.t
x
t

5
,1

2
5
,8

4
7

0

.9
9

0
4

7
8
3

0

.9
8

2
6

3
8
2

0

.9
8

7
5

0
9
1

0

.9
9

5
7

7
2
2

0

.9
9

7
3

6
5
3

0

.9
9

9
9

7
9
1

0

.9
9

9
9

2
9
8

0

.9
9

9
9

7
0
0

1
8

a1
8

.t
x
t

5
,5

9
3
,2

1
9

0

.9
9

2
7

4
8
4

0

.9
8

8
1

2
7
3

0

.9
9

2
8

9
4
3

0

.9
9

4
7

8
2
2

0

.9
9

6
7

8
3
1

0

.9
9

9
9

8
9
9

0

.9
9

9
9

1
1
9

0

.9
9

9
9

6
5
1

1
9

a1
9

.t
x
t

5
,8

9
8
,3

0
2

0

.9
8

8
1

6
3
2

0

.9
8

4
7

2
1
9

0

.9
8

7
3

7
7
6

0

.9
9

2
7

8
3
1

0

.9
9

6
7

3
8
9

0

.9
9

9
9

8
4
6

0

.9
9

9
9

0
9
0

0

.9
9

9
9

4
4
4

2
0

a2
0

.t
x
t

6
,7

0
2
,8

3
1

0

.9
8

9
3

6
7
3

0

.9
7

4
9

8
5
6

0

.9
8

2
8

4
3
3

0

.9
8

7
3

9
9
2

0

.9
9

5
6

7
3
8

0

.9
9

9
9

7
9
3

0

.9
9

9
8

9
1
4

0

.9
9

9
9

5
3
7

 A

v
er

ag
e

0
.9

7
5
4

5
9
5

0

.9
8

1
4

8
6
0

0

.9
8

6
6

2
0
0

0

.9
9

2
2

3
2
0

0

.9
9

6
6

3
2
0

0

.9
9

9
4

3
1
5

0

.9
9

9
2

1
0
6

0

.9
9

9
6

1
8
3

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
6
5

T
ab

le
:

7
.7

6

C
o
m

p
ar

is
o
n
s

o
f

B
it

 I
n
d
ep

en
d
en

ce
 o

f
.t

xt
 f

il
es

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.t
x
t

1
,5

0
4

0
.2

3
9
0

4
7
3

0

.1
2

0
9

7
3
5

0

.0
9

2
8

7
4
4

0

.2
3

1
9

8
0
9

0

.0
8

4
5

3
9
7

0

.0
0

2
8

8
1
9

0

.0
1

8
7

5
8
4

0

.0
4

6
5

8
1
5

2

a0
2

.t
x
t

7
,9

2
1

0
.1

3
4
7

0
3
8

0

.3
4

8
9

3
7
3

0

.2
3

0
9

8
4
5

0

.2
5

4
2

9
8
3

0

.1
5

3
4

2
9
8

0

.1
5

2
9

3
4
3

0

.0
2

4
6

0
8
6

0

.0
7

6
3

0
6
4

3

a0
3

.t
x
t

1
7

,0
3
6

0
.0

2
9
6

7
5
5

0

.1
9

6
3

9
3
1

0

.0
8

7
3

6
1
1

0

.0
4

2
5

9
8
7

0

.0
3

2
8

9
6
5

0

.0
3

9
5

5
8
5

0

.0
0

6
0

1
9
7

0

.0
3

2
6

1
2
3

4

a0
4

.t
x
t

4
4

.6
2
4

0
.4

5
3
6

8
9
7

0

.2
1

9
0

3
2
8

0

.4
9

0
3

9
8
4

0

.4
9

8
2

7
6
9

0

.4
8

9
5

6
4
9

0

.4
4

6
9

0
4
1

0

.4
2

7
7

1
3
6

0

.4
2

6
0

3
8
8

5

a0
5

.t
x
t

6
8

,8
2
3

0
.5

3
3
2

5
7
8

0

.3
7

8
2

3
0
8

0

.5
1

1
9

8
3
8

0

.5
3

2
9

0
7
7

0

.5
5

3
4

2
0
8

0

.5
2

2
7

4
4
3

0

.4
5

7
1

5
3
4

0

.5
0

8
4

9
9
5

6

a0
6

.t
x
t

1
6

1
,9

3
5

0
.5

5
7
3

4
6
8

0

.4
8

3
0

9
3
3

0

.5
9

8
3

7
7
4

0

.5
1

2
9

0
7
6

0

.5
7

2
3

4
7
4

0

.5
3

2
3

9
1
0

0

.4
9

9
1

3
4
1

0

.5
1

0
9

3
1
8

7

a0
7

.t
x
t

3
2

8
,0

1
7

0
.5

7
0
8

4
7
8

0

.5
9

2
0

9
4
3

0

.5
8

2
7

6
3
4

0

.5
6

3
0

9
8
6

0

.5
9

2
3

9
8
7

0

.5
4

5
2

6
5
0

0

.5
4

1
0

9
7
0

0

.5
2

1
5

3
3
6

8

a0
8

.t
x
t

5
8

7
,2

9
0

0
.5

6
3
4

2
1
9

0

.5
6

8
8

0
3
4

0

.6
7

2
8

4
6
3

0

.5
9

8
3

4
0
9

0

.5
4

2
3

1
2
0

0

.5
3

8
1

1
1
7

0

.5
1

4
7

6
3
3

0

.5
1

9
7

6
1
9

9

a0
9

.t
x
t

1
,0

4
9
,7

6
3

0

.5
6

2
3

4
9

0

.4
7

8
2

9
3
2

0

.5
1

8
9

3
3
6

0

.4
7

3
9

8
0
8

0

.2
1

7
8

5
9
4

0

.5
1

6
9

1
4
1

0

.4
3

1
0

8
6
6

0

.4
4

8
6

1
8
4

1
0

a1
0

.t
x
t

1
,4

1
8
,0

2
5

0

.5
4

3
2

5
8
9

0

.4
1

0
3

8
9
6

0

.5
5

1
8

8
3
2

0

.2
7

0
9

8
6
5

0

.2
9

1
4

6
5
3

0

.2
4

0
4

6
5
1

0

.2
5

5
7

5
7
3

0

.2
5

2
7

4
7
8

1
1

a1
1

.t
x
t

1
,6

8
1
,3

2
9

0

.5
3

2
4

9
8

0

.4
8

9
1

0
8
2

0

.3
8

9
7

3
4
5

0

.3
1

2
9

8
7
6

0

.2
7

6
3

4
0
9

0

.2
3

7
2

8
0
8

0

.2
4

7
7

4
4
4

0

.2
4

7
5

4
6
8

1
2

a1
2

.t
x
t

2
,0

5
9
,3

1
8

0

.3
2

3
6

7
9
7

0

.3
8

2
7

2
0
3

0

.2
9

8
9

0
4
3

0

.2
7

5
4

3
9
8

0

.3
5

2
3

0
9
8

0

.3
7

1
0

8
6
3

0

.3
3

7
7

3
1
9

0

.3
3

8
6

7
5
3

1
3

a1
3

.t
x
t

2
,6

1
8
,4

9
2

0

.5
4

8
5

3
5
8

0

.5
3

4
1

0
8
2

0

.3
9

8
0

7
7
4

0

.2
8

9
6

7
5
4

0

.2
6

2
3

1
9
7

0

.2
4

2
4

2
1
0

0

.2
6

0
5

1
8
9

0

.2
5

6
1

9
8
3

1
4

a1
4

.t
x
t

3
,1

5
4
,9

3
7

0

.5
5

6
1

9
0
6

0

.4
9

0
1

8
2
7

0

.4
3

8
9

2
8
4

0

.2
1

8
7

9
0
6

0

.2
3

0
9

6
5
8

0

.2
4

0
2

3
1
7

0

.2
5

3
9

2
8
7

0

.2
5

2
5

6
7
4

1
5

a1
5

.t
x
t

4
,0

7
3
,8

2
9

0

.5
4

7
9

4
2
3

0

.4
2

6
1

9
7
2

0

.3
8

2
7

7
6
1

0

.2
8

9
7

4
5
2

0

.2
5

1
2

9
8
6

0

.2
4

2
4

5
5
4

0

.2
6

1
3

2
3
3

0

.2
5

7
2

4
9
4

1
6

a1
6

.t
x
t

4
,9

3
6
,5

2
1

0

.3
8

6
1

3
0
8

0

.5
3

8
9

2
0
9

0

.3
6

2
0

9
8
4

0

.3
9

0
8

6
7
5

0

.3
1

2
9

0
8
7

0

.3
2

7
1

9
1
1

0

.3
1

1
0

7
9
9

0

.3
1

8
0

3
0
4

1
7

a1
7

.t
x
t

5
,1

2
5
,8

4
7

0

.2
6

9
0

3
5
8

0

.4
6

7
1

9
7
1

0

.3
9

0
8

4
8
7

0

.3
1

2
8

9
4

0

.3
1

6
5

4
9
8

0

.2
7

2
9

1
3
8

0

.2
6

0
4

7
1
0

0

.2
7

8
6

1
3
9

1
8

a1
8

.t
x
t

5
,5

9
3
,2

1
9

0

.5
2

0
7

4
1
5

0

.4
0

9
2

7
8
8

0

.3
1

9
0

4
7
5

0

.3
3

2
8

7
3
1

0

.3
2

1
8

9
5
4

0

.3
0

0
8

2
9
3

0

.2
9

5
7

8
9
6

0

.2
9

8
6

0
2
2

1
9

a1
9

.t
x
t

5
,8

9
8
,3

0
2

0

.5
9

3
2

1
8
6

0

.4
6

7
3

0
9
2

0

.4
8

7
2

9
4
8

0

.2
8

9
6

4
0
8

0

.3
6

1
7

5
8
3

0

.3
3

6
6

3
9
4

0

.3
0

3
7

4
6
0

0

.3
0

7
4

7
9
3

2
0

a2
0

.t
x
t

6
,7

0
2
,8

3
1

0

.3
8

8
2

0
4
4

0

.4
2

6
8

2
7
2

0

.3
8

9
4

7
5
9

0

.3
7

1
2

0
5
4

0

.3
9

2
1

7
1
1

0

.3
5

9
3

1
7
4

0

.3
2

3
8

6
5
4

0

.3
2

7
2

4
6
0

A

v
er

a
g
e

0
.4

4
2
6

8
9

0
.4

2
1
4

0
5
0

0

.4
0

9
7

8
0
0

0

.3
5

3
1

7
5
0

0

.3
3

0
4

3
8
0

0

.3
2

3
4

2
6
8

0

.3
0

1
6

1
4
6

0

.3
1

1
2

9
2
1

 Arindam Sarkar, University of Kalyani, India 366

Table: 7.77

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of

.txt files

Figure 7.63: Pictorial representation of the average values of Avalanche and Strict

Avalanche of .txt type bit stream

0.975

0.98

0.985

0.99

0.995

1

V
a
lu

e
s

Techniques

Avalanche

Strict Avalanche

Techniques
Average values of

Avalanche Strict Avalanche Bit Independence

CGTHLPSCT 0.9786178 0.9754595 0.442689

CTHLPSCT 0.9823468 0.9814860 0.4214050

CDHLPSCT 0.9919460 0.9866200 0.4097800

DHLPSCT 0.9948260 0.9922320 0.3531750

KSOMSCT 0.9980140 0.9966320 0.3304380

RSA 0.9998823 0.9994315 0.3234268

TDES 0.9997381 0.9992106 0.3016146

AES 0.9998726 0.9996183 0.3112921

 Arindam Sarkar, University of Kalyani, India 367

Figure 7.64: Pictorial representation of the average values of Bit Independence of .txt type

bit stream

7.5.4 .doc files

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.79, 7.80,

7.81 and 7.82 shows the Avalanche, Strict Avalanche and Bit Independence test of .doc

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT,

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche

test value for each file are very close to the value 1 for all four techniques. Bit

Independence values vary from 0.2409878 to 0.9357209 for KSOMSCT, from

0.2730959 to 0.9529072 for DHLPSCT, from 0.2890763 to 0.9345298 for

CDHLPSCT, from 0.3178352 to 0.9424093 for CTHLPSCT, from 0.3358732 to

0.9917649 for CGTHLPSCT, from 0.0140414 to 0.8851778 for RSA, from

0.2257191 to 0.9180687 for TDES and from 0.518730 to 0.9019331 for AES

respectively.

Figure 7.65 and 7.66 show the graphical representation of the comparison of results of

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average

values) respectively of the .doc type source files for proposed KSOMSCT, DHLPSCT,

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
V

a
lu

e
s

Techniques

 Arindam Sarkar, University of Kalyani, India 368

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES techniques.

Average Avalanche values of proposed KSOMSCT, DHLPSCT, CDHLPSCT,

CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 0.9986350, 0.9897060,

0.9843530, 0.9739355, 0.9698779, 0.9999707, 0.9999233, and 0.9999362

respectively. Average Strict Avalanche values of proposed KSOMSCT, DHLPSCT,

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.9974800, 0.9878430, 0.9816040, 0.9723390, 0.9680110, 0.9998032, 0.9997301,

and 0.9997919 respectively. Average Bit Independence values of proposed KSOMSCT,

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are

0.7664320, 0.7851330, 0.7883700, 0.8014841, 0.8237869, 0.7353065, 0.7611090,

and 0.7484538 respectively. Proposed technique has the highest average Bit

Independence value which indicates that proposed technique provides better degree of

security and comparable to other techniques.

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
6
9

T
ab

le
:

7
.7

8

C
o
m

p
ar

is
o
n
s

o
f

A
v
al

an
ch

e
o
f

.d
o
c

fi
le

s

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
d
o

c
2

1
,0

5
2

0
.8

2
1
7

4
8
5

0

.9
6

8
3

7
6
4

0

.9
7

8
6

5
4
9

0

.9
8

7
4

5
3
4

0

.9
9

8
7

6
4
5

0

.9
9

9
9

7
3
0

0

.9
9

9
1

4
4
1

0

.9
9

9
6

1
8
1

2

a0
2

.
d
o

c
3

3
,8

9
7

0
.9

4
2
8

4
6
1

0

.9
7

6
3

9
8
7

0

.9
8

7
4

3
0
2

0

.9
9

1
6

7
4
3

0

.9
9

7
6

4
5

0

.9
9

9
9

2
5
2

0

.9
9

9
8

4
2
3

0

.9
9

9
7

9
9
6

3

a0
3

.
d
o

c
4

5
,7

3
8

0
.9

2
4
5

6
1
8

0

.9
6

9
3

8
7
5

0

.9
8

2
1

8
9
6

0

.9
8

7
4

3
0
9

0

.9
9

9
4

2
8
7

0

.9
9

9
8

8
0
9

0

.9
9

9
8

3
2
1

0

.9
9

9
7

8
9
6

4

a0
4

.
d
o

c
7

5
,0

9
3

0
.9

7
2
4

7
5
0

0

.9
8

6
9

8
7
3

0

.9
9

5
6

3
4
8

0

.9
9

8
4

5
3
2

0

.9
9

9
8

7
5

0

.9
9

9
9

7
3
2

0

.9
9

9
9

6
1
1

0

.9
9

9
9

5
1
3

5

a0
5

.
d
o

c
1

0
6

,8
7

2

0
.9

6
0
1

8
3
2

0

.9
7

6
3

6
1
7

0

.9
8

9
6

7
4
3

0

.9
9

1
2

7
6
5

0

.9
9

5
3

4
2
9

0

.9
9

9
9

9
2
2

0

.9
9

9
9

6
2
4

0

.9
9

9
8

0
9
9

6

a0
6

.
d
o

c
3

2
7

.0
5

4

0
.9

8
5
1

2
7
3

0

.9
6

9
4

6
5
4

0

.9
7

8
6

5
3
4

0

.9
8

6
5

8
7
5

0

.9
9

9
5

6
4
3

0

.9
9

9
9

7
9
3

0

.9
9

9
9

6
0
8

0

.9
9

9
9

9
9
8

7

a0
7

.
d
o

c
5

8
2

,8
3

1

0
.9

8
8
3

7
9
5

0

.9
6

7
3

6
4
5

0

.9
7

5
5

3
8
9

0

.9
8

2
3

1
8
6

0

.9
9

9
6

7
5
4

0

.9
9

9
9

9
1
2

0

.9
9

9
9

8
8
0

0

.9
9

9
9

9
1
8

8

a0
8

.
d
o

c
7

2
9

,9
1

6

0
.9

8
9
2

7
7
4

0

.9
7

0
6

5
3
9

0

.9
7

7
2

9
8
7

0

.9
8

7
3

4
2
1

0

.9
9

8
0

7
5
6

0

.9
9

9
9

9
6
3

0

.9
9

9
9

9
4
3

0

.9
9

9
9

6
4
7

9

a0
9

.
d
o

c
1

,1
7

0
,2

5
1

0

.9
7

7
2

0
0
1

0

.9
7

1
4

2
0
3

0

.9
8

6
3

9
0
7

0

.9
9

1
2

8
9
7

0

.9
9

8
5

6
4
4

0

.9
9

9
9

8
5
9

0

.9
9

9
9

9
3
5

0

.9
9

9
9

9
4
5

1
0

a1
0

.
d
o

c
1

,7
4

9
,2

7
2

0

.9
8

5
1

2
9
4

0

.9
7

8
3

7
6
5

0

.9
9

1
2

8
7
6

0

.9
9

3
4

2
9
8

0

.9
9

4
3

2
0
9

0

.9
9

9
8

9
5
0

0

.9
9

9
9

8
5
9

0

.9
9

9
9

9
7
1

1
1

a1
1

.
d
o

c
2

,0
4

5
,8

0
5

0

.9
8

4
5

8
5
1

0

.9
8

1
5

4
9

0

.9
9

3
4

2
9
1

0

.9
9

6
4

3
9

0

.9
9

9
5

4
2
3

0

.9
9

9
9

8
4
6

0

.9
9

9
9

7
2
1

0

.9
9

9
9

5
6
0

1
2

a1
2

.
d
o

c
2

,3
7

2
,0

1
4

0

.9
8

4
1

2
7
2

0

.9
7

3
2

7
6
4

0

.9
8

1
5

6
3
2

0

.9
8

7
5

3
4
2

0

.9
9

9
6

7
3
4

0

.9
9

9
9

9
8
4

0

.9
9

9
9

9
2
0

0

.9
9

9
9

8
3
9

1
3

a1
3

.
d
o

c
2

,8
6

9
,2

7
5

0

.9
8

4
7

4
5
2

0

.9
7

0
1

8
4
6

0

.9
8

3
2

8
9
7

0

.9
8

9
6

7
5
5

0

.9
9

9
0

6
7
5

0

.9
9

9
9

7
1
2

0

.9
9

9
9

9
4
0

0

.9
9

9
9

8
2
7

1
4

a1
4

.
d
o

c
3

,1
6

1
,3

5
3

0

.9
8

0
3

8
5
3

0

.9
6

7
3

8
4
4

0

.9
7

1
2

8
9
6

0

.9
7

6
5

3
9
7

0

.9
9

9
7

6
3
7

0

.9
9

9
9

6
7
7

0

.9
9

9
9

7
0
6

0

.9
9

9
9

9
0
1

1
5

a1
5

.
d
o

c
3

,5
7

0
,2

9
5

0

.9
8

4
2

7
3
7

0

.9
7

2
3

6
4
2

0

.9
8

4
8

8
9
7

0

.9
9

1
2

6
5
3

0

.9
9

8
3

4
2

0

.9
9

9
9

9
0
3

0

.9
9

9
9

8
1
1

0

.9
9

9
9

7
2
8

1
6

a1
6

.
d
o

c
3

,8
3

4
,4

2
7

0

.9
7

4
2

7
7
5

0

.9
7

3
2

1
0
9

0

.9
8

5
2

3
9
8

0

.9
9

3
4

2
9
9

0

.9
9

9
1

7
3
2

0

.9
9

9
9

7
6
5

0

.9
9

9
9

9
5
8

0

.9
9

9
9

6
8
2

1
7

a1
7

.
d
o

c
4

,0
1

1
,9

8
6

0

.9
8

6
1

8
4
3

0

.9
8

2
6

5
4
2

0

.9
9

4
1

2
5
9

0

.9
9

6
7

0
4
3

0

.9
9

8
4

5
3
7

0

.9
9

9
9

8
7
3

0

.9
9

9
9

8
3
9

0

.9
9

9
9

9
6
7

1
8

a1
8

.
d
o

c
4

,5
6

2
,3

8
5

0

.9
8

8
6

3
4
2

0

.9
8

8
3

0
9
1

0

.9
9

1
7

5
8
9

0

.9
9

3
2

9
0
7

0

.9
9

9
3

2
1
1

0

.9
9

9
9

6
6
7

0

.9
9

9
9

6
3
2

0

.9
9

9
9

7
9
1

1
9

a1
9

.
d
o

c
4

,8
3

9
,1

0
2

0

.9
9

5
1

0
8
7

0

.9
6

3
3

5
4
1

0

.9
7

5
4

3
3
2

0

.9
8

3
2

8
7
4

0

.9
9

9
3

4
2
7

0

.9
9

9
9

8
9
7

0

.9
9

9
9

8
2
5

0

.9
9

9
9

8
5
4

2
0

a2
0

.d
o
c

5
,4

7
2
,2

9
8

0

.9
8

8
3

0
8
6

0

.9
7

1
6

3
0
9

0

.9
8

3
2

8
9
7

0

.9
8

8
7

0
6
5

0

.9
9

8
7

6
5
5

0

.9
9

9
9

9
0
2

0

.9
9

9
9

6
6
3

0

.9
9

9
9

9
2
6

A

v
er

a
g
e

0
.9

6
9
8

7
7
9

0

.9
7

3
9

3
5
5

0

.9
8

4
3

5
3
0

0

.9
8

9
7

0
6
0

0

.9
9

8
6

3
5
0

0

.9
9

9
9

7
0
7

0

.9
9

9
9

2
3
3

0

.9
9

9
9

3
6
2

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
7
0

T
ab

le
:

7
.7

9

C
o
m

p
ar

is
o
n
s

o
f

S
tr

ic
t

A
v
al

an
ch

e
o

f
.d

o
c

fi
le

s

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
d
o

c
2

1
,0

5
2

0
.8

1
0
7

4
3
9

0

.9
6

7
8

2
1
2

0

.9
7

4
9

3
8
3

0

.9
8

5
0

9
3
4

0

.9
9

7
8

1
0
7

0

.9
9

8
8

2
1
9

0

.9
9

8
4

0
3
1

0

.9
9

9
1

5
5
7

2

a0
2

.
d
o

c
3

3
,8

9
7

0
.9

4
0
2

3
7
4

0

.9
7

4
0

9
3
7

0

.9
8

8
4

0
9
1

0

.9
8

8
3

7
4
6

0

.9
9

5
6

7
3
4

0

.9
9

9
6

3
3
2

0

.9
9

9
0

5
5
7

0

.9
9

9
4

0
0
2

3

a0
3

.
d
o

c
4

5
,7

3
8

0
.9

1
8
3

6
5
1

0

.9
6

7
2

3
5
3

0

.9
7

9
9

0
4
7

0

.9
8

7
3

0
9
4

0

.9
9

8
4

7
6
2

0

.9
9

9
5

2
6
2

0

.9
9

9
1

4
2
2

0

.9
9

9
4

2
9
2

4

a0
4

.
d
o

c
7

5
,0

9
3

0
.9

7
2
3

9
9
4

0

.9
8

5
3

4
2
8

0

.9
9

2
7

5
8
5

0

.9
9

7
3

6
4
1

0

.9
9

8
3

6
6
1

0

.9
9

9
7

9
3
8

0

.9
9

9
7

2
9
8

0

.9
9

9
5

7
5
3

5

a0
5

.
d
o

c
1

0
6

,8
7

2

0
.9

5
9
2

0
5
2

0

.9
7

5
1

0
9
5

0

.9
8

8
6

4
9
8

0

.9
8

9
3

7
4
6

0

.9
9

4
8

7
7
6

0

.9
9

9
7

4
1
2

0

.9
9

9
7

9
4
6

0

.9
9

9
6

9
2
9

6

a0
6

.
d
o

c
3

2
7

.0
5

4

0
.9

8
4
3

7
8
8

0

.9
6

8
2

6
8
7

0

.9
7

4
9

0
3
7

0

.9
8

3
4

8
5
7

0

.9
9

8
0

3
9
8

0

.9
9

9
8

9
3
4

0

.9
9

9
7

8
3
9

0

.9
9

9
7

9
6
9

7

a0
7

.
d
o

c
5

8
2

,8
3

1

0
.9

8
6
7

0
9
3

0

.9
6

6
2

8
3
9

0

.9
7

1
8

3
9
5

0

.9
8

1
7

3
6
3

0

.9
9

8
3

8
4
2

0

.9
9

9
7

9
3
6

0

.9
9

9
8

6
1
1

0

.9
9

9
8

6
0
8

8

a0
8

.
d
o

c
7

2
9

,9
1

6

0
.9

8
7
1

8
7
4

0

.9
6

8
2

0
8
2

0

.9
7

5
3

9
8
3

0

.9
8

6
0

9
3
5

0

.9
9

7
3

5
3
4

0

.9
9

9
7

0
9
5

0

.9
9

9
8

1
0
0

0

.9
9

9
8

7
4
0

9

a0
9

.
d
o

c
1

,1
7

0
,2

5
1

0

.9
7

4
1

0
9
3

0

.9
7

0
1

8
6
4

0

.9
8

3
8

9
2
7

0

.9
8

9
7

5
6
4

0

.9
9

7
3

6
5
3

0

.9
9

9
8

8
1
1

0

.9
9

9
8

9
5
0

0

.9
9

9
9

0
1
4

1
0

a1
0

.
d
o

c
1

,7
4

9
,2

7
2

0

.9
8

4
1

0
4
7

0

.9
7

7
3

0
8
6

0

.9
8

7
2

9
2
8

0

.9
9

1
7

3
0
5

0

.9
9

3
6

3
8
2

0

.9
9

9
8

1
6
7

0

.9
9

9
8

8
2
4

0

.9
9

9
8

7
7
4

1
1

a1
1

.
d
o

c
2

,0
4

5
,8

0
5

0

.9
8

3
6

2
9
5

0

.9
8

0
3

7
6
4

0

.9
8

9
3

7
3
6

0

.9
9

5
0

9
3
7

0

.9
9

8
3

6
4
1

0

.9
9

9
9

2
0
5

0

.9
9

9
9

2
4
9

0

.9
9

9
8

6
4
2

1
2

a1
2

.
d
o

c
2

,3
7

2
,0

1
4

0

.9
8

3
1

7
7
4

0

.9
7

1
5

7
4
3

0

.9
7

7
4

0
9
2

0

.9
8

6
3

7
8
4

0

.9
9

8
3

7
6
4

0

.9
9

9
9

2
8
1

0

.9
9

9
8

5
4
0

0

.9
9

9
8

7
6
0

1
3

a1
3

.
d
o

c
2

,8
6

9
,2

7
5

0

.9
8

1
3

6
7
3

0

.9
6

8
3

8
3
2

0

.9
7

9
3

7
3
7

0

.9
8

8
3

7
7
6

0

.9
9

7
2

9
8
2

0

.9
9

9
9

5
4
7

0

.9
9

9
9

1
8
4

0

.9
9

9
9

0
7
2

1
4

a1
4

.
d
o

c
3

,1
6

1
,3

5
3

0

.9
8

1
3

0
9
4

0

.9
6

6
2

2
8
2

0

.9
6

8
6

3
6
2

0

.9
7

4
6

3
3
9

0

.9
9

8
2

1
6
1

0

.9
9

9
9

5
4
0

0

.9
9

9
9

2
5
6

0

.9
9

9
9

2
7
1

1
5

a1
5

.
d
o

c
3

,5
7

0
,2

9
5

0

.9
8

4
7

6
2
8

0

.9
7

0
2

7
3
7

0

.9
8

1
8

9
3
5

0

.9
8

8
3

0
9
4

0

.9
9

7
3

5
2
2

0

.9
9

9
9

5
8
0

0

.9
9

9
9

1
8
2

0

.9
9

9
9

4
1
9

1
6

a1
6

.
d
o

c
3

,8
3

4
,4

2
7

0

.9
7

4
1

0
9
3

0

.9
7

1
6

3
8
3

0

.9
8

2
9

8
4
8

0

.9
9

0
3

8
7
5

0

.9
9

8
3

6
4
0

0

.9
9

9
9

3
8
4

0

.9
9

9
9

4
9
3

0

.9
9

9
9

2
5
4

1
7

a1
7

.
d
o

c
4

,0
1

1
,9

8
6

0

.9
8

5
1

0
3
8

0

.9
8

0
2

8
3
7

2

0
.9

9
1
8

3
7
6

0

.9
9

4
8

2
2
3

0

.9
9

7
4

6
5
4

0

.9
9

9
9

4
7
8

0

.9
9

9
9

4
4
3

0

.9
9

9
9

5
7
3

1
8

a1
8

.
d
o

c
4

,5
6

2
,3

8
5

0

.9
8

7
1

6
7
3

0

.9
8

7
2

6
3
7

2

0
.9

8
8
7

3
0
3

0

.9
9

1
0

4
8
6

0

.9
9

8
3

6
7
5

0

.9
9

9
9

4
8
2

0

.9
9

9
9

3
6
7

0

.9
9

9
9

6
5
4

1
9

a1
9

.
d
o

c
4

,8
3

9
,1

0
2

0

.9
9

3
8

7
5
6

0

.9
6

1
6

2
3
8

6

0
.9

7
2
7

6
4
8

0

.9
8

0
3

8
8
3

0

.9
9

8
4

6
1
0

0

.9
9

9
9

4
0
0

0

.9
9

9
9

3
3
4

0

.9
9

9
9

2
7
5

2
0

a2
0

.d
o
c

5
,4

7
2
,2

9
8

0

.9
8

8
2

7
8
4

0

.9
6

9
2

6
7
3

7

0
.9

8
1
0

9
3
7

0

.9
8

7
1

0
9
1

0

.9
9

7
3

5
5
6

0

.9
9

9
9

6
3
2

0

.9
9

9
9

3
8
5

0

.9
9

9
9

8
2
6

 A
v
er

ag
e

0
.9

6
8
0

1
1
0

0

.9
7

2
3

3
9
0

0

.9
8

1
6

0
4
0

0

.9
8

7
8

4
3
0

0

.9
9

7
4

8
0
0

0

.9
9

9
8

0
3
2

0

.9
9

9
7

3
0
1

0

.9
9

9
7

9
1
9

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
7
1

T
ab

le
:

7
.8

0

C
o
m

p
ar

is
o
n
s

o
f

B
it

 I
n
d
ep

en
d
en

ce
 o

f
.d

o
c

fi
le

s

S
er

ia
l

n
o

.
S

o
u

rc
e

fi
le

 n
a

m
e

S
o

u
rc

e

fi
le

 s
iz

e

(i
n

 b
y

te
s)

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

R
S

A

T
D

E
S

A

E
S

1

a0
1

.
d
o

c
2

1
,0

5
2

0
.3

3
5
8

7
3
2

0

.3
1

7
8

3
5
2

0

.2
8

9
0

7
6
3

0

.2
7

3
0

9
5
9

0

.2
4

0
9

8
7
8

0

.0
1

4
0

4
1
4

0

.2
2

5
7

1
9
1

0

.0
5

1
8

7
3
0

2

a0
2

.
d
o

c
3

3
,8

9
7

0
.5

5
1
0

9
4
7

0

.6
0

9
5

7
2
3

0

.6
1

9
8

4
6
2

0

.5
9

6
5

8
4
7

0

.5
1

2
9

0
8
5

0

.5
3

5
0

1
2
6

0

.4
9

6
1

7
5
3

0

.5
2

6
8

7
9
1

3

a0
3

.
d
o

c
4

5
,7

3
8

0
.5

9
3
1

9
7
2

0

.5
8

0
1

6
7
4

0

.5
7

3
9

8
2
0

0

.6
2

3
0

9
7
5

0

.6
5

3
0

9
8
1

0

.6
0

9
7

2
9
0

0

.5
7

1
1

9
9
7

0

.5
9

4
8

6
5
6

4

a0
4

.
d
o

c
7

5
,0

9
3

0
.5

0
9
2

8
7
9

0

.5
0

9
2

8
4
6

0

.5
2

7
8

4
5
0

0

.5
5

2
9

8
7
3

0

.5
5

3
7

7
6
4

0

.5
3

2
5

3
6
4

0

.4
9

8
0

9
7
2

0

.5
1

2
8

2
8
9

5

a0
5

.
d
o

c
1

0
6

,8
7

2

0
.4

8
8
1

0
8
4

0

.6
4

8
9

0
1
6

0

.6
3

2
9

0
7
5

0

.5
5

2
0

9
5
0

0

.5
2

9
8

7
0
0

0

.5
2

1
7

3
1
7

0

.4
7

5
1

1
2
1

0

.4
9

9
3

6
2
8

6

a0
6

.
d
o

c
3

2
7

.0
5

4

0
.9

2
8
6

5
1
3

0

.8
3

5
1

0
9
3

0

.7
9

0
4

7
6
5

0

.7
8

3
1

9
8
3

0

.8
6

4
0

9
3
2

0

.8
3

6
1

8
9
3

0

.8
3

1
0

8
9
9

0

.8
3

1
3

1
9
5

7

a0
7

.
d
o

c
5

8
2

,8
3

1

0
.7

9
7
1

5
6
3

0

.9
4

1
2

0
9
6

0

.9
3

4
5

2
9
8

0

.7
3

4
1

8
6
6

0

.6
5

2
0

9
4
8

0

.6
9

0
5

6
0
5

0

.6
9

5
7

2
1
9

0

.6
9

8
2

1
5
1

8

a0
8

.
d
o

c
7

2
9

,9
1

6

0
.9

9
1
7

6
4
9

0

.8
1

8
3

4
8
2

0

.8
4

7
6

2
0
5

0

.9
5

2
9

0
7
2

0

.8
7

3
7

1
6
0

0

.8
6

0
8

4
1
3

0

.9
1

8
0

6
8
7

0

.9
0

1
9

3
3
1

9

a0
9

.
d
o

c
1

,1
7

0
,2

5
1

0

.9
4

4
1

8
9
4

0

.8
7

2
0

9
4
6

0

.8
6

9
8

5
3
2

0

.8
6

3
9

8
3
6

0

.7
9

0
4

5
9
3

0

.8
6

5
5

5
0
0

0

.8
7

6
6

2
2
2

0

.8
7

1
6

9
8
7

1
0

a1
0

.
d
o

c
1

,7
4

9
,2

7
2

0

.9
6

0
3

8
9
7

0

.9
4

2
4

0
9
3

0

.9
2

7
5

0
9
8

0

.7
9

2
1

0
8
5

0

.9
1

6
5

0
4
9

0

.6
9

9
7

0
6
3

0

.8
4

6
6

8
0
2

0

.7
9

3
6

3
8
9

1
1

a1
1

.
d
o

c
2

,0
4

5
,8

0
5

0

.9
6

2
1

7
6
5

0

.9
2

0
0

3
1
4

0

.8
8

3
7

2
0
1

0

.9
3

2
9

0
7
6

0

.8
3

1
0

9
5
5

0

.8
2

9
1

0
4
9

0

.9
0

5
9

8
2
7

0

.8
8

4
2

5
7
2

1
2

a1
2

.
d
o

c
2

,3
7

2
,0

1
4

0

.9
1

5
3

8
9
7

0

.8
9

2
0

8
4
7

0

.8
7

2
5

3
4
6

0

.8
8

3
4

7
2
8

0

.8
8

5
4

0
3
5

0

.8
1

3
4

4
9
1

0

.8
4

7
6

7
4
0

0

.8
3

7
0

3
5
7

1
3

a1
3

.
d
o

c
2

,8
6

9
,2

7
5

0

.9
2

6
7

0
4
6

0

.8
9

1
7

6
1
1

0

.8
5

1
8

7
3
3

0

.9
0

4
5

2
9
7

0

.8
8

4
0

9
3
3

0

.8
3

5
3

5
6
6

0

.8
6

1
1

9
2
9

0

.8
5

1
8

4
1
9

1
4

a1
4

.
d
o

c
3

,1
6

1
,3

5
3

0

.9
3

6
7

8
9
3

0

.9
4

0
9

1
8
4

0

.9
2

2
8

7
4
5

0

.9
2

3
8

9
7
6

0

.9
2

5
6

1
0
9

0

.8
6

2
5

3
0
1

0

.8
9

4
7

0
5
8

0

.8
8

4
8

1
0
1

1
5

a1
5

.
d
o

c
3

,5
7

0
,2

9
5

0

.9
3

5
1

8
9
7

0

.8
8

3
0

9
2
8

0

.8
9

0
3

8
8
2

0

.8
6

4
9

0
6
1

0

.9
1

7
8

5
4
3

0

.8
7

0
4

0
4
8

0

.8
7

8
4

2
1
3

0

.8
7

1
5

9
6
3

1
6

a1
6

.
d
o

c
3

,8
3

4
,4

2
7

0

.9
5

9
2

6
4
1

0

.8
1

0
9

4
8
3

0

.8
9

2
0

9
3
9

0

.9
3

4
2

9
0
8

0

.8
1

0
9

4
7
5

0

.8
8

5
1

7
7
8

0

.9
0

2
0

5
2
4

0

.8
9

3
7

2
7
4

1
7

a1
7

.
d
o

c
4

,0
1

1
,9

8
6

0

.9
4

8
0

2
8
4

0

.8
3

0
9

2
8
5

0

.8
1

2
1

9
0
8

0

.9
4

3
8

9
6
4

0

.8
8

4
9

0
7
7

0

.8
8

5
7

1
7
0

0

.8
9

2
0

8
5
4

0

.8
8

6
3

3
5
1

1
8

a1
8

.
d
o

c
4

,5
6

2
,3

8
5

0

.9
3

6
1

4
2
9

0

.9
3

9
0

5
9
8

0

.9
0

4
5

3
2
2

0

.8
5

3
2

9
0
8

0

.7
3

6
7

4
9
7

0

.8
6

5
0

6
3
9

0

.8
8

0
9

7
5
7

0

.8
7

2
0

0
5
0

1
9

a1
9

.
d
o

c
4

,8
3

9
,1

0
2

0

.9
3

5
9

8
3
7

0

.9
2

5
6

2
9
4

0

.8
2

9
4

5
2
6

0

.8
6

3
0

2
2
1

0

.9
3

5
7

2
0
9

0

.8
5

8
5

1
1
3

0

.8
7

4
6

3
8
6

0

.8
6

5
1

5
0
9

2
0

a2
0

.d
o
c

5
,4

7
2
,2

9
8

0

.9
2

0
3

5
7
1

0

.9
2

0
2

9
4
7

0

.8
9

4
0

9
2
1

0

.8
7

4
2

0
9
9

0

.9
2

8
7

5
6
3

0

.8
3

4
9

1
5
9

0

.8
4

9
9

6
5
1

0

.8
3

9
7

0
1
1

A

v
er

ag
e

0
.8

2
3
7

8
6
9

0

.8
0

1
4

8
4
1

0

.7
8

8
3

7
0
0

0

.7
8

5
1

3
3
0

0

.7
6

6
4

3
2

0

0
.7

3
5
3

0
6
5

0

.7
6

1
1

0
9
0

0

.7
4

8
4

5
3
8

 Arindam Sarkar, University of Kalyani, India 372

Table: 7.81

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of

.doc files

Figure 7.65: Pictorial representation of the average values of Avalanche and Strict

Avalanche of .doc type bit stream

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

V
a
lu

e
s

Techniques

Avalanche

Strict Avalanche

Techniques
Average values of

Avalanche Strict Avalanche Bit Independence

CGTHLPSCT 0.9698779 0.9680110 0.8237869

CTHLPSCT 0.9739355 0.9723390 0.8014841

CDHLPSCT 0.9843530 0.9816040 0.7883700

DHLPSCT 0.9897060 0.9878430 0.7851330

KSOMSCT 0.9986350 0.9974800 0.7664320

RSA 0.9999707 0.9998032 0.7353065

TDES 0.9999233 0.9997301 0.7611090

AES 0.9999362 0.9997919 0.7484538

 Arindam Sarkar, University of Kalyani, India 373

Figure 7.66: Pictorial representation of the average values of Bit Independence of .doc type

bit stream

7.6 Test for Non-Homogeneity

Chi-Square value is calculated from the character frequencies using the formula devised

by Karl Pearson which is called “Pearsonian Chi-Square”. The higher the Chi-Square

values the more deviation from the original message. Section 7.6.1 contains the results of

.dll files and section 7.6.2 deals with .exe files. Section 7.6.3 and 7.6.4 deal with the

results of .txt and .doc files respectively.

7.6.1 .dll files

Twenty .dll files of different sizes varying from 3216 bytes to 5,456,704 bytes have been

taken to measure the Chi-Square values for different techniques. Table 7.83 shows the

Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT,

KSOMSCT, TDES, and AES of .dll type files. The average Chi-Square values obtained

using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT,

TDES, and AES are 66934661, 6975581, 7046365, 7091691, 7118000, 7133646,

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83
V

a
lu

e
s

Techniques

 Arindam Sarkar, University of Kalyani, India 374

and 6804334 respectively. Chi-Square values increase with the increase of source file

sizes.

Figure 7.67 shows the comparison of the average Chi-Square values of .dll type of source

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT,

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted

files are very high. So, it may obtain better degree of security in proposed which is

comparable with that of others.

Figure 7.67: Pictorial representation of the average values of Chi-Square of .dll type bit

stream

6800000

6850000

6900000

6950000

7000000

7050000

7100000

7150000

V
a
lu

e
s

Techniques

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
7
5

T
ab

le
:

7
.8

2

C
o
m

p
ar

is
o
n
s

o
f

C
h
i-

S
q
u
ar

e
v
al

u
e

o
f

.d
ll

 f
il

es

S
er

ia
l

n
o

.
S

o
u

rc
e

F
il

e
n

a
m

e

S
o

u
rc

e
 f

il
e

si
ze

(I
n

 b
y

te
s)

C
h

i-
S

q
u

a
re

 v
a

lu
es

C
G

T
H

L
P

S
C

T

 C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

T
D

E
S

A

E
S

1

a0
1

.d
ll

3

2
1

6

3
6

2
3
1

3
4

0
8
3

3
3

7
3
9

3
4

0
9
4

3
4

9
3
3

3
6

0
5
4

2

6
0

3
6

2

a0
2

.d
ll

6

,6
5

6

1
9

4
3
9

3

1
8

5
2
9

7

1
2

8
3
9

3

1
2

6
3
4

0

1
0

8
6
7

4

1
9

3
3
1

8

1
1

8
3
3

1

3

a0
3

.d
ll

1

2
,2

8
8

1
6

9
4
2

7

1
9

4
0
3

2

1
4

7
3
0

6

1
4

5
5
4

3

1
3

7
8
3

4

1
6

5
0
5

3

8
1

4
7
5

4

a0
4

.d
ll

2

4
,5

7
6

8
2

6
0
9

3
5

8
2

6
0
3

2
1

7
2

4
9
0

8
9

7

1
2

9
5

6
2

6
1

4
7
6

5
3

8
3

1
0
6

7
7

4

7
9

4
0

2
7

5

a0
5

.d
ll

5

8
,7

8
4

8
2

5
3
9

7

8
0

9
4
2

5

3
9

5
9
3

6

3
8

1
2
9

5

3
2

1
9
8

3

8
0

6
8
0

3

4
6

6
4
6

6

6

a0
6

.d
ll

8

5
,0

2
0

6
6

4
1
8

9

6
5

9
3
0

4

4
8

1
9
0

4

4
6

8
9
4

3

4
4

9
2
7

2

6
5

4
7
5

6

4
3

3
8
7

2

7

a0
7

.d
ll

1

6
9

,4
7

2

1
4

8
2
3

7
5

1
4

6
2
8

1
2

9
9

6
9
5

2

9
7

1
9
0

6

8
6

3
4
0

6

1
4

7
3
4

1
0

1

6
0

1
0

7
0

8

a0
8

.d
ll

3

5
9

,9
3

6

1
1

2
2
0

9
6

8
9

9
0
5

3

7
2

2
9
0

4

7
3

5
2
3

7

7
3

1
2
7

6

4
2

3
9
8

4

3
9

8
6
8

5

9

a0
9

.d
ll

5

9
3

,9
2

0

1
3

6
2
6

7
1

1
3

1
6
5

3
9

1
2

7
7
8

2
9

1

2
5

9
0

4
2

1
1

9
8
7

4
9

1
3

6
7
9

6
8

1

2
7

7
7

5
1

1
0

a1
0

.d
ll

9

0
9

,3
1

2

2
3

7
0
4

7
8

2
2

9
8
4

1
7

2
0

4
0
6

3
7

1

9
1

8
4

2
0

1
6

8
0
9

5
6

2
3

7
7
5

4
4

2

2
7

5
6

7
6

1
1

a1
1

.d
ll

1

,2
9

3
,8

2
4

2

4
2

2
9

4
1

2
0

6
3
4

9
4

1
8

5
8
4

2
8

1

8
3

2
9

0
7

1
6

3
3
9

6
2

1
0

6
5
9

9
9

9

4
8

8
3

4

1
2

a1
2

.d
ll

1

,9
2

5
,1

8
5

4

5
9

1
0

6
3
7

4
3

2
9
0

3
4
2

3
8

9
2
2

9
8
2

4

1
2

6
4

8
9
3

4
5

1
7
2

3
8
4

4
6

2
4
5

1
2
6

4

7
6

2
7

3
4
6

1
3

a1
3

.d
ll

2

,4
9

8
,5

6
0

5

1
8

2
5

6
2

5
0

9
8
2

8
5

4
7

8
0
2

7
4

4

7
1

2
9

8
4

4
8

8
7
3

4
7

4
6

1
6
3

2
0

4

6
2

5
8

2
9

1
4

a1
4

.d
ll

3

,4
8

5
,9

6
8

1

4
2

2
0

9
3
7

1
3

8
8
4

3
0
6

1
2

0
3
1

8
4
7

1

1
9

3
9

4
3
3

1
1

5
9
0

5
3
4

1
4

5
6
7

4
9
7

1

3
5

6
0

1
2
1

1
5

a1
5

.d
ll

3

,7
9

0
,3

3
6

7

0
0

1
8

7
4

8
8

3
0
2

8
7

8
8

0
7
9

4
6

8

7
8

3
7

4
8

8
9

4
2
9

0
7

7
1

1
0
3

3
9

7

0
5

1
8

8
9

1
6

a1
6

.d
ll

4

,2
5

3
,8

1
6

7

9
7

1
0

9
3

8
4

7
2
8

0
4

1
0

9
5
2

4
7
1

1

0
3

2
1

1
1
7

9
2

1
5
6

4
8

8
4

5
1
7

9
4

8

1
9

4
7

7
7

1
7

a1
7

.d
ll

4

,5
7

5
,2

3
2

7

8
5

0
9

3
5

8
6

5
1
9

0
4

9
4

6
4
5

2
8

9

3
9

3
2

1
7

8
9

1
4
8

9
5

8
6

3
2
4

0
8

8

6
4

9
4

4
6

1
8

a1
8

.d
ll

4

,8
8

3
,4

5
6

8

7
3

6
2

1
7

8
9

1
0
4

6
2

1
0

9
6
3

0
5
3

1

0
8

7
2

3
1
9

9
9

1
2
9

0
6

8
8

6
6
0

8
5

8

4
5

0
0

0
4

1
9

a1
9

.d
ll

5

,0
5

4
,4

6
4

1

4
6

2
9

0
9
2

1
4

7
4
0

3
7
1

1
5

9
2
0

5
3
2

1

4
5

5
6

3
4
2

1
4

1
0
9

3
4
5

1
4

8
7
5

4
0
9

1

3
2

6
5

4
2
3

2
0

a2
0

.d
ll

5

,4
5

6
,7

0
4

1

1
9

8
1

7
6
3

1
1

8
0
6

3
7
3

1
3

7
8
4

2
9
6

1

2
4

9
8

3
8
9

1
2

6
7
3

4
9
3

1
2

4
3
2

3
7
1

1

2
2

3
9

6
2
3

A
v
er

ag
e

7
1

1
8
0

0
0

7
0

9
1
6

9
1

7
0

4
6
3

6
5

6

9
7

5
5

8
1

6
9

3
4
6

6
1

7
1

3
3
6

4
6

6

8
0

4
3

3
4

 Arindam Sarkar, University of Kalyani, India 376

7.5.2 .exe files

Twenty .exe files of different sizes varying from 1063 bytes to 6,735,934 bytes have

been taken to measure the Chi-Square values for different techniques. Table 7.84 shows

the Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT,

DHLPSCT, KSOMSCT, TDES, and AES of .exe type files. The average Chi-Square

values obtained using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT,

KSOMSCT, TDES, and AES are 4104189, 4349141, 4574169, 4757447, 4834975,

6169940, and 4096723 respectively. Chi-Square values increase with the increase of

source file sizes.

Figure 7.68 shows the comparison of the average Chi-Square values of .exe type of source

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT,

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted

files are very high. So, it may obtain better degree of security in proposed which is

comparable with that of others.

Figure 7.68: Pictorial representation of the average values of Chi-Square of .exe type bit

stream

4000000

4500000

5000000

5500000

6000000

6500000

V
a

lu
es

Techniques

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
7
7

T
ab

le
:

7
.8

3

C
o
m

p
ar

is
o
n
s

o
f

C
h
i-

S
q
u
ar

e
v
al

u
e

o
f

.e
xe

 f
il

es

S
er

ia
l

n
o

.
S

o
u

rc
e

F
il

e
n

a
m

e

S
o

u
rc

e
 f

il
e

si
ze

(I
n

 b
y

te
s)

C
h

i-
S

q
u

a
re

 v
a

lu
es

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

T
D

E
S

A

E
S

1

a0
1

.
ex

e
1

,0
6

3

1
2

8
7
3

1
1

9
8
5

1
3

8
0
6

1
2

9
8
0

1
4

1
7
2

3
1

0
4
7

1

5
3

4
9

2

a0
2

.
ex

e
2

,5
1

8

6
9

8
3
4

6
7

0
9
3

7
9

9
3
8

7
6

3
2
1

8
9

9
4
6

1
6

7
6
0

4

5
8

9
1
1

3

a0
3

.
ex

e
8

,2
5

0

8
5

2
9
7

8
4

5
2
1

8
4

9
0
2

8
4

1
2
0

8
6

0
9
1

3
1

7
1
2

5
8

1

1
9

3
9

5
2

4

a0
4

.
ex

e
1

5
,9

3
7

1
1

8
4
2

7

1
1

5
2
3

9

1
0

8
3
5

6

1
0

3
8
9

5

9
9

3
8
7

1
3

7
4
2

1

9
0

4
3
9

5

a0
5

.
ex

e
2

2
,8

7
4

2
8

7
8
3

2
7

9
0
5

2
6

8
9
4

2
6

4
9
8

2
5

9
8
5

4
0

6
0
5

4

2
9

4
8

6

a0
6

.
ex

e
3

5
,1

0
6

2
7

8
9
3

4

2
7

3
9
7

3

2
7

2
0
9

5

2
6

9
8
7

4

2
5

7
3
9

4

7
5

1
0
3

4

9
9

6
5
6

1

7

a0
7

.
ex

e
5

2
,0

3
2

1
1

5
3
4

2

1
1

4
7
8

3

1
1

1
8
7

5

1
1

0
8
4

5

1
0

8
7
4

6

2
5

2
2
4

6

2
2

7
9
7

2

8

a0
8

.
ex

e
1

4
5

,3
8

7

6
4

5
0
9

4

6
4

1
0
9

7

6
3

7
8
9

4

6
3

0
9
5

5

6
2

2
4
6

7

1
6

1
9
6

1
9

8

7
9

6
2

2

9

a0
9

.
ex

e
2

4
8

,2
7

3

6
4

3
9
0

2

6
4

1
1
1

7

6
3

6
9
4

9

6
2

9
8
6

4

6
1

8
6
4

7

1
1

8
8
3

9
2

1

2
0

6
4

6
1

1
0

a1
0

.
ex

e
4

7
8

,3
2

1

8
3

7
2
3

1

8
2

5
2
8

7

8
2

1
6
7

4

8
0

1
0
9

7

7
9

6
4
5

4

1
6

4
6
8

9
5

1

6
1

1
8

1
4

1
1

a1
1

.
ex

e
7

3
8

,2
7

5

1
8

2
9
0

5
5

1
7

1
5
6

3
6

1
6

5
4
0

9
8

1

5
8

9
5

4
9

1
5

5
7
4

8
2

1
9

5
3
3

8
1

1

9
5

5
3

0
5

1
2

a1
2

.
ex

e
1

,5
9

4
,2

7
6

2

3
4

5
2

8
7

2
3

3
0
8

6
5

2
3

1
9
4

8
5

2

2
8

9
4

8

2
2

1
8
3

7

3
3

8
8
0

1
3

3

3
4

9
8

2
1

1
3

a1
3

.
ex

e
2

,2
7

3
,6

7
0

4

0
3

9
0

7
5

4
0

2
9
8

6
4

4
0

0
9
8

5
6

3

9
7

5
6

3
5

3
8

7
6
7

4
8

5
3

8
6
3

2
3

5

3
5

8
5

0
8

1
4

a1
4

.
ex

e
2

,9
8

5
,3

0
6

3

8
7

2
3

9
3

3
7

5
1
8

3
4

3
5

6
7
8

4
9

3

5
1

7
8

4
3

3
3

7
8
4

8
7

4
4

3
5
1

8
9

4

3
9

1
2

8
0

1
5

a1
5

.
ex

e
3

,4
1

2
,6

3
9

1

9
7

5
3

2

1
9

3
3
8

9
6

1
8

9
7
4

8
5

1

8
2

0
9

4
6

1
7

6
5
8

4
9

3
1

2
4
5

1

3
0

4
5
0

3

1
6

a1
6

.
ex

e
3

,8
7

2
,9

8
4

2

5
4

0
6

3
7

2
5

1
9
0

8
6

2
4

8
7
6

5
0

2

2
8

5
7

7
3

2
0

1
8
4

7
8

2
8

5
9
2

3
9

2

5
2

9
9

3
5

1
7

a1
7

.
ex

e
4

,0
3

8
,3

8
7

6

0
1

5

5
9

8
6

5
5

2
1

5
1

2
9

4
7

8
6

8
7

8
3

9
0

1
5

1
8

a1
8

.
ex

e
5

,2
8

4
,7

9
6

5

3
8

9
0

4
3

5
3

6
0
2

7

5
3

4
3
3

9
8

5

2
7

6
7

4
9

4
9

8
7
5

8
4

6
8

7
4
5

5
2

6

5
9

0
2

1
7

1
9

a1
9

.
ex

e
5

,6
2

8
,0

3
7

1

9
8

5
4

2
0
9

1
8

8
3
7

6
4
8

1
6

6
5
4

9
0
1

1

5
7

4
9

3
2
7

1
4

8
9
4

7
5
6

2
2

4
3
1

7
6
2

1

6
7

3
4

3
6
8

2
0

a2
0

.
ex

e
6

,7
3

5
,9

3
4

5

3
7

9
0

5
4
7

5
1

8
5
2

0
9
8

5
0

7
4
8

7
5
4

4

9
7

8
6

4
8
1

4
6

6
5
8

4
9
4

6
6

7
4
2

9
8
1

3

4
3

8
7

4
8
4

A
v
er

ag
e

4
8

3
4
9

7
5

4
7

5
7
4

4
7

4
5

7
4
1

6
9

4

3
4

9
1

4
1

4
1

0
4
1

8
9

6
1

6
9
9

4
0

4

0
9

6
7

2
3

 Arindam Sarkar, University of Kalyani, India 378

7.5.3 .txt files

Twenty .txt files of different sizes varying from 1504 bytes to 6,702,831 bytes have been

taken to measure the Chi-Square values for different techniques. Table 7.85 shows the

Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT,

KSOMSCT, TDES, and AES of .txt type files. The average Chi-Square values obtained

using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT,

TDES, and AES are 476002855099, 457088752936, 41143854777, 36900009771,

30722317122, 28557702243, and 25826336277 respectively. Chi-Square values

increase with the increase of source file sizes.

Figure 7.69 shows the comparison of the average Chi-Square values of .txt type of source

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT,

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted

files are very high. So, it may obtain better degree of security in proposed which is

comparable with that of others.

Figure 7.69: Pictorial representation of the average values of Chi-Square of .txt type bit

stream

0

50000000000

100000000000

150000000000

200000000000

250000000000

300000000000

350000000000

400000000000

450000000000

500000000000

V
a
lu

e
s

Techniques

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
7
9

T
ab

le
:

7
.8

4

C
o
m

p
ar

is
o
n
s

o
f

C
h
i-

S
q
u
ar

e
v
al

u
e

o
f

.t
xt

 f
il

es

S
er

ia
l

n
o

.
S

o
u

rc
e

F
il

e
n

a
m

e

S
o

u
rc

e
 f

il
e

si
ze

(I
n

 b
y

te
s)

C
h

i-
S

q
u

a
re

 v
a

lu
es

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

T
D

E
S

A

E
S

1

a0
1

.t
x
t

1
,5

0
4

3
9

2
8
4

6
4

3
8

6
4
7

3

3
7

4
8
5

3
7

1
9
8

3
1

9
3
8

5
8

3
8
5

1

5
2

6
7

2

a0
2

.t
x
t

7
,9

2
1

1
3

2
8
9

4
5
2

1

2
2

5
8

3
0
9

7
8

5
6
3

4

6
5

3
8
1

2

5
8

7
1
2

9

1
5

0
0
8

7
4

3

4
7

6
6

3

3

a0
3

.t
x
t

1
7

,0
3
6

9
1

5
4
2

9
8
0

8

6
1

2
9

8
6
5

4
8

2
3
4

0
9

4

4
2

5
9

0
9

3
8

0
9
6

4
5

7
7

2
1
6

6
1

1

7
3

1
3

1
0

4

a0
4

.t
x
t

4
4

.6
2
4

4
8

7
1
5

4
0
9

4

6
9

1
9

0
2
3

7
2

3
9
0

6
4

5

9
5

6
3

2
1

4
9

2
3
8

0
6

4
7

0
9
7

2
4

4

7
5

3
9

7
1

5

a0
5

.t
x
t

6
8

,8
2
3

3
9

8
2
8

7
1
3

5

3
8

9
2
7

8
9
5

4

2
7

1
8
7

5
6
4

2

2
1

2
9

8
7
6

1
8

5
6
9

0
6
4

2
9

7
0
4

6
3
9

1

5
6

6
3

9
7
7

6

a0
6

.t
x
t

1
6

1
,9

3
5

4
8

1
5
9

7
1
3

6

4
5

7
1
2

9
8
4

5

9
2

7
9
0

5
6
9

7

6
4

3
8

9
0
7

6
8

8
6
5

9
0
6

7
6

6
2
1

0
8
3

6

4
0

4
3

2
7
0

7

a0
7

.t
x
t

3
2

8
,0

1
7

3
7

4
1
6

3
2
4

7
2

3

5
6

1
2

0
9
6

7
3

4

2
3

3
7

6
1
2

9

3
5

3
8
9

0
7
4

5

3
2

8
0
9

6
7
4

5

3
8

8
5
3

9
9
2

1

3
2

5
8
3

7
9
0

0

8

a0
8

.t
x
t

5
8

7
,2

9
0

1
6

1
2
9

8
4
6

7
6
1

1

5
9

9
0

9
6
5

3
4
0

1

7
3

8
7

9
7
6

7
6

1

5
4

9
8

6
7
3

3
5

1

3
6

4
5

3
8
9

3
2

1

2
5

8
3

6
2
6

7
0

1

0
8

2
3

1
5
4

6
0

9

a0
9

.t
x
t

1
,0

4
9
,7

6
3

5

8
7

9
8

4
7
1

5
2
5

5

5
3

1
2

9
8
6

7
4
3

4

8
4

9
8

4
6
8

7
5

3

4
8

5
6

9
0
4

5
3

2

9
6

5
4

2
3
1

8
7

3

2
6

4
2

2
1
2

1
1

2

5
8

5
1

0
0
0

2
4

1
0

a1
0

.t
x
t

1
,4

1
8
,0

2
5

5

3
8

2
1

6
5
1

7
4
3

5

1
2

8
7

3
6
9

5
6
1

8

1
9

5
6

4
5
0

9
8

7

5
4

9
0

8
7
5

6
4

8

2
3

7
9

0
8
7

6
5

5

8
9

6
9

7
1
6

1
0

5

5
2

4
0

8
9
7

4
6

1
1

a1
1

.t
x
t

1
,6

8
1
,3

2
9

1

7
3

2
9

0
5
4

1
2
8

6

1
6

5
5
3

2
8
1

6
7
3

2

1
4

1
4
5

3
9
0

9
8
6

1

2
1

9
8

0
8
7

6
5
4

7

9
4

1
8

9
4
3

9
0

9

0
8

7
0

7
2
7

8
3

8

3
5

5
9

0
2
1

4
6

1
2

a1
2

.t
x
t

2
,0

5
9
,3

1
8

1

8
4

9
7

5
9
8

4
6
7

5

1
8

1
6
3

2
9
0

7
4
5

3

1
8

9
6
7

4
5
2

3
9
8

1

8
7

6
7

4
5
3

0
9
8

1

2
9

6
7

0
9
5

4
3
7

1

1
6

2
7

2
7
0

1
5
6

1

1
3

8
7

7
9
7

3
3
4

1
3

a1
3

.t
x
t

2
,6

1
8
,4

9
2

3

2
1

0
8

5
9
2

4
3
3

1

3
0

5
0
9

5
6
2

3
8
7

4

3
1

9
1
2

9
8
5

5
3
4

2

9
5

4
3

0
9
8

7
3
4

2

5
8

3
9

0
9
6

7
3
8

2

4
2

6
0

6
5
0

9
6
5

2

1
9

7
8

4
2
0

8
3
4

1
4

a1
4

.t
x
t

3
,1

5
4
,9

3
7

5

1
8

1
9

0
3
7

6
3
4

4

4
8

7
5
8

9
4
5

3
2
8

7

4
0

7
5
6

3
4
0

9
8
7

3

4
5

2
9

1
8
7

2
3
0

2

8
6

3
4

9
0
8

7
5
9

3

2
0

2
1

9
0
6

4
9
9

2

9
3

3
2

7
0
9

6
5
0

1
5

a1
5

.t
x
t

4
,0

7
3
,8

2
9

6

4
2

9
0

7
8
4

5
1
2

6

6
1

9
4
3

2
7
1

6
0
9

3

7
5

3
2
7

9
0
9

6
5
4

4

9
7

5
6

2
3
0

9
8
7

5

3
8

6
7

3
4
0

9
8
7

4

7
3

4
6

5
2
4

6
6
6

4

4
6

6
0

5
2
0

9
2
3

1
6

a1
6

.t
x
t

4
,9

3
6
,5

2
1

9

4
8

2
9

2
7
6

4
1
0

2

9
2

6
4
3

1
2
7

6
3
5

6

8
1

4
7
0

9
8
3

4
5
6

5

6
8

6
7

2
1
5

4
9
0

5

2
4

1
2

9
0
7

6
4
5

5

7
6

9
8

6
8
3

7
1
7

4

9
7

8
3

6
3
8

1
4
7

1
7

a1
7

.t
x
t

5
,1

2
5
,8

4
7

1

3
1

1
7

6
2
0

6
8
4

8
3

1

2
5

5
4

3
9
0

6
1
8

0
5

1

4
1

9
0

7
6
5

4
3
8

7

1
1

6
3
4

0
9
8

2
3
9

5

5
6

1
6
4

3
8
9

0
7
9

7

2
9

2
2

4
6
1

4
9
0

6

4
8

4
6

8
8
9

1
5
3

1
8

a1
8

.t
x
t

5
,5

9
3
,2

1
9

1

5
7

2
8

9
3
5

9
7
3

2
4

1

4
9

6
7

4
5
3

2
8
7

7
5

1

2
5

9
8

4
6
0

9
8
7

9

9
6

4
9
0

8
6
3

4
5
7

8

8
9

5
4

1
2
0

9
5
3

8

1
7

0
7

4
6
8

1
4
7

7

7
5

4
3

0
8
1

3
1
8

1
9

a1
9

.t
x
t

5
,8

9
8
,3

0
2

1

7
5

3
2

9
0
5

6
3
8

5
3

1

6
9

5
7

9
0
7

5
6
4

6
8

1

2
8

6
5

3
9
0

9
6
4

5

1
7

5
5
6

3
4
0

9
1
7

4

1
2

6
3
9

0
8
5

4
8
8

0

1
0

1
2
2

8
3
4

5
3
7

9

8
9

4
5
6

4
8
1

3
2
5

2
0

a2
0

.t
x
t

6
,7

0
2
,8

3
1

1

9
5

9
8

3
8
4

7
3
3

7
4

1

8
8

0
9

4
0
4

8
4
0

9
1

1

4
8

4
0

9
3
2

9
1
1

6

1
3

4
8
9

5
4
8

9
0
8

7

1
4

8
2
8

0
9
7

8
4
5

3

1
2

2
3
2

5
2
4

9
2
8

6

1
0

9
5
7

7
3
8

6
1
1

3

A
v
er

ag
e

4
7

6
0
0

2
8
5

5
0
9

9

4
5

7
0
8

8
7
5

2
9
3

6

4
1

1
4
3

8
5
4

7
7
7

3

6
9

0
0

0
0
9

7
7
1

3

0
7

2
2

3
1
7

1
2
2

2

8
5

5
7

7
0
2

2
4
3

2

5
8

2
6

3
3
6

2
7
7

 Arindam Sarkar, University of Kalyani, India 380

7.6.4 .doc files

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have

been taken to measure the Chi-Square values for different techniques. Table 7.86 shows

the Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT,

DHLPSCT, KSOMSCT, TDES, and AES of .doc type files. The average Chi-Square

values obtained using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT,

KSOMSCT, TDES, and AES are 6713314, 6858556, 6941065, 6976655, 7125858,

11021752, and 6763362 respectively. Chi-Square values increase with the increase of

source file sizes.

Figure 7.70 shows the comparison of the average Chi-Square values of .doc type of

source files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT,

KSOMSCT, TDES, and AES. For all proposed techniques, the Chi-Square values of the

encrypted files are very high. So, it may obtain better degree of security in proposed

which is comparable with that of others.

Figure 7.70: Pictorial representation of the average values of Chi-Square of .doc type bit

stream

6500000

7000000

7500000

8000000

8500000

9000000

9500000

10000000

10500000

11000000

V
a
lu

e
s

Techniques

A

ri
n
d
am

 S
ar

k
ar

,
U

n
iv

er
si

ty
 o

f
K

al
y
an

i,
 I

n
d
ia

3
8
1

T
ab

le
:

7
.8

5

C
o
m

p
ar

is
o
n
s

o
f

C
h
i-

S
q
u
ar

e
v
al

u
e

o
f

.d
o
c

fi
le

s

S
er

ia
l

n
o

.
S

o
u

rc
e

F
il

e
n

a
m

e

S
o

u
rc

e
 f

il
e

si
ze

(I
n

 b
y

te
s)

C
h

i-
S

q
u

a
re

 v
a

lu
es

C
G

T
H

L
P

S
C

T

C
T

H
L

P
S

C
T

C

D
H

L
P

S
C

T

D
H

L
P

S
C

T

K
S

O
M

S
C

T

T
D

E
S

A

E
S

1

a0
1

.
d
o

c
2

1
,0

5
2

1
5

1
9
7

1
4

8
9
3

6
2

1
0
8

4
6

6

1
0

9
4

5
9

6
5

8
4
0

3
8

1
8

9
1
8

0
0
8

1

4
1

8
2

9
1
0

2

a0
2

.
d
o

c
3

3
,8

9
7

4
5

0
1
5

4
3

9
0
3

1
2

9
8
3

0
5

2

5
4

0
2

9
9

2
8

9
0
4

5
8

9
5

0
3
6

7
6

4

4
3

1
2

7
7

3

a0
3

.
d
o

c
4

5
,7

3
8

1
1

7
3
2

8

1
1

5
8
4

5

1
4

6
7
4

0
6

1

9
0

4
8

2
7

1
8

3
2
0

3
9

9
3

6
1
0

1
5

2

1
4

5
3

8
3

4

a0
4

.
d
o

c
7

5
,0

9
3

2
4

1
5
7

8

2
3

7
0
9

4

1
7

6
0
8

4
7

1

7
9

9
0

3
8

1
7

1
9
0

5
3

2
8

4
8
4

6
8

1

3
4

7
0

9
1

5

a0
5

.
d
o

c
1

0
6

,8
7

2

5
2

0
9
6

7

5
0

7
1
9

5

1
9

0
9
5

6
2

1

8
7

0
6

5
3

1
7

9
4
0

9
2

3
9

3
3
0

3
9

1

8
9

8
4

3
8

6

a0
6

.
d
o

c
3

2
7

.0
5

4

3
0

9
6
1

0

2
9

7
1
2

7

5
2

3
0
9

6

5
9

0
9
5

6

5
8

0
9
8

4

5
3

7
2
8

5

3
7

3
5
9

9

7

a0
7

.
d
o

c
5

8
2

,8
3

1

9
6

1
2
3

0

9
4

6
5
3

8

9
2

0
9
8

2

8
8

6
4
2

9

8
6

3
0
9

2

1
3

4
9
4

9
0

9

4
7

1
4

8

8

a0
8

.
d
o

c
7

2
9

,9
1

6

6
0

9
5
3

8
2

5
9

1
9
0

4
8

5
8

2
9
0

6
4

5

6
3

9
0

4
2

5
5

0
9
8

3
2

5
4

7
4
9

6
2

4

5
3

2
7

8
9

9

a0
9

.
d
o

c
1

,1
7

0
,2

5
1

2

6
8

9
1

6
3

2
5

6
0
9

4
2

2
4

2
6
7

0
3

2

1
9

0
5

6
3

2
0

9
0
4

8
2

4
5

9
8
6

0
4

3

0
9

7
7

7
8

1
0

a1
0

.
d
o

c
1

,7
4

9
,2

7
2

2

6
6

1
9

3
2
8

2
6

1
9
2

7
3
0

2
5

7
9
5

6
8
3

2

5
1

3
7

0
9
3

2
4

7
0
9

3
8
5

4
1

3
8
5

7
7
4

2

7
8

5
0

2
1
7

1
1

a1
1

.
d
o

c
2

,0
4

5
,8

0
5

2

2
1

1
8

9
0
6

2
1

2
9
5

6
7
2

1
9

5
0
4

9
8
7

1

9
1

3
4

0
9
7

1
8

6
3
0

9
4
2

2
3

6
9
2

5
5
5

1

1
5

7
4

4
2
6

1
2

a1
2

.
d
o

c
2

,3
7

2
,0

1
4

1

5
2

1
9

8
5
9

1
4

9
0
9

5
8
3

1
4

2
9
0

5
3
9

1

4
1

7
8

0
9
5

1
3

7
9
0

4
3
4

1
8

6
5
6

8
0
7

1

1
8

4
8

0
0
4

1
3

a1
3

.
d
o

c
2

,8
6

9
,2

7
5

8

7
1

9
4

3
2

8
5

6
9
3

9
6

6
1

0
9
5

6
5

6

0
2

3
8

9
6

5
7

2
9
0

8
4

1
7

4
6
0

8
5
3

8

7
6

2
6

8
3

1
4

a1
4

.
d
o

c
3

,1
6

1
,3

5
3

1

0
4

3
9

8
2
6

1
0

2
6
3

9
3
5

1
0

2
6
7

4
2
9

1

0
1

9
8

4
3
1

9
9

8
7
3

5
3

9
9

0
4
3

8
9

6

7
8

4
2

5
1

1
5

a1
5

.
d
o

c
3

,5
7

0
,2

9
5

9

5
1

3
0

4
2

9
2

4
5
0

4
2

8
5

3
4
0

7
4

8

1
2

9
0

5
4

7
9

4
0
9

7
3

1
1

1
2
3

5
5
4

6

8
4

4
3

5
1

1
6

a1
6

.
d
o

c
3

,8
3

4
,4

2
7

8

7
1

0
9

3
4

8
5

9
8
4

2
4

7
5

5
6
0

3
1

7

2
3

0
9

8
6

6
9

9
0
3

8
6

7
7

2
5
6

8
7

5

2
3

0
5

6
7

1
7

a1
7

.
d
o

c
4

,0
1

1
,9

8
6

8

5
1

2
9

4
3

8
4

3
7
2

6
1

7
0

3
1
8

6
4

6

9
3

9
0

9
3

6
7

5
9
0

3
7

9
8

4
6
6

5
3

6

4
3

7
6

6
2

1
8

a1
8

.
d
o

c
4

,5
6

2
,3

8
5

7

9
0

4
5

7
7

7
8

3
8
9

2
4

6
5

3
9
0

6
3

6

2
8

7
2

3
5

6
0

7
3
9

0
4

7
3

7
6
6

9
3

5

5
9

1
7

7
6

1
9

a1
9

.
d
o

c
4

,8
3

9
,1

0
2

6

3
1

0
9

3
9

6
2

1
0
4

9
8

4
8

0
4
1

6
9

4

7
5

0
9

3
4

4
5

8
0
8

5
6

8
5

9
2
2

2
3

5

3
7

4
0

9
4

2
0

a2
0

.d
o
c

5
,4

7
2
,2

9
8

7

4
5

1
9

0
5

7
3

2
9
0

4
8

6
0

4
1
0

9
3

5

6
3

0
9

3
9

5
2

0
9
8

5
7

8
1

4
5
4

1
4

6

0
1

2
8

7
2

A
v
er

ag
e

7
1

2
5
8

5
8

6
9

7
6
6

5
5

6
9

4
1
0

6
5

6

8
5

8
5

5
6

6
7

1
3
3

1
4

1
1

0
2
1

7
5
2

6

7
6

3
3

6
2

 Arindam Sarkar, University of Kalyani, India 382

7.7 Analysis of Character Frequencies, Entropy, Floating Frequencies,

Autocorrelation

Program access both the original and encrypted files and stores the occurrence of each

character in an array. The final output is an excel file to facilitate generation of graph. The

smoother or less curves in the spectrum of frequency distribution indicate that it is harder

for a cryptanalyst to detect the original text bytes which implies better degree of security.

Entropy near to 1 indicates the good encryption technique. Well distributed floating

frequencies are indicate the robustness of the encryption and finally Autocorrelation

indicates goodness of the technique. Section 7.7.1 deals with analysis of KSOMSCT

encrypted .dll files. Section 7.7.2 presented the analysis of DHLPSCT encrypted .com

files. Analysis of CDHLPSCT encrypted .exe files has been presented in section 7.7.3.

Section 7.7.4 deals with analysis of CTHLPSCT encrypted .cpp files. Finally, analysis of

CGTHLPSCT encrypted .txt files has been presented in section 7.7.5.

7.7.1 .dll file

Analysis of character frequencies of twenty source files of .dll type has been performed

using KSOMSCT. Figure 7.71 shows the spectrum of frequency distribution of characters

for the input source stream. Figure 7.72 shows the spectrum of frequency distribution of

encrypted characters using KSOMSCT for the same input source stream. It has been

observed that frequencies of characters are widely distributed in KSOMSCT encrypted

.dll file.

Analysis of entropy of twenty source files of .dll type has been performed using

KSOMSCT. The entropy of a source thus indicates its characteristic distribution. It

measures the average amount of information which one can obtain through observation of

the source or, conversely, the indeterminacy which prevails over the generated messages

when one cannot observe the source. The entropy for the input source stream is 4.88.

Whereas the entropy of encrypted characters using KSOMSCT for the same input source

stream is 7.99. From the figures it is observed that entropy of KSOMSCT encrypted

characters is near to eight which indicate the high degree of security.

 Analysis of floating frequencies of twenty source files of .dll type has been performed

using KSOMSCT. The floating frequency of a document is a characteristic of its local

information content at individual points in the document. The floating frequency specifies

 Arindam Sarkar, University of Kalyani, India 383

how many different characters are to be found in any given 64-character long segment of

the document. Figure 7.73 shows the spectrum of floating frequencies of characters for

the input source stream. Figure 7.74 shows the spectrum of floating frequencies of

encrypted characters using KSOMSCT for the same input source stream. From the figures

it is observed that floating frequencies of KSOMSCT encrypted characters indicates the

high degree of security.

Analysis of autocorrelation of twenty source files of .dll type has been performed using

KSOMSCT. The autocorrelation of a document is an index of the similarity of different

sections of the document. Figure 7.75 shows the spectrum of autocorrelation of characters

for the input source stream. Figure 7.76 shows the spectrum of autocorrelation of

encrypted characters using KSOMSCT for the same input source stream. From the figure

it is observed that autocorrelation of KSOMSCT encrypted characters indicate the high

degree of security.

Figure 7.71: Graphical representation of frequency distribution spectrum of characters for the

.dll type input source stream

 Arindam Sarkar, University of Kalyani, India 384

Figure 7.72: Graphical representation of frequency distribution spectrum of characters for the

encrypted stream using KSOMSCT for .dll file

Figure 7.73: Floating frequency of the input .dll source stream

Figure 7.74: Floating frequency of the encrypted stream using KSOMSCT for .dll file

 Arindam Sarkar, University of Kalyani, India 385

Figure 7.75: Autocorrelation of the input .dll source stream

Figure 7.76: Autocorrelation of the encrypted stream using KSOMSCT for .dll file

7.7.2 .com file

Analysis of character frequencies of twenty source files of .com type has been performed

using DHLPSCT. Figure 7.77 shows the spectrum of frequency distribution of characters

for the input source stream. Figure 7.78 shows the spectrum of frequency distribution of

encrypted characters using DHLPSCT for the same input source stream. It has been

observed that frequencies of characters are widely distributed in DHLPSCT encrypted

.com file.

Analysis of entropy of twenty source files of .com type has been performed using

DHLPSCT. The entropy of a source thus indicates its characteristic distribution. It

measures the average amount of information which one can obtain through observation of

the source or, conversely, the indeterminacy which prevails over the generated messages

 Arindam Sarkar, University of Kalyani, India 386

when one cannot observe the source. The entropy for the input source stream is 4.04.

Whereas the entropy of encrypted characters using DHLPSCT for the same input source

stream is 7.99. From the figures it is observed that entropy of DHLPSCT encrypted

characters is near to eight which indicate the high degree of security.

 Analysis of floating frequencies of twenty source files of .com type has been performed

using DHLPSCT. The floating frequency of a document is a characteristic of its local

information content at individual points in the document. The floating frequency specifies

how many different characters are to be found in any given 64-character long segment of

the document. Figure 7.79 shows the spectrum of floating frequencies of characters for

the input source stream. Figure 7.80 shows the spectrum of floating frequencies of

encrypted characters using DHLPSCT for the same input source stream. From the figures

it is observed that floating frequencies of DHLPSCT encrypted characters indicates the

high degree of security.

Analysis of autocorrelation of twenty source files of .com type has been performed using

DHLPSCT. The autocorrelation of a document is an index of the similarity of different

sections of the document. Figure 7.81 shows the spectrum of autocorrelation of characters

for the input source stream. Figure 7.82 shows the spectrum of autocorrelation of

encrypted characters using DHLPSCT for the same input source stream. From the figure

it is observed that autocorrelation of DHLPSCT encrypted characters indicate the high

degree of security.

Figure 7.77: Graphical representation of frequency distribution spectrum of characters for the

input .com source stream

 Arindam Sarkar, University of Kalyani, India 387

Figure 7.78: Graphical representation of frequency distribution spectrum of characters for the

encrypted stream using DHLPSCT for .com file

Figure 7.79: Floating frequency of the input .com source stream

Figure 7.80: Floating frequency of the encrypted stream using DHLPSCT for .com file

 Arindam Sarkar, University of Kalyani, India 388

Figure 7.81: Autocorrelation of the input .com source stream

Figure 7.82: Autocorrelation of the encrypted stream using DHLPSCT for .com file

7.7.3 .exe file

Analysis of character frequencies of twenty source files of .exe type has been performed

using CDHLPSCT. Figure 7.83 shows the spectrum of frequency distribution of

characters for the input source stream. Figure 7.84 shows the spectrum of frequency

distribution of encrypted characters using CDHLPSCT for the same input source stream.

It has been observed that frequencies of characters are widely distributed in CDHLPSCT

encrypted .exe file.

Analysis of entropy of twenty source files of .exe type has been performed using

CDHLPSCT. The entropy of a source thus indicates its characteristic distribution. It

measures the average amount of information which one can obtain through observation of

the source or, conversely, the indeterminacy which prevails over the generated messages

 Arindam Sarkar, University of Kalyani, India 389

when one cannot observe the source. The entropy for the input source stream is 7.85.

Whereas the entropy of encrypted characters using CDHLPSCT for the same input source

stream is 7.99. From the figures it is observed that entropy of CDHLPSCT encrypted

characters is near to eight which indicate the high degree of security.

 Analysis of floating frequencies of twenty source files of .exe type has been performed

using CDHLPSCT. The floating frequency of a document is a characteristic of its local

information content at individual points in the document. The floating frequency specifies

how many different characters are to be found in any given 64-character long segment of

the document. Figure 7.85 shows the spectrum of floating frequencies of characters for

the input source stream. Figure 7.86 shows the spectrum of floating frequencies of

encrypted characters using CDHLPSCT for the same input source stream. From the

figures it is observed that floating frequencies of CDHLPSCT encrypted characters

indicates the high degree of security.

Analysis of autocorrelation of twenty source files of .exe type has been performed using

CDHLPSCT. The autocorrelation of a document is an index of the similarity of different

sections of the document. Figure 7.87 shows the spectrum of autocorrelation of characters

for the input source stream. Figure 7.88 shows the spectrum of autocorrelation of

encrypted characters using CDHLPSCT for the same input source stream. From the figure

it is observed that autocorrelation of CDHLPSCT encrypted characters indicate the high

degree of security.

Figure 7.83: Graphical representation of frequency distribution spectrum of characters for the

input .exe source stream

 Arindam Sarkar, University of Kalyani, India 390

Figure 7.84: Graphical representation of frequency distribution spectrum of characters for the

encrypted stream using CDHLPSCT for .exe file

Figure 7.85: Floating frequency of the input .exe source stream

Figure 7.86: Floating frequency of the encrypted stream using CDHLPSCT for .exe file

 Arindam Sarkar, University of Kalyani, India 391

Figure 7.87: Autocorrelation of the input .exe source stream

Figure 7.88: Autocorrelation of the encrypted stream using CDHLPSCT for .exe file

7.7.4 .cpp file

Analysis of character frequencies of twenty source files of .cpp type has been performed

using CTHLPSCT. Figure 7.89 shows the spectrum of frequency distribution of

characters for the input source stream. Figure 7.90 shows the spectrum of frequency

distribution of encrypted characters using CTHLPSCT for the same input source stream.

It has been observed that frequencies of characters are widely distributed in DHLPSCT

encrypted .cpp file.

Analysis of entropy of twenty source files of .cpp type has been performed using

CTHLPSCT. The entropy of a source thus indicates its characteristic distribution. It

measures the average amount of information which one can obtain through observation of

 Arindam Sarkar, University of Kalyani, India 392

the source or, conversely, the indeterminacy which prevails over the generated messages

when one cannot observe the source. The entropy for the input source stream is 4.06.

Whereas the entropy of encrypted characters using CTHLPSCT for the same input source

stream is 7.99. From the figures it is observed that entropy of CTHLPSCT encrypted

characters is near to eight which indicate the high degree of security.

 Analysis of floating frequencies of twenty source files of .cpp type has been performed

using CTHLPSCT. The floating frequency of a document is a characteristic of its local

information content at individual points in the document. The floating frequency specifies

how many different characters are to be found in any given 64-character long segment of

the document. Figure 7.91 shows the spectrum of floating frequencies of characters for

the input source stream. Figure 7.92 shows the spectrum of floating frequencies of

encrypted characters using CTHLPSCT for the same input source stream. From the

figures it is observed that floating frequencies of CTHLPSCT encrypted characters

indicates the high degree of security.

Analysis of autocorrelation of twenty source files of .cpp type has been performed using

CTHLPSCT. The autocorrelation of a document is an index of the similarity of different

sections of the document. Figure 7.93 shows the spectrum of autocorrelation of characters

for the input source stream. Figure 7.94 shows the spectrum of autocorrelation of

encrypted characters using CTHLPSCT for the same input source stream. From the figure

it is observed that autocorrelation of CTHLPSCT encrypted characters indicate the high

degree of security.

Figure 7.89: Graphical representation of frequency distribution spectrum of characters for the

input .cpp source stream

 Arindam Sarkar, University of Kalyani, India 393

Figure 7.90: Graphical representation of frequency distribution spectrum of characters for the

encrypted stream using CTHLPSCT for .cpp file

Figure 7.91: Floating frequency of the input .cpp source stream

Figure 7.92: Floating frequency of the encrypted stream using CTHLPSCT for .cpp file

 Arindam Sarkar, University of Kalyani, India 394

Figure 7.93: Autocorrelation of the input .cpp source stream

Figure 7.94: Autocorrelation of the encrypted stream using CTHLPSCT for .cpp file

7.7.5 .txt file

Analysis of character frequencies of twenty source files of .txt type has been performed

using CGTHLPSCT. Figure 7.95 shows the spectrum of frequency distribution of

characters for the input source stream. Figure 7.96 shows the spectrum of frequency

distribution of encrypted characters using CGTHLPSCT for the same input source stream.

It has been observed that frequencies of characters are widely distributed in

CGTHLPSCT encrypted .txt file.

Analysis of entropy of twenty source files of .txt type has been performed using

CGTHLPSCT. The entropy of a source thus indicates its characteristic distribution. It

measures the average amount of information which one can obtain through observation of

 Arindam Sarkar, University of Kalyani, India 395

the source or, conversely, the indeterminacy which prevails over the generated messages

when one cannot observe the source. The entropy for the input source stream is 4.20.

Whereas the entropy of encrypted characters using CGTHLPSCT for the same input

source stream is 7.99. From the figures it is observed that entropy of CGTHLPSCT

encrypted characters is near to eight which indicate the high degree of security.

 Analysis of floating frequencies of twenty source files of .txt type has been performed

using CGTHLPSCT. The floating frequency of a document is a characteristic of its local

information content at individual points in the document. The floating frequency specifies

how many different characters are to be found in any given 64-character long segment of

the document. Figure 7.97 shows the spectrum of floating frequencies of characters for

the input source stream. Figure 7.98 shows the spectrum of floating frequencies of

encrypted characters using CGTHLPSCT for the same input source stream. From the

figures it is observed that floating frequencies of CGTHLPSCT encrypted characters

indicates the high degree of security.

Analysis of autocorrelation of twenty source files of .txt type has been performed using

CGTHLPSCT. The autocorrelation of a document is an index of the similarity of different

sections of the document. Figure 7.99 shows the spectrum of autocorrelation of characters

for the input source stream. Figure 7.100 shows the spectrum of autocorrelation of

encrypted characters using CGTHLPSCT for the same input source stream. From the

figure it is observed that autocorrelation of CGTHLPSCT encrypted characters indicate

the high degree of security.

Figure 7.95: Graphical representation of frequency distribution spectrum of characters for the

input .txt source stream

 Arindam Sarkar, University of Kalyani, India 396

Figure 7.96: Graphical representation of frequency distribution spectrum of characters for the

encrypted stream using CGTHLPSCT for .txt file

Figure 7.97: Floating frequency of the input .txt source stream

Figure 7.98: Floating frequency of the encrypted stream using CGTHLPSCT for .txt file

 Arindam Sarkar, University of Kalyani, India 397

Figure 7.99: Autocorrelation of the input .txt source stream

Figure 7.100: Autocorrelation of the encrypted stream using CGTHLPSCT for .txt file

7.7 Analysis

Analyzing all the results given in section 7.2, 7.3, 7.4,7.5, 7.6 and 7.7 following are the

salient features based on comparison of proposed KSOMSCT, DHLPSCT, CDHLPSCT,

CTHLPSCT, CGTHLPSCT, RSA, TDES, AES, TPM, PPM, RC4 and Vernam Cipher.

a) CGTHLPSCT outperform over all other proposed techniques and existing TPM and

PPM techniques and has passed the entire 15 statistical test. This confirms the

robustness and randomness of the synchronized group session key.

b) CGTHLPSCT uses Particle Swam Intelligence (PSI) based encryption/decryption

approach. In this PSI based technique the number of keys to be stored is less than

AES, RC4, Vernam Cipher and other proposed techniques

 Arindam Sarkar, University of Kalyani, India 398

c) In general AES takes minimum times and TDES takes the maximum times for

encryption and decryption process compare to other techniques. For TDES the

encryption and decryption time both are two to three times more than that of

proposed techniques.

d) Very little bit difference observed between the encryption and decryption times for all

proposed techniques, which indicate that the computational complexity for all the

process is approximately similar.

e) The graphs show that the encryption/decryption time increase with the increase of

source file sizes. For larger file size the slope of the curve are higher.

f) 128/192/256 bit Session key synchronization time (in cycle) for all the proposed and

existing techniques in the increasing sequence of CGTHLPSCT, CTHLPSCT,

CDHLPSCT, DHLPSCT, KSOMSCT and TPM, PPM. This is quite affordable in

terms of resources available in wireless communication

g) It has been shown that in group synchronization phase CGTHLPSCT consumes less

amount of memory compared to other techniques because it needs only 𝑛𝑙𝑜𝑔(𝑛 − 1)

amount of synchronizations compared to 𝑛(𝑛 − 1) synchronizations steps in others.

h) The increasing order sequence of relative time spent in GC in group synchronization

phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, TPM and

PPM.

i) Avalanche, Strict Avalanche and bit Independence are cryptographic test methods

which measures the degree of security. Results indicate that the Avalanche, Strict

Avalanche values for proposed technique are at with other techniques. Proposed

CGTHLPSCT has the maximum average Bit Independence values for .dll, .exe, .txt

and .doc files compare to proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT

and existing RSA, TDES, AES techniques. These results indicate that the degree of

security of the proposed CGTHLPSCT is very high and is comparable with that of

other standard technique.

j) Proposed techniques needs less amount of threads for generating group session key

compared to existing TPM and PPM. The increasing order sequence of thread

required in group synchronization phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT,

DHLPSCT, KSOMSCT, TPM and PPM.

 Arindam Sarkar, University of Kalyani, India 399

k) Proposed CGTHLPSCT needs only 𝑛𝑙𝑜𝑔(𝑛 − 1) compare to 𝑛(𝑛 − 1)

synchronizations in other techniques.

l) In source files, some characters appear with very high and very low frequencies and

some characters appear with zero frequency. In encrypted files all characters with

ASCII values ranging from 0 to 255 appear with certain frequencies and all these

characters are approximately equally distributed over a certain range. Since the

frequency spectrum is smoother, so the degree of security of proposed technique is

good is comparable with that of standard available cryptographic technique.

m) If the length of the session key get increased then the increased of average

synchronization steps is linear. Linear computational complexity can be easily

handled in wireless communication.

n) For all proposed and existing techniques, calculated Chi-Square values are than the

tabulated Chi-Square values. This indicates the high degree of non-homogeneity

between source and encrypted files. In case of .dll, .exe, .txt, .doc, files proposed

CGTHLPSCT has maximum average Chi-Square value among all other proposed

techniques.

o) 3𝐷 KSOMSCT takes more iteration to train the map in compared to 2𝐷 KSOMSCT.

So, the energy consumption is more in 3𝐷 KSOMSCT than 2𝐷. For this reason 2𝐷

KSOMSCT is the best alternative in wireless communication where resource

constrains (in terms of energy, memory) is a vital issues for generation of session key.

Chapter 8

Proposed Model

 Arindam Sarkar, University of Kalyani, India 402

8.1 Introduction

In this chapter a model of cryptographic technique through cascaded implementation

embodied with proposed techniques has been discussed. The approach of cascaded

implementation is an attempt to integrate the independent techniques which are discussed and

analyzed in earlier chapters. The technique proposed in this chapter introduces a new

dimension in the endeavor of ensuring secured session key generation and exchange for

encryption/decryption to the maximum possible level.

Section 8.2 represents a brief description of the proposed technique. Section 8.3 deals with

the detailed analysis of the results. Conclusions are drawn in section 8.4. Future scopes are

described in section 8.5.

8.2 The Model

Five independent secured session key generation techniques proposed in various chapters,

termed as KSOFM (say 𝑆1), DHLP (say 𝑆2), CDHLP (say 𝑆3), CTHLP (say 𝑆4), CGTHLP

(say 𝑆5) and five independent secured encryption/decryption techniques proposed in various

chapters, termed as Fractal Triangle based encryption/decryption (say 𝐸1), Simulated

Annealing based encryption/decryption (say 𝐸2), Genetic Algorithm based

encryption/decryption (say 𝐸3), ACI based encryption/decryption (say 𝐸4), PSI based

encryption/decryption (say 𝐸5) have been integrated to generate the cascaded model. Number

of cascaded stages, say 𝑛, is selected randomly which forms the part of the composite key of

this model. This model is based on cascaded implementation of n number of techniques

which are chosen randomly from among five key generation techniques and five

encryption/decryption techniques with or without repetition of the same. Repetition of the

same technique in consecutive cascading stage is not allowed. No technique be implemented

more than t number of times where 𝑡 < 𝑛. It may so happen that one or more out of the five

key generation techniques and five encryption/decryption techniques for cascading not

implement at all. The plaintext is the input stream of the first encryption technique of the

sequence and the output stream generated from the nth stage of cascading in the cipher text.

Whenever a technique is selected for encryption, a session key generation technique also gets

selected. As a result n numbers of different encryption/decryption sub keys get generated for

 Arindam Sarkar, University of Kalyani, India 403

this implementation. A session key also gets generated using any of the session key

generation techniques among five techniques. This session key helps to transmit the

information regarding value of 𝑛 (number of cascading stages), the order of encryption/

decryption techniques for 𝑛 cascading stages (𝑠𝑎𝑦 𝐸i𝐸j𝐸k. . . 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 , 𝑗 ≠ 𝑘, …) and the

context of 𝑛 encryption/decryption keys (𝐾1, 𝑘2, 𝐾3, … , 𝐾n). During decryption, the cipher

text is considered as binary bit stream and passes through each of n decryption techniques in

exactly the reverse order of the sequence followed during encryption. The final output stream

generated from nth stage of cascading reproduced the plaintext. At any intermediate stages of

this technique, the output stream of the technique of that stage is the input stream to the next

cascading stage.

Section 8.2.1 describes the generation of session key of the proposed cascaded

implementation and that of encryption and decryption process of the same described in the

section 8.2.2 and 8.2.3 respectively.

8.2.1 Session Key Generation

The detailed mechanisms of session key generation for individual cryptographic techniques

have been discussed in respective chapters. Proposed model has n number of cascading

stages. At each stage, the input binary bit stream 𝑃i passes through the encryption/decryption

key generator to generate the corresponding encryption/decryption key 𝐾i where 𝑖 ∈ 𝑁, the

set of first n natural numbers. A session key 𝑆i is generated for the proposed model and this

session key used to transmit the following information to the other party.

i. The value of 𝑛 (number of cascading stages)

ii. The order of encryption techniques for n cascading stages

(𝑠𝑎𝑦 𝐸i𝐸j𝐸k. . . 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 , 𝑗 ≠ 𝑘, …, and every 𝐸i∈ {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5})

iii. The information of n number of encryption/decryption keys

(𝑠𝑎𝑦 𝐾1, 𝐾2, 𝐾3, … , 𝐾n) which are generated at the corresponding cascading

stage of encryption using the input binary bit stream for that stage.

 Arindam Sarkar, University of Kalyani, India 404

The key space of the session key 𝑆 is very large. The value of n can be represented by a

character having ASCII value from 1 to 255. At each time a session key generation

technique is selected for the whole process out of five different session key generation

technique (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) randomly based on some constraints and at each cascading stage

a cryptographic technique is selected out of five different encryption/decryption technique

(𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) randomly based on some constraints. For each session key generation

technique only three bits are required to store (the three bits combinations range 000 to 111 is

sufficient to store the session key generation technique index 1 to 5). For each encryption/

decryption technique only three bits are required to store (the 3 bit combinations range 000 to

111 is sufficient to store the encryption/ decryption technique index 1 to 5). So (3 × 𝑛)

number of bits i.e.
3×𝑛

8
 number of characters are required to store the sequence of

cryptographic techniques for n cascading stages. In various chapters, five different,

independent encryption/decryption key generation techniques have been discussed in detail.

All of these techniques generate 128/192/256 bits encryption/decryption keys. Proposed

model has n number of cascading stages and at each stage of encryption an encryption key is

generated for that corresponding technique. Each encryption key has a length of 128/192/

256 bits So, the length of n number of encryption/decryption keys is (128 × 𝑛) to (256 × 𝑛)

number of bits In various chapters, five different, independent session key generation

techniques have been discussed in detail. All of these techniques generate 128/192/256 bits

tuned session keys. This tuned session key get Exclusive-OR with the session key produced

by this proposed model and transmitted to the other party. The receiving party has the same

tuned session key, using this tuned session key receiving party perform the Exclusive-OR

operations on the receiving stream to get back the session key of the proposed model. The

proposed model has a session key of length [(value of number of cascading stages in bits) +

(three bits combinations of encryption/ decryption technique index) + (length of 𝑛 number of

encryption/decryption keys in bits) + (length of 𝑛 number of session keys in bits)] i.e.

[8 + 3 × 𝑛 + 128 × 𝑛 + 128 × 𝑛] bits to [8 + 3 × 𝑛 + 256 × 𝑛 + (256 × 𝑛)]

number of bits. So,
[8+ 3×𝑛 + 128×𝑛 +(128×𝑛)]

8
= 1 +

 3×𝑛

8
+ 16𝑛 + 16𝑛 = 32𝑛 to

[8+ 3×𝑛 + 256×𝑛 +(256×𝑛)]

8
= 1 +

 3×𝑛

8
+ 32𝑛 + 32𝑛 = 64𝑛 numbers of characters this

confirms a huge variability of the key space in terms of randomness.

 Arindam Sarkar, University of Kalyani, India 405

8.2.2 Encryptor Module

The detailed discussion on encryption techniques of all schemes (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) have been

made individually into its respective chapters. Proposed model has n number of cascaded

stages where 𝑛 is a finite random integer. The plaintext is a binary bit stream which is the

input for the first chosen encryption technique. The output stream of 𝑛th
 technique is the

cipher text. At any intermediate stages of this approach, the output stream of the encryption

technique is made input to the next cascading stage. The sequence of encryption techniques

is selected randomly. The assumption of the model is that the consecutive repetition of same

technique is not permitted. No technique be implemented more than 𝑡 number of times

where 𝑡 < 𝑛. One or more out of the five available techniques for cascading

(𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) may not be implemented at all. In maiden stage any one out of five

techniques can be chosen in five ways and then for remaining stages (𝑛 − 1) times, at each

cascading stage any one out of four (since consecutive repetition of same technique is not

allowed) techniques can be chosen in four ways. So, there are as many as 5 × 4𝑛−1
ways to

choose a cascading sequence. Now, 5 × 4𝑛−1=
5

4
× 4𝑛 = 1.25 × 4𝑛 , which means that the

formation of session key is order of 4𝑛 ways which is a huge one. It also indicates that the

key space of the session key is very large. The most importantly, it is to be noted that the

session key is used only once for each transmission. So there is a time stamp of minimum

span which expires automatically at end of transmission. By notation, the sequence of

encryption techniques for n cascading stages is represented as 𝐸i𝐸j𝐸k… 𝐸u𝐸v𝐸w 𝑤ℎ𝑒𝑟𝑒, 𝑖 ≠

𝑗, 𝑗 ≠ 𝑘, … , 𝑢 ≠ 𝑣, 𝑣 ≠ 𝑤.

 Arindam Sarkar, University of Kalyani, India 406

 Input : Source stream i.e. plaintext

 Output : Encrypted stream i.e. cipher text

 Method : The process takes binary stream and generates encrypted bit stream through

cascaded encryption operations.

Step 1. The input stream, say 𝑃0 is taken as a stream with finite number of

binary bits

Step 2. Obtain the number of cascaded stages, say n, randomly

Step 3. Set 𝑖 = 0 and initialize 𝑇0= 𝐸0 (i.e. Null)

Step 4. The encryption key 𝐾i+1 is generated using the binary bit stream 𝑃i

Step 5. Select 𝑇i+1∈ { 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} randomly in such a way that 𝑇i+1≠ 𝑇i

Step 6. The bit stream 𝑃i is encrypted into 𝑃i+1 using the encryption technique

𝑇i+1 and the key encryption 𝐾i+1

Step 7. Set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑛 then go to step 8 else go to step 9

Step 8. 𝑃i is the input stream for the next cascading stage and go to step 4

Step 9. 𝑃i≅ 𝑃n is the final output of the encryptor module i.e. 𝑃n is the cipher

text.

Figure 8.1 shows the flowchart of encryptor module for the proposed model.

 Arindam Sarkar, University of Kalyani, India 407

Figure 8.1: Pictorial representation of the flow chart of encryption for the proposed cascaded

model

Start

Input P0 is taken as binary stream

Initialize the number of cascaded stages, n

Set i: = 0 and T0 = E0 (Null)

Encryption key Ki+1 is generated using the Pi as a binary bit stream with key generator

Select Ti+1∈ { E1, E2, E3, E4, E5} randomly in such a way that Ti+1≠ Ti

The bit stream Pi is encrypted into Pi+1 using the encryption technique Ti+1 and the key

encryption Ki+1

Set i: = i + 1

Is i < 𝑛
?

Yes

No

Stop

Pi≅ Pn is the cipher text

 Arindam Sarkar, University of Kalyani, India 408

8.2.3 Decryptor Module

The detailed discussion on decryption techniques of all schemes (𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5) have been

discussed individually into its respective chapters. Proposed model has 𝑛 number of cascaded

stages where 𝑛 has selected at random during decryption. Processing the information of the

session key 𝑆, the value of 𝑛 (number of cascading stages), the order of the encryption technique

for 𝑛 cascading stages (𝐸i𝐸j𝐸k… 𝐸u𝐸v𝐸w 𝑤ℎ𝑒𝑟𝑒, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘, … , 𝑢 ≠ 𝑣, 𝑣 ≠ 𝑤) and the

information of 𝑛 number of encryption/decryption keys (𝐾1, 𝐾2, … , 𝐾n) are fetched during

decryption. Order of decryption is fetched from the session key 𝑆 which is exactly reverse of the

sequence of encryption and initialized into the variables T1, T2, T3, … , Tn (i.e. T1 is the first

decryption technique, T2 is the second decryption technique and so on) where Ti∈

{ D1, D2, D3, D4, D5}∀i ∈ N, the set of first n natural numbers. The order of the decryption is

exactly the reverse of the sequence followed during encryption i.e. 𝐷w𝐷v𝐷u… 𝐷k𝐷j𝐷i and the

decryption key which will be used during decryption in the order of 𝐾n, 𝐾n-1, … , 𝐾2, 𝐾1. The first

decryption technique 𝐷w considers the input cipher text 𝑃n as a binary bit stream. The final

output stream generated from the final stage of cascading using the decryption technique 𝐷i

reproduced the plaintext. At the intermediate stages of this approach, the output stream of any

decryption technique is the input stream to the next cascading stage.

The decryption algorithm is described as follows:

 Input : Encrypted stream i.e. cipher text and the session key S

 Output : Source stream i.e. plaintext

 Method : The process takes encrypted binary stream and generates decrypted bit stream

through cascaded decryption operations.

Step 1. The stream containing the information of the session key S obtained to

get the information about the decryption key

Step 2. The value of n (number of cascading stages) and the decryption keys

𝐾1, 𝐾2, 𝐾3, … , 𝐾n are extracted from the session key S and used for

decryption

Step 3. The order of decryption is fetched from the session key S which is

exactly reverse of the sequence of encryption and initialized into the

 Arindam Sarkar, University of Kalyani, India 409

variables 𝑇1, 𝑇2, 𝑇3, … , 𝑇n (i.e. 𝑇1 is the first decryption technique, 𝑇2 is

the second decryption technique and so on) where

𝑇i∈ { 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}∀𝑖 ∈ 𝑁, the set of first 𝑛 natural numbers

Step 4. The input stream, say 𝑃𝑛 , is taken as a stream with finite number of

binary bits.

Step 5. Set 𝑖 = 𝑛

Step 6. Input bit stream 𝑃𝑖 is decrypted into 𝑃𝑖−1 using the decryption

technique 𝑇n-i+1 and the decryption key 𝐾𝑖

Step 7. Set i=i-1. If i>0 then go to step 8 else go to step 9

Step 8. 𝑃𝑖 is the input stream for the next cascading stage and goes to step 6

Step 9. 𝑃i≅ 𝑃0 is the final output of the decryptor module i.e. 𝑃0 is the

plaintext.

Figure 8.2 shows the flowchart of decryptor module for the proposed model.

 Arindam Sarkar, University of Kalyani, India 410

Figure 8.2: Pictorial representation of the flow chart of decryption for the proposed cascaded

model

Stream containing the information of the session

key S obtained

Value of n (number of cascading stages) and the decryption

keys K1, K2, K3, … , Kn are extracted from the session key S

Order of decryption is fetched from the session key S which is exactly reverse of the

sequence of encryption.

The bit stream Pi is decrypted into Pi-1 using the decryption technique Tn-i+1 and the key

encryption Ki

Set i: = i + 1

Is i > 0
?

Yes

No

Input stream, say Pn , is taken as a stream with finite

number of binary bits.

Set i: = n

Stop

Pi≅ P0 is the plaintext

Start

 Arindam Sarkar, University of Kalyani, India 411

8.3 Analysis

Extensive analysis has been made with a huge variability of the value of 𝑛, the number of

cascading stages. Out of eighty samples files (four different types and twenty files for each

type) only twelve files, arbitrarily chosen three from each type, taken for testability of the

model and result are generated.

 The encryption and decryption times taken are the differences between processor clock

stick at the starting of execution and at the end of execution respectively. Since the CPU

clock ticks taken as time, there might be a slight variation in actual time which is

insignificant and may be ignored. Proposed model has n number of cascading stages. So the

encryption and decryption time of the proposed approach are near equal to the cumulative

sums of 𝑛 number of encryption and decryption times respectively of the individual

cryptographic techniques. Therefore the encryption and decryption times are larger than that

of any individual method.

 Comparison between the source and encrypted bytes has been performed and changes of

bits within encrypted bytes has been observed for a change of single bit in the original

message byte for the entire or a relative large number of bytes. Detail concept of Avalanche,

Strict avalanche and Bit independence test has been discussed in chapter 7. The values of

three above mentioned tests are based on pure numbers and this has no units. The calculated

Avalanche, Strict avalanche and Bit independence values are very high which may indicate

good security of the proposed approach. There are no significant differences observed

between the calculated avalanche, Strict avalanche and Bit independence values for the

Proposed approach using cascaded implementation and that for any individual technique.

 Spectrum of the frequency distribution of the encrypted characters generated using the

proposed approach are analyzed and it is observed that characters with ASCII values ranging

from 0 to 255 appeared all with near equal frequencies which may indicate that it is very

hard to regenerate the original file for a cryptanalyst. Difference between high and low value

of frequencies in the frequency distribution curves is very small. So the spectrum of

frequency distribution generated using the proposed approach are nearly smoother which

may indicate that the degree of security of the proposed approach is good. No remarkable

differences in the spectrum of frequency distribution have been observed for the cascaded

implementation.

 Arindam Sarkar, University of Kalyani, India 412

Chi-Square value is calculated from the character frequencies using the formula devised by

Karl Pearson which is called “Pearsonian Chi-Square”. The higher the Chi-Square values the

more deviation from the original message. In chapter 7 the detail concept of the test of non-

homogeneity has been discussed. The calculated Chi-Square values for all the sample files

using the proposed approach are very large compare to tabulated one which may indicate that

the degree of security of the proposed approach using cascaded implementation is good.

There is no noticeable difference has been observed from calculated Chi-Square values,

which confirms the high degree of non-homogeneity of the encrypted stream with respect to

the source stream.

Cryptographic algorithms are possible to break without keys where a cryptanalyst try all

possible keys until get the success. The security of a cryptographic scheme depends on how

much effort along with its time stamp is required for the cryptanalyst to break it. But it is

always very difficult to estimate the amount of effort required to decrypt the cipher text

successfully. In other word, an encryption scheme may be defined as unconditionally secured

if the cipher text generated by the scheme does not contain enough information to determine

uniquely the corresponding plaintext, no matter how much cipher text is available.

The complexity of any symmetric encryption algorithm is generally compared with the

Brute-force attack. Brute-force approach simply involves computing every possible key until

an intelligible translation of the cipher text into plaintext is obtained. On average, half of all

possible keys must be tried to achieve success. Table 8.1 shows how much time is involved

for various key spaces. The 56-bit key size is used with the DES algorithm and 168-bit key

size is used for triple DES (i.e. TDES) algorithm. The minimum key size specified for AES

is 128 bits. For each key size, the results are shown assuming that it takes 1µs and 106 µs to

perform a single decryption respectively.

 Arindam Sarkar, University of Kalyani, India 413

Table 8.1

Time involved for various key spaces

Key Size
Number of Alternate

Keys
Time required at 1 decryption/ µs

Time required at 106 decryption/

µs

32 bits 232 = 4.3 × 109 231µs= 35.8 minutes 2.15 milliseconds

56 bits 256 = 7.2 × 1016 255µs= 1142 years 10.01 hours

128 bits 2128 = 3.4 × 1038 2127 µs= 5.4 × 1024 years 5.4 × 1018 years

168 bits 2168 = 3.7 × 1050 2167 µs= 5.9 × 1036 years 5.9 × 1030 years

26 characters

(permutation)
26! = 4 × 1026

2 × 1026µs= 6.4 × 1012

years
6.4 × 106 years

In section 8.2.1 of this chapter, the length of the session key of the proposed model has been

discussed and it has approximately 64𝑛 number of characters (any character with ASCII

value from 0 to 255). Therefore number of alternate keys = 25664𝑛 . Since on an average half

of all possible keys must be tried to achieve success, so total time required at 1 decryption/

µs=0.5 × 25664𝑛 µs = 0.5 × 28×64𝑛 µs = 0.5 × 2512𝑛 µs = 2(512𝑛−1) µs. Table 8.2 shows

how much time is involved for exhaustive search of the session key 𝑆 for the proposed model

with various 𝑛 values. Analyzing the data of this table it may be concluded that the proposed

model is highly secured from Brute-force attack.

Table 8.2

Average time required for exhaustive key search
n values Number of Alternate Keys Time required at 1 decryption/ µs Time required at 106 decryption/ µs

1 25664×1 = 2512 2511 µs= 2.13 × 2140 years 2.13 × 2134 years

2 25664×2 = 21024 21023 µs= 2.85 × 2294 years 2.85 × 2288 years

3 25664×3 = 21536 21535 µs= 3.82 × 2448 years 3.82 × 2442 years

4 25664×4 = 22048 22047 µs= 5.12 × 2602 years 5.12 × 2596 years

5 25664×5 = 22560 22559 µs= 6.87 × 2756 years 6.87 × 2750 years

6 25664×6 = 23072 23071 µs= 9.21 × 2910 years 9.21 × 2904 years

7 25664×7 = 23584 23583 µs= 1.23 × 21065 years 1.23 × 21059 years

8 25664×8 = 24096 24095 µs= 1.66 × 21219 years 1.66 × 21213
 years

 Arindam Sarkar, University of Kalyani, India 414

Let 𝑇 be the average time in years required at 106 decryptions per µs for exhaustive search of

the session key for the proposed model. If n, number of cascading stages, is plotted along X-

axis and 𝑙𝑜𝑔10𝑇 along Y-axis then the generated curve is a straight line which is shown in

figure 7.3. Extending this straight line along positive X-axis, it may predict the required

average time 𝑇 in years for any large value of n. Since the slope value of that straight line is

very high and the value of 𝑇 is plotted as 𝑙𝑜𝑔10𝑇, so the value of 𝑇 is increased sharply with

the increase of n.

Figure.8.3: Graphical representation of average time T in years (T in logarithmic scale as

log10T) against n, number of cascading stages

An ideal encryption procedure should be sensitive with the secret key. It indicates that the

change of a single bit in the secret key should produce a completely different cipher stream

and the decryption with a slightly different key fails completely. It is observed that the

proposed model generates an entirely different cipher stream with the change of a single bit

randomly in the key 𝐾. It is also noticed that the model totally fails to decrypt the cipher

stream into plaintext with a slightly different secret key. From this point of view, it may be

concluded that the proposed model is highly key sensitive.

 Arindam Sarkar, University of Kalyani, India 415

8.4 Conclusions

The approach of cascaded implementation is very simple and logical. The analysis of results

also indicates enhanced security of this approach. The strength of this proposed approach

through cascaded implementation is not highlighted through the metrics for evaluation. No

universal conclusion can be drawn from that above discussion regarding this approach. The

real strength of the proposed approach lies in the possible formation of a large key space. The

key space increases drastically with allowing the much more cascading stages. The proposed

model is highly secured from Brute-force attack. Other strength of this proposed model is the

adoption of complexity based on energy and resource available in the wireless

communication, infrastructure for computing in a node or mesh in wireless communication.

For a wireless network having low energy, the number of cascading stages be less. So, the

model is very much suitable for the security of the system where energy and resource is one

of the main constraints. One of the most important features of the proposed model is that the

model is idle to trade-off between security and performance of light weight devices having

very low processing capabilities or limited computing power. The proposed model is

applicable to ensure very high security for file transmission in any form in any size.

Some of the salient features of proposed technique can be summarized as follows:

a) Session key generation and exchange – The session key can be formed in order of 4𝑛

ways which is a vast one and the length of session key is approximately 64𝑛 number of

characters where 𝑛 is the number of cascading stages. It indicates that the key space of

the session key is very large. Again identical tuned session key can be generate after the

tuning of network in both sender and receiver side using any of the proposed key

generation techniques. This tuned session key can be used to encrypt session key

generated by the proposed model for transmission to the other party which provides

another level of security. Since the session key is used only once for each transmission, so

there is a minimum time stamp which expires automatically at the end of each

transmission of information.

b) Degree of security – Proposed technique does not suffers from cipher text only Attack,

known plaintext attack, chosen plaintext attack, Chosen cipher text only attack, brute

 Arindam Sarkar, University of Kalyani, India 416

force attack. The number of alternate keys for the proposed model is approximately

25664×𝑛 . So, model is highly secured from Brute-force attack.

c) Variable block size – Encryption algorithm can work with any block length and thus not

require padding, which result identical size of files both in original and encrypted file.

So, proposed technique has no space overhead.

d) Variable size key –variable size session key with high key space can be used in different

session. Since the session key is used only once for each transmission, so there is a

minimum time stamp which expires automatically at the end of each transmission of

information. Thus the cryptanalyst will not be able guess the session key for that

particular session.

e) Complexity – Proposed technique has the flexibility to adopt the complexity based on

infrastructure, resource and energy available for computing in a node or mesh through

wireless communication. So, the proposed technique is very much suitable in wireless

communication.

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value have

been performed between the source and corresponding cipher streams generated using

proposed technique. All the measures indicate that the degree of non-homogeneity of the

encrypted stream with respect to the source stream is good.

g) Floating frequency – In this proposed technique it is observed that floating frequencies of

encrypted characters are indicates the high degree of security of proposed technique.

h) Entropy – In this proposed technique it is observed that entropy of encrypted characters

is near to eight which indicate the high degree of security of proposed technique.

i) Correlation between source and encrypted stream – The cipher stream generated

through proposed technique is negligibly correlated with the source stream. Therefore

the proposed technique may effectively resist data correlation statistical attack.

j) Key sensitivity – Proposed method generates an entirely different cipher stream with a

small change in the key and technique totally fails to decrypt the cipher stream with a

slightly different secret session key.

 Arindam Sarkar, University of Kalyani, India 417

k) Trade-off between security and performance – The proposed technique may be ideal for

trade-off between security and performance of light weight devices having very low

processing capabilities or limited computing power in wireless communication.

8.5 Future Scope

The work presented in this thesis leaves further investigations in some areas. Some of the

apparent future investigations may be:

a) Intermixing of other popular soft computing based approach – Some well-known and

popular soft computing based approaches like Artificial Immune System (AIS),

Differential evolution, Support Vector Machine (SVM), Fuzzy Logic can be intermixed

for generation of session key by tuning in wireless communication.
b) Effectiveness- Comparisons of the proposed model with other well-known and popular

cryptographic algorithms like Blowfish, RC2, RC5, TEA, XTEA, IDEA, Serpent etc. can

be performed to ensure the effectiveness further of the proposed technique.
c) Differential Analysis - It may be possible to find out a meaningful relationship between

the source stream and encrypted stream making a slight change such as modifying a

single bit of the encrypted stream. If one minor change in the source stream can cause a

significant change in the encrypted stream then this differential attack would become

very inefficient and practically useless, To resist the differential attack differential

analysis on the encrypted stream is necessary.
d) Encryption Quality – A measure of encryption quality of the proposed model may be

expressed as the deviation between the source stream and the encrypted stream. The

encryption quality is also a function of secret key length.
Inspite of various limitations and scope of future upgradability, there are good potential in

each of individual proposed soft computing based cryptographic techniques and also in the

proposed model. Incorporation of tuning of networks over public channel for generation of

session key introduced a novel idea out of which more security may be obtained. In the

proposed model, a huge variability of key space has been introduced which is most sensitive

to the cipher text with the minimal change. The proposed model is highly flexible to adopt

 Arindam Sarkar, University of Kalyani, India 418

the complexity of any light weight computing system and idle to trade-off between security

and performance of light weight device in wireless communication having limited resources.

From the study, incorporation of proposed techniques the security of wireless communication

may be enhanced. As a result, the proposal of the thesis may be useful for the researchers and

stakeholders.

 Arindam Sarkar, University of Kalyani, India 420

References

[1] Feistel, H. (1973). Cryptography and Computer Privacy. Scientific American, May 1973,

Vol. 228 No. 5, pp.15-23.

[2] Rivest, R. L. (1990). Cryptology. In A. Jan Van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, chapter 13, pp.717-755, Elsevier / MIT Press.

[3] Stinson, D. R. (1995). Cryptography, Theory and Practice, CRC Press.

[4] Bellare, Mihir, Rogaway, & Phillip (2005). Introduction. Introduction to Modern

Cryptography, pp.10.

[5] Menezes, A.J., Vanstone, S.A., & Van Oorschot, P.C. (1996). Handbook of Applied

Cryptography, In: Applied Cryptography, CRC Press, Boca Raton.

[6] Cryptography. Retrieved August 04 2012, from

http://en.wikipedia.org/wiki/Cryptography

[7] Kahn, D. (1967). The Codebreakers, ISBN 0-684-83130-9.

[8] Encryption, Retrieved August 05 2012, from http://en.wikipedia.org/wiki/Encryption

[9] Encryption Basics, EFF Surveillance Self-Defense Project. (n.d.). Retrieved Nov 06

2013, from https://ssd.eff.org/tech/encryption.

[10] Goldreich, Oded. (2004). Foundations of Cryptography: Volume 2, Basic Applications.

Vol. 2. Cambridge university press.

[11] Kahate, A. (2010). Cryptography and Network Security, 2
nd

 edition, Tata McGraw Hill.

[12] Cipher, Retrieved August 05 2012, from http://en.wikipedia.org/wiki/Cipher

[13] Schneier, B. (1995). Applied Cryptography: Protocols, Algorithms, and Source Code in

C. 2
nd

 edition. Wiley, New York.

[14] Stallings, W. (2003). Cryptography and Network Security: Principles and Practices, 3
rd

edition, Pearson Education.

[15] Menezes, A.J., Vanstone, S.A., & Van Oorschot, P.C. (1996) Handbook of Applied

Cryptography, CRC Press, ISBN 0-8493-8523-7, October 1996 (Fifth printing, August

2001).

[16] Cryptography Key, Retrieved August 06 2012, from http://en.wikipedia.org/wiki/Key_

(cryptography)

[17] Diffie, W., & Hellman, M. (1976). Multi-user cryptographic techniques. In Proceedings

of the AFIPS Proceedings 45, June 8 1976, pp.109-112.

 Arindam Sarkar, University of Kalyani, India 421

[18] Kahn, D. (1979). Cryptology Goes Public, 58 Foreign Affairs 141, 151 (fall 1979),

pp.153.

[19] Diffie, W., & Hellman, M. (1976). New directions in cryptography, IEEE Trans. Inform.

Theory, 22(6), pp.644-654.

[20] Rivest, R., Shamir, A., & Adleman, L. (1978). A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2), pp.120-

126. Previously released as an MIT Technical Memo in April 1977, and published in

Martin Gardner's Scientific American Mathematical recreations column.

[21] "Security Policy and Key Management: Centrally Manage Encryption Key". Retrieved

August 13 2013, from Slideshare.net.

[22] "Key Management System". Retrieved January 17 2014, from Bell ID.

[23] Key generation. Retrieved December 10 2011, from http://en.wikipedia.org/wiki/

Key_generation

[24] Key-agreement protocol. Retrieved December 12 2011, from

http://en.wikipedia.org/wiki/ Key-agreement_protocol

[25] Key exchange. Retrieved December 12 2011, from http://en.wikipedia.org/wiki/

Key_exchange

[26] Attack model. Retrieved December 15 2011, from

http://en.wikipedia.org/wiki/Attack_model

[27] Man-In-The-Middle Attack Retrieved December 15 2011, from

http://en.wikipedia.org/wiki/ Man-in-the-middle_attack

[28] Zadeh, Lotfi, A. (1994). Fuzzy Logic, Neural Networks, and Soft Computing,

Communication of the ACM, 37(3), pp.77-84.

[29] Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford Univ. Press.

[30] Bäck, T., Fogel, D., & Michalewicz, Z. (1997). Handbook of Evolutionary Computation,

Oxford Univ. Press.

[31] Banzhaf, W., Nordin, P., Keller, R., & Francone, F. (1998). Genetic Programming - An

Introduction. Morgan Kaufmann, San Francisco.

[32] Eiben, A.E., Smith, J.E. (2003). Introduction to Evolutionary Computing, Springer.

[33] Ashlock, D. (2006). Evolutionary Computation for Modeling and Optimization,

Springer, ISBN 0-387-22196-4.

[34] Spillman, R., Janssen, M., Nelson, B., & Kepner, M. (1993). Use of Genetic Algorithms in the

Cryptanalysis of Simple Substitution Ciphers. Cryptologia, XVII(1), pp.31-43.

 Arindam Sarkar, University of Kalyani, India 422

[35] Spillman, R. (1993). Cryptanalysis of Knapsack Ciphers Using Genetic Algorithms. Cryptologia,

XVII(4), pp.367-377.

[36] Clark, J.A. (2003). Nature-Inspired Cryptography: Past, Present and Future. In Proceedings of

Conference on Evolutionary Computation, December 8-12, 2003, Canberra, Australia.

[37] Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, Piscataway, NJ.

[38] Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on

particle swarm performance. In Proceedings of IEEE Congress on Evolutionary

Computation (CEC 1999), Piscataway, NJ. pp.1931-1938.

[39] Colorni, A., Dorigo et, M., Maniezzo, V. (1991). Distributed Optimization by Ant

Colonies. In Proceedings of actes de la première conférence européenne sur la vie

artificielle, Paris, France, pp.134-142, Elsevier Publishing.

[40] Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, (Doctoral

dissertation), Politecnico di Milano, Italy.

[41] Bafghi, A.G., & Sadeghiyan, B. (2003). Differential Model of Block Cipher with Ant Colony

Technique. In Proceedings of Workshops on Coding, Cryptography and Combinatorics, Yellow

Mountain.

[42] Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220(4598), 671-680, Bibcode:1983Sci...220..671K. DOI:

10.1126/science.220.4598.671. JSTOR 1690046. PMID 17813860.

[43] Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41-

51, DOI: 10.1007/BF00940812.

[44] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics, 21 (6), 1087, Bibcode:1953JChPh..21.1087M. DOI: 10.1063/1.1699114.

[45] Bagnall, A.J. (1996). The Applications of Genetic Algorithms in Cryptanalysis. (M.Sc. Thesis),

School of Information System, University of East Anglia.

[46] Clark, A. (1998). Optimization Heuristics for Cryptology. (Doctoral dissertation), Faculty of

Information Technology, Queensland University of Technology, Australia.

[47] Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13(5), 533-549, DOI: 10.1016/0305-

0548(86)90048-1.

[48] Glover, F. (1989). Tabu Search - Part 1. ORSA Journal on Computing, 1(2), 190-206,

DOI: 10.1287/ijoc.1.3.190.

 Arindam Sarkar, University of Kalyani, India 423

[49] Glover, F. (1990). "Tabu Search - Part 2". ORSA Journal on Computing, 2(1), 4-32. DOI:

10.1287/ijoc.2.1.4.

[50] Simon, H. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

[51] Hassoun, M. (1995). Fundamentals of Artificial Neural Networks. MIT Press.

[52] Osowski, S. (1996). Neural Networks in Algorithmic Approach. WNT (in Polish).

[53] Bornholdt, S., & Schuster, H. (2003). Theory of Interacting Neural Networks, Wiley

VCH.

[54] Rutkowski, L. (2006). Methods and Techniques of Artificial Intelligence. PWN, Warsaw

(in Polish).

[55] Saad, D. (1998). On-line learning in neural networks. Cambridge University Press,

Cambridge.

[56] Kanter, I., & Kinzel, W. (2002). Neural Cryptography, cond-mat/0208453.

[57] Kinzel, W. & Kanter, I. (2002). Neural cryptography. In Proceedings of 9th International

Conference on Neural Information Processing, ICONIP '02, November 18-22 2002, Vol.

3, pp.1351-1354.

[58] Huntsberger, D.V. (1961). Elements of Statistical Inference. Allyn and Bacon.

[59] Spiegel, M. R., & Stephens, L. J. (2008). Theory and Problems of Statistics, 3
rd

 edition,

Tata McGraw-Hill Publishing Company Limited, Thirteenth reprint.

[60] Maurer, U. (1993). Secret key agreement by public discussion from common

information. IEEE Trans. Inform. Theory, 39(3), 733-742.

[61] Delgado-Restituto, M., de Ahumada, R.L., & Rodriguez-Vazquez, A. (1995). Secure

communication through switched-current chaotic circuits, IEEE International Symposium

on Circuits and Systems, ISCAS '95., Vol.3, 2237-2240, Apr 30-May 3 1995.

[62] Dourlens, S. (1995). Neuro-Cryptography. (MSc Thesis), Dept. of Microcomputers and

Microelectronics, University of Paris, France.

[63] Caponetto, R., Lavorgna, M., & Occhipinti, L. (1996). Cellular neural networks in secure

transmission applications. In Proceedings of IEEE Fourth International Workshop on

Cellular Neural Networks and their Applications, CNNA-96, June 24-26 1996, pp.411 –

416.

[64] Metzler, R., Kinzel, W., & Kanter, I. (2000). Interacting neural networks. Phys. Rev.

E 62(3), 2555-2565.

[65] Kinzel, W., Metzler, R., & Kanter, I. (2000). Dynamics of interacting neural networks. J.

Phys. A: Math. Gen. 33(14), L141-L147.

http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26pageNumber%3D4%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=5
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26pageNumber%3D4%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=5
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26pageNumber%3D4%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=5

 Arindam Sarkar, University of Kalyani, India 424

[66] Kanter, I., Kinzel, W., & Kanter, E. (2002). Secure Exchange of Information by

Synchronization of Neural Networks. Europhys. Lett. 57(1), 141-147.

[67] Rosen-Zvi, M., Kanter, I., & Kinzel, W. (2002). Cryptography based on Neural

Networks: Analytical Results. cond- mat/0202350.

[68] Klimov, A., Mityagin, A., & Shamir, A. (2002). Analysis of Neural Cryptography. In

Zheng, Y. (Ed.), ASIACRYPT 2002, (LNCS), (Vol. 2501, pp. 288-298) Heidelberg,

Germany: Springer.

[69] Mislovaty, R., Perchenok, Y., Kanter, I., & Kinzel, W. (2002). Secure key exchange

protocol with an absence of injective functions. Phys. Rev. E 66.

[70] Rosen-Zvi, M., Klein, E., Kanter, I., & Kinzel, W. (2002). Mutual learning in a tree

parity machine and its application to cryptography. Phys. Rev. E 66(6), 066 135-1–066

135-13.

[71] Kinzel, W., & Kanter, I. (2002). Interacting neural networks and cryptography. Advances

in Solid State Physics.

[72] Kanter, I., & Kinzel, W. (2003). The Theory of Neural Networks and Cryptography. In

Proceeding of the XXII Solvay Conference on Physics, The Physics of Communication,

2003, 631-644.

[73] Kinzel, W., & Kanter, I. (2003). Disorder generated by interacting neural networks:

application to econophysics and cryptography. J. Phys. A: Math. Gen. 36(43), 11 173–11

186.

[74] Mislovaty, R., Klein, E., Kanter, I., & Kinzel, W. (2003). Public Channel Cryptography

by Synchronization of Neural Networks and Chaotic Maps. Phys. Rev. Lett. 91, 118701.

[75] Shacham, L.N., Klein, E., Mislovaty, R., Kanter, I., & Kinzel, W. (2004). Cooperating

attackers in neural cryptography. Phys. Rev. E 69(6), 066 137-1–066 137-4.

[76] Mislovaty, R., Klein, E., Kanter, I., & Kinzel, W. (2004). Security of neural

cryptography. In Proceeding of the IEEE 11th International Conference on Electronics,

Circuits and Systems, ICECS 2004, December 13-15 2004, pp. 219-221.

[77] Ruttor, A., Reents, G., & Kinzel, W. (2004). Synchronization of random walks with

reflecting boundaries. J. Phys. A: Math. Gen. 37, 8609-8618.

[78] Ruttor, A., Kinzel, W., Shacham, L., & Kanter, I. (2004). Neural cryptography with

feedback. Phys. Rev. E 69(4), 046 110-1–046 110-7.

[79] Volkmer, M., & Schaumburg, A. (2004). Authenticated tree parity machine key

exchange. arXiv preprint cs/0408046.

 Arindam Sarkar, University of Kalyani, India 425

[80] Volkmer, M., & Wallner, S. (2004). A Low-Cost Solution for Frequent Symmetric Key

Exchange in Ad-hoc Networks. In Proceedings of the 2
nd

 German Workshop on Mobile

Ad-hoc Networks (WMAN), 2004, pp. 128–137.

[81] Ruttor, A., Kinzel, W., & Kanter, I. (2005). Neural cryptography with queries. J. Stat.

Mech. 2005(1), pp. 1-14.

[82] Klein, E., Mislovaty, R., Kanter, I., Ruttor, A., & Kinzel, W. (2005). Synchronization of

Neural Networks by Mutual Learning and its Application to Cryptography. In Advances

in Neural Information Processing Systems, MIT Press, Cambridge, 2005, Vol. 17, pp.

689-696.

[83] Kanter, I. (2005). The theory of neural networks: learning from examples, time-series and

cryptography. In Proceedings of the IEEE International Workshop on VLSI Design and

Video Technology, May 28-30 2005, pp. xviii.

[84] Kotlarz, P., & Kotulski, Z. (2005). On Application of Neural Networks for S-Boxes

Design. In Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (Eds.), AWIC 2005, LNCS

(LNAI), (Vol. 3528, pp. 243-248), Heidelberg, Germany: Springer.

[85] Volkmer, M., & Wallner, S. (2005a). Tree parity machine rekeying architectures. IEEE

Trans. Comput. 54(4), pp. 421-427.

[86] Volkmer, M., & Wallner, S. (2005b). A Key Establishment IP-Core for Ubiquitous

Computing. In Proceedings of the 1st Int. Workshop on Secure and Ubiquitous Networks,

SUN 2005, IEEE Computer Society, Los Alamitos, Denmark, pp. 241-245.

[87] Volkmer, M., & Wallner, S. (2005c). Lightweight Key Exchange and Stream Cipher

based solely on Tree Parity Machines. In ECRYPT Workshop on RFID and Lightweight

Crypto, Graz University of Technology, Austria, July 2005, pp. 102-113.

[88] Volkmer, M., & Wallner, S. (2005d). Tree parity machine rekeying architectures for

embedded security. Cryptology ePrint Archive, Inst. Comput. Technol., Hamburg Univ.

Technol., Hamburg, Germany, Rep. 2005/235.

[89] Batina, L., Lano, J., Mentens, N., Ors, S.B., Preneel, B. & Verbauwhede, I. (2005).

Energy, performance, area versus security tradeoffs for streamciphers. Catholic

University Leuven.

[90] Chen, T. & Cai, J. (2005). A Novel Remote User Authentication Scheme Using

Interacting Neural Network. Advances in Natural Computation, (LNCS), (Vol. 3610, pp.

1117-1120), Heidelberg, Germany: Springer.

[91] Chen, T., Chen, B., & Cai., J. (2005). A Novel Identity-Based Key Issuing Scheme Based

on Interacting Neural Network. Advances in Neural Networks, (LNCS), (Vol. 3497, pp.

637-642), Heidelberg, Germany: Springer.

 Arindam Sarkar, University of Kalyani, India 426

[92] Gross, N., Klein, E., Rosenbluh, M., Kinzel, W., Khaykovich, L., & Kanter, I. (2005).

A framework for public-channel cryptography using chaotic lasers. Phys. Rev. E 73(6),

066 214-1–066 214-4.

[93] Klein, E., Kanter, R.M.I., & Kinzel, W. (2005). Public-channel cryptography using chaos

synchronization. Phys. Rev. E 72(1), 016 214-1–016 214-4.

[94] Castro, J.C.H., & Viñuela, P. I. (2005). Evolutionary Computation in computer security

and cryptography. New Generation Computing, 23(3), 193-199.

[95] Godhavari, T., Alamelu, N.R., & Soundararajan, R. (2005). Cryptography Using Neural

Network. INDICON, 2005 Annual IEEE, December 11-13 2005, pp. 258-261.

[96] Klein, E., Gross, N., Rosenbluh, M., Kinzel, W., Khaykovich, L., & Kanter, I. (2006).

Stable isochronal synchronization of mutually coupled chaotic lasers. Phys. Rev. E 73(6),

066 214-1–066 214-4.

[97] Ruttor, A., Kinzel, W., Naeh, R., & Kanter, I. (2006). Genetic attack on neural

cryptography. Phys. Rev. E 73(3), 036 121-1–036 121-8.

[98] Ruttor, A. (2006). Neural Synchronization and Cryptography. (Doctoral dissertation),

Würzburg.

[99] Ruttor, A., Kinzel, W., & Kanter, I. (2007) Dynamics of neural cryptography, Phys. Rev.

E 75(5), 056 104-1–056 104-4.

[100] ehlbach, S., & Wallner, S. (2007). Secure and Authenticated Communication in

Chip- Level Microcomputer Bus Systems with Tree Parity Machines. In Proceedings of

the IEEE IC-SAMOS, Greece, pp. 201-208.

[101] Saballus, B., Volkmer, M. & Wallner, S. (2007). Secure Group Communication in Ad-

Hoc Networks using Tree Parity Machine. In Proceedings of the Communication in

Distributed Systems (KiVS), ITG-GI Conference, February 26-March 2 2007, pp. 1-12.

[102] Patra, G. K., Anil Kumar V., Thangavelu, R. P. (2007). A New Concept of Key

Agreement Using Chaos-Synchronization Based Parameter Estimation, Information

Systems Security. (LNCS), (Vol. 4812, pp. 263-266), Heidelberg, Germany: Springer.

[103] Laskari, E. C., Meletiou, G. C., Stamatiou, Y. C., & Vrahatis, M. N. (2007).

Cryptography and Cryptanalysis Through Computational Intelligence. Computational

Intelligence in Information Assurance and Security Studies in Computational

Intelligence, 57, 1-49.

[104] Arvandi, Maryam, Alireza, & Sadeghian (2007). Chosen Plaintext Attack against Neural

Network-Based Symmetric Cipher. In Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN).

 Arindam Sarkar, University of Kalyani, India 427

[105] Liu, Niansheng, & Donghui, G. (2007). Security analysis of public-key encryption

scheme based on neural networks and its implementing. Computational Intelligence and

Security, 443-450, Berlin Heidelberg: Springer.

[106] Hen, Tieming, & Rongrong, J. (2007). Designing Security Protocols Using Novel Neural

Network Model. In Proceedings of the IEEE Third International Conference on Natural

Computation (ICNC), Vol. 1.

[107] Li, P. & Yi, Z. (2007). Compound Attack on Synchronization Based Neural

Cryptography, In Proceedings of the Advances in Cognitive Neurodynamics ICCN 2007,

pp. 1019-1023.

[108] Chen, T., Huang, S.H. (2008). Tree Parity Machine-based One-time Password

Authentication Schemes. In Proceedings of the International Joint Conference on Neural

Networks, Hong Kong, June 1-6 2008.

[109] Dong, H., & Yu Yan W. (2008a). Secure Authentication on WiMAX with Neural

Cryptography. In Proceedings of the International Conference on Information Security

and Assurance (ISA), April 24-26 2008, pp. 366–369.

[110] Dong, H., & Yu Yan W. (2008b). Security Research on WiMAX with Neural

Cryptography, In Proceedings of the International Conference on Information Security

and Assurance (ISA), April 24-26 2008, pp. 370 – 373.

[111] Dong, H., Hansheng, L. (2008). Privacy Research on Ubicomp Computing with Neural

Cryptography, In Proceedings of the The 3
rd

 International Conference on Grid and

Pervasive Computing Workshops, GPCWorkshops '08, May 25-28 2008, pp. 335-340.

[112] Yunpeng, Z., Tongtong, X., Zhengjun, Z., Chunyan, M., & Xiaobin, C. (2008). The

Improvement of Public Key Cryptography Based on Chaotic Neural Networks, In

Proceedings of the Eighth International Conference on Intelligent Systems Design and

Applications (ISDA '08), Vol. 3, November 26-28 2008, pp. 326 - 330.

[113] Shouhong, W., Hai, W. (2008). Password Authentication Using Hopfield Neural

Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, 38(2), pp. 265-268.

[114] Tieming, C., Hangzhou, & Huang, S.H. (2008). Tree parity machine-based One-Time

Password authentication schemes. In Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN 2008), June 1-8 2008, pp. 257-261.

[115] Arvandi, M., Wu, S., & Sadeghian, A. (2008). On the use of recurrent neural networks to

design symmetric ciphers, Computational Intelligence Magazine, IEEE 3.2.

[116] Dong, H., & Zhong, S. (2009). A New Service-Based Computing Security Model with

Neural Cryptography, In Proceedings of the Second Pacific-Asia Conference on Web

Mining and Web-based Application (WMWA '09), June 6-7 2009, pp. 154-156.

http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26pageNumber%3D2%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=3
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26pageNumber%3D2%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=3
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4454022

 Arindam Sarkar, University of Kalyani, India 428

[117] Reyes, O.M., Kopitzke, I., & Zimmermann, K. H. (2009). Permutation parity machines

for neural synchronization. Phys. A: Math. Gen. 42, 195002.

[118] Reyes, O.M., & Zimmermann, K. H. (2009). Permutation parity machines for neural

cryptography. J. Phys. A: Math. Theor. 42, 195 002-1–195 002-20.

[119] Schmitzer, B., Kinzel, W., & Kanter, I. (2009). Pulses of chaos synchronization in

coupled map chains with delayed transmission. Phys. Rev. E 80, 047203.

[120] Wallner S. (2009). Designing Low-Cost Cryptographic Hardware for Wired- or Wireless

Point-to-Point Connections. Advances in Information Security and Its Application

Communications in Computer and Information Science, 36, pp. 1-10.

[121] Lian, Shiguo, Jinsheng, S., & Zhiquan, W. (2009). One-way hash function based on

neural network. arXiv preprint arXiv: 0707.4032.

[122] Allam, A.M., & Abbas, H. M. (2010). On the improvement of neural cryptography using

erroneous transmitted information with error prediction. IEEE Trans. Neural

Networks 21(12), pp. 1915-1924.

[123] Ahmad, S., Beg, M. R., Abbas, Q., Ahmad, J. & Atif, S. M. (2010). Comparative Study

between Stream Cipher and Block Cipher using RC4 and Hill Cipher. International

Journal of Computer Applications (IJCA), 1(25), 9-12, February 2010.

[124] Revankar, P., Gandhare, W.Z., & Rathod, D. (2010). Neural Synchronization with

Queries. In Proceedings of the International Conference on Signal Acquisition and

Processing (ICSAP '10), February 9-10 2010, pp. 371- 374.

[125] Tirdad, K., & Sadeghian, A. (2010). Hopfield neural networks as pseudo random number

generators. In Proceedings of the Annual Meeting of the North American Fuzzy

Information Processing Society (NAFIPS), July 12-14 2010, pp. 1 - 6.

[126] Prabakaran, N., & Vivekanandan, P. (2010). A New Security on Neural Cryptography

with Queries. International Journal of Advanced Networking and Applications, 02(01),

pp. 437-444.

[127] Prabakaran, N., & Nallaperumal, E. “(2010). Neural cryptography with queries for co-

operating attackers and effective number of keys. In Proceedings of the IEEE

International Conference on Communication Control and Computing Technologies

(ICCCCT), October 7-9 2010, pp. 782-787.

[128] Chowdhury, R., & Ghosh, S. (2011). Study of Cryptology Based on Proposed Concept of

Cyclic Cryptography using Cyclograph. Research Journal of Engineering and

Technology (RJET), 02(01), January-March, 2011.

[129] Bhattacharya, T., Hore, S., Mukherjee, A., & Chaudhuri, S. R. B. (2011). A Novel Data

Encryption Technique by Genetic Crossover of Robust Biometric Key and Session Based

http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5432938&sortType%3Ddesc_p_Publication_Year%26pageNumber%3D2%26rowsPerPage%3D100%26queryText%3Dneural+cryptography
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5432938&sortType%3Ddesc_p_Publication_Year%26pageNumber%3D2%26rowsPerPage%3D100%26queryText%3Dneural+cryptography
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2
http://ieeexplore.ieee.org/search/searchresult.jsp?sortType%3Ddesc_p_Publication_Year%26rowsPerPage%3D100%26queryText%3Dneural+cryptography&pageNumber=2

 Arindam Sarkar, University of Kalyani, India 429

Password. International Journal of Network Security & Its Applications (IJNSA), 3(2),

111-120, March 2011.

[130] Yosh, H. (2011). The Key Exchange Cryptosystem used with Higher Order Diophantine

Equations. International Journal of Network Security & Its Applications (IJNSA), 3(2),

43-50, March 2011.

[131] Jogdand, R. M., & Sahana, S. (2011). Design of An Efficient Neural Key Generation.

International Journal of Artificial Intelligence & Applications (IJAIA), 2(1), pp 60-69.

[132] Allam, A.M., & Abbas, H.M. (2011). Group key exchange using neural cryptography

with binary trees. In Proceedings of the IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE), May 8-11 2011, pp. 000783-000786.

[133] Saeed, F., Qadir, A. B. A., Mughal, Y. M., & Rashid, M. (2011). A Novel Key

Generation for FMET. International Journal of Computer Science and Network Security

(IJCSNS), 11(6), 197-202, June 2011.

[134] Karas, D.S., Karagiannidis, G.K., & Schober, R. (2011). Neural network based PHY-

layer key exchange for wireless communications. In Proceedings of the IEEE 22
nd

International Symposium on Personal Indoor and Mobile Radio Communications

(PIMRC), September 11-14 2011, pp. 1233-1238.

[135] Li, Yantao, et al. (2011). Parallel Hash function construction based on chaotic maps with

changeable parameters. Neural Computing and Applications, 20(8), pp. 1305-1312,

Springer.

[136] Lu´ıs, F., Seoane, L.F., & Ruttor, A. (2011). Successful attack on PPM-based neural

cryptography. arXiv preprint arXiv:1111.5792,24.

[137] Rasool, S., Sridhar, G., Kumar, K. H., & Kumar, P. R. (2011). Enhanced Secure

Algorithm for Message Communication. International Journal of Network Security & Its

Applications (IJNSA), 3(5), 33-42, September 2011.

[138] Qian, W., Chen, H., Li, Z., & Jia, C. (2011). On A Practical Distributed Key Generation

Scheme Based on Bivariate Polynomials. In proceedings of the 7
th

 International

Conference on Wireless Communications, Networking and Mobile Computing (WiCOM),

September 23-25 2011, Wuhan, China, pp. 01-04.

[139] Gajbhiye, S., Sharma, M., & Dashputre, S. (2011). A Survey Report on Elliptic Curve

Cryptography. International Journal of Electrical and Computer Engineering (IJECE),

1(2), 195-201, December 2011.

[140] Vijayakumar, P., Vijayalakshmi, V., & Zayaraz, G. (2011). DNA Computing based

Elliptic Curve Cryptography. International Journal of Computer Applications (IJCA),

6(4), 18-21, December 2011.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abbas,%20H.M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Karas,%20D.S..QT.&searchWithin=p_Author_Ids:38233416600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Karagiannidis,%20G.K..QT.&searchWithin=p_Author_Ids:37271227900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Schober,%20R..QT.&newsearch=true

 Arindam Sarkar, University of Kalyani, India 430

[141] Som, S., Chatergee, N. S., & Mandal, J. K. (2011). Key Based Bit Level Genetic

Cryptographic Technique (KBGCT). In proceedings of the 7
th

 International Conference

on Information Assurance and Security (IAS), December 5-8 2011, Melaka, Malaysia, pp.

240-245.

[142] Das, D., Mukherjee, M., Choudhary, N., Nath, A., & Nath, J. (2011). An Integrated

Symmetric Key Cryptography Algorithm using Generalised Modified Vernam Cipher

Method and DJSA Method: DJMNA Symmetric Key Algorithm. In proceedings of the

World Congress on Information and Communication Technologies (WICT 2011),

December 11-14 2011, Mumbai, India, pp. 1199-1204.

[143] Patheja, P. S., Waoo, A. A., & Nagwanshi, S. (2011). A Hybrid Encryption Technique to

Secure Bluetooth Communication. IJCA Proceedings on International Conference on

Computer Communication and Networks CSI-COMNET-2011, 1, 26-32.

[144] Kumar, R., & Saraswat, V. K. (2011). A Research on Performance Evaluation for Some

Cipher Models Based on Analytical Survey. International Journal of Networks and

Communications, 1(1), 14-17.

[145] Gupta, V., Singh, G., & Gupta, R. (2012). Advance Cryptography Algorithm for

Improving Data Security. International Journal of Advanced research in Computer

Science and Software Engineering, 2(1), January 2012.

[146] Rayarikar, R., Upadhyay, S., & Shah, D. (2012). An Encryption Algorithm for Secure

Data Transmission. International Journal of Computer Applications (IJCA), 40(7), 43-47.

February 2012.

[147] Kaul, V., Narayankhedkar, S. K., Achrekar, S., & Agarwal, S. (2012). Security

Enhancement Algorithms for Data Transmission for Next Generation Networks. In

proceedings of the International Conference and workshop on Emerging Trends in

Technology (ICWET 2012), March 2012, icwet2012 - Number 13, pp. 1-6.

[148] Nicanfar, H., & Leung, V. C. M. (2012). EIBC: Enhanced Identity-Based Cryptography,

a Conceptual Design. In proceedings of the IEEE International Systems Conference

(SysCon), March 19-22 2012, Vancouver, BC, Canada, pp. 1-7.

[149] Alani, M. M. (2012). Neuro-cryptanalysis of DES. In proceedings of the World Congress

on Internet Security (WorldCIS 2012), June 10-12 2012, Guelph, Canada, pp. 23-27.

[150] Savari, M., & Montazerolzohour, M. (2012). All about Encryption in Smart Card. In

proceedings of the International Conference on Cyber Security, Cyber Warfare and

Digital Forensic (CyberSec 2012), June 26-28 2012, Kuala Lumpur, Malaysia, pp. 54-59.

[151] Banerjee, S. & Ariffin, M. R. K. (2012). Chaos Synchronization Based Data

Transmission with Asymmetric Encryption. International Journal of Computer

Applications (IJCA), 37(12), pp. 6-9.

 Arindam Sarkar, University of Kalyani, India 431

[152] Seoane, L.F., & Ruttor, A. (2012). Successful attack on permutation-parity-machine-

based neural cryptography. Phys. Rev. E 85(2), 025 101-1–025 101-4.

[153] Urbanovich, Pavel, Marcin Plonkowski, & Konstantsin Churikov. (2012). The

appearance of conflict when using the chaos function for calculating the hash code.

network 3.

[154] Santhanalakshmi, S., Sudarshan, T., Patra, S. B., & Gopal, K. (2012). Neural

Synchronization by Mutual Learning Using Genetic Approach for Secure Key

Generation. Recent Trends in Computer Networks and Distributed Systems Security,,

Communications in Computer and Information Science, 335, pp. 422-431.

[155] Winkler, M., Butsch, S., & Kinzel, W. (2012). Pulsed chaos synchronization in networks

with adaptive couplings. Phys. Rev. E 86, 016203.

[156] Dolecki, M. (2012). Tree Parity Machine Synchronization Time-Statistical Analysis.

Mathematics, Physics and Informatics Series, Minsk 6(153), pp. 149-151.

[157] Qing-hai, B., Wen-bo, Z., Peng, J., & Xu, L. (2012). Research on Design Principles of

Elliptic Curve Public Key Cryptography and Its Implementation. In proceedings of the

International Conference on Computer Science & Service System (CSSS 2012), August

11-13 2012, Nanjing, China, pp. 1224-1227.

[158] Abdulkader, H. & Roviras, D. (2012). Generating Cryptography Keys using Self-

Organizing Maps. In Proceedings of the International Symposium on Wireless

Communication Systems (ISWCS 2012), August 28-31 2012, Paris, France, pp. 736-740.

[159] Santhanalakshmi, S., Sangeeta, K., & Patra, G.K. (2012). Design of Stream Cipher for

Text Encryption using Soft Computing based Techniques. International Journal of

Computer Science and Network Security (IJCSNS), 12(12), pp. 149-152.

[160] Gutub, A.A.A., & Khan F.A.A. (2012). Hybrid Crypto Hardware Utilizing Symmetric-

Key and Public-Key Cryptosystems. In Proceedings of the International Conference on

Advanced Computer Science Applications and Technologies (ACSAT 2012), November

26-28 2012, Kuala Lumpur, Malaysia, pp. 116-121.

[161] Shrivastava, A., & Singh, M. (2012). A Security Enhancement Approach in Quantum

Cryptography. In Proceedings of the 5
th

 International Conference on Computers and

Devices for Communication (CODEC 2012), December 17-19 2012, Kolkata, India, pp.

1-4.

[162] Pramanik, S., & Setua, S. K. (2012). DNA Cryptography, In Proceedings of the 7th

International Conference on Electrical & Computer Engineering (ICECE 2012),

December 20-22 2012, Dhaka, Bangladesh, pp. 551-554.

[163] Mandal, S., Macdonald, G., Rifai, M. E., Punekar, N., Zamani, F., Chen, Y., Kak, S.,

Verma, P. K., Huck, R. C., & Sluss, J. (2013). Multi-Photon Implementation of Three-

 Arindam Sarkar, University of Kalyani, India 432

Stage Quantum Cryptography Protocol. In Proceedings of the International Conference

on Information Networking (ICOIN 2013), January 28-30 2013, Bangkok, Thailand, pp.

6-11.

[164] Verma, H. K., & Singh, R. K. (2013). Enhancement of RC6 Block Cipher Algorithm and

Comparison with RC5 & RC6. In Proceedings of the 3
rd

 IEEE International Advance

Computing Conference (IACC 2013), February 22-23 2013, Ghaziabad, Uttar Pradesh,

India, pp. 556-561.

[165] Yang, W. C., & Lee, J. X. (2013). Implementation of Stream Cipher Service in JCA. In

Proceedings of the IEEE International Symposium on Next-Generation Electronics (ISNE

201), February 25-26 2013, Kaohsiung, Taiwan, pp. 557-561.

[166] Dolecki, M., Kozera, R., & Lenik, K. (2013). The Evaluation of the TPM

Synchronization on the Basis of their Outputs. Journal of Achievements in Materials and

Manufacturing Engineering 57(2), pp.91-98.

[167] Dolecki, M., & Kozera, R. (2013). Threshold Method of Detecting Long-Time TPM

Synchronization, Computer Information Systems and Industrial Management, (LNCS)

(Vol. 8104, pp. 241-252), Heidelberg, Germany: Springer.

[168] Mu, N., & Liao, X. (2013). An Approach for Designing Neural Cryptography. Advances

in Neural Networks ISNN 2013, (LNCS) (Vol. 7951, pp. 99-108), Heidelberg, Germany:

Springer.

[169] Aguilar, J., & Molina, C. (2013). The Multilayer Random Neural Network, Neural

Processing Letters, 37(2), pp. 111-133.

[170] Lei, X., Liao, X., Chen, F., & Huang, T. (2013). Two-layer tree-connected feed-forward

neural network model for neural cryptography, Phys. Rev. E 87, 032811.

[171] Ramesh, A., & Suruliandi, A. (2013). Performance Analysis of Encryption Algorithms

for Information Security. In Proceedings of the International Conference on Circuits,

Power and Computing Technologies (ICCPCT 2013), March 20-21 2013, Nagercoil ,

Tamil Nadu, India, pp. 840-844.

[172] Sircar, R. D., Sekhon, G., & Nath, A. (2013). Modern Encryption Standard (MES):

Version-II. In Proceedings of the International Conference on Communication Systems

and Network Technologies (CSNT 2013), April 6-8 2013, Gwalior, India, pp. 506-511.

[173] Soni, R., Johar, A., & Soni, V. (2013). An Encryption and Decryption Algorithm for

Image Based on DNA. In Proceedings of the International Conference on

Communication Systems and Network Technologies (CSNT 2013), April 6-8 2013,

Gwalior, India, pp. 478-481.

[174] Mandal, B. K., Bhattacharyya, D., & Bandyopadhyay, S. K. (2013). Designing and

Performance Analysis of a Proposed Symmetric Cryptography Algorithm. In

 Arindam Sarkar, University of Kalyani, India 433

Proceedings of the International Conference on Communication Systems and Network

Technologies (CSNT 2013), April 6-8 2013, Gwalior, India, pp. 453-461.

[175] Naveen J. K., Karthigaikumar P., Sivamangai N. M., Sandhya R. & Asok S. B. (2013).

Hardware Implementation of DNA Based Cryptography, In Proceedings of the IEEE

Conference on Information & Communication Technologies (ICT 2013), April 11-12

2013, JeJu Island, South Korea, pp. 696-700.

[176] Mu, N., Liao, X., & Huang, T. (2013). Approach to design neural cryptography: A

generalized architecture and a heuristic rule. Phys. Rev. E 87, 062804.

[177] Allam, A.M., Abbas, H.M., & El-Kharashi, M.W. (2013). Authenticated key exchange

protocol using neural cryptography with secret boundaries, In Proceedings of the IEEE

The 2013 International Joint Conference on Neural Networks (IJCNN), August 4-9 2013,

pp. 1-8.

[178] Jhajharia, S., Mishra, S., & Bali, S. (2013). Public key cryptography using neural

networks and genetic algorithms. In Proceedings of the IEEE Sixth International

Conference on Contemporary Computing (IC3), August 8-10 2013, pp. 137-142.

[179] Allam, A.M., Abbas, H.M., & El-Kharashi, M.W. (2013). Security analysis of neural

cryptography implementation. In Proceedings of the IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing (PACRIM), August 27-29 2013, pp.

195 -199.

[180] Akhavan, A., Azman, S., & Afshin, A. (2013). A novel parallel hash function based on

3D chaotic map. Springer EURASIP Journal on Advances in Signal Processing, pp. 1-12.

[181] Singh, A., & Mandal, A. (2013). Neural Cryptography for Secret Key Exchange and

Encryption with AES. International Journal of Advanced Research in Computer Science

and Software Engineering, 3(5).

[182] Adel, A., El-Zoghabi, A. H., & Yassin, H. H. H. (2013). Survey Report on Cryptography

Based on Neural Network. International Journal of Emerging Technology and Advanced

Engineering, 3(12), pp. 456-462.

[183] Lonkar, S., & Charniya, N. (2014). Neural Network based Cryptography. In Proceedings

of the International Technological Conference-2014 (I-TechCON), January 03-04 2014,

pp. 168-172.

[184] Apdullah, Y., &

Yakup, K. (2014). Neural Network Based Cryptography. Neural

Network World, 24, pp. 177-192.

[185] Mohammed, A. (2014). Appliance of Neuron Networks in Cryptographic Systems.

Research Journal of Applied Sciences, Engineering and Technology 7(4), pp. 740-744,

[186] Soni, V., & Tanwar, S. (2014). Secure Key Exchange using Neural Network.

International Journal of Engineering Sciences & Research Technology, pp. 1707-1709.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jhajharia,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mishra,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bali,%20S..QT.&newsearch=true

 Arindam Sarkar, University of Kalyani, India 434

[187] Dadhich, A., & Yadav, S. K. (2014). Evolutionary Algorithms, Fuzzy Logic and

Artificial Immune Systems applied to Cryptography and Cryptanalysis: State-of-the-art

review. International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET), 3(6), pp. 2111-2120.

[188] Singla, P., Sachdeva, P., & Ahmad M. (2014). A Chaotic Neural Network Based

Cryptographic Pseudo-Random Sequence Design. In Proceedings of the IEEE Fourth

International Conference on Advanced Computing & Communication Technologies

(ACCT), February 8-9 2014, pp. 301-306.

[189] Soni, V., Tanwar, M.S., & Prema, K.V. (2014). Implementation of Hash Function Based

On Neural Cryptography. International Journal of Computer Science and Mobile

Computing, 3(4), pp. 1380-1386.

[190] Chakraborty, S., Dalal, J., Sarkar, B., & Mukherjee, D. (2014). Neural synchronization

based secret key exchange over public channels: A survey. In Proceedings of the IEEE

International Conference on Signal Propagation and Computer Technology (ICSPCT),

July 12-13 2014, pp. 368-375.

[191] Adel, A., El-Zoghabi, A. H., & Yassin, H. H. H. (2014). Public key Cryptography Based

on Chaotic Neural Network. International Journal of Computer Application, 4(4) pp.

201-218.

[192] NIST statistical test. Retrieved June 27 2012, from

http://csrc.nist.gov/groups/ST/toolkit/rng/ stats_tests.html.

[193] Webster, A. F. & Tavares, S. E. (1985). On the Design of S-Boxes, In Proceedings of the

Advances in Cryptology: Crypto’85, August 18-22, 1985, Santa Barbara, California,

USA, Vol. 218, pp. 523-534.

[194] Spiegel, M. R., & Stephens, L. J. (2008). Theory and Problems of Statistics, 3
rd

 edition,

Tata McGraw-Hill Publishing Company Limited, Thirteenth reprint 2008.

[195] Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps.

Biological Cybernetics 43 (1), 59-69. DOI: 10.1007/bf00337288.

[196] Sarkar, A., & Mandal, J. K. (2014). Soft Computing based Cryptographic Technique

using Kohonen's Self-Organizing Map Synchronization for Wireless communication

(KSOMSCT). International Journal in Foundations of Computer Science & Technology

(IJFCST), 4(5), 85-100, DOI: 10.5121/ijfcst.2014.4508, ISSN 1839 – 7662.

[197] Sarkar, A., Mandal, J. K., & Patra P. (2013). Double Layer Perceptron Synchronized

Computational Intelligence guided Fractal Triangle based Cryptographic Technique for

Secured Communication (DLPFT). In Proceedings of the IEEE 4
th

 International

Symposium on Electronic System Design (ISED-2013), pp.191-195, ISBN 978-0-7695-

5143-2, December 13-15 2013, NTU, Singapore, IEEE.

 Arindam Sarkar, University of Kalyani, India 435

[198] Kohonen, T., & Honkela, T. (2007). Kohonen Network. Scholarpedia. Retrieved

September 24 2012.

[199] Kohonen, T. Honkela, T. (2011). Kohonen network. Scholarpedia. Retrieved September

24 2012.

[200] Sarkar, A. (2013). Parallel Session Key Exchange and Certification by Fine Tuning of

Double Layer Perceptron in Wireless communication (PKECDLP), In Proceedings of the

ICT in Present Wireless Revolution: Challenges and Issues, The Institution of Electronics

and Telecommunication Engineers Kolkata Centre, IETE Kolkata Center, Salt Lake,

India, August 30-31 2013, pp. 1-9, ISBN 978-93-5126-699-0.

[201] Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence Based Simulated

Annealing Guided Key Generation In Wireless Communication (CISAKG). International

Journal on Information Theory (IJIT), 2(4), 35-44, DOI: 10.5121/ijit.2014.2403, ISSN

2319 - 7609 [Online]; 2320 - 8465 [Print].

[202] Sarkar, A., & Mandal, J. K. (2014). Intelligent Soft Computing based Cryptographic

Technique using Chaos Synchronization for Wireless Communication (CSCT).

International Journal of Ambient Systems and Applications (IJASA), 2(3), 11-20,

DOI: 10.5121/ijasa.2014.2302, ISSN 2320 – 9259 [Online]; 2321 – 6344 [Print].

[203] Sarkar, A., & Mandal, J. K. (2013). Genetic Algorithm Guided Key Generation in

Wireless Communication (GAKG). International Journal on Cybernetics & Informatics

(IJCI), 2(5), 9-17, DOI: 10.5121/ijci.2013.2502, ISSN 2277 - 548X [Online]; 2320 -

8430 [Print].

[204] Pecora, L. M., & Carroll, T. L. (1990). Synchronizationin chaotic systems. Phys. Rev.

Lett. 64, 821-824.

[205] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric

Sciences 20(2), 130-141, Bibcode:1963JAtS...20..130L. DOI: 10.1175/1520-0469.

[206] Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence based Triple Layer

Perceptron Model Coordinated PSO guided Metamorphosed based Application in

Cryptographic Technique for Secured Communication (TLPPSO). In Proceedings of the

First International Conference on Computational Intelligence: Modeling, Techniques

and Applications (CIMTA-2013), Vol.10, pp. 433-442, DOI: 10.1016/j. protcy.

2013.12.380, ISSN: 2212-0173, September 27-28 2013, Department of Computer

Science & Engineering, University of Kalyani, Kalyani, India, Procedia Technology,

Elsevier.

[207] Sarkar, A., & Mandal, J. K. (2014). Computational Science guided Soft Computing based

Cryptographic Technique using Ant Colony Intelligence for Wireless Communication

(ACICT). International Journal of Computational Science and Applications (IJCSA),

4(5), 61-73, DOI: 10.5121/ijcsa.2014.4505, ISSN 2200 – 0011.

 Arindam Sarkar, University of Kalyani, India 436

[208] Sarkar, A., & Mandal, J. K. (2013). Complete Binary Tree Architecture based Triple

Layer Perceptron Synchronized Group Session Key Exchange and Authentication in

Wireless Communication (CBTLP). In Proceedings of the 48th Annual Convention of

CSI on theme "ICT and Critical Infrastructure, AISC Series Springer Vol. 249, Book

Subtitle Vol.2, pp. 609-615, DOI: 10.1007/978-3-319-03095-1_66, ISBN: 978-3-319-

03094-4 [Print], ISBN: 978-3-319-03095-1 [Online], Series ISSN: 2194-5357, December

13-15 2013, Computer Society of India, Visakhapatnam Chapter, Visakhapatnam, India,

Springer International Publishing.

[209] Sarkar, A., & Mandal, J. K. (2014). Particle Swarm Optimization based Session Key

Generation for Wireless Communication (PSOSKG). In A. Bhattacharyya, S., & B. Dutta,

P. (Eds.), Handbook of Research on Swarm Intelligence in Engineering, chapter 20,

701 E. Chocolate Ave., Hershey, Pennsylvania (USA): IGI GLOBAL. (Accepted)

