
Towards Design and Implementation of    

Soft computing based Cryptographic Techniques 

for Wireless Communication 

Thesis submitted for the degree of Doctor of Philosophy (Engineering) 

in the Department of Computer Science and Engineering,  

Faculty of Engineering, Technology and Management,  

University of Kalyani 

By 

Arindam Sarkar 

Under the supervison of 

Prof. Jyotsna Kumar Mandal 

Department of Computer Science and Engineering 

University of Kalyani,  

Kalyani, West Bengal, India 

November, 2014 



 



Kalyani-741235, Nadia 

West Bengal, India 

Phone: (033) 25809617 (O) 

Mobile: +91- 9434352214 

e-mail: jkm.cse@gmail.com 

 

Univers i ty  o f  Kalyani   
FACULTY OF ENGINEERING, TECHNOLOGY & MANAGEMENT 

 

Prof. J. K. Mandal 
Professor, Computer Science and  

Engineering, University of Kalyani 

 

  

 

 

Certificate 
 

 

 

 

This is to certify that the thesis entitled “TOWARDS DESIGN AND IMPLEMENTATION 

OF SOFT COMPUTING BASED CRYPTOGRAPHIC TECHNIQUES FOR WIRELESS 

COMMUNICATION” submitted by Arindam Sarkar, who got his research proposal registered 

on 30.05.2012 (Ref. No. Ph.D/Regn./N.Rgl./Eg-34/Com.Sc./AS/2012) for the award of Ph.D. 

(Engineering) degree of the University of Kalyani is absolutely based upon his own work under 

my supervision and that neither his thesis nor any part of the thesis has been submitted for any 

degree or diploma or any other academic award anywhere before. I recommend that                   

Arindam Sarkar has fulfilled all the requirements according to rules of this University regarding 

the work embodied in this thesis. 

 

 

 

 

 

       __________________________ 

                                                                                         (Dr. Jyotsna Kumar Mandal)    

Date:                                                                                                 Professor 

Place: Kalyani                                                   Department of Computer Science and Engineering 

   University of Kalyani, Kalyani 
 

 



 



 Arindam Sarkar, University of Kalyani, India i 

 

 

 

 

 

 

 

 

Copyright 2014, by the author(s) 

All rights reserved.  

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and the full citation on 

the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, 

requires prior specific permission.  

 

 

 

 

 

 

 



 



 Arindam Sarkar, University of Kalyani, India ii 

 

  

  

 

 

 

 

 

 

 

 

 

Dedicated 
To 

My family  
& 

All my beloved 
Teachers 

 

 

 

 

 

 

 



 



 Arindam Sarkar, University of Kalyani, India iii 

ACKNOWLEDGEMENTS 

This thesis is the end of my journey in obtaining my Ph.D. I have not traveled in a vacuum in this 

journey. This thesis has been kept on track and been seen through to completion with the support 

and encouragement of numerous people including my well wishers, my friends, colleagues and 

various institutions. At the end of my thesis I would like to thank all those who contributed in 

many ways to the success of this study and made it an unforgettable experience for me.  

My first debt of gratitude must go to my supervisor and guide, Dr. Jyotsna Kumar Mandal, 

Professor, Department of Computer Science and Engineering, University of Kalyani, Kalyani, 

India. He patiently provided the vision, encouragement and advice necessary for me to proceed 

through the doctorial program and complete my dissertation. I am indebted to him for continuous 

inspiration, support and motivation and all kind of helps.  

This gives me great pleasure to express my thanks to all teachers and staff members of the 

Department of Computer Science and Engineering, University of Kalyani, Department of 

Computer Science, The University of Burdwan and Department of Computer and System 

Sciences, VISVA-BHARATI, West Bengal, India, who helped me time to time in many ways 

during the period of my research work. 

I take this opportunity to sincerely acknowledge the Department of Science & Technology 

(DST), Government of India, New Delhi, for providing financial assistance in the form of 

INSPIRE Fellowship which buttressed me to perform my work comfortably. 

Last but not least, I would like to pay high regards to my parents Mr. Apurba Kumar Sarkar and 

Mrs. Kaberi Sarkar. I could not have completed this dissertation without bless and love of them.  

Besides this, several people have knowingly and unknowingly helped me in the successful 

completion of this thesis. 

 

 

 

       …………………………………. 

                    ( Arindam Sarkar ) 

Department of Computer Science and Engineering 

University of Kalyani, Kalyani, West Bengal, India. 

 



 



 Arindam Sarkar, University of Kalyani, India iv 

ABSTRACT 

The objectives of the proposed thesis is to enhance the security of the wireless communication 

system in such a way that the instead of exchanging the whole session key, soft computing based 

synchronization technique is used to construct a cryptographic key exchange protocol for 

generating the identical session key at sender and receiver. Here the partners benefit from mutual 

interaction, so that a passive attacker is usually unable to learn the generated key in time. This 

synchronized network can be used for message communication by encrypting the plaintext using 

any light weight encryption/decryption technique with the help of synchronized session key at 

both ends. Also grouped synchronization has been proposed to synchronize group of 𝑛 party to 

form a synchronized grouped session key. The candidate searched some of such techniques 

which are simple and easy to understand, and also to trade-off between security and performance 

of light weight devices as well as energy awareness during the course of research.  

The thesis considered synchronization of sender and receiver using soft computing tool for 

generating identical session key and light weight soft computing based encryption/decryption 

technique as an example corresponding to each technique. Here five such techniques based on 

soft computing based synchronization have been designed, implemented and tested through High 

Level Languages. These techniques have been discussed with their merits and demerits. Identical 

soft computing based network has been considered at sender and receiver. Both the 

communicating networks receive an indistinguishable input vector, produce an output bit and are 

trained based on the output bit. The dynamics of the two networks and their weight vector are 

found to a novel experience, where the demonstrate networks synchronize to an identical time 

dependent weight vector. This observable fact has been used to form a secured variable length 

secret session key using a public channel. Any light weight message encryption technique is used 

to encrypt the plaintext. In this thesis as an example light weight soft computing based message 

encryption technique is used to illustrate the cryptographic technique. Encrypted text get further 

encrypted using synchronized session key and transmitted to the receiver. During decryption 

receiver has the same synchronized session key which is used to perform first round of 

decryption operation and outcomes of this further decrypted by message decryption technique 

(exactly reverse process of message encryption) are performed and plaintext is regenerated. 

Comparison of all proposed techniques with each other and also with Tree Parity Machine 

(TPM) and Permutation Parity Machine (PPM), RSA, Triple-DES (168 bits), AES (128 bits), 
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RC4 and Vernam Cipher has been done with respect to the parameters like fifteen statistical tests 

of the NIST test suite, analysis of the average time (in cycle) needed for generating 128/192/

256 bit session key by synchronization between two party and group of party, memory heap 

used during synchronization, relative time spent in GC and thread required in synchronization 

phase, encryption and decryption time, character frequencies, Avalanche and strict Avalanche 

effects, Bit Independence effects, Chi-Square values, character frequency test, entropy test, 

floating frequency test and autocorrelation test.  

A model of session key generation through synchronization and encryption through cascaded 

implementation embodied with proposed algorithms has been introduced. The approach of 

cascaded implementation is an attempt to integrate the five proposed techniques. The proposed 

model may introduce new dimension to ensure security at maximum possible level. The model is 

very much suitable for the security of the system where unify computing is an essential 

component and it is idle to trade-off between security and performance of light weight devices 

having very low processing capabilities or limited computing power in wireless communication. 

 

 

 

 

 

 

 

 

 

 

 

 



 Arindam Sarkar, University of Kalyani, India vi 

List of Publications    

Book published  

1.  Sarkar, A., & Mandal, J. K. (2012). Artificial Neural Network Guided Secured 

Communication Techniques: A Practical Approach. LAP LAMBERT Academic 

Publishing, ISBN-10: 3659119911, ISBN-13: 978-3659119910. 

Book Chapter 

2. Sarkar, A., & Mandal, J. K. (2014). Particle Swarm Optimization based Session Key 

Generation for Wireless Communication (PSOSKG). In A. Bhattacharyya, S., & B. Dutta, 

P. (Eds.), Handbook of Research on Swarm Intelligence in Engineering, chapter 20,                        

701 E. Chocolate Ave., Hershey, Pennsylvania (USA): IGI GLOBAL. (Accepted) 

International Journals    

3. Sarkar, A., & Mandal, J. K. (2014). Cryptanalysis of Key Exchange method in Wireless 

Communication (CKE). International Journal of Network Security (IJNS), ISSN 1816 – 

3548 [Online]; 1816 – 353X [Print]. (Accepted)  

4. Sarkar, A., & Mandal, J. K. (2014). Computational Science guided Soft Computing based 

Cryptographic Technique using Ant Colony Intelligence for Wireless Communication 

(ACICT). International Journal of Computational Science and Applications (IJCSA), 4(5), 

61-73, DOI: 10.5121/ijcsa.2014.4505, ISSN 2200 – 0011.  

5. Sarkar, A., & Mandal, J. K. (2014). Intelligent Soft Computing based Cryptographic 

Technique using Chaos Synchronization for Wireless Communication (CSCT). 

International Journal of Ambient Systems and Applications (IJASA), 2(3), 11-20, DOI: 

10.5121/ijasa.2014.2302, ISSN 2320 – 9259 [Online]; 2321 – 6344 [Print]. 

6.  Sarkar, A., & Mandal, J. K. (2014). Soft Computing based Cryptographic Technique using 

Kohonen's Self-Organizing Map Synchronization for Wireless communication 

(KSOMSCT). International Journal in Foundations of Computer Science & Technology 

(IJFCST), 4(5), 85-100, DOI: 10.5121/ijfcst.2014.4508, ISSN 1839 – 7662. 

7. Sarkar, A., & Mandal, J. K. (2014). Secured Transmission Through Multi LayerPerceptron 

in Wireless Communication (STMLP). International Journal of Mobile Network 

Communications & Telematics (IJMNCT), 4(4), 1-16, DOI: 10.5121/ijmnct.2014.4401, 

ISSN 1839 – 5678.  

 



 Arindam Sarkar, University of Kalyani, India vii 

8. Sarkar, A., & Mandal, J. K. (2014). Cryptanalysis of Key Exchange method using 

Computational Intelligence guided Multilayer Perceptron in Wireless Communication 

(CKEMLP). Advanced Computational Intelligence: An International Journal (ACII), 1(1), 

1-9, ISSN 2317 – 4113.   

9. Sarkar, A., & Mandal, J. K. (2013). Neuro Genetic Key Based Recursive Modulo-2 

Substitution Using Mutated Character for Online Wireless Communication 

(NGKRMSMC). International Journal of Computational Science and Information 

Technology (IJCSITY), 1(4), 49-59, DOI: 10.5121/ijcsity.2014.1404, ISSN 2320 - 7442 

[Online]; 2320 - 8457 [Print].  

10. Sarkar, A., & Mandal, J. K. (2013). Genetic Algorithm Guided Key Generation in Wireless 

Communication (GAKG). International Journal on Cybernetics & Informatics (IJCI), 2(5), 

9-17, DOI: 10.5121/ijci.2013.2502, ISSN 2277 - 548X [Online]; 2320 - 8430 [Print].  

11. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence Based Simulated Annealing 

Guided Key Generation In Wireless Communication (CISAKG). International Journal on 

Information Theory (IJIT), 2(4), 35-44, DOI: 10.5121/ijit.2014.2403, ISSN 2319 - 7609 

[Online]; 2320 - 8465 [Print].  

12. Sarkar, A., & Mandal, J. K. (2013). Group Session Key exchange Multilayer Perceptron 

based Simulated Annealing guided Automata and Comparison based Metamorphosed 

Encryption in Wireless Communication (GSMLPSA). International Journal of Wireless & 

Mobile Networks (IJWMN), 5(4), 203-222, DOI: 10.5121/ijwmn.2013.5415, ISSN 0975-

3834 [Online]; 0975-4679 [Print]. 

13. Sarkar, A., & Mandal, J. K. (2013). Key Swap Over among Group of Multilayer 

Perceptrons for Encryption in Wireless Communication (KSOGMLPE), International 

Journal of Information Technology, Control and Automation (IJITCA), 3(1), 85-100, 

DOI:10.5121/ijitca.2013.3107,  ISSN 1839 – 6282.   

14. Sarkar, A., & Mandal, J. K. (2012). Secured Wireless Communication using Fuzzy Logic 

based High Speed Public-Key Cryptography (FLHSPKC), International Journal of 

Advanced Computer Science and Applications (IJACSA), 3(10), 137-145, U.S ISSN : 2156-

5570 [Online], U.S ISSN : 2158-107X(Print), 2012 Impact Factor : 1.324.  

15. Sarkar, A., & Mandal, J. K. (2012). Key Generation and Certification using Multilayer 

Perceptron in Wireless Communication (KGCMLP), International Journal of Security, 

Privacy and Trust Management (IJSPTM), 1(5), 27-43, DOI: 10.5121/ijsptm.2012.1503, 

ISSN 2277 - 5498 [Online]; 2319 - 4103 [Print].  



 Arindam Sarkar, University of Kalyani, India viii 

16. Sarkar, A., & Mandal, J. K. (2012). Evolutionary Computation Guided Energy Efficient 

Key Organization in Wireless Communication (ECEEKO), International Journal of 

Information and Network Security (IJINS), 2(1), 352-366, ISSN: 2089-3299.  

17. Sarkar, A., & Mandal, J. K. (2012). Energy Efficient Wireless Communication Using 

Genetic Algorithm Guided Faster Light Weight Digital Signature Algorithm (GADSA), 

International Journal of Advanced Smart Sensor Network Systems (IJASSN), 2(3), 9-25, 

DOI: 10.5121/ijassn.2012.2302, ISSN: 2231 - 4482 [Online]; 2231 - 5225 [Print].   

18. Sarkar, A., & Mandal, J. K. (2012). Multilayer Perceptron Guided Key Generation Through 

Mutation With Recursive Replacement In Wireless Communication (MLPKG), 

International Journal on AdHoc Networking Systems (IJANS), 2(3), 11-28, DOI: 

10.5121/ijans.2012.2302, ISSN: 2249 - 0175 [Online]; 2249 - 2682 [Print].  

19. Sarkar, A., & Mandal, J. K. (2012). Swarm Intelligence based Faster Public-Key 

Cryptography in Wireless Communication (SIFPKC), International Journal of Computer 

Science & Engineering Technology (IJCSET), 3(7), 267-273, ISSN: 2229-3345.  

20. Sarkar, A., & Mandal, J. K. (2012). Secured Wireless Communication by High-Speed RSA 

Using Evolutionary Programming based Optimized Computation (HS-RSA-EP), 

International Journal of Advanced Research in Computer Science (IJARCS), 3(4), 161-165, 

ISSN 0976 – 5697.  

21. Sarkar, A., & Mandal, J. K. (2012). Object Oriented Modelling of Idea Using GA Based 

Efficient Key Generation For E-Governance Security (OOMIG), International Journal of 

Distributed and Parallel Systems (IJDPS), 3(2), 171-183, DOI: 10.5121/ijdps.2012.3215, 

ISSN : 0976 - 9757 [Online] ; 2229 - 3957 [Print].  

 

 

 

 

 

 

 

 



 Arindam Sarkar, University of Kalyani, India ix 

International Conference       

22. Sarkar, A., & Mandal, J. K. (2014). Analysis of Tree parity Machine and Double Hidden 

Layer Perceptron based Session Key Exchange in Wireless Communication. Annual 

Convention and International Conference on Emerging ICT for Bridging Future, CSI 

Hyderabad Chapter in Association with JNTU Hyderabad & DRDO, December 12-14 

2014, Hyderabad, India: AISC Series Springer. (Accepted) 

23. Sarkar, A., Mandal, J. K., & Mondal, P. (2014). Neuro-Key Generation Based on HEBB 

Network for Wireless Communication. In Proceedings of the 3
rd

 International Conference 

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC 

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 197-205, DOI: 10.1007/978-3-319-

12012-6_22, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online], 

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer 

International Publishing.  

24. Mandal, J. K., Dutta, D., & Sarkar, A. (2014). Hopfield network based neural key 

generation for wireless communication. In Proceedings of the 3
rd

 International Conference 

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC 

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 217-224, DOI: 10.1007/978-3-319-

12012-6_24, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online], 

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer 

International Publishing.  

25. Sengupta, M., Mandal, J. K., Sarkar, A., & Bhattacharyya, T. (2014). KSOFM Network 

Based Neural Key Generation for Wireless Communication. In Proceedings of the 3
rd

 

International Conference on Frontiers of Intelligent Computing: Theory and applications 

(FICTA 2014), AISC Series Springer Vol. 328, Book Subtitle Vol.2, pp. 207-215, DOI: 

10.1007/978-3-319-12012-6_23, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-

12012-6 [Online], Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, 

India, Springer International Publishing.  

26. Sarkar, A., & Mandal, J. K. (2013). Complete Binary Tree Architecture based Triple Layer 

Perceptron Synchronized Group Session Key Exchange and Authentication in Wireless 

Communication (CBTLP). In Proceedings of the 48th Annual Convention of CSI on theme 

"ICT and Critical Infrastructure, AISC Series Springer Vol. 249, Book Subtitle Vol.2,    

pp. 609-615, DOI: 10.1007/978-3-319-03095-1_66, ISBN: 978-3-319-03094-4 [Print], 

ISBN: 978-3-319-03095-1 [Online], Series ISSN: 2194-5357, December 13-15 2013, 

Computer Society of India, Visakhapatnam Chapter, Visakhapatnam, India, Springer 

International Publishing.  



 Arindam Sarkar, University of Kalyani, India x 

27. Sarkar, A., Mandal, J. K., & Patra P. (2013). Double Layer Perceptron Synchronized 

Computational Intelligence guided Fractal Triangle based Cryptographic Technique for 

Secured Communication (DLPFT). In Proceedings of the IEEE 4
th

 International 

Symposium on Electronic System Design (ISED-2013), pp. 191-195, ISBN 978-0-7695-

5143-2, December 13-15 2013, NTU, Singapore, IEEE. 

28. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence based Triple Layer 

Perceptron Model Coordinated PSO guided Metamorphosed based Application in 

Cryptographic Technique for Secured Communication (TLPPSO). In Proceedings of the 

First International Conference on Computational Intelligence: Modeling, Techniques and 

Applications  (CIMTA-2013), Vol.10, pp. 433-442, DOI: 10.1016/j.protcy.2013.12.380, 

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science & 

Engineering, University of Kalyani, Kalyani, India,  Procedia Technology, Elsevier. 

29. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Time Efficient Optimal Tuning 

through various Learning Rules in Unify Computing (TEOTLRUC). In Proceedings of the 

First International Conference on Computational Intelligence: Modeling, Techniques and 

Applications  (CIMTA-2013), Vol.10, pp. 474-481, DOI: 10.1016/j.protcy.2013.12.385, 

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science & 

Engineering, University of Kalyani, Kalyani, India,  Procedia Technology, Elsevier. 

30. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Encryption Technique based on 

Neural Session Key (ETNSK). In Proceedings of the Second International Conference on 

Computing And Systems, (ICCS 2013), Department of Computer Science, The University 

of Burdwan, September 21-22 2013, pp. 29-33, ISBN 978-9-35-134273-1, Burdwan, 

India: McGraw Hill Education Private Limited. 

31. Sarkar, A., & Mandal, J. K. (2013). Secured Wireless Communication Through Simulated 

Annealing Guided Triangularized Encryption By Multilayer Perceptron Generated Session 

Key (SATMLP). In Proceedings of the Third International Conference on Computer 

Science & Information Technology (CCSIT 2013), Computer Science & Information 

Technology (CS & IT), Bangalore, February 18-20 2013, pp. 217-224, DOI: 

10.5121/csit.2013.3624, 2013, ISBN: 978-1-921987-00-7, India: AIRCC. 

32. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Genetic  Key Based  Neural Encryption 

For Online Wireless Communication (AGKNE). In Proceedings of the IEEE International 

Conference on Recent Trends In Information System (RETIS 2011), Jadavpur University, 

December 21-23 2011, pp. 62-67, ISBN 978-1-4577-0791-9. Kolkata, India: IEEE. 

 



 Arindam Sarkar, University of Kalyani, India xi 

33. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Secret Key 

based Encryption through Recursive Positional Modulo-2 Substitution for Online Wireless 

Communication (ANNRPMS). In Proceedings of the IEEE International Conference on 

Recent Trends In Information Technology (ICRTIT 2011), Madras Institute of Technology, 

Anna University, Chennai, June 3-5 2011, pp.107-112, ISBN 978-1-4577-0590-8/11, 

Tamil Nadu, India: IEEE. 

34. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Random Block 

Length Based Cryptosystem (ANNRBLC). In Proceedings of the IEEE International 

Conference on 2
nd

 International Conference on Wireless Communications, Vehicular 

Technology, Information Theory And Aerospace & Electronic System Technology 

(WIRELESS VITAE 2011), Special Session: Security Protection Mechanism in Wireless 

Sensor Networks, Chennai, February 28-March 03 2011, pp. 1-5, ISBN 978-87-92329-61-

5, Tamil Nadu, India: IEEE. 

35. Mandal, J. K., & Sarkar, A. (2010). Neural Network Guided Secret Key based Encryption 

through Cascading Chaining of Recursive Positional Substitution of Prime Non-Prime 

(NNSKECC). In Proceedings of the First International Conference on Computing And 

Systems (ICCS 2010), Department of Computer Science, The University of Burdwan,  

November 19-20 2010, pp. 291-297, ISBN 93-80813-01-5, Burdwan, India. 

National Conference 

36. Mandal, J. K., & Sarkar, A. (2012). Neural Session Key based Traingularized Encryption 

for Online Wireless Communication (NSKTE), In Proceedings of the 2
nd

 National 

Conference on Computing and Systems, (NaCCS 2012), Department of Computer Science, 

The University of Burdwan, Burdwan, India, March 15-16  2012, pp. 172-177, ISBN 978-

93-808131-8-9. 

37. Mandal, J. K., & Sarkar, A. (2012). Neural Weight Session Key based Encryption for 

Online Wireless Communication (NWSKE), In Proceedings of the Research and Higher 

Education in Computer Science and Information Technology, (RHECSIT- 2012), 

Department of Computer Science, Sammilani Mahavidyalaya, Kolkata, India, February 21-

22 2012, pp. 90-95, ISBN 978-81-923820-0-5. 

Zonal Seminar 

38. Sarkar, A. (2013). Parallel Session Key Exchange and Certification by Fine Tuning of 

Double Layer Perceptron in Wireless communication (PKECDLP), In Proceedings of the 

ICT in Present Wireless Revolution: Challenges and Issues, The Institution of Electronics 

and Telecommunication Engineers Kolkata Centre, IETE Kolkata Center, Salt Lake, India,               

August 30-31 2013, pp. 1-9, ISBN 978-93-5126-699-0. 



 Arindam Sarkar, University of Kalyani, India xii 

Publication Indexing Database 

The lists of publications are indexed/abstracted in the following databases which are mentioned 

in the following table serially. 

Table  

Indexing database of publications 
Publication 

Serial No. 
Database 

1 
Amazon, Slideshare, docstoc, takealot, ebay, zopper, infibeam, bol, bokus, gettextbooks, sears, 

pricecheck, Google Scholar etc. 

2 

SCOPUS, Thomson Reuters, DBLP Computer Science Bibliography, ERIC - Education 

Resources Information Center, and ACM Digital Library, CrossRef., Compendex, PsycINFO, 

INSPEC, Cabell’s Directories, Google Scholar etc. 

3 
SCOPUS, DBLP, SciVerse, Engineering Village, Ei Compendex, Summon by Serial Solutions, 

SCImago, EBSCO, DOAJ, Google Scholar etc. 

4 
Ulrichsweb, DOAJ, Scrib, getCITED, Pubget, .docstoc, pub zone, Open J-Gate, CiteSeerx, 

Google Scholar, cnki.net, etc. 

5 
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc, 

ProQuest, DOAJ, CiteSeerx, cnki.net, etc. 

6 
Ulrichsweb, , Scrib, getCITED, Pubget, ProQuest, .docstoc, pub zone, CiteSeerx, Google 

Scholar, EBOSCO, cnki.net, WorldCat, CSEB, etc. 

7 
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED,  .docstoc, cnki.net, 

etc. 

8 
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc, 

ProQuest, etc. 

9 
EBSCO, Google Scholar, pub zone, CSEB, Scribd, Ulrichsweb, getCITED, Pubget, .docstoc, 

ProQuest, etc. 

10 
Ulrichsweb, DOAJ, Scribd, getCITED, Pubget, .docstoc,  pub zone, Open J-Gate, CiteSeerx, 

Google Scholar, etc. 

11 
EBSCO, Google Scholar, CSEB, Scribd, DOAJ, getCITED, Pubget, CiteSeerx, .docstoc,  pub 

zone, Ulrichsweb, WorldCat, ProQuest, etc. 

12 

The Elektronische Zeitschriftenbibliothek EZB, Genamics JournalSeek, Inspec, Google Scholar, 

SCIRUS, EBSCO, DOAJ, Scribd, Ulrichsweb, getCITED, Pubget, CiteSeerx, .docstoc, pub 

zone, PKP (Public Knowledge Project), WorldCat, ProQuest, NASA, etc. 

13 
Google Scholar, ProQuest, EBSCO, .docstoc, getCITED, pub zone, Scribd, CSEB, Ulrichsweb, 

Pubget, etc. 

14 

DOAJ, Index Copernicus (IC), Google Scholar, Microsoft Academic Search, GetCITED, 

CiteSeerx, SCIRUS, EBSCOhost, WorldCat, BASE, Ulrichsweb™, Open J-Gate, Cabell's 

Directory, University Citations:  Harvard Library, The University of Melbourne, University of 

Liverpool, Cornell University, Hochschule RheinMain University of Applied Sciences 

Wiesbaden Rüsselsheim Geisenheim, Technische Universität Berlin, Universität Hamburg, 

Queen’s University, Technische Universität Darmstadt, Unikassel Versitat, Philipps Universität 

Marburg, Akademie der Wissenschaften und der  Literatur Mainz, Universität Frankfurt  Am 

Main, Biblioteca, Universität Regensburg, Staats- und Universitätsbibliothek Bremen, 

Technische Hochschule Mittelhssen, etc. 

15 Ulrichsweb, EBSCO, Google Scholar, CSEB, Scribd, DOAJ, etc. 

16 

SCOPUS, BASE (Bielefeld Academic Search Engine), Cabell's Directory, Cite Seerx , 

Computer Science Directory, DOAJ, EBSCO Publishing, EI, Electronic Journals Library, 

ELSEVIER, Google Scholar, Index Copernicus, ISSUU, NewJour,| OJS PKP, Open J-Gate, 

ProQuest, Science Central , Scirus , , Socolar Open Access, Ulrich's Periodicals Directory, 

World Wide Science , WorldCat, etc. 

17 Google Scholar, getCITED, pub zone, .docstoc, Scribd, CSEB, EBSCO, ProQuest, etc. 



 Arindam Sarkar, University of Kalyani, India xiii 

Publication 

Serial No. 
Database 

18 Google Scholar, ProQuest, EBSCO, .docstoc, getCITED, pub zone, Scribd, CSEB, etc. 

19 
DOAJ, INDEX COPERNICUS, Google Scholar, Open J-Gate, Cornell University Library, 

SCIRUS, etc. 

20 

EBOSCO, Genamics, M Library, TU Berlin, Kun Shan University Library, INDEX 

COPERNICUS, DOAJ, Electronic Journals Library, New Jour, sciencecentral.com, 

ulrichsweb, Dayang Journal System, Google Scholar etc. 

21 EBSCO, DOAJ, NASA, Google Scholar, INSPEC and WorldCat, 2011, etc. 

22 
ISI Proceedings, DBLP., SCOPUS, Zentralblatt Math, MetaPress, Springerlink, Google 

Scholar, etc. 

23 
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress, 

Springerlink, Google Scholar etc. 

24 
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress, 

Springerlink, Google Scholar etc. 

25 
SCOPUS, ISI Proceedings, DBLP. Ulrich's, EI-Compendex, , Zentralblatt Math, MetaPress, 

Springerlink, Google Scholar etc. 

26 SCOPUS, DBLP, INSPEC, Google Scholar, ACM, Digital Library, Gale, SCImago etc., 

27 SCOPUS,DBLP, Google Scholar, ACM, Digital Library, Gale, SCImago etc., 

28 SCOPUS, INSPEC, Google Scholar, Gale, SCImago, ACM, Digital Library etc., 

29 SCOPUS,  ACM, Digital Library, INSPEC, Google Scholar, Gale, SCImago etc., 

30 DBLP, Google Scholar etc., 

31 SCOPUS, DBLP, ACM, Digital Library, INSPE , SCImago, Google Scholar etc., 

32 SCOPUS, DBLP, Google Scholar,  Digital Library, INSPEC, Gale, SCImago etc., 

33 SCOPUS, DBLP, INSPEC, ,  Digital Library,  Google Scholar, SCImago etc., 

34 SCOPUS, DBLP, Google Scholar INSPEC,  ACM,, Digital Library, Gale, SCImago etc., 

35 DBLP, Google Scholar etc., 

36 DBLP, Google Scholar etc., 

37 DBLP, Google Scholar etc., 

38 DBLP, Google Scholar etc., 

 

 

 

 

 

 

 

 

 

 



 Arindam Sarkar, University of Kalyani, India xiv 

List of Papers Presented 

International Conference       

1. Sarkar, A., Mandal, J. K., & Mondal, P. (2014). Neuro-Key Generation Based on HEBB 

Network for Wireless Communication. In Proceedings of the 3
rd

 International Conference 

on Frontiers of Intelligent Computing: Theory and applications (FICTA 2014), AISC 

Series Springer Vol. 328, Book Subtitle Vol.2, pp. 197-205, DOI: 10.1007/978-3-319-

12012-6_22, ISBN: 978-3-319-12011-9 [Print], ISBN: 978-3-319-12012-6 [Online], 

Series ISSN: 2194-5357, November 14-15 2014, Bhubaneswar, Orissa, India, Springer 

International Publishing.  

2. Sarkar, A., & Mandal, J. K. (2013). Computational Intelligence based Triple Layer 

Perceptron Model Coordinated PSO guided Metamorphosed based Application in 

Cryptographic Technique for Secured Communication (TLPPSO). In Proceedings of the 

First International Conference on Computational Intelligence: Modeling, Techniques and 

Applications  (CIMTA-2013), Vol.10, pp. 433-442, DOI: 10.1016/j.protcy.2013.12.380, 

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science & 

Engineering, University of Kalyani, Kalyani, India,  Procedia Technology, Elsevier. 

3. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Time Efficient Optimal Tuning 

through various Learning Rules in Unify Computing (TEOTLRUC). In Proceedings of the 

First International Conference on Computational Intelligence: Modeling, Techniques and 

Applications  (CIMTA-2013), Vol.10, pp. 474-481, DOI: 10.1016/j.protcy.2013.12.385, 

ISSN: 2212-0173, September 27-28 2013, Department of Computer Science & 

Engineering, University of Kalyani, Kalyani, India,  Procedia Technology, Elsevier. 

4. Mandal, J. K., Chowdhuri, A., & Sarkar, A. (2013). Encryption Technique based on 

Neural Session Key (ETNSK). In Proceedings of the Second International Conference on 

Computing And Systems, (ICCS 2013), Department of Computer Science, The University 

of Burdwan, September 21-22 2013, pp. 29-33, ISBN 978-9-35-134273-1, Burdwan, 

India: McGraw Hill Education Private Limited. 

5. Sarkar, A., & Mandal, J. K. (2013). Secured Wireless Communication Through Simulated 

Annealing Guided Triangularized Encryption By Multilayer Perceptron Generated Session 

Key (SATMLP). In Proceedings of the Third International Conference on Computer 

Science & Information Technology (CCSIT 2013), Computer Science & Information 

Technology (CS & IT), Bangalore, February 18-20 2013, pp. 217-224, DOI: 

10.5121/csit.2013.3624, 2013, ISBN: 978-1-921987-00-7, India: AIRCC. 

 



 Arindam Sarkar, University of Kalyani, India xv 

6. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Genetic  Key Based  Neural Encryption 

For Online Wireless Communication (AGKNE). In Proceedings of the IEEE International 

Conference on Recent Trends In Information System (RETIS 2011), Jadavpur University, 

December 21-23 2011, pp. 62-67, ISBN 978-1-4577-0791-9. Kolkata, India: IEEE. 

7. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Secret Key 

based Encryption through Recursive Positional Modulo-2 Substitution for Online Wireless 

Communication (ANNRPMS). In Proceedings of the IEEE International Conference on 

Recent Trends In Information Technology (ICRTIT 2011), Madras Institute of Technology, 

Anna University, Chennai, June 3-5 2011, pp. 107-112, ISBN 978-1-4577-0590-8/11, 

Tamil Nadu, India: IEEE. 

8. Mandal, J. K., & Sarkar, A. (2011). An Adaptive Neural Network Guided Random Block 

Length Based Cryptosystem (ANNRBLC). In Proceedings of the IEEE International 

Conference on 2
nd

 International Conference on Wireless Communications, Vehicular 

Technology, Information Theory And Aerospace & Electronic System Technology 

(WIRELESS VITAE 2011), Special Session: Security Protection Mechanism in Wireless 

Sensor Networks, Chennai, February 28-March 03 2011, pp. 1-5, ISBN 978-87-92329-61-

5, Tamil Nadu, India: IEEE. 

9. Mandal, J. K., & Sarkar, A. (2010). Neural Network Guided Secret Key based Encryption 

through Cascading Chaining of Recursive Positional Substitution of Prime Non-Prime 

(NNSKECC). In Proceedings of the First International Conference on Computing And 

Systems (ICCS 2010), Department of Computer Science, The University of Burdwan,  

November 19-20 2010, pp. 291-297, ISBN 93-80813-01-5, Burdwan, India. 

National Conference 

10. Mandal, J. K., & Sarkar, A. (2012). Neural Session Key based Traingularized Encryption 

for Online Wireless Communication (NSKTE), In Proceedings of the 2
nd

 National 

Conference on Computing and Systems, (NaCCS 2012), Department of Computer Science, 

The University of Burdwan, Burdwan, India, March 15-16  2012, pp. 172-177, ISBN 978-

93-808131-8-9. 

11. Mandal, J. K., & Sarkar, A. (2012). Neural Weight Session Key based Encryption for 

Online Wireless Communication (NWSKE), In Proceedings of the Research and Higher 

Education in Computer Science and Information Technology, (RHECSIT- 2012), 

Department of Computer Science, Sammilani Mahavidyalaya, Kolkata, India, February 21-

22 2012, pp. 90-95, ISBN 978-81-923820-0-5. 

 



 Arindam Sarkar, University of Kalyani, India xvi 

Zonal Seminar 

12. Sarkar, A. (2013). Parallel Session Key Exchange and Certification by Fine Tuning of 

Double Layer Perceptron in Wireless communication (PKECDLP), In Proceedings of the 

ICT in Present Wireless Revolution: Challenges and Issues, The Institution of Electronics 

and Telecommunication Engineers Kolkata Centre, IETE Kolkata Center, Salt Lake, India,               

August 30-31 2013, pp. 1-9, ISBN 978-93-5126-699-0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 Arindam Sarkar, University of Kalyani, India xvii 

Contents 

Abstract …..……………………………………………………………………….…….         

List of Publications …………………………………………………...………………...   

Publication Indexing Database …………………………………………………………. 

List of Papers presented ………………………………………………………………...  

List of Abbreviations …………………………………………………………………...  

List of Symbols ……………………………………………………………………........  

List of Tables …………………………………………………………………………... 

List of Figures ………………………………………………………………………...... 

 

1. Chapter 1:  

Introduction …………………………………………………………….................. 

1.1 Introductory Discussions ……………………………………………………..    

1.2 Essence of Cryptography …………………………………………………….. 

1.2.1 Encryption/Decryption ……………………………………………….. 

1.2.2 Cipher ………………………………………………………………… 

1.2.3 Cryptographic Key ……………………………………………………  

1.2.4 Key Management ………………………………………………….…. 

1.2.5 Key Generation ……………………………………………………….  

1.2.6 Key Agreement ………………………………………………….…… 

1.2.7 Key Exchange ……………………………………………………..….  

1.2.8 Attack Model ……………………………………………………….… 

1.3 Cryptographic Algorithm …………………………………………………….. 

1.3.1 Advanced Encryption Standard (AES) ………………………………. 

1.3.2 Data Encryption Standard (DES) …………………………………….. 

1.3.3 Triple Data Encryption Standard (TDES) ……………………………. 

1.3.4 RSA …………………………………………………………………... 

1.4 Soft Computing based Cryptography ………………………………………… 

1.5 Literature Survey ……………………………………………………………... 

1.6 Learning Rules for Tuning of Perceptron ……………………………………. 

iv 

vi 

xii 

xiv 

xxvii 

xxviii 

xxix 

xxxiv 

 

 

 

 

 

1 

3 

3 

4 

5 

6 

7 

7 

7 

7 

9 

10 

10 

10 

11 

12 

12 

17 

37 
 



 Arindam Sarkar, University of Kalyani, India xviii 

1.7 Metrics for Evaluation ……………………………………………………….. 

1.7.1 NIST Statistical Test …………………………………………………. 

1.7.2 Performance Analysis …………………………………….………….. 

1.7.3 Encryption and Decryption Time …………………………………….. 

1.7.4 Avalanche and Strict Avalanche Effects ……………………………... 

1.7.5 Bit Independence Criterion …………………………………………... 

1.7.6 Chi-Square Test ………………………………………………….…… 

1.7.7 Frequency Distribution ………………………………………………. 

1.7.8 Entropy ……………………………………………………………….. 

1.7.9 Floating Frequency …………………………………………………... 

1.7.10 Autocorrelation ………………………………………………………. 

1.8 Objectives ……………………………………………………………….……. 

1.9 Organization of the Thesis …………………………………………………… 

1.10 Salient Features of the Proposed Techniques ………………………………... 

 

2. Chapter 2:  

Kohonen’s Self-Organizing Feature Map Synchronized Cryptographic 

Technique (KSOMSCT)…………………………………………………………... 

2.1 Introduction …………………………………………………………………... 

2.2 The Technique ……….…………………………………………………….…. 

2.2.1 KSOMSCT Algorithm at Sender ……………………………..……… 

2.2.1.1 Kohonen Self-Organizing Feature Map (KSOFM) based 

Synchronization ……………………………………………. 

2.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………...... 

2.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement 

Frame ………………………………………...….. 

2.2.1.1.3   Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame 

of Synchronization ………………………………. 

2.2.1.1.4  Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …….. 

2.2.1.1.5 KSOFM Synchronization ……………………….. 

2.2.1.1.6 Complexity Analysis ……………………………. 

38 
 

38 
 

41 
 

42 

42 

43 

43 

43 

44 

44 

44 

45 

46 

47 

 

 
 

 

 

48 
 

50 

51 

53 

 

53 

57 

 

59 

 

60 

60 

61 

62 



 Arindam Sarkar, University of Kalyani, India xix 

2.2.1.1.7 Kohonen Self-Organizing Feature Map (KSOFM) 

based Session Key Generation ………………….. 

2.2.1.2 Fractal Triangle based Encryption Algorithm ……………... 

2.2.1.3 Session Key based Encryption ………………….………….. 

2.2.2 KSOMSCT Algorithm at Receiver …………………………………... 

2.2.2.1 Session Key based  Decryption …………………………….  

2.2.2.2 Fractal Triangle based Decryption Algorithm ……….…….. 

2.3 Implementation ………………………………………………………………. 

2.4 Security Analysis …………………………………………………………….. 

2.5 Discussions …………………………………………………………….……... 

 

3. Chapter 3:  

Double Hidden Layer Perceptron Synchronized Cryptographic Technique 

 (DHLPSCT) …………………………………………………………..................... 

3.1 Introduction …………………………………………………………………... 

3.2 The Technique ……….………………………………………………….……. 

3.2.1 DHLPSCT Algorithm at Sender ……………………………..….…… 

3.2.1.1 Double Hidden Layer Perceptron (DHLP) based 

Synchronization and Session Key Generation ……………... 

3.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………...... 

3.2.1.1.2  Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement 

Frame ……………………………………………. 

3.2.1.1.3   Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame 

of Synchronization ………………………………. 

3.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...… 

3.2.1.1.5 DHLP Synchronization ………………….……… 

3.2.1.1.6 Complexity Analysis ……………………………. 

3.2.1.1.7 DHLP Learning Mechanism ……………………. 

3.2.1.2 Genetic Function based Simulated Annealing (SA) guided 

Fittest Keystream Generation …………………………….… 

 

 

 

62 

65 

66 

66 

67 

67 

69 

72 

74 

 

 

 

76 

78 

79 

81 

 

81 

87 

 

88 

 

89 

89 

90 

92 

93 

 

94 

 



 Arindam Sarkar, University of Kalyani, India xx 

3.2.1.2.1 Simulated Annealing based Fittest Keystream 

Generation Algorithm …………………………… 

3.2.1.3 Encryption Algorithm ……………………………………… 

3.2.1.3.1 Triangle Edge Extension based Keystream 

Expansion Technique …………………………… 

3.2.1.4 Session Key based Encryption ………………….………….. 

3.2.2 DHLPSCT Algorithm at Receiver ………………………………........ 

3.2.2.1 Session Key based Decryption …………………….……….  

3.2.2.2 Decryption Algorithm ………………………....…………... 

3.3 Implementation ………………………………………………………………. 

3.4 Security Analysis …………………………………………………………….. 

3.5 Discussions ……………………………………………………….................... 

 

4. Chapter 4: 

Chaos based Double Hidden Layer Perceptron Synchronized Cryptographic 

Technique  (CDHLPSCT) ………………………………………………………... 

4.1 Introduction …………………………………………………………………... 

4.2 The Technique ……….………………………….………………………….… 

4.2.1 CDHLPSCT Algorithm at Sender ……………..………....................... 

4.2.1.1 Chaos based Double Hidden Layer Perceptron (CDHLP) 

Synchronization and Session Key Generation ……………... 

4.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………...... 

4.2.1.1.2  Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement 

Frame ……………………………………………. 

4.2.1.1.3   Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame 

of Synchronization ………………………………. 

4.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...… 

4.2.1.1.5 CDHLP Synchronization ……………....…….….. 

4.2.1.1.6 Complexity Analysis ……………………………. 

4.2.1.1.7 CDHLP Learning Mechanism …………………... 

 
 

100 

 

101 

 
 

102 

103 

103 

104 

104 

105 

109 

113 

 

 

 

116 

118 

119 

121 

 

122 

130 

 

131 

 

131 

132 

132 

136 

138 



 Arindam Sarkar, University of Kalyani, India xxi 

4.2.1.2 Genetic Algorithm (GA) based Fittest Keystream 

Generation …………………………………..…………….... 

4.2.1.2.1 Genetic Algorithm based Fittest Keystream 

Generation Algorithm …………………………… 

4.2.1.3 Encryption Algorithm ……………………………………… 

4.2.1.3.1 Square Edge Extension based Keystream 

Expansion Technique …………………………… 

4.2.1.4 Session Key based Encryption ………………….………….. 

4.2.2 CDHLPSCT Algorithm at Receiver ………………………………...... 

4.2.2.1 Session Key based Decryption …………………….……….  

4.2.2.2 Decryption Algorithm ……………………………………... 

4.3 Implementation ………………………………………………………………. 

4.4 Security Analysis …………………………………………………………….. 

4.5 Discussions ……………………………………………………….................... 

 

5. Chapter 5: 

Chaos based Triple Hidden Layer Perceptron Synchronized Cryptographic 

Technique  (CTHLPSCT) ………………………………………………………... 

5.1 Introduction …………………………………………………………………... 

5.2 The Technique ……….…………………….……………………………….… 

5.2.1 CTHLPSCT Algorithm at Sender …………………………..………... 

5.2.1.1 Chaos based Triple Hidden Layer Perceptron (CTHLP) 

Synchronization and Session Key Generation ……………... 

5.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame ………………….. 

5.2.1.1.2  Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement 

Frame …………………………………………..... 

5.2.1.1.3   Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame 

of Synchronization ………………………………. 

5.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame …...… 

5.2.1.1.5 CTHLP Synchronization …………….....……….. 

 
 

 

139 

 
 

146 
 

 

147 

 
 

 

148 

149 

149 

151 

151 

152 

154 

157 

 

 

 

160 

162 

163 

165 

 

165 

175 

 

176 
 

 

 

 

 

 

 

 

 

 

 

 

 

176 

177 

177 



 Arindam Sarkar, University of Kalyani, India xxii 

5.2.1.1.6 Complexity Analysis ……………………………. 

5.2.1.1.7 CTHLP Learning Mechanism …………………... 

5.2.1.2 Ant Colony Intelligence (ACI) based Fittest Keystream 

Generation ………………………………………………….. 

5.2.1.2.1   Ant Colony Intelligence (ACI) based Fittest 

Keystream Generation Algorithm ………………. 

5.2.1.3 Encryption Algorithm ……………………………………… 

5.2.1.4 Session Key based Encryption ………………….………….. 

5.2.2 CTHLPSCT Algorithm at Receiver ……………...…………………... 

5.2.2.1 Session Key based Decryption ……………………….…….  

5.2.2.2 Decryption Algorithm ……………….…………...…….….. 

5.3 Implementation ………………………………………………………………. 

5.4 Security Analysis …………………………………………………………….. 

5.5 Discussions ……………………………………………………….................... 

 

6. Chapter 6: 

Chaos based Grouped Triple Hidden Layer Perceptron Synchronized 

Cryptographic Technique (CGTHLPSCT) …….……………………………….. 

6.1 Introduction …………………………………………………………………... 

6.2 The Technique ……….…………….……………………………………….… 

6.2.1 CGTHLPSCT Algorithm at Sender …………………………..……… 

6.2.1.1 Chaos based Group Triple Hidden Layer Perceptron 

(CGTHLP) Synchronization and Session Key Generation .... 

6.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame …………….......... 

6.2.1.1.2  Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement 

Frame ….………………………………………… 

6.2.1.1.3   Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame 

of Synchronization ………………………………. 

6.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame ….… 

6.2.1.1.5 CGTHLP Synchronization ……………..…..…… 

182 
 

183 

 

184 

 
 

188 
 

 

189 

190 

191 

191 

192 

192 

198 
 

201 

 

 
 

 

 

 

 

204 

206 

207 

208 

 

209 

216 

 
 

216 

 
 

217 

218 

218 



 Arindam Sarkar, University of Kalyani, India xxiii 

6.2.1.1.6 Complexity Analysis ……………………………. 

6.2.1.1.7 CTHLP Learning Mechanism …………………... 

6.2.1.2 Particle Swarm Intelligence (PSI) based Fittest Keystream 

Generation ………………………………………………...... 

6.2.1.2.1   PSI based Fittest Keystream Generation 

Algorithm …………………………..………….… 

6.2.1.3 Encryption Algorithm ……………………………………… 

6.2.1.4 Session Key based Encryption ………………….………….. 

6.2.2 CGTHLPSCT Algorithm at Receiver ………………………………... 

6.2.2.1 Session Key based Decryption ………………….………….  

6.2.2.2 Decryption Algorithm ……………………….…………….. 

6.3 Implementation ………………………………………………………………. 

6.4 Security Analysis …………………………………………………………….. 

6.5 Discussions ……………………………………………………….................... 

 

7. Chapter 7: 

Results and Analysis ……………………………………………………………… 

7.1 Introduction …………………………………………………………………... 

7.2 NIST Statistical Test and Analysis …………………………………………... 

7.2.1 The Frequency (Monobit) Test ………………………………………. 

7.2.2 The Test for Frequency within a Block ……………………………… 

7.2.3 The Runs Test ………………………………………………………... 

7.2.4 The Longest Run of Ones in a Block ………………………………… 

7.2.5 The Binary Matrix Rank Test ………………………………………... 

7.2.6 The Discrete Fourier Transform Test ………………………………… 

7.2.7 The Non-overlapping Template Matching Test ……………………… 

7.2.8 The Overlapping (Periodic) Template Matching Test ………………..   

7.2.9 Maurer's "Universal Statistical" Test ………………………………… 

7.2.10 The Linear Complexity Test …………………………………………. 

7.2.11 The Serial Test ……………………………………………………….. 

223 
 

225 

 

226 
 

 
 

231 
 

 

 

233 
 

234 

234 

235 

235 

236 

241 

244 

 

 
 

 

 

 

247 

249 

250 

252 

253 

254 

255 

257 

258 

259 

260 

261 

262 

263 



 Arindam Sarkar, University of Kalyani, India xxiv 

7.2.12 The Approximate Entropy Test …………………………………….… 

7.2.13 The Cumulative Sums (Cusums) Test ……………………………….. 

7.2.14 The Random Excursions Test ………………………………………... 

7.2.15 The Random Excursions Variant Test ……………………………….. 

7.3 Performace Analysis …………………………………………………………. 

7.3.1 Average Synchronization Time (in cycle) for Generating variable bit 

Session Key …………………………..……….……………………… 

7.3.2 Average Synchronization Time (in cycle) for Generating variable bit 

Grouped Session (Group size= 4) Key …..………………………….. 

7.3.3 Average Synchronization Time (in cycle) for Generating 128 bit 

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons   

7.3.4 Average Synchronization Time (in cycle) for Generating 192 bit 

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons  

7.3.5 Average Synchronization Time (in cycle) for Generating 256 bit 

Session Key using fixed Weight range (𝐿 = 5) with variable Neurons  

7.3.6 Average synchronization time (in cycle) for generating variable 

session key ………………………………………...…………………. 

7.3.7 Average Synchronization Time (in cycle) for Generating 128 bit 

Session Key using variable Weight range (𝐿 = 5 to 50) with fixed 

Neurons (2 − 4 − 2) in DHLPSCT, CDHLPSCT ………………...… 

7.3.8 Average Synchronization Time (in cycle) for Generating 128 bit 

Session Key using variable Weight range (𝐿 = 5 to 50) with fixed 

Neurons (2 − 2 − 3 − 2) in CTHLPSCT, CGTHLPSCT …..……..… 

7.3.9 Average Synchronization Time (in cycle) for Generating 128 bit 

Session Key using Hebbian learning rule with variable Weight range 

(𝐿 = 5 to 50) and fixed Neurons (2 − 4 − 2) in DHLPSCT, 

CDHLPSCT ……..………………………………………………….... 

 

 

 

265 
 

266 

267 

268 
 

270 

 

272 

 

276 

 
 

 

 

281 
 

 

 

 

 

 

 

 

 

 

 

 

 

289 

 

298 

 

306 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

309 

 

 

313 

 

 

 

317 

 

 

 



 Arindam Sarkar, University of Kalyani, India xxv 

7.3.10 Average Synchronization Time (in cycle) for Generating 128 bit 

Session Key using Hebbian learning rule with variable Weight range                         

(𝐿 = 5 to 50) and fixed Neurons (2 − 2 − 3 − 2) in CTHLPSCT, 

CGTHLPSCT ………………………………………………………… 

7.3.11 Comparison of memory heap used in both proposed and existing 

techniques for generation of 128 bit session key …………………….. 

7.3.12 Comparison of relative time spent in GC to generate 128 bit session 

key using both proposed and existing techniques ……………………. 

7.3.13 Comparisons of thread required to generate 128 bit session key using 

both proposed and existing techniques ………….…………………… 

7.3.14 Analysis of dimension of KSOMSCT vs. average number of 

iterations ………………….………………………………………...…  

7.3.15 Analysis of number of generations vs. average fitness value in 

Simulated Annealing guided fittest keystream generation in 

DHLPSCT …………………………………………….……………… 

7.3.16 Analysis of number of generations vs. average fitness value in 

Genetic Algorithm guided fittest keystream generation in 

CDHLPSCT ……………………………………...…………….…….. 

7.3.17 Comparisons of length of plain text vs. Keystream storage between 

proposed and existing techniques ………..….……………………….. 

7.4 Encryption/Decryption Time ………………………………………………… 

7.4.1 .dll files ……………………………………………………………….. 

7.4.2 .exe files …………………………….………………………………… 

7.4.3 .txt files ……………………………………………………………….. 

7.4.4 .doc files ……………………………………………………………… 

7.5 Avalanche, strict Avalanche and Bit Independence ……………………….…. 

7.5.1 .dll files …...….………………………………………………………..  

7.5.2 .exe files …………………………………….………………………… 

7.5.3 .txt files ……………………………………………………………….. 

7.5.4 .doc files ………………………………………………………………. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

321 

 

325 

 

326 

 

327 

 

328 

 

 

329 

 
 

 

 

 

 

 

 

 

 

 

 

 

331 

 

333 

337 

337 

340 

343 

346 

349 

349 

355 

361 

367 

 



 Arindam Sarkar, University of Kalyani, India xxvi 

7.6 Test for Non-Homogeneity ……………………….………………………….. 

7.6.1 .dll files ……....………………………………………………………..   

7.6.2 .exe files …….………………………………………………………… 

7.6.3 .txt files ……………………………………………………………….. 

7.6.4 .doc files ………………………………………………………………. 

7.7 Analysis of Character Frequencies, Entropy, Floating Frequencies, 

Autocorrelation……………………………………………………….............. 

7.7.1 .dll file ……….………………………………………………………...    

7.7.2 .com file ……..………………………………………………………... 

7.7.3 .exe file ……….…………………………………….……………….… 

7.7.4 .cpp file ……..………………………………………………………… 

7.7.5 .txt file ………..……………………………………………………….. 

7.8 Analysis ………………………………………………………………………. 

 

8. Chapter 8: 

Proposed Model …………………………………………………………………… 

8.1 Introduction …………………………………………………………………... 

8.2 The Model ……………………………………………………………………. 

8.2.1 Session Key Generation …………………………………………...…. 

8.2.2 Encryptor Module ……………………………………………………. 

8.2.3 Decryptor Module …………………………………………………..... 

8.3 Analysis ………………………………………………………………………. 

8.4 Conclusions ………………………………………………………………...… 

8.5 Future Scope …………………………………………………………………. 

References ……………………………………………………………………………... 

373 
 

373 

376 

378 

380 
 

 

 

 

 

382 

382 

386 

389 

392 

395 

398 

 

 

400 

402 

402 

403 

405 

408 

411 

415 

417 

419 

 

 

 

 

 



 Arindam Sarkar, University of Kalyani, India xxvii 

List of Abbreviations 

KSOFM   : Kohonen’s Self Organizing Feature Map  

DHLP    : Double Hidden Layer Perceptron  

CDHLP   : Chaos based Double Hidden Layer Perceptron 

CTHLP   : Chaos based Triple Hidden Layer Perceptron 

CGTHLP              : Chaos based Group Triple Hidden Layer Perceptron 

SA    : Simulated Annealing 

GA    : Genetic Algorithm 

ACI    : Ant Colony Intelligence 

PSI    : Particle Swarm Intelligence 

TPM    : Tree Parity Machine 

PPM    : Permutation Parity Machine 

MITM    : Man-In-The-Middle 

AES    : Advanced Encryption standard 

TDES    : Triple Data Encryption standard 

RSA    : Rivest Shamir Adleman 

RC4    : Rivest Cipher 4 

RC5    : Rivest Cipher 5 

 

  



 



 Arindam Sarkar, University of Kalyani, India xxviii 

List of Symbols 

∑   : Summation 

  𝜎   : Sigma (Hidden Layer Output)  

𝜏   : Perceptron Final Output 

                                   : Exclusive-OR 

                        &                                 : Bitwise AND 

  ≠                         : Not equal to  

  ×   : Multiplication 

  ÷   : Division 

<                                  : Less than 

                       ≤   : Less than Equal to 

>                                  : Grater than 

  ≥   : Grater than equal to 

  ≅   : Equivalent to 

  ∀   : For All 

  ∈   : Belongs to 

  !   : Factorial 

 

 

 

 

 

 

 



 



 Arindam Sarkar, University of Kalyani, India xxix 

List of Tables 

Table 

No. 

Heading Page 

2.1 Control frames of KSOFM synchronization 57 

2.2 KSOFM control frames and their command codes 58 

2.3 DIM Index corresponds to the dimension of KSOFM 58 

2.4 Weight DIM Index corresponds to the number of weights 59 

2.5 Mask Index value corresponds to the different mathematical mask functions 59 

2.6 Fractal triangle encryption of 010101000 70 

2.7 Fractal triangle encryption of 110010101      70 

2.8 Fractal triangle encryption of 100011011 70 

2.9 Fractal triangle encryption of 010000110 70 

2.10 Fractal triangle encryption of 111001101 71 

2.11 Fractal triangle encryption of 001011100 71 

2.12 Fractal triangle encryption of 010111010 71 

2.13 Fractal triangle encryption of 101100101 71 

3.1 Control frames of DHLP synchronization 85 

3.2 DHLP control frames and their command codes 86 

3.3 Character table of SA 95 

4.1 Control frames of CDHLP synchronization 127 

4.2 CDHLP control frames and their command codes 129 

4.3 Operator’s format and their meaning 139 

5.1 Control frames of CTHLP synchronization 172 

5.2 CTHLP control frames and their command codes 174 

5.3 ACI based keystream generation  193 

6.1 Control frames of CGTHLP synchronization 213 

6.2 CGTHLP control frames and their command codes 214 

6.3 PSI based keystream generation  237 

7.1 Proportion of passing and uniformity of distribution for frequency 252 

7.2 Counting of P-values lying in the given ranges for frequency 252 

7.3 Proportion of passing and uniformity of distribution for frequency within a 

block 

253 



 Arindam Sarkar, University of Kalyani, India xxx 

Table 

No. 

Heading Page 

7.4 Counting of P-values lying in the given ranges for frequency within a block  253 

7.5 Proportion of passing and uniformity of distribution for runs 254 

7.6 Counting of P-values lying in the given ranges for runs 255 

7.7 Proportion of passing and uniformity of distribution for longest run of ones 

in a block 

256 

7.8 Counting of P-values lying in the given ranges for longest run of ones in a 

block 

256 

7.9 Proportion of passing and uniformity of distribution for binary matrix rank 

test 

257 

7.10 Counting of P-values lying in the given ranges for binary matrix rank test 257 

7.11 Proportion of passing and uniformity of distribution for discrete Fourier 

transform test 

258 

7.12 Counting of P-values lying in the given ranges for discrete Fourier transform 

test 

258 

7.13 Proportion of passing and uniformity of distribution for non-overlapping                              

(aperiodic) template matching test 

259 

7.14 Counting of P-values lying in the given ranges for non-overlapping                                   

(aperiodic) template matching test 

259 

7.15 Proportion of passing and uniformity of distribution for                                                                

overlapping (periodic) template matching test 

260 

7.16 Counting of P-values lying in the given ranges for                                                             

overlapping (periodic) template matching test 

261 

7.17 Proportion of passing and uniformity of distribution for Maurer’s “universal 

statistical” test 

262 

7.18 Counting of P-values lying in the given ranges for Maurer’s “Universal 

Statistical” test 

262 

7.19 Proportion of passing and uniformity of distribution for linear complexity 

test 

263 

7.20 Counting of P-values lying in the given ranges for linear complexity test 263 

7.21 Proportion of passing and uniformity of distribution for serial test 264 

7.22 Counting of P-values lying in the given ranges for serial test 264 

7.23 Proportion of passing and uniformity of distribution for approximate entropy 

test 

265 

7.24 Counting of P-values lying in the given ranges for approximate entropy test 265 



 Arindam Sarkar, University of Kalyani, India xxxi 

Table 

No. 

Heading Page 

7.25 Proportion of passing and uniformity of distribution for cumulative sums test 266 

7.26 Counting of P-values lying in the given ranges for cumulative Sums test 266 

7.27 Proportion of passing and uniformity of distribution for random excursions 

test 

267 

7.28 Counting of P-values lying in the given ranges for random excursions test 268 

7.29 Proportion of passing and uniformity of distribution for random excursions 

variant test 

269 

7.30 Counting of P-values lying in the given ranges for random excursions variant 

test 

269 

7.31 Average synchronization time (in cycle) for generating 128 bit session key  272 

7.32 Average synchronization time (in cycle) for generating 192 bit session key  273 

7.33 Average synchronization time (in cycle) for generating 256 bit session key  275 

7.34 Average synchronization time (in cycle) for generating 128 bit grouped                                        

session (Group size =  4) key 

276 

7.35 Average synchronization time (in cycle) for generating 192 bit grouped 

session (Group size =  4) key  

278 

7.36 Average synchronization time (in cycle) for generating 256 bit grouped 

session (Group size =  4) key  

279 

7.37 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in DHLPSCT 

281 

7.38 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT 

283 

7.39 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT  

285 

7.40 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT  

287 

7.41 Generation of 192 bit session key using fixed weight range (L=5) with 

variable neurons in DHLPSCT 

289 

7.42 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT  

291 

7.43 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT 

293 

7.44 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT 

295 

7.45 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 298 



 Arindam Sarkar, University of Kalyani, India xxxii 

Table 

No. 

Heading Page 

variable neurons in DHLPSCT  

7.46 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT 

300 

7.47 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT 

302 

7.48 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT 

304 

7.49 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 4 − 2) in DHLPSCT  

309 

7.50 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 4 − 2) in CDHLPSCT 

311 

7.51 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT  

313 

7.52 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT  

315 

7.53 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT  

317 

7.54 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT 

319 

7.55 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons  2 − 2 − 3 − 2  in 

CTHLPSCT  

321 

7.56 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50), variable group size and fixed neurons                    

(2 − 2 − 3 − 2) in CGTHLPSCT  

323 

7.57 Average of fitness values in SA 329 

7.58 List of best fitness values in 50 different runs of SA 330 

7.59 Average of fitness values in GA 331 

7.60 List of best fitness values in 50 different runs of GA 332 

7.61 Comparisons of length of plain text vs. keystream storage between proposed 

and existing techniques 

333 

7.62 Comparisons of encryption and decryption times for .dll files  338 

7.63 Comparisons of encryption and decryption times for .exe files  341 

7.64 Comparisons of encryption and decryption times for .txt files  344 

7.65 Comparisons of encryption and decryption times for .doc files  347 



 Arindam Sarkar, University of Kalyani, India xxxiii 

Table 

No. 

Heading Page 

7.66 Comparisons of Avalanche of .dll files  351 

7.67 Comparisons of Strict Avalanche of .dll files  352 

7.68 Comparisons of Bit Independence of .dll files  353 

7.69 Comparisons of average values of Avalanche, Strict Avalanche and Bit 

Independence of .dll files  

354 

7.70 Comparisons of Avalanche of .exe files  357 

7.71 Comparisons of Strict Avalanche of .exe files  358 

7.72 Comparisons of Bit Independence of .exe files  359 

7.73 Comparisons of average values of Avalanche, Strict Avalanche and Bit 

Independence of .exe files  

360 

7.74 Comparisons of Avalanche of .txt files  363 

7.75 Comparisons of Strict Avalanche of .txt files  364 

7.76 Comparisons of Bit Independence of .txt files using  365 

7.77 Comparisons of average values of Avalanche, Strict Avalanche and Bit 

Independence of .txt files  

366 

7.78 Comparisons of Avalanche of .doc files  369 

7.79 Comparisons of Strict Avalanche of .doc files  370 

7.80 Comparisons of Bit Independence of .doc files  371 

7.81 Comparisons of average values of Avalanche, Strict Avalanche and Bit 

Independence of .doc files  

372 

7.82 Comparisons of Chi-Square value of .dll files  375 

7.83 Comparisons of Chi-Square value of .exe files  377 

7.84 Comparisons of Chi-Square value of .txt files  379 

7.85 Comparisons of Chi-Square value of .doc files  381 

8.1 Time involved for various key spaces 413 

8.2 Average time required for exhaustive key search 413 

 

 

 

 

 

 

 

 



 



 Arindam Sarkar, University of Kalyani, India xxxiv 

List of Figures 

Fig. 

No. 

Title Page 

2.1 The Sierpinski triangle 52 

2.2 Frame format of 𝑆𝑌𝑁 frame 58 

2.3 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 60 

2.4 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 60 

2.5 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 60 

2.6 Exclusive-OR operation between central key bit of each triangle and vertex 

elements of each triangle 

64 

2.7 Exclusive-OR operation between triangle’s centered key and vertex elements 

of big triangle 

65 

2.8 Exclusive-OR operation between upper triangle’s vertex elements with right 

triangle’s vertex elements 

65 

2.9 Exclusive-OR operation between upper triangle’s vertex elements with left 

triangle’s vertex elements 

65 

2.10 Storage structure representation of the encrypted text 66 

2.11 Exclusive-OR operation between upper triangle’s vertex elements with left 

triangle’s vertex elements 

68 

2.12 Exclusive-OR operation between upper triangle’s vertex elements with right 

triangle’s vertex elements 

68 

2.13 Exclusive-OR operation between triangle’s centered key and vertex elements 

of big triangle 

68 

2.14 Exclusive-OR operation between key and vertex elements of each triangle 69 

3.1 A DHLP with two hidden layers 83 

3.2 Snapshot of a single path of  DHLP 84 

3.3 Exchange of control frames between sender and receiver during DHLP 

synchronization 

87 

3.4 Frame format of 𝑆𝑌𝑁 frame 88 

3.5 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 89 

3.6 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 89 

3.7 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 90 

3.8 Single point crossover operation
 

97 



 Arindam Sarkar, University of Kalyani, India xxxv 

Fig. 

No. 

Title Page 

3.9 Mutation operation
 

98 

3.10 Flow chart of Simulated Annealing (SA) based fittest keystream generation 99 

3.11 Triangle of different color sides, blue side represents the original key, red and 

green side represents the left and right side extended key 

102 

3.12 Expanded keystream 102 

4.1 Exchange of values between sender and receiver at the initial state 124 

4.2 Exchange of updated values of the parameters 𝑥1 , 𝑦2 and 𝑧2   124 

4.3 Exchange of 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒
     

 125 

4.4 Exchange of authentication frame during session key certification phase 127 

4.5 Exchange of control frames between sender and receiver during CDHLP 

synchronization 

129 

4.6 Frame format of 𝑆𝑌𝑁 frame 130 

4.7 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 131 

4.8 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 132 

4.9 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 132 

4.10 Uniform crossover operation
 

142 

4.11 Mutation operation
 

143 

4.12 Flow chart of Genetic Algorithm (GA) based fittest keystream generation 145 

4.13 Different color side, black side represents the original key, red and blue side 

represents the left and right side of square 

149 

4.14 Expanded keystream 149 

5.1 Snapshot of the single path from input neuron to the output neuron 167 

5.2 A CTHLP with three hidden layers 168 

5.3 Exchange of control frames between sender and receiver during CTHLP 

synchronization 

174 

5.4 Frame format of 𝑆𝑌𝑁 frame 175 

5.5 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 176 

5.6 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 177 

5.7 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 177 

5.8 Flow chart of Ant Colony Intelligence (ACI) based fittest keystream 

generation 

187 



 Arindam Sarkar, University of Kalyani, India xxxvi 

Fig. 

No. 

Title Page 

6.1 Initial state of group synchronization 211 

6.2 First round of group synchronization 212 

6.3 Second round of group synchronization 212 

6.4 Exchange of control frames between 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  during CGTHLP 

synchronization 

215 

6.5 Frame format of 𝑆𝑌𝑁 frame 216 

6.6 Acknowledgement of synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 217 

6.7 Negative Acknowledgement of synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 217 

6.8 Finish synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 218 

6.9 Flow chart of Particle Swarm Intelligence (PSI) based fittest keystream 

generation 

230 

7.1 128 bit key length vs. average synchronization time (in cycle)  272 

7.2 192 bit key length vs. average synchronization time (in cycle)  274 

7.3 256 bit key length vs. average synchronization time (in cycle)  275 

7.4 128 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size = 4)  

277 

7.5 192 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size= 4)  

278 

7.6 256 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size= 4)  

280 

7.7 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in DHLPSCT  

281 

7.8 Weight distribution in Hebbian learning rule with weight range (𝐿)  = 5 in 

DHLPSCT technique 

282 

7.9 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT 

283 

7.10 Weight distribution in Hebbian learning rule with weight range (𝐿)  = 5 in 

CDHLPSCT technique 

284 

7.11 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT 

285 

7.12 Weight distribution in Hebbian learning rule with weight range (𝐿)  = 5 in 

CTHLPSCT technique  

 

286 



 Arindam Sarkar, University of Kalyani, India xxxvii 

Fig. 

No. 

Title Page 

7.13 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT 

287 

7.14 Weight distribution in Hebbian learning rule with weight range (𝐿)  = 5 in 

CGTHLPSCT 

288 

7.15 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in DHLPSCT 

290 

7.16 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 

in DHLPSCT technique 

290 

7.17 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT 

292 

7.18 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 

in CDHLPSCT technique 

292 

7.19 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT 

294 

7.20 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 

in CTHLPSCT technique 

294 

7.21 Generation of 192 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT 

296 

7.22 Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 

in CGTHLPSCT technique 

296 

7.23 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in DHLPSCT 

298 

7.24 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 

in DHLPSCT technique 

299 

7.25 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CDHLPSCT 

300 

7.26 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 

in CDHLPSCT technique 

301 

7.27 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CTHLPSCT 

302 

7.28 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 

in CTHLPSCT technique 

303 

7.29 Generation of 256 bit session key using fixed weight range (𝐿 = 5) with 

variable neurons in CGTHLPSCT 

 

304 



 Arindam Sarkar, University of Kalyani, India xxxviii 

Fig. 

No. 

Title Page 

7.30 Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 

in CGTHLPSCT technique 

305 

7.31 Average synchronization time (in cycle) for generating variable session key in 

KSOMSCT 

306 

7.32 Average synchronization time (in cycle) for generating variable session key in 

DHLPSCT  

307 

7.33 Average synchronization time (in cycle) for generating variable session key in 

CDHLPSCT  

307 

7.34 Average synchronization time (in cycle) for generating variable session key in 

CTHLPSCT  

308 

7.35 Average synchronization time (in cycle) for generating variable session key in 

CGTHLPSCT  

308 

7.36 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 4 − 2) in DHLPSCT  

310 

7.37 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 4 − 2) in CDHLPSCT 

312 

7.38 Generation of 128 bit session key using variable weight range                         

(𝐿 = 5 to 50) with fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT  

314 

7.39 Generation of 128 bit session key using variable weight range                         

(𝐿 = 5 to 50) with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT 

316 

7.40 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT  

318 

7.41 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT 

320 

7.42 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range(𝐿 = 5 to 50) and fixed neurons (2 − 2 − 3 − 2)  in CTHLPSCT  

322 

7.43 Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and variable group size with fixed neurons 

(2 − 2 − 3 − 2) in CGTHLPSCT 

324 

7.44 Comparisons of memory used to generate 128 bit session key 325 

7.45 Comparisons of relative time spent in GC to generate 128 bit session key 326 

7.46 Comparisons of number of threads required generating 128 bit session key 327 

7.47 KSOMSCT dimension vs. average number of iterations 

 

328 



 Arindam Sarkar, University of Kalyani, India xxxix 

Fig. 

No. 

Title Page 

7.48 Number of generation vs. average of fitness values in SA guided fittest 

keystream generation technique 

329 

7.49 Number of generation vs. average of fitness values in GA guided fittest 

keystream generation technique 

331 

7.50 Comparisons of length of plain text vs. keystream storage between proposed 

and existing techniques 

334 

7.51 Graphical representation of encryption time against the varying size of input 

stream of .dll files  

339 

7.52 Graphical representation of decryption time against the varying size of input 

stream of .dll files  

339 

7.53 Graphical representation of encryption time against the varying size of input 

stream of .exe files  

342 

7.54 Graphical representation of decryption time against the varying size of input 

stream of .exe files  

342 

7.55 Graphical representation of encryption time against the varying size of input 

stream of .txt files  

345 

7.56 Graphical representation of decryption time against the varying size of input 

stream of .txt files  

345 

7.57 Graphical representation of encryption time against the varying size of input 

stream of .doc files  

348 

7.58 Graphical representation of decryption time against the varying size of input 

stream of .doc files  

348 

7.59 Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .dll type bit stream  

354 

7.60 Pictorial representation of the average values of Bit Independence of .dll type 

bit stream  

355 

7.61 Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .exe type bit stream  

360 

7.62 Pictorial representation of the average values of Bit Independence of .exe type 

bit stream  

361 

7.63 Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .txt type bit stream  

366 

7.64 Pictorial representation of the average values of Bit Independence of .txt type 

bit stream  

 

367 



 Arindam Sarkar, University of Kalyani, India xl 

Fig. 

No. 

Title Page 

7.65 Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .doc type bit stream  

372 

7.66 Pictorial representation of the average values of Bit Independence of .doc type 

bit stream  

373 

7.67 Pictorial representation of the average values of Chi-Square of .dll type bit 

stream  

374 

7.68 Pictorial representation of the average values of Chi-Square of .exe type bit 

stream  

376 

7.69 Pictorial representation of the average values of Chi-Square of .txt type bit 

stream  

378 

7.70 Pictorial representation of the average values of Chi-Square of .doc type bit 

stream  

380 

7.71 Graphical representation of frequency distribution spectrum of characters for 

the .dll type input source stream 

383 

7.72 Graphical representation of frequency distribution spectrum of characters for 

the encrypted stream using KSOMSCT for .dll file 

384 

7.73 Floating frequency of the input .dll source stream 384 

7.74 Floating frequency of the encrypted stream using KSOMSCT for .dll file 385 

7.75 Autocorrelation of the input .dll source stream 385 

7.76 Autocorrelation of the encrypted stream using KSOMSCT for .dll file 385 

7.77 Graphical representation of frequency distribution spectrum of characters for 

the input .com source stream 

387 

7.78 Graphical representation of frequency distribution spectrum of characters for 

the encrypted stream using DHLPSCT for .com file 

387 

7.79 Floating frequency of the input .com source stream 387 

7.80 Floating frequency of the encrypted stream using DHLPSCT for .com file 388 

7.81 Autocorrelation of the input .com source stream 388 

7.82 Autocorrelation of the encrypted stream using DHLPSCT for .com file 388 

7.83 Graphical representation of frequency distribution spectrum of characters for 

the input .exe source stream 

390 

7.84 Graphical representation of frequency distribution spectrum of characters for 

the encrypted stream using CDHLPSCT for .exe file 

390 

7.85 Floating frequency of the input .exe source stream 390 



 Arindam Sarkar, University of Kalyani, India xli 

Fig. 

No. 

Title Page 

7.86 Floating frequency of the encrypted stream using CDHLPSCT for .exe file 391 

7.87 Autocorrelation of the input .exe source stream 391 

7.88 Autocorrelation of the encrypted stream using CDHLPSCT for .exe file 391 

7.89 Graphical representation of frequency distribution spectrum of characters for 

the input .cpp source stream  

393 

7.90 Graphical representation of frequency distribution spectrum of characters for 

the encrypted stream using CTHLPSCT for .cpp file 

393 

7.91 Floating frequency of the input .cpp source stream 393 

7.92 Floating frequency of the encrypted stream using CTHLPSCT for .cpp file 394 

7.93 Autocorrelation of the input .cpp source stream 394 

7.94 Autocorrelation of the encrypted stream using CTHLPSCT for .cpp file 394 

7.95 Graphical representation of frequency distribution spectrum of characters for 

the input .txt source stream 

396 

7.96 Graphical representation of frequency distribution spectrum of characters for 

the encrypted stream using CGTHLPSCT for .txt file 

396 

7.97 Floating frequency of the input .txt source stream 396 

7.98 Floating frequency of the encrypted stream using CGTHLPSCT for .txt file 397 

7.99 Autocorrelation of the input .txt source stream 397 

7.100 Autocorrelation of the encrypted stream using CGTHLPSCT for .txt file 397 

8.1 Pictorial representation of the flow chart of encryption for the proposed 

cascaded model 

407 

8.2 Pictorial representation of the flow chart of decryption for the proposed 

cascaded model 

410 

8.3 Graphical representation of average time T in years (T in logarithmic scale as 

log10T) against n, number of cascading stages 

414 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction 



 



 Arindam Sarkar, University of Kalyani, India 3 

1.1 Introductory Discussions 

Cryptography is the practice and study of techniques for secure communication in the 

existence of third parties (called adversaries).
[1][2]

 More usually, it is about constructing and 

analyzing protocols that overcome the influence of adversaries
[3][4]

 and which are associated 

to a variety of aspects in information security such as data confidentiality, data integrity, 

authentication, and non-repudiation.
[5]

 Section 1.2 discussed about essence of cryptography 

that of some other available cryptographic techniques have been presented in section 1.3 of 

this chapter. Section 1.4 discussed about the soft computing based cryptography. A 

comprehensive survey of literature has been presented in section 1.5. Learning rules for 

tuning of perceptrons discussed in section 1.6. Metrics for evaluation of proposed algorithms 

have been given in section 1.7. Objectives of the study are given in section 1.8. Organization 

of the thesis is given in section 1.9. Some salient features of the thesis are described in 

section 1.10.   

1.2 Essence of Cryptography 

Modern cryptography intersects the disciplines of mathematics, computer science, and 

electrical engineering. Applications of cryptography include ATM cards, computer 

passwords, and electronic commerce. Modern cryptography follows a strongly scientific 

approach, and designs cryptographic algorithms around computational hardness assumptions, 

making such algorithms hard to break by an adversary. It is theoretically possible to break 

such a system but infeasible to do so by any practical means. These schemes are therefore 

computationally secure. There exist secure schemes that provably cannot be broken, an 

example is the one-time pad, but these schemes are more difficult to implement than the 

theoretically breakable but computationally secure mechanisms.
[6] 

Until modern times cryptography almost exclusively as encryption, which is the process 

of converting ordinary information (called plaintext) into unintelligible gibberish (cipher 

text).
[7]

 Decryption is the reverse, in other words, moving from the unintelligible cipher text 

back to plaintext. A cipher (or cypher) is a pair of algorithms that create the encryption and 

the reversing decryption. The detailed operation of a cipher is controlled both by the 

algorithm and in each instance by a key. This is a secret parameter (ideally known only to the 
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communicants) for a specific message exchange context. A "cryptosystem" is the ordered list 

of elements of finite possible plaintexts, finite possible cipher texts, finite possible keys, and 

the encryption and decryption algorithms which correspond to each key. Keys are important, 

as ciphers without variable keys can be trivially broken with only the knowledge of the 

cipher used and are therefore useless (or even counter-productive) for most purposes. 

Historically, ciphers were often used directly for encryption or decryption without additional 

procedures such as authentication or integrity checks.
[6]

 To provide the essence of 

cryptographic techniques section 1.2.1 discussed about the basic idea of 

encryption/decryption. Concept of cipher is discussed in the section 1.2.2. Section 1.2.3 

discussed about the cryptographic key. The concept of key management, key generation, key 

agreement and key exchange are discussed in section 1.2.4, 1.2.5, 1.2.6, 1.2.7. Finally attack 

models are presented in section 1.2.8.    

1.2.1 Encryption/Decryption 

In cryptography, encryption is the process of encoding messages or information in such a 

way that only authorized parties can read it.
[9]

 Encryption does not of itself prevent 

interception, but denies the message content to the interceptor.
[10]

 In an encryption scheme, 

the message or information, referred to as plaintext, is encrypted using an encryption 

algorithm, generating cipher text that can only be read if decrypted.
[10]

 Symmetric key 

cryptography involves the usage of the same key for the encryption and decryption. This 

scheme is suffering from key distribution or key exchange. Since the sender and the receiver 

will use the same key to lock and unlock, this is called symmetric key operation. Thus the 

key distribution problem is inherently linked with the symmetric key operation. Also number 

of keys required as compared to the number of participants in the message exchange is equal 

about the square of the number of participants, so scalability is an issue. Whereas, 

asymmetric key cryptography involves the usage of one key for encryption and another, 

different key for decryption. No other key can decrypt the message-not even the original (i.e. 

first) key used for encryption. The beauty of this scheme is that every communicating party 

needs just a key pair for communicating with any number of other communicating parties. 

One of the two keys is called as public key and other is the private key. In case of 
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asymmetric key cryptography speed of encryption and decryption is very slow and size of 

resulting encrypted text is more than the original plaintext size. 
[11] 

1.2.2 Cipher 

In cryptography, a cipher (or cypher) is an algorithm for performing encryption or 

decryption, a series of well-defined steps that can be followed as a procedure. An alternative, 

less common term is encipherment. To encipher or encode is to convert information from 

plaintext into cipher or code. In non-technical usage, a 'cipher' is the same thing as a 'code'; 

however, the concepts are distinct in cryptography. In classical cryptography, ciphers were 

distinguished from codes. Most modern ciphers can be categorized in several ways 

 By whether they work on blocks of symbols usually of a fixed size (block ciphers), or on 

a continuous stream of symbols (stream ciphers). 

 By whether the same key is used for both encryption and decryption (symmetric key 

algorithms), or if a different key is used for each (asymmetric key algorithms). If the 

algorithm is symmetric, the key must be known to the recipient and sender and to no one 

else. If the algorithm is an asymmetric one, the enciphering key is different from, but 

closely related to, the deciphering key. If one key cannot be deduced from the other, the 

asymmetric key algorithm has the public/private key property and one of the keys may be 

made public without loss of confidentiality. 
[12]

 

 Block ciphers or stream ciphers are the two ways in which symmetric ciphers are 

implemented. A block cipher enciphers input in blocks of plaintext whereas individual 

characters are the form of input by a stream cipher. 

 Block cipher like the Data Encryption Standard (DES) and the Advanced Encryption 

Standard (AES) have been designated cryptography standards by the US government 

(though later DES was withdrawn and replaced by AES).
[11[13]

 Despite not being an 

official standard anymore, DES (especially its still approved and much more secure 

variety, triple-DES)  still holds a firm position. Its application is of wider range, from 

ATM encryption to e-mail privacy and secure remote access. There are many ciphers that 
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have been designed and released with variation in quality whereas many have been 

thoroughly broken like FEAL. 
[14][15]

 

 Unlike block cipher, stream cipher creates an arbitrarily long stream of key which is 

combined bit-by-bit or character-by-character (similar to one-time pad). The output 

stream, in a stream cipher is created based on hidden internal state which changes as the 

cipher operates. The secret key is used to set up the internal state.  Block ciphers can be 

used as stream ciphers where RC4 is a widely used stream cipher.
[15]

 

1.2.3 Cryptographic Key 

In cryptography, a key is a piece of information (a parameter) that determines the functional 

output of a cryptographic algorithm or cipher. Without a key, the algorithm would produce 

no useful result. In encryption, a key specifies the particular transformation of plaintext into 

cipher text, or vice versa during decryption. Encryption algorithms which use the same key 

for both encryption and decryption are known as symmetric key algorithms. Asymmetric key 

algorithms use a pair of keys or keypair, a public key and a private one. Public keys are used 

for encryption or signature verification; private ones decrypt and sign. The public key 

cryptography has two different keys but mathematically related to each other
.[16]

 A public key 

and a private key was proposed by Whitfield Diffie and Martin Hellman in a ground breaking 

1976 paper.
[17] 

A public key is related to private key but a public key is constructed in such a 

way that calculation of one key (private key)  is computationally infeasible from the other 

(the public key). But still both the keys are generated secretly as an interrelated pair. Public 

key cryptography is described as “the most revolutionary new concept in the field since 

polyalphabetic substitution emerged in the Renaissance”.
[18] 

The public-key is freely 

distributed in a public-key cryptosystems, while its paired private key must remain secret. In 

a public-key encryption system, encryption is done by using public key while for decryption 

private or secret key is used. Being unsuccessful in finding such a system Diffie and Hellman 

showed that by presenting the Diffie-Hellman key exchange protocol, public-key 

cryptography was indeed possible a solution that is now widely use in secure communication 

to allow two parties to secretly agree on shared encryption key.
[19]

  

A widespread academic effort in finding a practical public-key encryption system was 

initiated due to Diffie and Hellman‟s publication, as a result in 1978 Ronald Rivest, Adi 
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Shamir and Len Adleman design the technique which is known as RSA algorithm.
[20]

 Some 

other examples are Crammer-Shoup cryptosystem, ElGamal encryption and various elliptical 

curve techniques.
[11]

  

1.2.4 Key Management 

Key management is the management of cryptographic keys in a cryptosystem. This includes 

dealing with the generation, exchange, storage, use, and replacement of keys. Key 

management concerns keys at the user level, either between users or systems.
[21]

 
[22] 

1.2.5 Key Generation 

Key generation is the process of generating keys for cryptography. A key is used to encrypt 

and decrypt whatever data is being encrypted/decrypted. Modern cryptographic systems 

include symmetric-key algorithms (such as DES and AES) and public-key algorithms (such 

as RSA).
[23]

  

1.2.6 Key Agreement 

In cryptography, a key agreement protocol is a protocol whereby two or more parties can 

agree on a key in such a way that both influence the outcome. If properly done, this precludes 

undesired third-parties from forcing a key choice on the agreeing parties. Protocols that are 

useful in practice also do not reveal to any eavesdropping party what key has been agreed 

upon.
[24] 

1.2.7 Key Exchange 

Key exchange (also known as "key establishment") is any method in cryptography by which 

cryptographic keys are exchanged between users, allowing use of a cryptographic 

algorithm.
[25] 

If sender and receiver wish to exchange encrypted messages, each must be 

equipped to encrypt messages to be sent and decrypt messages received. The nature of the 

equipping they require depends on the encryption technique they might use. If they use a 

code, both will require a copy of the same codebook. If they use a cipher, they will need 

appropriate keys. If the cipher is a symmetric key cipher, both will need a copy of the same 
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key. If an asymmetric key cipher with the public/private key property, both will need the 

other's public key. Prior to any secured communication, users must set up the details of the 

cryptography. In some instances this may require exchanging identical keys (in the case of a 

symmetric key system). In others it may require possessing the other party's public key. 

While public keys can be openly exchanged (their corresponding private key is kept secret), 

symmetric keys must be exchanged over a secure communication channel. Formerly, 

exchange of such a key was extremely troublesome, and was greatly eased by access to 

secure channels such as a diplomatic bag. Clear text exchange of symmetric keys would 

enable any interceptor to immediately learn the key, and any encrypted data. The advance of 

public key cryptography in the 1970s has made the exchange of keys less troublesome. Since 

the Whitfield Diffie and Martin Hellman published a cryptographic protocol, (Diffie–

Hellman key exchange) in 1976, it has become possible to exchange a key over an insecure 

communications channel, which has substantially reduced the risk of key disclosure during 

distribution. It allows users to establish 'secure channels' on which to exchange keys, even if 

an opponent is monitoring that communication channel. However, Diffie-Hellman key 

exchange did not address the problem of being sure of the actual identity of the person (or 

'entity'). In Diffie-Hellman key exchange algorithm two parties, who want to communicate 

securely, can agree on a symmetric key using this technique. This algorithm can be used for 

key agreement, but not for encryption or decryption of message. Once both the parties agree 

on the key to be used, they need to use other symmetric key encryption algorithms for actual 

encryption or decryption of messages. This Diffie-Hellman key exchange algorithm can fall 

pray to the Man-In-The-Middle attack, also called as Bucket Bridge Attack. This Man-In-

The-Middle attack can work against the Diffie-Hellman key exchange algorithm, causing it 

to fail. This is plainly because the Man-In-The-Middle makes the actual communicators 

believe that they are taking to each other, whereas they are actually taking to the Man-In-

The-Middle, who is taking to each of them.  
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1.2.8 Attack Model 

 A chosen-cipher text attack (CCA) is an attack model for cryptanalysis in which the 

cryptanalyst gathers information, at least in part, by choosing a cipher text and obtaining 

its decryption under an unknown key. In the attack, an adversary has a chance to enter 

one or more known cipher texts into the system and obtain the resulting plaintexts. From 

these pieces of information the adversary can attempt to recover the hidden secret key 

used for decryption.
[26]

 

 A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes that 

the attacker has the capability to choose arbitrary plaintexts to be encrypted and obtain 

the corresponding cipher texts. The goal of the attack is to gain some further information 

which reduces the security of the encryption scheme. In the worst case, a chosen-

plaintext attack could reveal the scheme's secret key. For some chosen-plaintext attacks, 

only a small part of the plaintext needs to be chosen by the attacker: such attacks are 

known as plaintext injection attacks.
[26]

 

 In cryptography, a cipher text-only attack (COA) or known cipher text attack is an attack 

model for cryptanalysis where the attacker is assumed to have access only to a set of 

cipher texts. The attack is completely successful if the corresponding plaintexts can be 

deduced, or even better, the key. The ability to obtain any information at all about the 

underlying plaintext is still considered a success. For example, if an adversary is sending 

cipher text continuously to maintain traffic-flow security, it would be very useful to be 

able to distinguish real messages from nulls. Even making an informed guess of the 

existence of real messages would facilitate traffic analysis.
[26]

 

 The known-plaintext attack (KPA) is an attack model for cryptanalysis where the attacker 

has samples of both the plaintext (called a crib), and its encrypted version (cipher text). 

These can be used to reveal further secret information such as secret keys and code 

books. The term "crib" originated at Bletchley Park, the British World War II decryption 

operation.
[26]

  

 The Man-In-The-Middle Attack (often abbreviated MITM, MitM, MIM, MiM, MITMA) 

in cryptography and computer security is a form of active eavesdropping in which the 

attacker makes independent connections with the victims and relays messages between 
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them, making them believe that they are talking directly to each other over a private 

connection, when in fact the entire conversation is controlled by the attacker. The 

attacker must be able to intercept all messages going between the two victims and inject 

new ones, which is straightforward in many circumstances (for example, an attacker 

within reception range of an unencrypted Wi-Fi wireless access point, can insert himself 

as a Man-In-The-Middle).
[27]

   

1.3 Cryptographic Algorithm 

Out of large variety of cryptographic algorithms, few are discussed in section 1.3.1 to 1.3.4. 

1.3.1 Advanced Encryption Standard (AES) 

The Advanced Encryption Standard (AES) is a symmetric-key block cipher published by the 

National Institute of Standard and Technology (NIST) as FIPS 197 in the Federal Register in 

December 2001.
[11]

 AES allows for three different key lengths: 128 bit keys, 192 bit keys 

and 256 bit keys where encryption consists of ten rounds of processing for 128 bit keys, 

twelve rounds for 192 bit keys and fourteen rounds for 256 bit keys. In each case, all other 

rounds are identical except for the last round. There are four steps for each round of 

processing: One single-byte based substitution, a row-wise permutation, a column-wise 

mixing and the addition of the round keys. The order of the above four steps is different for 

encryption and decryption. 

1.3.2 Data Encryption Standard (DES) 

Data Encryption Standard (DES) is a symmetric-key based block cipher. It was the result of a 

research project set up by International Business Machines (IBM) Corporation in the late 

1960‟s.
[13]

 DES is based on Feistel block cipher and only operates on 64 bit blocks of data at 

a time. After an initial permutation, the block is broken into a right half and a left half, each 

32 bits long. There are sixteen rounds of identical operations in which the data are combined 

with the key with key length 56 bits. In each round, the bits of the key are shifted and then 

48 bits are selected from the 56 bits of the key. The right half of the data is expanded to 48 

bits via an expansion permutation, combined with 48 bits of a shifted and permuted key via 
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an Exclusive-OR, sent through eight S-boxes producing 32 new bits and permuted again. 

After these four operations, the output is combined with the left half via another Exclusive-

OR. The new right half is generated from the above operations and the old right half becomes 

the new left half. These operations are repeated for 16 times making 16 rounds of DES. 

After the sixteenth round, the right and left halves are joined and a final permutation, which 

is the inverse of the initial permutation, finishes off the DES algorithm. 

1.3.3 Triple Data Encryption Standard (Triple DES) 

The man-in-the-middle attack on Double DES has made the technique impractical and 

Double DES is seemed to be inadequate, therefore it paving the way for Triple DES.
[13]

 

Triple DES block cipher applies DES cipher thrice to each data block, where the block size is 

64 bits. Triple DES uses three DES keys, K1, K2 and K3 (each of 56 bits, excluding parity 

bits), and the key sizes are 168 (= 56 × 3), 112 (= 56 × 2) or 56 bits with respect to 

keying option 1, 2 or 3 as follows: 

  Keying Option 1: All of the keys are independent.  

  Keying Option 2: K1 and K2 are independent and K3 = K1.  

  Keying Option 3: All of the keys are identical i.e. K1 = K2 = K3.  

Keying Option 1 is the strongest with three independent keys with 168 key bits. Keying 

Option 2 provides less security with 112 key bits but stronger than the simply DES 

encrypting twice with keys K1 and K2. Keying Option 3, which has backward compatibility 

with DES, is equivalent to DES with 56 key bits.  

The encryption and decryption algorithms of Triple DES with three independent keys are  

  Cipher Text = EK3 (DK2 (EK1 (Plaintext))) 

  Plaintext = DK1 (EK2 (DK3 (Cipher Text))) 

The encryption and decryption algorithms of Triple DES with two independent keys are  

  Cipher Text = EK1 (DK2 (EK1 (Plaintext))) 

   Plaintext = DK1 (EK2 (DK1 (Cipher Text))) 
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1.3.4 RSA Algorithm 

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman introduced RSA algorithm which is 

an asymmetric key cryptosystem.
[11]

 RSA involves the use of two keys: a public key, which 

may be known by anyone and used to encrypt messages and a private key, known only by the 

recipient and used to decrypt messages. A plaintext 𝑃 is encrypted to cipher text 𝐶 by 

𝐶 =  (𝑃𝑒𝑚𝑜𝑑 𝑛) and the ciphertext 𝐶 is decrypted into plaintext 𝑃 by 𝑃 =  (𝐶𝑑  𝑚𝑜𝑑 𝑛). 

Since knowing the factors of 𝑛, which will give away (𝑛) and therefore 𝑑, a cryptanalyst 

would break the algorithm. The authors of RSA recommended that the length of 𝑛 be about 

200 digits long. However, this length may be varied based on the importance of the speed of 

encryption versus security. 

1.4 Soft Computing based Cryptography 

The advances in software technology assign more computational power. New computational 

environment becomes more distributed, more diverse and more global, the transmission of 

information is becoming more vulnerable to adversary attacks. Thus making the design of 

cryptographic schemes that can counter new cryptanalysis techniques is becoming harder. 

Recently soft computing approaches provide inspiration in solving problems from various 

fields. Now-a-days works in the application of soft computing inspired computational 

paradigm in cryptography become famous. The findings show that the research on 

applications of soft computing based approaches in cryptography is minimal as compared to 

other fields. Multiple disciplines have started to work together more closely for last few 

decades to improve the network security for reliable communication. A number of alternative 

cryptosystems have gained significant attention during these periods. Soft computing is the 

most promising one among them. Soft computing refers to the science of reasoning, thinking 

and deduction that recognizes and uses the real world phenomena of grouping, memberships, 

and classification of various quantities under study. As such, it is an extension of natural 

heuristics and capable of dealing with complex systems because it does not require strict 

mathematical definitions and distinctions for the system components. Soft computing differs 

from conventional (hard) computing in that, unlike hard computing, it is tolerant of 

imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft 
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computing is the human mind. Soft computing is a term used in computer science to refer to 

problems in computer science whose solutions are unpredictable, uncertain and between 0 

and 1. Soft computing became a formal area of study in computer science in the early 

1990s.
[28]

 Earlier computational approaches could model and precisely analyze only 

relatively simple systems. More complex systems arising in biology, medicine, the 

humanities, management sciences, and similar fields often remained intractable to 

conventional mathematical and analytical methods. That said, it should be pointed out that 

simplicity and complexity of systems are relative, and many conventional mathematical 

models have been both challenging and very productive. Soft computing deals with 

imprecision, uncertainty, partial truth, and approximation to achieve practicability, 

robustness and low solution cost. As such it forms the basis of a considerable amount of 

machine learning techniques. Recent trends tend to involve evolutionary and swarm 

intelligence based algorithms and bio-inspired computation in cryptography. Components of 

soft computing include: 

Evolutionary algorithms
[29][30] 

are adaptive methods, which may be used to solve search and 

optimization problems, based on the genetic processes of biological organisms. Over many 

generations, natural populations evolve according to the principles of natural selection and 

„survival of the fittest‟. By mimicking this process, evolutionary algorithms are able to 

„evolve‟ solutions to real world problems, if they have been suitably encoded. Usually 

grouped under the term evolutionary algorithms or evolutionary computation
[31][32]

, the 

domains are genetic algorithms, evolution strategies, evolutionary programming, genetic 

programming and learning classifier systems.
 [33] 

They all share a common conceptual base of 

simulating the evolution of individual structures via processes of selection, mutation, and 

reproduction. Cultural algorithms are computational models of cultural evolution. They 

consist of two basic components, a population space (using evolutionary algorithms), and a 

belief space. The two components interact by means of a vote-inherit-promote protocol. 

Likewise the knowledge acquired by the problem solving activities of the population can be 

stored in the belief space in the form of production rules etc. Cultural algorithms represent a 

general framework for producing hybrid evolutionary systems that integrate evolutionary 

search and domain knowledge.   
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The application of an evolutionary algorithm to the field of cryptography is rather unique. 

Few works exist on this topic. Using evolutionary algorithms most of the work has been done 

in the field of cryptanalysis. This nontraditional application is investigated to determine the 

benefits of applying an evolutionary algorithm to a cryptographic problem, if any. This area 

is so different from the application areas where evolutionary algorithms are developed. Major 

works that involves genetic algorithm focuses on cryptanalysis of cryptographic algorithms 

and design of cryptographic primitives. Most cryptanalytic research using Genetic Algorithm 

(GA) has been done on classical ciphers. An initial attempt conducted by Spillman et al.
[34]

, 

whereby GA is exploited to cryptanalysis simple substitution ciphers. Since known 

cryptanalytic attack for simple substitution ciphers employs frequency distribution of 

characters in the message, Spillman derived a cost or fitness function based on single-

character and diagram frequency distributions in this work. The attempt was fruitful as GA 

was proven to be highly successful in this cryptanalysis. Spillman suggested the use of 

trigram frequency distribution and variations on crossover and mutation procedures as future 

research. Spillman continues the work and illustrated that GA can also be used in the 

cryptanalysts of public key cryptosystem, the knapsack ciphers. The encryption scheme for 

knapsack ciphers is based on the NP-complete problem, which is a hard problem.
[35]

  Another 

initial attempt conducted by Matthews for investigating the use of GA in cryptanalysis of 

transposition ciphers.
[36]

 In this work the fitness function is based on the message length, 

frequency distribution of diagrams and trigrams tested for, the number of diagrams and 

trigrams checked for and the likelihood of occurrence in successful deciphered messages. 

Swarm intelligence is aimed at collective behaviour of intelligent agents in decentralized 

systems. Most of the basic ideas are derived from the real swarms in the nature, which 

includes particle swarm, ant colonies, bird flocking, honeybees, bacteria and microorganisms 

etc. Swarm models are population-based and the population is initialized with a population of 

potential solutions. These individuals are then manipulated (optimized) over many several 

iterations using several heuristics inspired from the social behaviour of insects in an effort to 

find the optimal solution. Particle Swarm Optimization (PSO) emulates flocking behavior of 

birds and herding behavior of animals to solve optimization problems. The PSO was 

introduced by Kennedy and Eberhart.
[37][38]

 In the PSO domain, there are two main variants: 

global PSO and local PSO. In the local version of the PSO, each particle‟s velocity is 
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adjusted according to its personal best position pbest and the best position lbest achieved so 

far within its neighborhood. The global PSO learns from the personal best position pbest and 

the best position gbest achieved so far by the whole population.  

Ant Colony Optimization (ACO) algorithms are inspired by the behavior of natural ant 

colonies, in the sense that they solve their problems by multi agent cooperation using indirect 

communication through modifications in the environment. This algorithm is a member of the 

Ant Colony algorithms family, in swarm intelligence methods, and it constitutes some 

metaheuristic optimizations. ACO was initially proposed by Marco Dorigo in his PhD 

thesis.
[39][40]

 Ants release a certain amount of pheromone (hormone) while walking, and each 

ant prefers (probabilistically) to follow a direction, which is rich of pheromone. This simple 

behavior explains why ants are able to adjust to changes in the environment, such as 

optimizing shortest path to a food source or a nest. In ACO, ants use information collected 

during past simulations to direct their search and this information is available and modified 

through the environment. Bafghi performed a differential cryptanalysis on Serpent using Ant 

Colony and claimed that it can be used for any block cipher.
 [41]

  Ant colony algorithms are 

multi-agent systems where the behavior of each single agent, the ants, is inspired by the 

behavior of real ants. 

Simulated Annealing (SA) is based on the manner in which liquids freeze or metals 

recrystalize in the process of annealing. The method was independently described by 

Kirkpatrick et al.
[42]

 and Černý.
[43]

 The method is an adaptation of the Metropolis-Hastings 

algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, 

invented by Rosenbluth and published in a paper by Metropolis et al..
[44]

 In an annealing 

process, molten metal, initially at high temperature, is slowly cooled so that the system at any 

time is approximately in thermodynamic equilibrium. If the initial temperature of the system 

is too low or cooling is done insufficiently slowly the system may become brittle or unstable 

with forming defects. The initial state of a thermodynamic system is set at energy 𝐸 and 

temperature 𝑇, holding 𝑇 constant the initial configuration is perturbed and the change in 

energy 𝑑𝐸 is computed. If the change in energy is negative the new configuration is 

accepted. If the change in energy is positive it is accepted with a probability given by the 

Boltzmann factor 𝑒𝑥𝑝 −(𝑑𝐸/𝑇). This processes is then repeated for few iterations to give 

good sampling statistics for the current temperature, and then the temperature is decremented 
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and the entire process repeated until a frozen state is achieved at 𝑇 = 0. An extensive 

research on classical cipher cryptanalysis was investigated by Bagnall
[45] 

and Clark in his 

Ph.D work
[46]

. Clark‟s cryptanalytic attack work covers a variety of classical ciphers that 

include simple substitution, transposition as well as poly-alphabetic ciphers. Clark proposed 

new attacks on these ciphers, which utilize SA and the tabu search. Tabu search, created by 

Glover in 1986
[47]

 and formalized in 1989
[48][49]

, is a metaheuristic search method employing 

local search methods used for mathematical optimization. Existing attacks which make use of 

the GA and SA are compared with the new SA and tabu search techniques. 

Artificial Neural Network (ANN)
[50][51]

 have been developed as generalizations of 

mathematical models of biological nervous systems. In a simplified mathematical model of 

the neuron, the effects of the synapses are represented by weights that modulate the effect of 

the associated input signals, and the nonlinear characteristic exhibited by neurons is 

represented by a transfer function, which is usually the sigmoid, Gaussian function etc.
[52][53]

 

The neuron impulse is then computed as the weighted sum of the input signals, transformed 

by the transfer function. The learning capability of an artificial neuron is achieved by 

adjusting the weights in accordance to the chosen learning algorithm.
[54][55] 

Neural Cryptography
[56][57]

 is a branch of cryptography dedicated to analyzing the application 

of stochastic algorithms, especially ANN algorithms, for use in encryption and cryptanalysis. 

ANNs are well known for their ability to selectively explore the solution space of a given 

problem. This feature finds a natural niche of application in the field of cryptanalysis. At the 

same time, ANNs offer a new approach to attack ciphering algorithms based on the principle 

that any function could be reproduced by an ANN, which is a powerful proven computational 

tool that can be used to find the inverse-function of any cryptographic algorithm. The ideas 

of mutual learning, self learning, and stochastic behavior of ANNs and similar algorithms 

can be used for different aspects of cryptography, like public-key cryptography, solving the 

key distribution problem using ANN mutual synchronization, hashing or generation of 

pseudo-random numbers. Another idea is the ability of a ANN to separate space in non-linear 

pieces using "bias". It gives different probabilities
[58][59]

 of activating or not the ANN. This is 

very useful in the case of cryptanalysis. Two names are used to design the same domain of 

researches: Neuro-Cryptography and Neural Cryptography. The most used protocol for key 

exchange between two parties A and B in the practice is Diffie-Hellman protocol. Neural key 
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exchange, which is based on the synchronization of two Tree Parity Machines (TPM), should 

be a secure replacement for this method. Synchronizing these two machines is similar to 

synchronizing two chaotic oscillators in chaos communications. 

1.5 Literature Survey   

Currently new computational environment becomes more distributed, more diverse and more 

global; the transmission of information is becoming more vulnerable to adversary attacks. 

Now-a-days appropriate cryptographic technique in light weight devices having very low 

processing capabilities or limited computing power in wireless communication is the major 

challenge. Thus making the design of light weight cryptographic schemes for low processing 

devices that can counter new cryptanalysis techniques in wireless communication is 

becoming harder.  Therefore, computer network security is a fast moving technology in the 

field of computer science. Network security using cryptography originally focused on 

mathematical and algorithmic aspects. As security techniques continue to mature, there is an 

emerging set of cryptographic techniques always. This advancement of digital 

communication technology benefitted the field of cryptography. The efficient cryptographic 

schemes were designed and implemented and also broken subsequently over time. 

Metropolis et al. devised an algorithm about Simulated Annealing (SA) method in the year   

1953.
 [44] 

SA is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to 

generate sample states of a thermodynamic system, invented by Rosenbluth.
 
Whitfield Diffie 

and Martin Hellman published a cryptographic protocol, (Diffie–Hellman key exchange) in 

1976; to exchange a key over an insecure communications channel, which has substantially 

reduced the risk of key disclosure during distribution.
[17]

 It allows users to establish 'secure 

channels' on which to exchange keys, even if an opponent is monitoring that communication 

channel. However, Diffie–Hellman key exchange did not address the problem of being sure 

of the actual identity of the person (or 'entity'). So, Diffie–Hellman key exchange is 

vulnerable to Man-In-The-Middle (MITM) attack. Kirkpatrick et al.
[42]

 in the year 1983 and 

Černý et al.
[43]

 in the year 1985 independently described Simulated Annealing which is based 

on the manner in which liquids freeze or metals recrystalize in the process of annealing. Tabu 

search, proposed by Fred W. Glover
[47]

 in 1986 and formalized in 1989
[48] 

and 1990
[49]

 is a 
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metaheuristic search method employing local search methods used for mathematical 

optimization. Colorni et al. proposed a scheme of distributed optimization by Ant Colonies in 

the year 1991.
[39]

 Marco Dorigo in his Ph.D thesis proposed Ant Colony Optimization (ACO) 

in 1992.
[40]

 This algorithm is a member of the Ant Colony algorithms family, in swarm 

intelligence methods, and it constitutes some metaheuristic optimizations. Ants release a 

certain amount of pheromone (hormone) while walking, and each ant prefers 

(probabilistically) to follow a direction, which is rich of pheromone. In ACO, ants use 

information collected during past simulations to direct their search and this information is 

available and modified through the environment. The application of an evolutionary 

algorithm to the field of cryptography is rather unique. Few works exist on this topic. Using 

evolutionary algorithms most of the work has been done in the field of cryptanalysis. Major 

works that involves GA focuses on cryptanalysis of cryptographic algorithms and design of 

cryptographic primitives. Most cryptanalytic research using GA was done on classical 

ciphers. An initial attempt was conducted by Spillman et al.
[34] 

in 1993, whereby GA is 

exploited to cryptanalysis simple substitution ciphers. Since known cryptanalytic attack for 

simple substitution ciphers employs frequency distribution of characters in the message, 

Spillman derived a cost or fitness function based on single-character and diagram frequency 

distributions in the work. This attempt was fruitful as GA was proven to be highly successful 

in this cryptanalysis. Spillman suggested the use of trigram frequency distribution and 

variations on crossover and mutation procedures as future research. Spillman continues the 

work and illustrated that GA can also be used in the cryptanalysts of public key 

cryptosystem, the knapsack ciphers. The encryption scheme for knapsack ciphers is based on 

the NP-complete problem, which is a hard problem.
[35] 

Maurer considered the problem of 

MITM attack for generating a shared secret key S by two parties knowing dependent random 

variables X and Y, respectively, but not sharing a secret key initially.
[60]

 An enemy who 

knows the random variable Z, jointly distributed with X and Y according to some probability 

distribution, can also receive all messages exchanged by the two parties over a public 

channel. The goal of Maurer research is to develop a protocol is that the enemy obtains at 

most a negligible amount of information about S. Author shows that such a secret key 

agreement is possible for a scenario in which all three parties receive the output of a binary 

symmetric source over independent binary symmetric channels, even when the enemy's 
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channel is superior to the other two channels. But it may not be always possible to receive the 

output of a binary symmetric source over independent binary symmetric channels in wireless 

communication. Zadeh et al. in 1994 described the concept of soft computing, Artificial 

Neural Networks and Fuzzy Logic.
[28] 

 Soft Computing became a formal area of study in 

computer science in the early 1990s.
 
Particle Swarm Optimization (PSO) in the year 1995.

[37]
 

Then they analyzed the small worlds and mega-minds effects of neighborhood topology on 

particle swarm performance.
[38]

 Swarm intelligence is aimed at collective behaviour of 

intelligent agents in decentralized systems. Most of the basic ideas are derived from the real 

swarms in the nature, which includes particle swarm, ant colonies, bird flocking, honeybees, 

bacteria and microorganisms etc. Delgado-Restituto et al. proposed the use of analog 

integrated circuits for secure communication based on chaos synchronization.
[61] 

This 

phenomenon is demonstrated through experimental measurements realized on silicon 

prototypes in a double-metal, single-poly 1.6 μm CMOS technology. The approach is not 

simple and not suitable for light weight devices having very low processing capabilities in 

wireless communication. Dourlens presented the application of ANNs in classical 

cryptography in MSc Thesis named Neuro-Cryptography.
[62]

 Caponetto et al. offered a state 

controlled cellular neural network-based circuit for secure transmission applications.
[63]

 In 

this work the basic principles of synchronization between two (or more) chaotic systems are 

reported concerning the inverse system technique. Fundamentals of this kind of transmission 

are briefly introduced together with some experimental results. The main problem of this 

technique is that some of the parameters are predefined in the chaotic systems and still this 

technique suffers from vulnerability of public channel. Bäck et al. discussed about the 

evolution strategies, evolutionary programming and genetic algorithms.
[29][30]

 Evolutionary 

algorithm are adaptive methods, which is used to solve search and optimization problems, 

based on the genetic processes of biological organisms. An extensive research on classical 

cipher cryptanalysis using Simulated Annealing investigated by Bagnall
[45]

 and Clark in his 

Ph.D work
[46]

. Clark‟s cryptanalytic attack work covers a variety of classical ciphers that 

include simple substitution, transposition as well as poly-alphabetic ciphers. Clark proposed 

new attacks on these ciphers, which utilize Simulated Annealing and the tabu search. Metzler 

et al. focused on several scenarios of interacting Neural Networks for using competitive 

perceptrons as decision-making algorithms in a model of a closed market.
[64] 

Neural 
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Networks which are trained either in an identical or in a competitive way are solved 

analytically. In the case of identical training each perceptron receives the output of its 

neighbor. The symmetry of the stationary state as well as the sensitivity to the used training 

algorithms are investigated. Two competitive perceptrons trained on mutually exclusive 

learning aims and a perceptron which is trained on the opposite of its own output are 

examined analytically. Authors of this paper soon discover that dynamics of interacting 

perceptrons is solved analytically. They have observed that for a directed flow of information 

the system runs into a state which has a higher symmetry than the topology of the model. A 

symmetry breaking phase transition is found with increasing learning rate. In addition it is 

shown that a system of interacting perceptrons which is trained on the history of its minority 

decisions develops a good strategy for the problem of adaptive competition known as the Bar 

Problem or Minority Game. Using this competitive perceptrons training approach authors of 

this paper Kanter and Kinzel came up with revolutionary approach in cryptography called 

Neural Cryptography.
[56]

 It is a connection between the theory of Neural Networks and 

cryptography. This turned out to be a new branch of cryptography and became very popular 

soon. Kanter and Kinzel shows the secure exchange of information by synchronization of 

two Neural Networks which are trained on their mutual output bits.
[57]

 Using numerical 

simulations, Kanter and Kinzel shows that two artificial networks being trained by Hebbian 

learning rule on their mutual outputs develop an antiparallel state of their synaptic 

weights.
[65]

 From the novel phenomenon Kanter et al. conclude that the synchronized weights 

are used to construct an ephemeral key exchange protocol for a secure transmission of secret 

data.
[66]

 It is shown that an opponent who knows the protocol and all details of any 

transmission of the data has no chance to decrypt the secret message, since tracking the 

weights is a hard problem compared to synchronization. The complexity of the generation of 

the secure channel is linear with the size of the network. Two Neural Networks which are 

trained on their mutual output bits are analyzed using methods of statistical physics. So, 

interacting Neural Networks and cryptography together. Rosen-Zvi et al. studied the mutual 

learning process between two parity feed-forward networks with discrete and continuous 

weights analytically, and they found that the number of steps required to achieve full 

synchronization between the two networks in the case of discrete weights is finite.
[67]

 The 

synchronization process is shown to be non-self-averaging and the analytical solution is 
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based on random auxiliary variables. The learning time of an attacker that is trying to imitate 

one of the networks is examined analytically and is found to be much longer than the 

synchronization time. An algorithm for an eavesdropper which could break the key was 

introduced by Klimov et al. by analyzing the scheme and explains why the two parties 

converge to a common key, and why an attacker using a similar neural network is unlikely to 

converge to the same key.
[68]

 However, authors shown that this key exchange protocol can be 

broken in three different ways, and thus it is completely insecure. For this reason Mislovaty 

et al. investigated the security of Neural Cryptography very minutely.
[69]

 The weights of the 

networks have integer values between ±𝐿. Authors shown that the synchronization time 

increases with 𝐿2 while the probability to find a successful attacker decreases exponentially 

with 𝐿. Hence for large 𝐿 authors find a secure key-exchange protocol which depends neither 

on number theory nor on injective trapdoor functions used in conventional cryptography. 

Rosen-Zvi et al. analyzed the mutual learning features in a Tree Parity Machine (TPM) and 

its application to the cryptography.
[70]

 Mutual learning of a pair of TPMs with continuous and 

discrete weight vectors is studied analytically. The analysis is based on a mapping procedure 

that maps the mutual learning in TPMs onto mutual learning in noisy perceptrons. The 

stationary solution of the mutual learning in the case of continuous TPMs depends on the 

learning rate where a phase transition from partial to full synchronization is observed. In the 

discrete case the learning process is based on a finite increment and a full synchronized state 

is achieved in a finite number of steps. The synchronization of discrete parity machines is 

introduced in order to construct an ephemeral key exchange protocol. The dynamic learning 

of a TPM (an attacker) that tries to imitate one of the two machines while the two still update 

their weight vectors is also analyzed. Now, Kinzel et al. presented a connection between the 

theory of Neural Networks and cryptography.
[71]

 A new phenomenon, namely 

synchronization of Neural Networks, is leading to a new method of exchange of secret 

messages. Kanter et al. presented the mutual synchronization of Neural Networks to analyze 

the theory of Neural Networks and cryptography.
[72]

 Kinzel et al. shows when Neural 

Networks are trained on their own output signals they generate disordered time series.
[73]

 

This disorder generated by interacting Neural Networks has an application to econophysics 

and cryptography. When agents competing in a closed market (minority game) are using 

Neural Networks to make their decisions, the total system relaxes to a state of good 
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performance is an application of econophysics and two partners communicating over a public 

channel can find a common secret key is an application of cryptography.  Mislovaty et al. 

construct a hybrid network in public channel cryptography by synchronizing of Neural 

Networks and chaotic maps. In this network the external signal to the chaotic maps is 

synchronized by the neural nets.
[74]

 This allows a secure generation of secret encryption keys 

over a public channel.  Another initial attempt conducted by Matthews investigated the use of 

GA in cryptanalysis of transposition ciphers.
[36]

 In this work the fitness function is based on 

the message length, frequency distribution of diagrams and trigrams tested for, the number of 

diagrams and trigrams checked for and the likelihood of occurrence in successful deciphered 

messages. Bafghi performed a differential cryptanalysis on Serpent using Ant Colony and 

claimed that it can be used for any block cipher.
[41]

  Shacham et al. presented a successful 

attack strategy in Neural Cryptography.
[75]

 In this attack cooperating attackers are involved 

for breaking the security of the Neural Cryptography. A successful attack strategy in Neural 

Cryptography is presented. The neural cryptosystem, based on synchronization of Neural 

Networks by mutual learning, has been recently shown to be secure under different attack 

strategies. Mislovaty et al. also analyze the security of Neural Cryptography.
[76]

 The success 

of the advanced attacker presented by them, called the “majority-flipping attacker,” does not 

decay with the parameters of the model. This attacker‟s outstanding success is due to its 

using a group of attackers which cooperate throughout the synchronization process, unlike 

any other attack strategy known. Ruttor et al. analyze the synchronization of Random Walks 

with reflecting boundaries.
[77]

 They have shown that reflecting boundary conditions cause 

two one-dimensional Random Walks to synchronize if a common direction is chosen in each 

step. The mean synchronization time and its standard deviation are calculated analytically. 

Both quantities are found to increase proportional to the square of the system size. 

Additionally, in this method the probability of synchronization in a given step is analyzed, 

which converges to a geometric distribution for long synchronization times. From this 

asymptotic behaviour the number of steps required to synchronize an ensemble of 

independent Random Walk pairs is deduced. They have observed that the synchronization 

time increases with the logarithm of the ensemble size.  To enhance the security Ruttor et al. 

also proposed a feedback mechanism in Neural Cryptography for increasing the security of 

the network.
[78]

 Neural Cryptography is based on a competition between attractive and 
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repulsive stochastic forces. A feedback mechanism increases the repulsive forces. Using 

numerical simulations and an analytic approach, they have calculated the probability of a 

successful attack for different model parameters. They also derived the scaling laws which 

show that feedback improves the security of the system. Volkmer et al. thought of 

authenticated TPM for key exchange purpose.
[79]

 The synchronization of TPMs, has proven 

to provide a valuable alternative concept for secure symmetric key exchange. Yet, from a 

cryptographer's point of view, authentication is at least as important as a secure exchange of 

keys. Adding an authentication via hashing e.g. is straightforward but with no relation to 

Neural Cryptography. They have presented an alternative, integrating a Zero-Knowledge 

protocol into the synchronization. A Man-In-The-Middle attack and even all currently known 

attacks, that are based on using identically structured TPMs and synchronization as well, can 

so be averted. This in turn has practical consequences on using the trajectory in weight space. 

Next to authentication, secure key exchange is considered the most critical and complex issue 

regarding ad-hoc network security. Volkmer et al. also presented a low-cost, (i.e. low 

hardware-complexity) solution for feasible frequent symmetric key exchange in adhoc 

networks, based on a Tree Parity Machine Rekeying Architecture.
[80] 

Using this TPM a key 

exchange can be performed within a few milliseconds, given practical wireless 

communication channels and their limited bandwidths. Ruttor et al. presented Neural 

Cryptography with queries.
[81]

 Neural Cryptography is based on synchronization of TPMs by 

mutual learning. They extend previous key exchange protocols by replacing random inputs 

with queries depending on the current state of the Neural Networks. The probability of a 

successful attack shows that queries restore the security against cooperating attackers. The 

success probability can be reduced without increasing the average synchronization time. 

Based on synchronization of Neural Networks by mutual learning Klein et al. suggested 

several models for this cryptographic system, and have been tested for their security under 

different sophisticated attack strategies.
[82]

 Then they conclude that the most promising 

models are networks that involve chaos synchronization. Kanter et al. presented a detail 

analysis of the theory of Neural Networks: learning from examples, time-series and 

cryptography.
[83]

 These detail analysis actually deals with the storage capacity of the TPM, 

learning from examples, and time series generation by feed forward networks. Kotlarz et al. 

proposed a new schedule of S-boxes design in their paper.
[84]

 They presented the most 
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popular S-box design criteria, especially a possibility of application of Boolean bent-

functions. Finally, they propose integrating Neural Networks (playing a role of Boolean 

functions with appropriate properties) in the design process. The necessity of securing the 

communication between hardware components in embedded systems becomes increasingly 

important with regard to the secrecy of data and particularly its commercial use. Volkmer et 

al. suggested Tree Parity Machine Rekeying Architectures and a low-cost (i.e., small logic-

area) solution for flexible security levels and short key lifetimes.
[85]

 The basis is an approach 

for symmetric key exchange using the synchronization of TPMs. So, they proposed a TPM 

based key establishment IP-Core for ubiquitous computing.
[86]

 Fast successive key generation 

enables a key exchange within a few milliseconds, given realistic communication channels 

with a limited bandwidth. Alternative security solutions are considered in science and 

industry, motivated by the strong restrictions as they are often present in embedded security 

scenarios especially in a RFID setting. They investigated a low hardware-complexity 

cryptosystem for lightweight symmetric key exchange and stream cipher based on TPMs.
[87]

 

They decided that Tree Parity Machine Rekeying Architectures can be used for embedded 

security.
[88]

 The speed of a key exchange is basically only limited by the channel capacity as 

is the stream cipher throughput. This work significantly improves and extends previously 

published results on Tree Parity Machine Rekeying Architectures. Identity-based public key 

cryptosystem may perfectly substitute the traditional certificate-based public key system if 

only the efficiency and security of key issuing are satisfied. Batina et al. proposed a 

framework and platform to compare stream ciphers not only on their security level but also 

based on their energy consumption, performance and area cost.
[89]

 They described the basic 

hardware assumptions, give the area, delay and power consumption values of some existing 

stream ciphers and give guidelines for the designs of future algorithms. Interactions of neural 

network has been studied out coming a novel result that the two Neural Networks can 

synchronize to a stationary weight state with the same initial inputs. Based on this approach 

Chen et al. proposed a remote user authentication and identity-based key issuing 

scheme.
[90][91]

 This simple but novel interacting neural network based scheme for secure key 

agreement purpose, and ID-based private key secure issuing over a complete public channel, 

which can provide a full dynamic and security remote user authentication over a completely 

insecure communication channel. Gross et al. proposed a framework for public-channel 
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cryptography using chaotic lasers.
[92]

 Two mutually coupled chaotic diode lasers with 

individual external feedback, are used to establish chaos synchronization in the low-

frequency fluctuations regime. A third laser with identical external feedback but coupled 

unidirectionally to one of the pair does not synchronize. Both experiments and simulations 

reveal the existence of a window of parameters for which synchronization by mutual 

coupling is possible but synchronization by unidirectional coupling is not. Klein et al. 

proposed a key-exchange protocol that comprises two parties with chaotic dynamics that are 

mutually coupled and undergo a synchronization process, at the end of which they can use 

their identical dynamical state as an encryption key.
[93]

 The transferred coupling- signals are 

based nonlinearly on time-delayed states of the parties, and therefore they conceal the 

parties‟ current state and can be transferred over a public channel. JCH Castro et al. shows 

the application of evolutionary computation in computer security and cryptography.
[94]

 The 

main objective of the authors is to consider the problem of  defining fitness function for the 

evolutionary algorithms like GA, SA etc. Godhavari et al. uses the concept of neural 

synchronization by mutual learning to a secret key exchange protocol over a public for 

encrypting and decrypting the given message using DES algorithm which is simulated and 

synthesized using VHDL.
[95]

 Klein et al. shows stable isochronal synchronization of mutually 

coupled chaotic lasers.
[96]

 The dynamics of two mutually coupled chaotic diode lasers are 

investigated experimentally and numerically by them. By adding self-feedback to each laser, 

stable isochronal synchronization is established. This stability, which can be achieved for 

symmetric operation, is essential for constructing an optical public-channel cryptographic 

system. Ruttor et al. appied the genetic attack on Neural Cryptography.
[97]

 A genetic 

algorithm, which selects the fittest Neural Networks for attack. The probability of a 

successful genetic attack is calculated for different model parameters using numerical 

simulations. Ruttor presented the detail analysis about the Neural Cryptography in Ph.D 

thesis named Neural Synchronization and Cryptography.
[98]

 Ruttor et al. again analysis the 

dynamics of Neural Cryptography.
[99]

 In the case of TPMs the dynamics of both bidirectional 

synchronization and unidirectional learning is driven by attractive and repulsive stochastic 

forces. They described it by a Random Walk model for the overlap between participating 

Neural Networks. For that purpose transition probabilities and scaling laws for the step sizes 

are derived analytically. Both these calculations as well as numerical simulations show that 
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bidirectional interaction leads to full synchronization on average. In contrast, successful 

learning is only possible by means of fluctuations. Consequently, synchronization is much 

faster than learning, which is essential for the security of the neural key-exchange protocol. 

The protection of chip-level microcomputer bus systems in embedded devices is essential to 

prevent the growing number of hardware hacking attacks. Müehlbach et al.  presented an 

authenticated key exchange and encryption solution in order to ensure chip-level 

microcomputer bus systems via the Tree Parity Machine Rekeying Architecture 

(TPMRA).
[100]

 Due to this intention, a scalable TPMRA IP-core is designed and implemented 

in order to meet variable bus performance requirements. It allows the authentication of the 

bus participants as well as the encryption of chip-to-chip buses from a single primitive. The 

solution is transparent and easy applicable to an arbitrary microcomputer bus system for 

embedded devices on the market. Saballus et al. proposed secure group communication in 

ad-hoc networks using Tree Parity Machines.
[101]

 This can be divided into key agreement and 

key distribution. Common group key agreement protocols are based on the Diffie-Hellman 

key exchange and extend it to groups. Group key distribution protocols are centralized 

approaches which make use of one or more special key servers. In contrast to these 

approaches, they present a protocol which makes use of the TPM key exchange between 

multiple parties. Patra el al. presented a new concept of key agreement, using chaos 

synchronization based parameter estimation of two chaotic systems.
[102]

 Laskari et al. 

addresses the issue of cryptography and cryptanalysis through computational intelligence.
[103]

 

Arvandi et al.  proposed a neural network-based symmetric cipher design methodology to 

provide high performance data encryption.
[104]

 The proposed approach is a novel attempt to 

apply the parallel processing capability of Neural Networks for cryptography purposes. A 

Diffie-Hellman public-key cryptography based on chaotic attractors of Neural Networks is 

described by Liu et al.
[105]

 There is a one-way function between chaotic attractors and initial 

states in an Overstoraged Hopfield Neural Networks (OHNN). If the synaptic matrix of 

OHNN is changed, each attractor and its corresponding domain of initial state attraction will 

be changed. Then, the neural synaptic matrix as a trap door, and change it with commutative 

random permutation matrix. A new Diffie-Hellman public-key cryptosystem can be 

implemented, keeping the random permutation operation of the neural synaptic matrix as the 

secret key, and the neural synaptic matrix after permutation as public-key. Hen et al. 
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analyzed and optimized the interacting network neural, then present a cryptography-oriented 

secure parity model and implement the performance simulations.
[106]

 Li et al. presented a new 

and effective attack strategy on Neural Cryptography.
[107]

 Their proposal focuses on the 

authentication which the neural cryptosystem takes little account of. Chen et al. proposed two 

TPM-based novel OTP solutions.
[108]

 One is a full implementation model including 

initialization and rekeying, while the other is light-weight and efficient suitable for resource-

constrained embedded environment. Dong et al. presented an new authentication method 

using Neural Cryptography on WiMAX.
[109]

 Dong et al. also presented a new security 

solution in ubiquitous computing.
[110]

 They explored the challenges for building security and 

privacy into ubiquitous computing, described their prototype implementation based on 

Neural Cryptography.
[111]

 Yunpeng et al. proposed the improvement of public key 

cryptography based on chaotic Neural Networks.
[112]

 By adopting a kind of hybrid-coding 

and chaotic map, the modified algorithm performs better result on avalanche test. Shouhong 

et al. proposed password authentication using Hopfield Neural Networks.
[113]

 The 

conventional verification table approach has significant drawbacks. Neural Networks have 

been used for password authentication to overcome the shortcomings of traditional 

approaches. In neural network approaches to password authentication, no verification table is 

needed; rather, encrypted neural network weights are stored within the system. Tieming et al. 

proposed the improved secure TPM which can be utilized to synchronize parameters for OTP 

schemes.
[114]

 Authors introduced the TPM mutual learning scheme and the two TPM-based 

novel OTP solutions. One is a full implementation model including initialization and 

rekeying, while the other is light-weight and efficient suitable for resource-constrained 

embedded environment. Arvandi et al. described an innovative form of cipher design based 

on the use of recurrent Neural Networks.
[115]

 The proposed cipher has a relatively simple 

architecture and, by incorporating Neural Networks, it releases the constraint on the length of 

the secret key. The design of the symmetric cipher is described in detail and its security is 

analyzed. Dong et al. presented a new service-based computing security model, which is 

combined with Neural Cryptography.
[116] 

Service-based computing is a new and hot research 

point for telecommunication and computer scientist. Neural Cryptography is a new way to 

create shared secret key. The existed system architecture mentions little about security. 

Synchronization of Neural Networks is an alternative to cryptographic applications such as 
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the realization of symmetric key exchange protocols. Reyes et al.  proposed a first view of 

the so-called Permutation Parity Machine (PPM), an ANN proposed as a binary variant of the 

TPM.
[117][118]

 The dynamics of the synchronization process by mutual learning between 

PPMs is analytically studied and the results are compared with those of TPMs. It will turn 

out that for neural synchronization, PPMs form a viable alternative to TPMs. Pulses of 

synchronization in chaotic coupled map lattices discussed by Schmitzer et al. in the context 

of transmission of information.
[119]

 Synchronization and desynchronization propagate along 

the chain with different velocities which are calculated analytically from the spectrum of 

convective Lyapunov exponents. Since the front of synchronization travels slower than the 

front of desynchronization, the maximal possible chain length for which information can be 

transmitted by modulating the first unit of the chain is bounded. Wallner et al. investigated 

the implementation of a low hardware complexity cryptosystem for lightweight 

(authenticated) symmetric key exchange, based on two new Tree Parity Machine Rekeying 

Architectures (TPMRAs).
[120]

 This work significantly extends and optimizes (number of 

gates) previously published results on TPMRAs. Lian et al. constructed a hash function based 

on a three-layer neural network.
[121]

 The three neuron-layers are used to realize data 

confusion, diffusion and compression respectively, and the multi-block hash mode is 

presented to support the plaintext with variable length. Allam et al. proposed three new 

algorithms to enhance the mutual learning process.
[122]

 Ahmad et al. compared between 

stream cipher and block cipher using RC4 and Hill Cipher.
[123]

 The authors introduced two 

keys used for encrypting the information transferred during communication by using the 

Meet in the Middle Attack on triple S-DES algorithm, instead of using Brute force attack. 

Revankar et al. introduced a query based mutual influence between A and B which is not 

available to an attacking network E
[124]

. In this work query incorporated to the case of the 

Hebbian training rule. Tirdad et al. proposed an application of Hopfield Neural Networks 

(HNN) as pseudo random number generator.
[125]

 This is done based on a unique property of 

HNN, i.e., its unpredictable behavior under certain conditions. They compared the main 

features of ideal random number generators with those of PRNG based on Hopfield Neural 

Networks. Prabakaran et al. proposed a scheme where TPMs random inputs are replaced with 

queries for cooperating attackers and effective number of keys.
[126][127]

 The queries depend on 

the current state of A and B TPMs. Then, TPM's hidden layers of each output vector are 
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compared. That is, the output vector of hidden unit using Hebbian learning rule and dynamic 

unit using Random Walk learning rule are compared. Among the compared values, the 

output layer receives one of the best values. Cyclic Cryptography, a different cryptographic 

system, has been proposed by Chowdhury et al. and its allied characteristics are 

implemented.
[128] 

A data encryption technique using genetic crossover of robust biometric 

key and session based password has been introduced by Bhattacharya et al. where the key is 

obtained by crossing over of the session key generated from the password given by the 

legitimate user and the biometric key generated from the fingerprint of the same user.
[129] 

A 

public key cryptosystem based on the system of higher order Diophantine equations has been 

proposed by Yosh et al..
[130]

 In this system those Diophantine equations are used as public 

keys for sender and recipient, and both sender and recipient can obtain the shared secret 

through a trapdoor, while attackers must solve those Diophantine equations without trapdoor. 

This technique is based on complex mathematics.  Jogdand et al. used the existing concept of 

Neural Cryptography, where both the communicating networks receive an identical input 

vector, generate an output bit and are trained based on the output bit.
[131]

 The two networks 

and their weight vectors exhibit a novel phenomenon, where the networks synchronize to a 

state with identical time-dependent weights. Allam et al. suggested an algorithm that employs 

and extends the mutual learning process to accommodate the much needed group secure 

communication.
[132]

 A new key generation mechanism has been introduced and amalgamated 

by Saeed  et al. with the technique termed as “Fauzan-Mustafa Encryption Technique 

(FMET)”.
[133] 

Karas et al. presented a novel PHY-layer security algorithm whose function is 

based on Neural Networks.
[134]

 Specifically, they present a full key exchange scheme which 

includes channel sampling and thresholding and neural network based error reconciliation. Li 

et al. proposed and analyzed a parallel hash algorithm construction based on chaotic maps 

with changeable parameters.
[135]

 The two main characteristics of the proposed algorithm are 

parallel processing mode and message expansion. Lu´ıs et al. presented a successful attack on 

PPM based Neural Cryptography.
[136] 

Rasool et al. proposed a symmetric key encryption 

technique which provides security to both the message and the secret key achieving 

confidentiality and authentication.
[137]

 In this technique, the security level is higher due to the 

inherent poly-alphabetic nature of the substitution mapping method used here, together with 

the translation and transposition operations performed in the algorithm. A new distributed 
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key generation technique for threshold cryptography has been introduced by Qian et al. using 

bivariate symmetric polynomials.
[138]

 The technique is based on some group G
6
 which is 

either a cyclic additive group of prime order q or a cyclic multiplicative group with an 

element of prime order q. An extensive and careful study has been performed by Gajbhiye et 

al. on the applications of elliptic curve cryptography (ECC) and on different forms of elliptic 

curve in various coordinate systems specifying which is most widely used and why, on 

extended form of elliptic curve i.e. hyper-elliptic curve (HEC) with its pros and cons, on the 

performance of ECC and HEC based on scalar multiplication and DLP.
[139] 

A cryptographic 

scheme has been proposed by Vijayakumar et al. which provides first level of security with 

smaller key size and less computation overhead using DNA Computing technique and the 

second level of security is provided by using the encryption and decryption algorithms of low 

computation Elliptic Curve Cryptography (ECC).
[140]

 The novelty of this scheme is 

advantages of both ECC and DNA computation is exploited in providing a high level of data 

security. A public key cryptographic technique has been introduced by Som et al. using 

Genetic algorithm where bit level XOR operation followed by Genetic crossover and 

mutation during encryption.
[141] 

Das et al. have introduced an integrated symmetric key 

cryptographic method combining two independent methods modified generalized Vernam 

cipher method and DJSA method.
[142] 

A hybrid encryption technique has been introduced by 

Patheja et al. using Tiger algorithm.
[143]

 In Tiger algorithm there is double protection of Data 

using triple DES and with the help of this algorithm transmission of data will be more secure 

for exchanging data over short distances from one device to another. The characteristics and 

performance related issues has been discussed by Kumar et al. for several symmetric block 

cipher algorithms like MARS, RC6, Serpent, Twofish, Rijndael and asymmetric 

cryptosystems like RSA, ECC, ECRYPT, HASH, DSAsg.
[144] 

). A different symmetric key 

based cryptographic algorithm has been developed by Gupta et al. where block based 

substitution method, logical operations like XOR and shifting operations are used.
[145] 

Based 

on the concept of Rijndael algorithm, a cryptographic algorithm has been developed by 

Rayarikar et al..
[146]

 The algorithm uses various invertible, self-invertible and non-invertible 

components of modern encryption ciphers and key generation same as that of AES. A hybrid 

security enhancement algorithm has been designed and implemented by Kaul et al. based on 

AES-DES algorithms using 128 bit key.
[147] 

Enhanced Identity-Base Cryptography (EIBC) 
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has been proposed by Nicanfar et al. which is an efficient key management mechanism that 

minimizes control packets to reduce the communication overheads.
[148] 

Cryptanalytic attack 

on DES, which is a known-plaintext attack based on neural networks, has been discussed by 

Alani.
[149]

 In this work a trained neural network retrieves parts of plaintext from cipher text 

without retrieving the key used in encryption. A verification strategy in the exhaustive search 

step of the linear attack has been designed to allow Eve to mount a successful attack in the 

noisy environment. The most popular and efficient encryption algorithms in smart cards such 

as RSA, ECC, DES and ECDSA were described and compared between these algorithms by 

Savari et al. to find out the differences.
[150]  

Banerjee et al. considered the phenomena of 

chaos synchronization with bidirectional linear feedback coupling. The synchronized system 

can be used as a cryptosystem, where both the model can be considered as a transceiver. 

They have proposed an asymmetric cryptographic scheme for ensuring security of data being 

transmitted in the above manner.
[151]

 Seoane et al. presented an algorithm which implements 

a probabilistic attack on the key exchange protocol based on PPMs.
[152]

 Instead of imitating 

the synchronization of the communicating partners, the strategy consists of a Monte Carlo 

method to sample the space of possible weights during inner rounds and an analytic approach 

to convey the extracted information from one outer round to the next one. Urbanovich et al. 

considered the hash function built on ANN.
[153]

 The data about the process of 

synchronization of an ANN, obtained by experiment, are presented. The fact, that the 

obtained vector of weight coefficients for the networks after the synchronization is different 

for each new session, is determined. Santhanalakshmi et al. proposed a genetic approach has 

been used in the field of Neural Cryptography for synchronizing TPMs by mutual learning 

process.
[154]

 Here a best fit weight vector is found using a genetic algorithm and then the 

training process is done for the feed forward network. The proposed approach improves the 

process of synchronization. Winkler et al. investigated the effect of dynamic adaptive 

couplings on the cooperative behavior of chaotic networks.
[155]

 The couplings adjust to the 

activities of its two units by two competing mechanisms: An exponential decrease of the 

coupling strength is compensated for by an increase due to desynchronized activity. This 

mechanism prevents the network from reaching a steady state. Numerical simulations of a 

coupled map lattice show chaotic trajectories of desynchronized units interrupted by pulses 

of mutually synchronized clusters. Dolecki presented the statistical analysis on TPM 
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synchronization time.
[156]

 The author described the features of architecture and the principles 

of interaction of two ANNs. Synchronization status of networks allows using the relevant 

information as a key to encrypt further communications. The design principles of elliptic 

curve public key cryptography analyzed and the selection method of secure elliptic curve 

along with its implementation has been discussed by Qing-hai et al. in details.
[157] 

Abdulkader 

et al. presented cryptography keys using self-organizing maps.
[158]

  Santhanalakshmi  et al. 

proposed a soft computing based approach for generating keys to design a stream cipher for 

text encryption.
[159]

 Optimal weights for the sender and receiver used for the synchronization 

on the TPM neural network, are generated using a GA. A hybrid crypto system has been 

proposed by Gutub et al. which utilizes benefits of both symmetric key and public key 

cryptographic methods.
[160]

 Symmetric key algorithms (DES and AES) were used in this 

crypto system to perform data encryption and Public key algorithm (RSA) was used in this 

crypto system to provide key encryption before key exchange. Combination of both the 

symmetric-key and public-key algorithms provides greater security and some unique features 

in that hybrid system. This system is not suitable for light weight devices having very low 

processing capabilities. A different cryptographic algorithm has been introduced by 

Shrivastava  et al. which provides two phase security to the quantum cryptography 

system.
[161]

 In this algorithm the presence of the eavesdropper will not affect the security of 

the system as the secret key bits are modified at both sender and receiver end based on the 

concept of prime factor. Paramanik et al. worked with the concept of massive parallelism and 

large information density inherent in DNA molecule are exploited for cryptographic 

purposes.
[162]

 The main difficulties of DNA cryptography are the requirement of high tech 

biomolecular laboratory and computational complexity. In this paper, a new parallel 

cryptography technique is proposed using DNA molecular structure, one-time-pad scheme 

and DNA hybridization technique which certainly minimizes the time complexity. An 

implementation of the three-stage quantum communication protocol in free-space has been 

presented by Mandal et al. where multiple photons can be used for secure 

communication.
[163] 

Verma et al. proposed enhanced version of RC6 Block cipher algorithm 

(RC6e - RC6 enhanced version), which is a symmetric encryption algorithm designed for 256 

bit plain text block.
[164]

 Yang et al. proposed that how to provide Stream cipher service in 

JCA, the implementations provide a so-called StreamCipherSpi abstract class for efficiently 
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writing and maintaining any Stream cipher algorithm by developers.
[165]

 Dolecki  et al. 

proposed other schemes to evaluate compatibility of weights‟ vector.
[166]

 The first one uses 

Euclidean distance of both weights‟ vector. The second one is based on frequencies of 

common TPM‟s outputs and as such does not rely on the weights‟ vector. Both approaches to 

handle secure key exchange protocol facilitate more extended analysis of many technical 

processes in which a vital role plays an incorporation of a non-standard high-quality method 

securing any sensitive data. Dolecki et al. uses the phenomenon of Neural Networks 

synchronization by mutual learning to construct key exchange protocol on an open 

channel.
[167]

 The method presented permits evaluating the level of synchronization before it 

terminates. Subsequently, this research enables to assess the synchronizations, which are 

likely to be considered as long-time synchronizations. Once that occurs, it is preferable to 

launch synchronization with the new selected weights as there is a high probability that a 

new synchronization belongs to the short one. By taking an in-depth investigation on the 

security of Neural Cryptography, Mu et al. proposed a heuristic rule.
[168]

 Aguilar et al. 

proposed an extended model of the random Neural Networks, whose architecture is multi-

feedback.
[169]

 In this case, they suppose different layers where the neurons have 

communication with the neurons of the neighbor layers. They present its learning algorithm 

and its possible utilizations; specifically, its use has been tested in an encryption mechanism 

where each layer is responsible of a part of the encryption or decryption process. It is striking 

to observe that after the first decade of Neural Cryptography, the TPM network with hidden 

unit 𝐾 = 3 appears to be the sole network that is suitable for a neural protocol. No 

convincingly secure neural protocol is well designed by using other network structures 

despite considerable research efforts. With the goal of overcoming the limitations of a 

suitable network structure, Lei et al. develop a two-layer tree-connected feed-forward neural 

network (TTFNN) model for a neural protocol.
[170]

 Three encryption algorithms namely 

DES, AES and Blowfish were analyzed by Ramesh et al. by  considering certain performance 

metrics such as execution time, memory required for implementation and throughput.
[171] 

A 

new symmetric key cryptographic method has been proposed by Sircar et al. using Modified 

generalized Vernam cipher method with feedback along with different block sizes.
[172] 

A 

different image encryption technique has been presented by Soni et al. based on DNA 

sequence addition operation.
[173] 

A different symmetric cryptographic technique has been 
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developed which merged both RSA and Diffie-Hellman algorithms and a comparison has 

been conducted by Mandal et al. between the proposed technique, AES (Rijndael), DES, 

3DES, RC2 and Blowfish.
[174] 

Naveen et al. offers two different cryptographic schemes based 

on DNA binary strands are. In one of the approaches DNA based cryptography itself is used 

to encrypt and decrypt the message.
[175]

 And in another approach DNA strands are used to 

generate key for encryption and decryption. Nakun et al. proposed generic framework is 

named as tree state classification machine (TSCM).
[176]

 Allam et al. aimed to increase the 

security of the Neural Cryptography by authenticating the communication using preshared 

secrets.
[177]

 The mutual learning algorithm is modified so that the reflecting boundaries 

become hidden and only accessible by the two partners. By making use of Artificial 

Intelligence (AI), Human Intelligence can be simulated by a machine, Neural Networks is 

one such sub field of AI. ANN consists of neurons and weights assigned to inter neuron 

connections helps in storing the acquired knowledge. Jhajharia et al. made use of Hebbian 

learning rule to train the ANN of both sender and receiver machines.
[178]

 They proposesed 

key generation for PKC by application of ANN using GA. Allam et al. investigated the 

information leakage through the learning process.
[179]

 This information can be used to reduce 

the complexity of the genetic attack, a Neural Cryptography known attack strategy. Akhavan 

et al. proposed a new efficient scheme for parallel hash function based on high-dimensional 

chaotic map.
[180]

 In the proposed scheme, the confusion as well as the diffusion effect is 

enhanced significantly by utilizing two nonlinear coupling parameters. Singh et al. proposed 

Neural Cryptography for secret key exchange and encryption with AES.
[181]

 Adel et al. 

presented a survey report on cryptography based on Neural Network.
[182]

 Lonkar et al. in the 

year 2014 worked with cryptography using Neural Networks.
[183]

 They formed the key by 

Neural Network is in the form of weights and neuronal functions. Apdullah et al. proposed 

non-linear encryption using relation-building functionality through Neural Network.
[184]

 

Mohammed Al-Maitah et al. proposed Neuro Cryptographic protocol based on a three-level 

Neural Network of the direct propagation.
[185]

 There was evaluated it‟s cryptosecurity and 

analyzed three types of this algorithm attack to show the reality of the hypothesis that Neuro 

Cryptography is currently one of the most promising post quantum cryptographic systems. 

Soni et al. described a scheme and claimed that any cryptographic system is used to exchange 

confidential information securely over the public channel without any leakage of information 
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to the unauthorized users.
[186]

 They proposed that Neural Networks can be used to generate a 

common secret key because the processes involve in cryptographic system requires large 

computational power and very complex. Two Neural Networks which are trained on their 

mutual output bits. The networks synchronize to a state with identical time dependent 

weights. Secret key exchange over a public channel and this key can be used in implementing 

any encryption algorithm. Dadhich et al. proposed a scheme for  information communication, 

particularly text, image and video transmission.
[187]

 Improvement of pictorial information for 

betterment of human perception involves de-blurring, de-noising and safe transmission. 

These applications extend over several fields such as satellite imaging, medical imaging etc. 

Specifically they would like to elaborate their research on the significance of computational 

intelligence as one of the domains which finds application in cryptography and information 

security, and then the relevance of cryptography is indeed unavoidable. This paper deals with 

the study of the requirements for strong cryptography and various computational intelligence 

techniques that find use in cryptography. Finally, they performed detailed comparison 

between cryptographic methods with computational intelligence and those cryptography 

techniques without computational intelligence. Singla et al. discussed about efficient random 

sequence generators which are used in the application areas of cryptographic stream cipher 

design, statistical sampling and simulation, direct spread spectrum, etc.
[188]

 A 

cryptographically efficient pseudo-random sequence should have the characteristics of high 

randomness and encryption effect. The statistical quality of pseudo-random sequences 

determines the strength of cryptographic system. The generation of pseudo-random 

sequences with high randomness and encryption effect is a key challenge. A sequence with 

poor randomness threatens the security of cryptographic system. In this paper, the features 

and strengths of chaos and Neural Network are combined to design a pseudo-random binary 

sequence generator for cryptographic applications. The statistical performance of the chaotic 

neural network based pseudo random sequence generator is examined against the NIST 

SP800-22 randomness tests and multimedia image encryption. Soni et al. constructed a hash 

function based on multilayer feed forward network with piecewise linear chaotic map.
[189]

 

Chaos has been used in data protection because of the features of initial value sensitivity, 

random similarity and ergodicity. They have used three neuronal layers to prove confusion, 

diffusion and compression respectively. This hash function takes input of arbitrary length and 
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generate a fixed length hash value (128 bit, 256 bit or 512 bit). Chakraborty et al. performed 

a survey on exchange of secret keys over public channels based on neural synchronization 

using a variety of learning rules offer an appealing alternative to number theory based 

cryptography algorithms.
[190]

 Though several forms of attacks are possible on this neural 

protocol e.g. geometric, genetic and majority attacks, they found that deterministic 

algorithms that synchronize with the end-point networks have high time complexity, while 

probabilistic and population-based algorithms have demonstrated ability to decode the key 

during its exchange over the public channels. They also examined the queries, heuristics, 

erroneous information, group key exchange, synaptic depths, etc, that have been proposed to 

increase the time complexity of algorithmic interception or decoding of the key during 

exchange. They conclude that The TPM and its variants, Neural Networks with tree 

topologies incorporating parity checking of state bits, appear to be one of the most secure and 

stable models of the end-point networks. Our survey also mentions some noteworthy studies 

on Neural Networks applied to other necessary aspects of cryptography. They also claimed 

that discovery of neural architectures with very high synchronization speed, and designing 

the encoding and entropy of the information exchanged during mutual learning, and design of 

extremely sensitive chaotic maps for transformation of synchronized states of the networks to 

chaotic encryption keys, are the primary issues in this field. Adel et al. in the year 2014 

proposed a public key cryptography system based on chaotic neural network (CNN) for 

encrypt and decrypt a digital image.
[191]

 The most traditional public key cryptography is 

based on number theory which has some drawbacks such as large computational power, 

complexity, and time consumption. To overcome these drawbacks, a new chaotic Neural 

Network is introduced by the authors. They used multidimensional chaotic maps as a chaotic 

sequence for determined the Neural Network weight and basis through five layers of 

networks and additional layer for public key using Chebyshev chaotic map as a chaotic 

sequence for basis Neural Network.  

Number of cryptographic techniques are proposed each of which has some advantages and 

disadvantages. There is no algorithm exists as universal solutions. So there is a dearth of 

searching new techniques as the scenario of computing world is changing continuously with 

a high rate of gradients.   
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1.6 Learning Rules for Tuning of Perceptron  

Cryptographic session key can be generated through synchronization of two perceptrons one 

at sender another at receiver. At the perceptron synchronization phase weight vector of both 

perceptron is updated using perceptron learning rule to tuned the network.  If the output bits 

are different for sender (A) and receiver (B) perceptrons i.e. 𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed. 

If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated. The 

weight vector of this hidden unit is adjusted using any of the following learning rules: 

Anti-Hebbian:  Both networks are trained with the opposite of their own output. This is 

achieved by using the Anti-Hebbian
[98]

 learning rule given in equation 

1.1. 
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Hebbian:       In the case of the Hebbian

[98]
 learning rule both DHLPs learn from each 

other. The Hebbian rule given in equation 1.2. 
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Random Walk: The set value of the output is not important for synchronization as long as 

it is the same for all participating DHLPs. That is why one can use the 

Random Walk
[98]

 learning rule, too. The Random Walk rule given in 

equation 1.3. 
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Only weights are changed by these learning rules, which are in hidden units with 𝜎i =  𝜏. By 

doing so it is impossible to tell which weights are updated without knowing the internal 

representation (𝜎1, 𝜎2, . . . , 𝜎k). This feature is especially needed for the cryptographic 

application of perceptron synchronization. Of course, the learning rules have to assure that 

the weights stay in the allowed range between – 𝐿  and +𝐿. If any weight moves outside this 

region, it is reset to the nearest boundary value  ±𝐿. Afterwards the current synchronization 

step is finished. This process can be repeated until corresponding weights in sender‟s and 

receiver‟s perceptrons have equal values, 𝑊𝑖
𝐴 = 𝑊𝑖

𝐵. Further applications of the learning 
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rule are unable to destroy this synchronization, because the movements of the weights 

depend only on the inputs and weights, which are then identical in sender‟s and receiver‟s 

perceptrons. 

1.7 Metrics for Evaluation  

An indicator conform the evidence that a particular condition exists or certain results have or 

have not been achieved. It can be either quantitative or qualitative. A metric refers to a unit 

of measurement that is quantitative. Several kinds of metrics have been used for evaluating 

the quality of the proposed cryptographic systems. The measures are NIST statistical test, 

performance test, encryption and decryption time, Avalanche and Strict Avalanche effects, 

Bit Independence criterion, Chi-Square test, frequency distribution, entropy, floating 

frequency and autocorrelation which are described in section 1.71 to section 1.7.10 

respectively. 

1.7.1 NIST Statistical Test 

A total of fifteen statistical tests recommended in the NIST
 
test

[192]
 Suite to evaluate 

randomness of the synchronized session key proposed in different chapters.  These tests 

focused on a variety of different types of non-randomness that could exist in a sequence. 

Some tests are decomposable into a variety of subtests. The fifteen tests are following:                              

 Frequency (Monobits) Test - The purpose of this test is to determine whether that 

number of ones and zeros in a sequence are approximately the same as would be 

expected for a truly random sequence. The test assesses the closeness of the fraction 

of ones to ½, that is, the number of ones and zeroes in a sequence should be about the 

same. 

 Test for Frequency within a Block - The focus of the test is to find the proportion of 

zeroes and ones within M-bit blocks. The purpose of this test is to determine whether 

the frequency of ones is an 𝑀-bit block is approximately 
𝑀

2
 

 Runs Test - The focus of this test is the total number of zero and one runs in the entire 

sequence, where a run is an uninterrupted sequence of identical bits. A run of length 𝑘 
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means that a run consists of exactly k identical bits and is bounded before and after 

with a bit of the opposite value. The purpose of the runs test is to determine whether 

the number of runs of ones and zeros of various lengths is as expected for a random 

sequence. In particular, this test determines whether the oscillation between such 

substrings is too fast or too slow. 

 Longest Run of Ones in a Block - The focus of the test is to find the longest run of 

ones within 𝑀-bit blocks. The purpose of this test is to determine whether the length 

of the longest run of ones within the tested sequence is consistent with the length of 

the longest run of ones that would be expected in a random sequence. Note that an 

irregularity in the expected length of the longest run of ones implies that there is also 

an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes 

were not evaluated separately due to a concern about statistical independence among 

the tests. 

 Binary Matrix Rank Test - The focus of the test is the rank of disjoint sub-matrices of 

the entire sequence. The purpose of this test is to check for linear dependence among 

fixed length substrings of the original sequence. 

 Discrete Fourier Transform Test - The focus of this test is the peak heights in the 

discrete Fast Fourier Transform. The purpose of this test is to detect periodic features 

(i.e., repetitive patterns that are near each other) in the tested sequence that would 

indicate a deviation from the assumption of randomness.              

 Non-overlapping (Aperiodic) Template Matching Test - The purpose of this test is to 

reject sequences that exhibit too many occurrences of a given non-periodic 

(aperiodic) pattern. For this test and for the Overlapping Template Matching test, an 

𝑚-bit window is used to search for a specific 𝑚-bit pattern. If the pattern is not found, 

the window slides one bit position. For this test, when the pattern is found, the 

window is reset to the bit after the found pattern, and the search resumes. 

 Overlapping (Periodic) Template Matching Test - The purpose of this test is to reject 

sequences that show deviations from the expected number of runs of ones of a given 

length. Note that when there is a deviation from the expected number of ones of a 
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given length, there is also a deviation in the runs of zeroes. Runs of zeroes were not 

evaluated separately due to a concern about statistical independence among the tests. 

For this test and for the Non-overlapping Template Matching test, an m-bit window is 

used to search for a specific m-bit pattern. If the pattern is not found, the window 

slides one bit position. For this test, when the pattern is found, the window again 

slides one bit, and the search is resumed. 

 Maurer’s “Universal Statistical” Test - The purpose of the test is to detect whether 

or not the sequence can be significantly compressed without loss of information. An 

overly compressible sequence is considered to be non-random. 

 Linear Complexity Test - The focus of this test is to find the length of a generating 

feedback register. The purpose of this test is to determine whether or not the sequence 

is complex enough to be considered random. Random sequences are characterized by 

a longer feedback register. A short feedback register implies non-randomness. 

 Serial Test - The focus of this test is to obtain the frequency of each and every 

overlapping m-bit pattern across the entire sequence. The purpose of this test is to 

determine whether the number of occurrences of the 2𝑚  𝑚-bit overlapping patterns is 

approximately the same as would be expected for a random sequence. The pattern can 

overlap. 

 Appoximate Entropy Test - The focus of this test is to obtain the frequency of each 

and every overlapping m-bit pattern. The purpose of the test is to compare the 

frequency of overlapping blocks of two consecutive/adjacent lengths (𝑚 and 𝑚 + 1) 

against the expected result for a random sequence. 

 Cumulative Sums Test - The focus of this test is the maximal excursion (from zero) of 

the random walk defined by the cumulative sum of adjusted (−1, +1) digits in the 

sequence. The purpose of the test is to determine whether the cumulative sum of the 

partial sequences occurring in the tested sequence is too large or too small relative to 

the expected behavior of that cumulative sum for random sequences. This cumulative 

sum may be considered as a random walk. For a random sequence, the random walk 
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should be near zero. For non-random sequences, the excursions of this random walk 

away from zero will be too large. 

 Random Excursions Test - The focus of this test is to find the number of cycles 

having exactly 𝐾 visits in a cumulative sum random walk. The cumulative sum 

random walk is found if partial sums of the (0,1) sequence are adjusted to (−1, +1). 

A random excursion of a random walk consists of a sequence of n steps of unit length 

taken at random that begin at and return to the origin. The purpose of this test is to 

determine if the number of visits to a state within a random walk exceeds what one 

would expect for a random sequence. 

 Random Excursions Variant Test - The focus of this test is to find the number of 

times that a particular state occurs in a cumulative sum random walk. The purpose of 

this test is to detect deviations from the expected number of occurrences of various 

states in the random walk. 

1.7.2 Performance Analysis 

In performance testing performance of all the proposed and existing techniques are compared 

with each other in terms of average synchronization time for generation of session key and 

grouped session key of 128/192/256  bit using fixed weight range and different number of 

neurons in input and hidden layer, different weight range and fixed number of neurons in 

input and hidden layer, amount of heap used for generating 128 bit session key, amount of 

relative time spent in GC used for generating 128 bit session key, amount of thread required 

for generating 128 bit session key, number of generation vs. average fitness value in SA and 

GA and key storage comparisons.  
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1.7.3 Encryption and Decryption Time 

All the test programs for the proposed techniques are equipped to calculate and display total 

encryption time and decryption time at the end of execution. Time taken is the difference 

between processor clock ticks between the starting and end of the algorithm. All times are 

measured in milliseconds (ms). The lower processing time means the higher speed which 

sometimes better for a typical end user. Since the CPU clock ticks are taken as time, there 

might be a slight variation with actual time. This variation is very insignificant and may be 

ignored. 

1.7.4 Avalanche and Strict Avalanche Effects 

In cryptography, the Avalanche Effect (AVAL) is a desirable property of block ciphers. 

Avalanche effect means that a very small number of bit changes in the plaintext will lead to a 

very large number of bit changes in the cipher text. In case of high quality block ciphers, a 

small change in either the key or the plaintext should cause a drastic change in the cipher 

text. The actual term was first used by Horst Feistel in 1973.
[1]

 More formally, a function                   

𝑓 ∶  {0,1}𝑛    {0,1}𝑛  satisfies AVAL if whenever one input bit is changed, on the average 

half of the output bits change, where 𝑖 and 𝑗  (1, 2, 3, … . . , 𝑛) are input and output bits 

respectively.   

The Strict Avalanche Effect (SAE) is a generalized of the avalanche effect. SAE is said to be 

satisfy if, whenever a single input bit is complemented, each of the output bits changes with a 

50% probability. It builds on the combined concept of completeness and avalanche effect. It 

was first introduced by Webster and Tavares in 1985.
[193]

 A function                                                

𝑓 ∶  {0,1}𝑛    {0,1}𝑛  satisfies SAE if for all 𝑖 and 𝑗  (1, 2, 3, … . . , 𝑛), flipping input bit i 

changes the output bit 𝑗 with the probability of exactly one half. In 1990, the notion of strict 

avalanche criterion was extended by R. Forre. He considered sub-functions obtained from the 

original function by keeping one or more input bits constant. 
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1.7.5 Bit Independence Criterion 

In 1986, Webster and Tavares introduced another cryptographic property Bit Independence 

Criterion (BIC) for s-boxes.
[194]

 A function 𝑓 ∶  {0,1}𝑛    {0,1}𝑛  satisfies BIC if for all 

𝑖, 𝑗, 𝑘  {1, 2, 3, … . . , 𝑛}, with 𝑗𝑘, inverting input bit 𝑖 causes output bits 𝑗 and 𝑘 to change 

independently. To measure BIC, the correlation coefficient between 𝑗'th and 𝑘'th components 

of the output difference string is needed, which is called the Avalanche vector  𝐴𝑒ᵢ. 

1.7.6 Chi-Square Test 

Chi-Square value is calculated from the character frequencies using the equation 1.4 devised 

by Karl Pearson:
[194]

  

𝜒2 =  
 𝑂𝑖 − 𝐸𝑖 

2

𝐸𝑖

𝑛

𝑖=1

 

  (1.4) 

Where, 

𝑂𝑖  (Occurred) is the frequency of occurrence of character 𝑖 in the encrypted message  

𝐸𝑖  (Expected) is the frequency of occurrence of character 𝑖 in the original message 

Chi-Square test is used to determine whether the observed sample frequencies differ 

significantly from the expected frequencies. The higher the Chi-Square values the more 

deviation from the original message. The large Chi-Square values confirm the heterogeneity 

of the source file and the encrypted file. Larger Chi-Square value compare to tabulated Chi-

Square value ensure the higher degree of heterogeneity. 

1.7.7 Frequency Distribution 

Frequency distribution analyzes both the original and encrypted files. The occurrence of each 

character on both the files is measured. Graphs are generated where ASCII value of each 

character plotted along X-axis and frequency or number of occurrences of characters along 

Y-axis. The smoother curve in the spectrum of frequency distribution indicates that it is 

harder for a cryptanalyst to detect the original message bytes. 
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1.7.8 Entropy 

The entropy of a document is an index of its information content. The entropy is measured in 

bits per character. If a character has a very high probability of occurrence, then its 

information content is low. For documents which can contain every character of the character 

set (0 to 255) the entropy lies between 0 bit/char (in a document which consists of only one 

character) and log(256) bit/char = 8 bit/char (in a document in which all 256 characters 

occur equally often).  

1.7.9 Floating Frequency 

The floating frequency of a document is a characteristic of its local information content at 

individual points in the document. The floating frequency specifies how many different 

characters are to be found in any given 64 character long segment of the document. The 

function considers sequences of text in the active window that are 64 characters long and 

counts how many different characters are to be found in this "window". The "window" is 

then shifted one character to the right and the calculation is repeated. This procedure results 

in a summary of the document in which it is possible to identify the places with high and low 

information density. A document of length n >  64 bytes has (n − 63) such index numbers 

in its characteristics.  

1.7.10 Autocorrelation 

The purpose of this empirical test of independence is to check correlations between 

succeeding outcomes of the encryption and/or between the binary sequence 𝑠 and an 

alternative version of 𝑠 that is displaced by 𝑡 positions. Let 𝑡 be a number, 1 ≤  𝑡 ≤  (𝑛 / 2) 

and fixed. 
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1.8 Objectives 

The objective of modern cryptographic technique is to provide security for the system where 

unify computing is an essential component and also for light weight devices having very low 

processing capabilities or limited computing power in wireless communication. 

In the present scenario, existing cryptographic technique depend on the exchange of keys 

through insecure public channel which are used to encrypt and decrypt the information 

exchange. This is vulnerable in terms of security. Using these key sender and receiver 

perform reasonably complex mathematical operations on the data stream. This is also takes 

significant amount of resources.  So it is essential to find some cryptographic techniques 

where instead of transmitting the whole key through insecure public channel, session key can 

be generated at both sides using mutual synchronization of both parties.  By keeping in mind 

the resource constrains criteria of wireless communication the robust and secure 

encryption/decryption technique which takes less resources for computations and secure 

session key which is less complex but provides very high degree of security with respect to 

existing cryptographic techniques along with energy awareness is very much needed in 

wireless communication.  

So it is essential for modern day users to secure their communication in terms of security as 

well as energy awareness.  

The objectives of this thesis are to 

 enhance the security of the wireless communication system in such a way that the 

instead of exchanging the whole session key, soft computing based synchronization 

technique is used to construct a cryptographic key-exchange protocol for generating 

the identical session key at sender and receiver. 

 develop and implement cryptographic techniques which are very simple, and easy to 

implement but provide good security and can be implemented.   

 compare the proposed techniques with the existing and industrially accepted 

techniques with respect to parameters like NIST statistical test, performance test, 

encryption and decryption time, Avalanche and Strict Avalanche effects, Bit 

Independence criterion, Chi-Square test, frequency distribution, entropy, floating 

frequency and autocorrelation. 
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 trade-off between security and performance of light weight devices having very low 

processing capabilities or limited computing power 

1.9 Organization of the Thesis 

The thesis consists of eight chapters. Chapter 1 contains the introductory discussion of the 

problem and solution domain. An introductory interface about cryptography and soft 

computing based techniques, literature survey, objective and organization of the thesis, 

learning rules for tuning of perceptrons, metrics for evaluation and salient features of the 

proposed techniques have been discussed briefly.      

Chapter 2 of this thesis deals with Kohonen's Self-Organizing Feature Map Synchronized 

Cryptographic Technique (KSOMSCT). Security analysis and discussions about the 

proposed technique has been done.  

In Chapter 3, a Double Hidden Layer Perceptron Synchronized Cryptographic Technique 

(DHLPSCT) has been proposed. Security analysis and discussions about the proposed 

technique has been done.  

In Chapter 4, a Chaos based Double Hidden Layer Perceptron Synchronized Cryptographic 

Technique (CDHLPSCT) has been proposed. Security analysis and discussions about the 

proposed technique has been done.  

In Chapter 5, a Chaos based Triple Hidden Layer Perceptron Synchronized Cryptographic 

Technique (CTHLPSCT) has been proposed. Security analysis and discussions about the 

proposed technique has been done.  

In Chapter 6, a Chaos based Grouped Triple Hidden Layer Perceptron Synchronized 

Cryptographic Technique (CGTHLPSCT) has been proposed. Security analysis and 

discussions about the proposed technique has been done.  

Chapter 7 deals with results and analysis of the proposed techniques. Comparison has been 

done among proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT 

and existing Tree Parity Machine (TPM) and Permutation Parity Machine (PPM), RSA, 

Triple-DES (168 bits), AES (128 bits), RC4 and Vernam Cipher for their relative 

performances. 
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A model has been proposed through cascaded implementation of the devised cryptographic 

techniques of this thesis, in chapter 8. At the end list of references is given.  

1.10 Salient Features of the Proposed Techniques 

In this thesis, the logic of the proposed soft computing based cryptographic techniques in 

wireless communication is simple to understand and implementation is easy using any high 

level programming language. Since keys are session based which varies session to session 

and key size is variable in length, the security of the proposed techniques is good. The 

strength of the proposed techniques is the adoption of complexity based on energy and 

resource available in the wireless communication, infrastructure for computing in a node or 

mesh in wireless communication. For a wireless network having low energy, the number of 

cascading stages and iteration be less. Also during the synchronization phase the different 

structures of the proposed perceptrons can be used depending on the available resources in 

the wireless communication. So, the proposed techniques are very much suitable for the 

security of the system where energy and resource is one of the main constraints. All the 

proposed techniques can handle any sort of input file of any size. There is no alteration of 

input file size i.e. after encryption file size remains unchanged. The salient features of all the 

proposed techniques are summarized as follows: 

 Generation of session key through synchronization  

 No exchange of session key through public channel 

 High degree of security 

 Variable in length keys 

 Independency of file types 

 Size independency of source file 

 Offers variable block size 

 No space overhead 

 Logics are simple to understand 

 Less complex 

 Easy to implement the algorithms  



 



 

 

 

 

 

 

 

 

 

 

Chapter 2 

Kohonen's Self-Organizing Map Synchronized 

Cryptographic Technique  

(KSOMSCT) 
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2.1 Introduction 

In this chapter a novel soft computing assisted cryptographic technique KSOMSCT based on 

synchronization of two Kohonen's Self-Organizing Feature Map (KSOFM)
[195]

, one at sender 

and another at receiver has been proposed. In public-key cryptography key generation and 

key exchange are one of the major issues. Eavesdroppers can reside between sender and 

receiver and tries to capture all the information transmitting between the parties. So, at the 

time of key exchange between sender and receiver intruders can perform sniffing, spoofing 

or phishing operation to tamper the key. Another noticeable problem is that most of the key 

generation algorithms need large amounts of memory space for generating the session key 

but now-a-days most of the handheld wireless devices have a criterion of memory and 

resource constraints. 

For the solution of the problem KSOFM based synchronization has been proposed to address 

this issue by resolving the drawbacks of some of the existing cryptographic approach.
[196] 

Here, KSOFM based synchronization is performed for tuning both sender and receiver 

simultaneously. On completion of the tuning phase identical session key generates at the both 

end using synchronized KSOFM. This synchronized network can be used for transmitting 

message using any light weight encryption/decryption techniques with the help of identical 

session key of the synchronized network. To illustrate the cryptographic technique in 

wireless communication one of the simple and secure encryption/decryption technique has 

been presented. A plaintext is considered as a stream of binary bits. Fractal triangle based 

encryption
[197]

 is performed with the help of KSOFM tuned session key to generate the cipher 

text. The plaintext is regenerated at the destination by performing Fractal triangle based 

decryption with the help of KSOFM tuned session key.  

Section 2.2 presents a description of proposed technique. Section 2.3 deals with the 

implementation of the proposed cryptographic technique. Section 2.4 discussed the security 

issue related to the proposed technique. Discussions are presented in section 2.5.   
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2.2 The Technique  

The technique performs the KSOFM based synchronization for generation of secret session 

key at both ends. This synchronized session key of the tuned network is used for the 

transmission of secured message through wireless network with the help of any light weight 

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless 

communication one of the simple and secure encryption/decryption technique has been 

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is 

encrypted using Fractal triangle based encryption technique. The session key based on 

KSOFM is used to further encrypt the Fractal triangle encoded text to produce final cipher 

text. In this technique instead of exchanging the whole session key to the receiver using 

public channel KSOFM index parameters are exchanged. The technique has an ability to 

construct the unique secret session key at both ends using exchanged information. For 

ensuring the randomness in every session, certain parameter  values get randomly changed 

like seed values for generating random inputs and weights, number of iteration to train the 

map, different mathematical functions (Radial basis, Gaussian, Mexican Hat) for choosing 

the random points from the KSOFM.  

 In Fractal triangle based encryption/decryption technique the number of dimensions of 

Fractal triangle used in the encryption/decryption process key size has been determined. Key 

for Fractal triangle based encryption is formed from the KSOFM based synchronized session 

key. The key size may also larger than available number of bits in the synchronized session 

key. The extra bits require is taken after performing four bits circular right shift operation on 

the KSOFM based synchronized session key. Finally, a cascaded Exclusive-OR operation is 

performed between Fractal triangle encrypted blocks with the KSOFM based session key to 

generate final cipher text. 

Receiver has same KSOFM synchronized session key as a result of tuning. This session 

key used to perform first step of the deciphering. In the next step, Fractal triangle based 

deciphering operation is performed to regenerate the plaintext.  

The technique does not produce any storage overhead. This technique needs a minimum 

amount of storage for storing the key which greatly handles the resource constraints criteria 

of wireless communication. The implementation on practical scenario is well proven with 

positive outcome. A comparison of KSOMSCT with existing Tree Parity Machine (TPM) 
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and Permutation Parity Machine (PPM) based key exchange techniques and industry 

accepted AES, RC4, Vernam Cipher, Triple DES (TDES) and RSA
 
have been done. Details 

of results along with analysis are given in chapter 7.  

In KSOMSCT, synchronization operation on both sender’s and receiver’s KSOFM 

system is performed for generating common session key. The Fractal triangle based 

encryption algorithm takes the plaintext as a binary stream of bits which is encrypted using 

Fractal triangle based encryption technique. The key size is determined depending on the 

dimensions of Fractal triangle used in the encryption process. The Fractal dimension is 

calculated using equation 2.1 

                                                                 𝑛 =
𝑙𝑛 𝑠

𝑙𝑛   𝑚−1 2−1 
+ 1                                                 (2.1) 

Where 𝑚 = edges numbers and 𝑠 = sub-triangles numbers 

If Fractal triangle 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) = 3 then first four bits of the synchronized session key 

becomes the encryption key, if 𝑛 = 4 then first thirteen bits are taken from synchronized 

session key. If encryption key size is greater than available number of bits in the 

synchronized session key then rest of the required bits can be taken from left to right by 

performing the four bits circular right shift operation on the synchronized session key. 

Mandlbrot Set equation is used to form the Fractal triangle, which is given in equation 2.2. 

                                                             𝑍𝑘+1 = 𝑍𝑘2 + 𝐶  𝑍0 = 0                                                    (2.2) 

 

Figure 2.1: The Sierpinski triangle 

Fractal triangle has been used to perform encryption technique by placing the source bits 

(plaintext) into the each vertex of each triangle in sequence and placing the key bits for 

encryption into the middle of each triangle. Then the encryption operation is performed to 

generate the Fractal triangle encrypted text. Fractal triangle encoded text is encrypted further 

using Exclusive-OR operation with the session key. The algorithm for the complete process is 

given in section 2.2.1.  
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2.2.1 KSOMSCT Algorithm at Sender  

      Input     :   Source file/source stream i.e. plaintext 

      Output  :   Encrypted file/encrypted stream i.e. cipher text 

     Method :   The process operates on binary stream and generates encrypted bit stream through 

Kohonen's Self-Organizing Feature Map (KSOFM) and Fractal triangle based 

encryption. 

Step 1. Perform synchronization operation on both sender’s and receiver’s 

KSOFM system to generate tuned common session key. 

Step 2.       Perform Fractal triangle based encryption technique to generate the 

intermediate cipher text.     

Step 3. Perform cascaded Exclusive-OR operations between KSOFM based 

synchronized session key and intermediate encrypted text generated in 

step 2 to form the final cipher text.  

Step 1 of the algorithm for generating common tuned session key through synchronization of 

sender’s and receiver’s KSOFM system is discussed in section 2.2.1.1. Step 2 of the 

algorithm for performing Fractal triangle based encryption is discussed in 2.2.1.2. Step 3 of 

the algorithm is discussed in 2.2.1.3. 

2.2.1.1 Kohonen Self-Organizing Feature Map (KSOFM) based Synchronization  

In this section, a novel Kohonen Self-Organizing Feature Map (KSOFM)
[195]

 based 

synchronization of both sender and receiver machine has been proposed. The tuned network 

is used for message communication purpose based on tuned parameter. The technique 

imparts a simple and secure way of key generation both sender and receiver simultaneously 

using KSOFM based tuning. Unsupervised competitive learning is used for synchronization.  

The method uses unsupervised learning to represent input space of the training samples in a 

discrete 2𝐷 maps. Neighborhood of each neuron (i.e. the connections of the neuron with 

adjacent neurons) in the map depends on the dimension of the map. 2𝐷 regular spacing in a 

hexagonal or rectangular grid uses to arrange the neurons. Detailed methodology used in 

KSOFM based synchronization is discussed as follows. 
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The KSOFM comprises of neurons along with a weight vector for each neuron having a 

dimension same as the dimension of the input vector. Consider the input vector                            

𝑋 =  𝑥1, 𝑥2,… , 𝑥𝑛  
𝑇and weight vector 𝑊 =  𝑤1,𝑤2,… ,𝑤𝑛 

𝑇. The process initially, assigns a 

weight vector to each neuron (point) by arbitrarily choosing a neuron (point)                                   

𝑥 ∈  𝑖𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒 𝑋. The value of the weight vector is set to a tiny random numbers.  

The necessity of unsupervised learning mechanism in KSOFM is to produce similar 

response from different parts of the network for a certain input patterns. Competitive learning 

is used in the training period to train the KSOFM. Euclidean distance between each neuron 

and an arbitrary neuron (point) 𝑥 get calculated using equation 2.3 

               𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 =   𝑥1 − 𝑤𝑘1 2 +  𝑥2 − 𝑤𝑘2 2 + ⋯+  𝑥𝑛 − 𝑤𝑘𝑛  2                 
(2.3)

    

Where, 

            𝑘 = 1,2, . . . ,𝑃  

            𝑃 is the neuron number 

            𝑊𝑘𝑗 is the entry of 𝑗 of the weight of neuron 𝑘 where 𝑗 = 1,2, . . . ,𝑛  

The neuron (point) whose weight vector is most similar to the input is called the Best 

Matching Unit (BMU). The weights of the BMU and neurons (point) close to it in the 

KSOFM lattice are adjusted towards the input vector. The magnitude of the change decreases 

with time and with distance (within the lattice) from the BMU.  

The technique uses 2𝐷 KSOFM with 100 neurons. A learning rate 𝛼 of 0.1 is used to 

train the KSOFM and decreasing the spread of the neighborhood function by the rule given 

in equation 2.4 

                                                     𝜎 = 𝜎0  1 −
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 _𝑛𝑢𝑚𝑏𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 _𝑛𝑜 _𝑜𝑓 _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
    

                                       (2.4)

 

Here, 𝜎 is initial spread. The value of 𝜎 decreases from the initial value to the final value (0) 

constantly. Hence, the neighborhood function influences all neurons of the map in the first 

time and its influence on far neurons vanishes progressively. Towards the end of the training 

only the winner neuron will be updated so as to drive neurons towards centers of gravity.  
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The winner neuron is a neuron which has a minimum distance from 𝑥 (arbitrary point). 

Winner neuron gets selected based on the distance factor. The minimum distance 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑛𝑛𝑒𝑟  fulfills the condition given in equation 2.5. 

                                                       𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑛𝑛𝑒𝑟 ≤ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘                                             (2.5) 

                                              𝑊𝑒𝑟𝑒 𝑘 = 1,2, . . . ,𝑃  

An updating rule has been applied over the entire map keeping in mind the priority of the 

winner neuron and its closest neighbors. In existing KSOFM algorithm
[198]

 the general update 

formula
[199]

 for a neuron with weight vector 𝑊𝑣(𝑠) is given in equation 2.6 

                          𝑊𝑣(𝑠 +  1)  =  𝑊𝑣(𝑠)  +  𝛩(𝑢, 𝑣, 𝑠) 𝛼(𝑠)(𝐷(𝑡)  −  𝑊𝑣(𝑠))                        (2.6) 

Where, 

      𝑆 is the old iteration 

      𝑆 + 1 is the new iteration 

                  𝑡 is the index of the target input data vector in the input data set 𝐷 

      𝐷(𝑡) is a target input data vector 

                  𝑣 is the index of the node in the map 

                  𝑊𝑣  is the current weight vector of node 𝑣 

                  𝑢 is the index of the Best Matching Unit (BMU) in the map 

                                          𝛩(𝑢, 𝑣, 𝑠) is a restraint due to distance from BMU, usually called the neighborhood 

function, and 

                  𝛼(𝑠) is a learning restraint due to iteration progress 

The existing generalized KSOFM updating equation 2.6 is expressed using equation 2.7 with 

the parameters of the proposed technique. 

                                        𝑤𝑘 ,𝑛𝑒𝑤 = 𝑤𝑘 ,𝑜𝑙𝑑 + 𝛼.𝑁𝑒𝑖𝑔𝑏𝑜𝑟 𝑤𝑖𝑛𝑛𝑒𝑟,𝑘 .  𝑥 − 𝑤𝑘 ,𝑜𝑙𝑑  
                              

 (2.7) 

Where, old iteration (𝑆) is denoted by 𝑜𝑙𝑑. New iteration (𝑆 + 1) is denoted by 𝑛𝑒𝑤, index 

of the node in the map (𝑣) is denoted by 𝑘, current weight vector (𝑊𝑣) is denoted by 𝑊𝑘 , 

learning restraint 𝛼(𝑠) is denoted by 𝛼, index of the Best Matching Unit (BMU) in the map 

(𝑢) is denoted by 𝑤𝑖𝑛𝑛𝑒𝑟, neighborhood function 𝛩(𝑢, 𝑣, 𝑠) is denoted by 

𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑤𝑖𝑛𝑛𝑒𝑟,𝑘) with a bell shape centered at the winner neuron. It is a function of the 
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distance between the winner neuron and the neuron 𝑘. 𝑁𝑒𝑖𝑔𝑏𝑜𝑟  𝑤𝑖𝑛𝑛𝑒𝑟,𝑘 =

𝑒
 𝑤𝑖𝑛𝑛𝑒 𝑟−𝑘 2

𝜎2 and target input data vector 𝐷(𝑡) is denoted by 𝑥. 
 

A new arbitrary point 𝑦 ∈  𝑖𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒 𝑋 get selected and starting from the step 

unsupervised training of KSOFM to the step updating the network get perform again. This 

process is repeated for each input vector for a (usually large) number of cycles 𝜆.  

The spreading of the neighborhood function (𝜎) is important since it controls the 

convergence of the map. It should be large at the beginning and shrink progressively to reach 

a small value in order to globally order the neurons over the whole map. The maximum value 

of 𝑁𝑒𝑖𝑔𝑏𝑜𝑟(𝑤𝑖𝑛𝑛𝑒𝑟,𝑤𝑖𝑛𝑛𝑒𝑟)  = 1 corresponds to the winner neuron and value of 

Neighbor function decreases when the distance between neurons 𝑘 and winner increases. 

Concerning the value of the learning rate 𝜎, it should be small enough to ensure the 

convergence of the KSOFM. 

During synchronization both sender and receiver use the identical KSOFM architecture 

along with identical parameters in each session. Parameters used in each session are: 

 Dimension of the KSOFM (2𝐷 or 3𝐷)  

 Number of neurons which specifies the number of different possible session keys 

 Dimension of the weight vector specify the length of the key 

 Seed value for generating random inputs and weights  

 Number of iteration to train the map  

 Different mathematical functions as a mask for choosing the random points from 

the KSOFM (Radial basis, Mexican Hat, Gaussian etc.)  

 Different index value for choosing different neurons (key) on the mathematical 

mask at each session for forming the session key 

Parameters that get negotiated at the initial stage of synchronization process between sender 

and receiver by mutual agreement are completely random. Changing each of the parameters 

randomly in each session security of proposed technique can be enhanced which in turns 

decrease the success rate of the attackers.  

Both sender’s and receiver’s KSOFM are starts synchronization by exchanging control 

frames for negotiation of parameters value. KSOFM based synchronization uses transmission 
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of control frames given in table 2.1 at the time of three way handshaking based TCP 

connection establishment phase. 

Table 2.1 

Control frames of KSOFM synchronization 
Frame Description 

𝑆𝑌𝑁 
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment phase 

𝐴𝐶𝐾_𝑆𝑌𝑁 
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝑁𝐴𝐾_𝑆𝑌𝑁 
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection  

 

The 𝑆𝑌𝑁 frame is used for establishing the connection to the other side. It carries index 

information of different initial parameters. The detailed format of 𝑆𝑌𝑁 frame is given in 

section 2.2.1.1.1. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is used for providing the positive 

acknowledgement with respect to the 𝑆𝑌𝑁 frame. The detailed format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is 

discussed in section 2.2.1.1.2. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame is used for providing the 

negative acknowledgement with respect to the 𝑆𝑌𝑁 frame. The detailed format of 𝑁𝐴𝐾_𝑆𝑌𝑁 

frame is discussed in section 2.2.1.1.3. The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is used for closing the 

connection. Either side can generate the request of closing connection through 𝐹𝐼𝑁_𝑆𝑌𝑁 

frame. The detailed format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 2.2.1.1.4.  

2.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame 

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver 

for handshaking in connection establishment phase. 𝑆𝑌𝑁 usually comprises of several fields 

these are 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝑊𝑒𝑖𝑔𝑡 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥, 

𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥, 𝑆𝑒𝑒𝑑 𝐼𝑛𝑑𝑒𝑥, 𝑁𝑒𝑢𝑟𝑜𝑛 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, 𝐶𝑅𝐶. Figure 2.2 shows the complete 

format of 𝑆𝑌𝑁 frame. 
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Figure 2.2: Frame format of 𝑆𝑌𝑁 frame 

Table 2.2 shows different 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 against different frames. 𝑆𝑌𝑁 frame has a unique 

two bits 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 00, 𝐴𝐶𝐾_𝑆𝑌𝑁 has the 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 01. Whereas 𝑁𝐴𝐾_𝑆𝑌𝑁 

uses 10 as its 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 and finally 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 11 is for 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 

Table 2.2 

KSOFM control frames and their command codes 
Command code Frame 

00 𝑆𝑌𝑁 

01 𝐴𝐶𝐾_𝑆𝑌𝑁 

10 𝑁𝐴𝐾_𝑆𝑌𝑁 

11 𝐹𝐼𝑁_𝑆𝑌𝑁 

Four bits  𝑆𝑌𝑁 𝐼𝐷  is used to identify different 𝑆𝑌𝑁 frame in different session. One bit is 

used to specify the dimension of KSOFM using 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥. Table 2.3 gives the 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥 

corresponds to the dimension of KSOFM. 

Table 2.3 

DIM Index corresponds to the dimension of KSOFM 
DIM Index KSOFM Dimension 

0 2𝐷 

1 3𝐷 

Two bits are used to illustrate the 𝑊𝑒𝑖𝑔𝑡 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥, where four different weights are 

available as shown in table 2.4.  

 

 

 

 

 

 

 

 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 

𝐶𝑜𝑑𝑒 
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𝐼𝑛𝑑𝑒𝑥 
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𝐼𝑛𝑑𝑒𝑥 

𝑀𝑎𝑠𝑘 

𝐼𝑛𝑑𝑒𝑥 

𝑆𝑒𝑒𝑑 

𝐼𝑛𝑑𝑒𝑥 

𝑁𝑒𝑢𝑟𝑜𝑛  
𝐷𝐼𝑀 

𝐼𝑛𝑑𝑒𝑥 

𝐶𝑅𝐶 
(𝐶𝑦𝑐𝑙𝑖𝑐 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 

𝐶𝑒𝑐𝑘𝑒𝑟) 
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Table 2.4 

Weight DIM Index corresponds to the number of weights 
Weight DIM Index Number of weights 

00 64 

01 128 

10 192 

11 256 

Sixteen bits are used to illustrate the 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥. Two bits are used to illustrate the 

𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥. Table 2.5 illustrate the different 𝑀𝑎𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 value corresponds to the 

different mathematical mask functions. 

Table 2.5 

Mask Index value corresponds to the different mathematical mask functions 
Mask Index Mathematical Mask Function 

00 𝑀𝑒𝑥𝑖𝑐𝑎𝑛 𝐻𝑎𝑡 

01 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

10 𝑅𝑎𝑑𝑖𝑎𝑙 𝐵𝑎𝑠𝑖𝑠 

11 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 

Four bits are used to illustrate the 𝑆𝑒𝑒𝑑 𝐼𝑛𝑑𝑒𝑥 and four bits are used to illustrate 

the 𝑁𝑒𝑢𝑟𝑜𝑛 𝐷𝐼𝑀 𝐼𝑛𝑑𝑒𝑥  which is the total number of neurons. Sixteen bits are used in 𝐶𝑅𝐶. 

When the receiver receives the frame 𝑆𝑌𝑁, the receiver carries out integrity test. Receiver 

also performs integrity test after receiving the 𝑆𝑌𝑁 frame. If the messages are received as 

sent (with no replication, incorporation, alteration, reordering, or replay) the receiver will 

execute the synchronization phase.  

2.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs two bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 10. Four bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 

needs sixteen bits for error checking purpose. Figure 2.3 shows the complete frame format of 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame. 
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Figure 2.3: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 

2.2.1.1.3    Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization 

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative 

acknowledgement. This frame comprises of three fields, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs two bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 

11. Four bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error 

checking purpose. Figure 2.4 shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame. 

  

 

 

                                      2                         4                                    16 (bits) 

Figure 2.4: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 

2.2.1.1.4    Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This 

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐼𝑛𝑑𝑒𝑥, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 

needs two bits. The  𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 01. Four bits are 

used for representing 𝑆𝑌𝑁 𝐼𝐷. Two bits are used for providing index value of the neuron 

(key) on the mathematical mask and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose. 

Figure 2.5 shows the complete frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 
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Figure 2.5: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
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The KSOFM synchronization algorithm for generating synchronized session key is discussed 

in section 2.2.1.1.5. Section 2.2.1.1.6 presents the complexity analysis of the KSOFM 

synchronization algorithm and KSOFM based session key generation methodology is 

discussed in section 2.2.1.1.7. 

2.2.1.1.5  KSOFM Synchronization  

Input     : Assign a weight vector to each neuron by arbitrarily choosing a point of the input 

space 

      Output   :  Synchronized KSOFM  

      Method  :  The process operates on sender’s and receiver’s Kohonen's Self-Organizing  

                       Feature Map (KSOFM) and generate synchronized session key. 

Step 1.     Randomize the map's nodes' weight vector. 

Step 2. Select an arbitrary input vector.  

Step 3. Traverse each node in the map.  

Step 3.1  Use the Euclidean distance formula to find the similarity 

between the input vector and the map's node's weight vector. 

Step 3.2    Track the node that produces the smallest distance (this 

node is the Best Matching Unit, BMU). 

Step 4.    Update the nodes in the neighborhood of the BMU (including the 

BMU itself) by pulling them closer to the input vector using equation 

2.8. 

                  𝑊𝑣(𝑠 +  1)  =  𝑊𝑣(𝑠)  +  𝛩(𝑢, 𝑣, 𝑠) 𝛼(𝑠)(𝐷(𝑡)  −  𝑊𝑣(𝑠))        (2.8) 

                                          Where,  

                                      𝑆 is the current iteration 

                                      𝜆 is the iteration limit 

                                                  𝑡 is the index of the target input data vector in the input data set 𝐷 

                                      𝐷(𝑡) is a target input data vector 

                                                  𝑣 is the index of the node in the map 

                                                  𝑤𝑣 is the current weight vector of node 𝑣 

                                                  𝑢 is the index of the Best Matching Unit (BMU) in the map 
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                                                  𝛩(𝑢, 𝑣, 𝑠) is a restraint due to distance from BMU, usually called 

the neighborhood function, and 

                                                  𝛼(𝑠) is a learning restraint due to iteration progress. 

Step 5. Increase s and repeat from step 2.  

2.2.1.1.6 Complexity Analysis 

For assigning random weight vector to the map's, nodes needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠  

computations. Selection of any arbitrary point needs unit amount of time. Traversing each 

node in the map and then using the Euclidean distance formula to find the similarity between 

the input vector and the map's node's weight vector needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ×

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛  computations. Tracking of the node that 

produces the smallest distance (BMU) needs unit amount of time. Updating the nodes in the 

neighborhood of the BMU (including the BMU itself) by pulling them closer to the input 

vector needs 𝑂 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠  computations. So, each iteration of the 

algorithm needs 𝑂(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 +  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ×  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠) amount of computations. This is 

the best case situation where a single iteration is needed to synchronize both the KSOFM 

networks. If the algorithm iterate 𝑛 number of times then in average and worst case           

𝑂(𝑛 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 +  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 × 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛) +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠))  amount of computations is needed. Because 

each iteration eliminates the nodes which has a far Euclidean distance than the BMU.  

2.2.1.1.7 Kohonen Self-Organizing Feature Map (KSOFM) based Session Key Generation  

Based on a mutually predetermined iteration steps both sender and receiver stop their 

iteration due to synchronization at both end.  Both sender and receiver have the identical 

KSOFM as they have started with same initial configuration and proceeds with same 

mutually agreed parameters. In this situation both sender and receiver uses identical 

mathematical function as a mask. A general form of the mask is represented by the equation 

2.9. 
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                                              𝑓𝑤𝑖𝑛𝑛𝑒𝑟  𝑥 = 𝑎. 𝑒
 𝑘−𝑤 2

𝛼1
2

- 𝑏. 𝑒
 𝑘−𝑤 2

𝛼2
2

                                           (2.9) 

Where, 𝑎, 𝑏,𝜎1,𝜎2𝜖 𝑅, 𝑥 a neuron in the KSOFM, 𝑤𝑖𝑛𝑛𝑒𝑟 is the winner neuron. A huge 

number of masks could be generated by changing parameters 𝑎, 𝑏,𝜎1,𝜎2. Using the mask 

incontestably enhances the security of the key. Use of mathematical mask increases the 

security of the scheme because instead of one single neuron, session key can be constructed 

using several neurons on the mask. Also changing the mask parameters several session keys 

can be generated. This provides a significant improvement to the security of the generation of 

session key. A mask hides all neurons other than the winner. Here, different mask functions 

like Gauss, Radial basis, Mexican hat functions are used randomly in different sessions. The 

winner neuron fixes the center of the mask and each neuron around the winner will be 

weighted and summed to the winner. The result is a different session keys depending on the 

shape of the mask. From this discussion it can be concluded that initially the process need 

slightly more amount of time but once the mask get set it takes less amount of time. An 

adversary could not find the session key because they do not have the map, mathematical 

function for masking and other mutually pre agreed parameters. During mask association 

several neurons around the designated neuron get associated to form the session key using 

the equation 2.10.  

                             𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦𝑢 ,𝑞 =  𝑤𝑖𝑗 ,𝑞𝑖 ,𝑗 .𝑓𝑤𝑖𝑛𝑛𝑒𝑟  𝑖, 𝑗 

   

 𝑞 = 1,2,… ,𝑁               (2.10) 

Where,  

      𝑓𝑤𝑖𝑛𝑛𝑒𝑟  𝑖, 𝑗 is the mask centered at the winner neuron ,  

      𝑤𝑖𝑗 ,𝑞  is the component 𝑞 of the vector associated to neuron (𝑖 , 𝑗) and  

      𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦𝑢 ,𝑞  is the component 𝑞 of the ultimate (final) session key.  

In wireless communication, instead of starting from the initial state of the KSOFM key 

generation procedure a user may use the same trained KSOFM in different session with 

different users by changing only the parameters value of the mask or mask function used to 

determine the ultimate session key. This procedure helps to save the resources of wireless 

communication very efficiently.  

Fractal triangle has been used to perform encryption technique by placing the plaintext 

into the each triangle vertex and place the key bits for encryption into the middle of each 

triangle and then Exclusive-OR operation is performed between central key bit of each 
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triangle and vertex elements of each triangle. On the outcomes of this step Exclusive-OR 

operation is performed again between triangle centered key and vertex elements of big 

triangle. On the outcome of the previous step Exclusive-OR operation between upper 

triangle’s vertex elements are performed with right triangle’s vertex elements and finally 

Exclusive-OR operation is performed between upper triangle’s vertex elements with left 

triangle’s vertex elements to generate the Fractal triangle encrypted text. The detail steps of 

Fractal triangle based encryption algorithm are given in section 2.2.1.2. 

2.2.1.2 Fractal Triangle based Encryption Algorithm 

      Input      :  Source file/source stream i.e. plaintext 

      Output   :  Encrypted file/encrypted stream i.e. cipher text 

      Method :  The process operates on binary stream and generates encrypted bit stream through 

Fractal triangle based encryption. 

Step 1. Perform Exclusive-OR operation between central key bit of each 

triangle and vertex elements of each triangle. Figure 2.6 shows the red 

colored vertex elements after performing the Exclusive-OR operations. 

For example if the Fractal triangle dimension is n= 3  and the four bit  

key for this encryption is “1110”  and first nine bits of the  plaintext is 

“011011110” then figure 2.6 shows the first step of the algorithm. 

 

Figure 2.6: Exclusive-OR operation between central key bit of each 

triangle and vertex elements of each triangle 

Step 2. Perform Exclusive-OR operation between triangle centered key and 

vertex elements of big triangle. Figure 2.7 shows the green colored 

vertex elements after performing the Exclusive-OR operations. 
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Figure 2.7: Exclusive-OR operation between triangle’s centered key 

and vertex elements of big triangle 

Step 3. Perform Exclusive-OR operation between upper triangle’s vertex 

elements with right triangle’s vertex elements. Figure 2.8 shows the 

orange colored right triangle’s vertex elements after performing the 

Exclusive-OR operations.  

 

Figure 2.8: Exclusive-OR operation between upper triangle’s vertex 

elements with right triangle’s vertex elements 

Step 4. Perform Exclusive-OR operation between upper triangle’s vertex 

elements with left triangle’s vertex elements. Figure 2.9 shows the 

orange colored left triangle’s vertex elements after performing the 

Exclusive-OR operations. 

 

Figure 2.9: Exclusive-OR operation between upper triangle’s vertex 

elements with left triangle’s vertex elements 

Step 5. Now, Fractal triangle based encrypted text is “000110111” and the 

representation of the storage structure shown in  figure 2.10 
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Figure 2.10:   Storage structure representation of the encrypted text 

2.2.1.3 Session Key based  Encryption  

At the final step of the technique a cascaded Exclusive-OR operation between KSOFM 

synchronized session key and Fractal triangle encrypted cipher text is done to generate final 

encoded cipher text and the same is transmitted to the receiver.  

In Kohonen's Self-Organizing Map Synchronized Cryptographic Technique (KSOMSCT) 

decryption algorithm takes the cipher text as a binary stream of bits and perform first level of 

decryption using KSOFM generated synchronized session key. Finally, Fractal triangle based 

decryption is performed to regenerate the plaintext, at the receiving end. Section 2.2.2 

represents the algorithm of the decryption technique at the receiver end. 

2.2.2 KSOMSCT Algorithm at Receiver  

      Input      :  Encrypted file/encrypted stream i.e. cipher text  

      Output   :  Source file/source stream i.e. plaintext 

    Method : The process operates on encrypted binary stream and generates decrypted bit 

stream through Kohonen's Self-Organizing Feature Map (KSOFM) and Fractal 

triangle based decryption. 

Step 1. Perform cascaded Exclusive-OR operation between KSOFM based 

session key and cipher text. 

Step 2. Perform Fractal triangle based decryption on the outcomes of the           

step 1. Fractal triangle based reverse encryption operation will be 
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required to decrypt the encrypted text, i.e., to regenerate starting 

combination i.e. plaintext. 

Step 1 of the algorithm is discussed in section 2.2.2.1. Step 2 of the algorithm for performing 

Fractal triangle based decryption is discussed in 2.2.2.2. 

2.2.2.1          Session Key based  Decryption  

A cascaded Exclusive-OR operation between KSOFM synchronized session key and cipher 

text get perform to produce session key decrypted text. Outcomes of this operation used as an 

input of Fractal triangle based decryption algorithm discussed in 2.2.2.2 to regenerate the 

plaintext.   

 Fractal triangle has been used to perform decryption technique by placing the plaintext 

into the each triangle vertex and place the key bits for encryption into the middle of each 

triangle and Exclusive-OR operation is performed between upper triangle’s vertex elements 

with left triangle’s vertex elements. On the outcomes of this step Exclusive-OR operation is 

performed again between upper triangle’s vertex elements with right triangle’s vertex 

elements. On the outcome of the previous step Exclusive-OR operation between triangle 

centered key and vertex elements of big triangle are performed and finally Exclusive-OR 

operation between central key bit and vertex elements of each triangle are performed to 

generate the Fractal triangle encrypted text. The detail steps of Fractal triangle based 

decryption algorithm are given in section 2.2.2.2. 

2.2.2.2          Fractal Triangle based Decryption Algorithm 

      Input      :  Fractal triangle encrypted file/ Fractal triangle encrypted stream  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on Fractal triangle encrypted bit stream and regenerates the 

plaintext through Fractal triangle based decryption. 

Step 1. Perform Exclusive-OR operation between upper triangle’s vertex 

elements with left triangle’s vertex elements. Figure 2.11 shows the 
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green colored left triangle’s vertex elements after performing the 

Exclusive-OR operations. 

     

Figure 2.11: Exclusive-OR operation between upper triangle’s vertex 

elements with left triangle’s vertex elements 

Step 2. Perform Exclusive-OR operation between upper triangle’s vertex 

elements with right triangle’s vertex elements. Figure 2.12 shows the 

orange colored right triangle’s vertex elements after performing the 

Exclusive-OR operations. 

 

Figure 2.12: Exclusive-OR operation between upper triangle’s vertex 

elements with right triangle’s vertex elements 

Step 3. Perform Exclusive-OR operation between triangle centered key and 

vertex elements of big triangle. Figure 2.13 shows the orange colored 

vertex elements after performing the Exclusive-OR operations. 

 

Figure 2.13:  Exclusive-OR operation between triangle’s centered key 

and vertex elements of big triangle 
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Step 4. Perform Exclusive-OR operation between key and vertex elements of 

each triangle. Figure 2.14 shows the blue colored vertex elements 

after performing the Exclusive-OR operations. 

 

Figure 2.14: Exclusive-OR operation between key and vertex elements 

of each triangle 

2.3 Implementation 

To perform Fractal triangle based encryption first considers the KSOFM synchronized 

session key. If the Fractal dimension is three then first four bits form synchronized session 

key form the encryption/decryption key. For example from the KSOFM synchronized 128 

bits, the following session key is generated  

1001/1110/1000/1110/0111/0100/0101/0111/1110/0101/01010101/10100011/11011010/ 

10100011/11010100/10111101/01001101/01101111/10100010/11000011/11101010 

Here “/” is used as the separator between successive bytes. 

Now, consider the plaintext to be encrypted is “Technique”, binary representation of the 

ASCII value of plaintext is   

01010100/01100101/01100011/01101000/01101110/01101001/01110001/01110101/ 

01100101 

First four bits of KSOFM synchronized session key i.e. 1001 becomes the key for Fractal 

triangle encryption of first nine bits of the plaintext i.e. 010101000. For the rest of the 

plaintext each time nine bits are taken and the next four bits of the synchronized session key 

becomes the Fractal triangle encrypted key for the particular block. This process will 

continue until plaintext gets exhausted. The process is given in table 2.6 to table 2.13.  
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Table 2.6 illustrates the encryption of plaintext block 010101000 using key 1001. After             

step-4 the encrypted text is 110001000. 

  Table: 2.6 

Fractal triangle encryption of 010101000        
Plaintext block : 010101000      Key: 1001 

Initial Fractal Triangle Value 010101000 

After step 1 010101111 

After step 2 110111110 

After step 3 110111000 

After step 4 (Encrypted text) 110001000 

   

 

Table 2.7 illustrates the encryption of plaintext block 110010101 using key 1110. After   

step-4 the encrypted text is 101010001. 

Table: 2.7 

Fractal triangle encryption of 110010101      
Plaintext block: 110010101     Key: 1110 

Initial Fractal Triangle Value 110010101 

After step 1 001101101 

After step 2 101111100 

After step 3 101111001 

After step 4 (Encrypted text) 101010001 

 

Table 2.8 illustrates the encryption of plaintext block 100011011 using key 1000. After  step-

4 the encrypted text is 000001010. 

Table: 2.8 

Fractal triangle encryption of 100011011 

Plaintext block:  100011011     Key: 1000 

Initial Fractal Triangle Value 100011011 

After step 1 100011011 

After step 2 000001010 

After step 3 000001010 

After step 4 (Encrypted text) 000001010 

 

Table 2.9 illustrates the encryption of plaintext block 010000110 using key 1110. After         

step-4 the encrypted text is 001100110. 

Table: 2.9 

Fractal triangle encryption of 010000110 

Plaintext block: 010000110    Key: 1110 

Initial Fractal Triangle Value 010000110 

After step 1 101111110 

After step 2 001101111 

After step 3 001101110 

After step 4 (Encrypted text) 001100110 
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Table 2.10 illustrates the encryption of plaintext block 111001101using key 0111. After   

step-4 the encrypted text is 000110010. 

Table: 2.10 

Fractal triangle encryption of 111001101 

Plaintext block: 111001101   Key: 0111 

Initial Fractal Triangle Value 111001101 

After step 1 000110010 

After step 2 000110010 

After step 3 000110010 

After step 4 (Encrypted text) 000110010 

 

Table 2.11 illustrates the encryption of plaintext block 001011100 using key 0100. After 

step-4 the encrypted text is 110101010. 

Table: 2.11 

Fractal triangle encryption of 001011100 

Plaintext block: 001011100   Key: 0100 

Initial Fractal Triangle Value 001011100 

After step 1 110011100 

After step 2 110011100 

After step 3 110011010 

After step 4 (Encrypted text) 110101010 

 

Table 2.12 illustrates the encryption of plaintext block 010111010 using key 0101. After 

step-4 the encrypted text is 101010000. 

Table: 2.12 

Fractal triangle encryption of 010111010 

Plaintext block: 010111010     Key: 0101 

Initial Fractal Triangle Value 010111010 

After step 1 101111101 

After step 2 101111101 

After step 3 101111000 

After step 4 (Encrypted text) 101010000 

 

Table 2.13 illustrates the encryption of plaintext block 101100101using key 1110. After step-

4 the encrypted text is 110111010. 

Table: 2.13 

Fractal triangle encryption of 101100101 

Plaintext block: 101100101   Key: 1110 

Initial Fractal Triangle Value 101100101 

After step 1 010011101 

After step 2 110001100 

After step 3 110001010 

After step 4 (Encrypted text) 110111010 
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Now, Fractal triangle based encrypted text is  

11000100/01010100/01000001/01000110/01100001/10010110/10101010/10100001/ 

10111010 

On performing the Exclusive-OR between KSOFM synchronized session key and Fractal 

triangle encrypted text, final cipher text is generated as follows 

01011010/11011010/00110101/00010001/10000100/11000011/00001001/01111011/       

00011001.  

2.4 Security Analysis 

In this chapter a Kohonen's Self-Organizing Map Synchronized Cryptographic Technique 

(KSOMSCT) has been proposed. The technique generates the synchronized session key by 

tuning KSOFM of both sender and receiver. Plaintext gets encrypted using Fractal triangle 

based encryption. Outcomes of this process and final tuned session key get Exclusive-OR to 

produce the final cipher text and same is transmitted to the sender. The Following standard 

attacks are considered to ensure the robustness of the technique. 

 Cipher text only Attack: In this type of attack, the attacker has access to a set of cipher 

text. In cipher text only attack, encryption algorithm and cipher text is known to an 

attacker. An attacker tries to break the algorithm or in simple words tries to deduce the 

decryption key or plaintext by observing the cipher text. The KSOMSCT nullifies the 

success rate of this attack by producing a robust KSOFM and Fractal triangle based 

encrypted cipher text. The strength of resisting exhaustive key search attack relies on a 

large key space. Initially, Fractal triangle based encryption used to encrypt the plaintext 

after that outcome of this passes through KSOFM session key based encryption process. 

So, cipher text produces by the technique is mathematically difficult to break. Thus a 

hacker has to try all such key streams to find an appropriate one. Keystream have high 

degrees of correlation immunity. Thus it is practically difficult to perform a brute-force 

search in a key-space.  
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 Known Plaintext Attack: The attacker has access to one or more cipher text and some 

characters in the original data. The objective is to find the secret key. The technique 

offers better floating frequency of characters. So, known plaintext attack is very difficult 

in this proposed technique.    

 Chosen Plaintext Attack: Here, the attacker has liberty to choose a plaintext of his/her 

choice and get the corresponding cipher text. Since the attacker can choose plaintext of 

his/her choice, this attack is more powerful. Again the objective of this attack is to find 

the secret key. This attack is impractical for KSOMSCT because there is no obvious 

relationship between the individual bits of the sequence in plaintext and cipher text. So, it 

is not possible to choose a plaintext of his/her choice and get the corresponding cipher 

text. 

 Chosen Cipher text Only Attack: The attacker can choose cipher text and get the 

corresponding plaintext. By selecting some cipher text a cryptanalyst has access to 

corresponding decrypted plaintext. Chosen cipher text only attack is more applicable to 

public key cryptosystems. The technique has a good Chi-Square value this confirms good 

degree of non-homogeneity. So, it will be difficult to regenerate plaintext from the cipher 

text.   

 Brute Force Attack: A cryptanalyst tries all possible keys in finite key space one by one 

and check the corresponding plaintext, if meaningful. The basic objective of a brute force 

attack is to try all possible combinations of the secret key to recover the plaintext image 

and or the secret key. On an average, half of all possible keys must be tried to achieve 

success but brute force attack involves large computation and has a very high complexity. 

Due to high complexity brute force attack will not be feasible. The technique has a good 

entropy value near to eight which indicates that brute force attack is very difficult in the 

proposed technique.  
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2.5 Discussions 

The technique is very simple and easy to implement in various high level language. The test 

results show that the performance and security provided by the technique is good and 

comparable to standard technique. The security provided by the KSOMSCT is comparable 

with other techniques. To enhance the security of the technique, proposed technique offers 

changes of some parameters randomly in each session. To generate the secret session key 

index mask is exchanged between sender and receiver. This technique has a unique ability to 

construct the secret key at both sides using this exchanged information. Since the encryption 

and decryption times are much lower, so processing speed is very high. Proposed method 

takes minimum amount of resources which is greatly handle the resource constraints criteria 

of wireless communication. This method generates a large number of keys which is the same 

number of neurons in the map. For ensuring the randomness in every session, some of the 

parameters get change randomly at each session. KSOMSCT outperform than existing TPM, 

PPM and does not suffers from Brute Force or Man-In-The-Middle (MITM) attack. No 

platform specific optimizations were done in the actual implementation, thus performance 

should be similar over varied implementation platform. The whole procedure is randomized, 

thus resulting in a unique process for a unique session, which makes it harder for a 

cryptanalyst to find a base to start with. The technique is applicable to ensure security in 

message transmission in any form and in any size in wireless communication. 

      Some of the salient features of KSOMSCT are summarized as follows:  

a) Session key generation and exchange – Identical session key can be generate after the 

tuning of KSOFM in both sender and receiver side. So, no need to transfer the whole 

session key via vulnerable public channel. 

b) Degree of security – The technique does not suffers from cipher text only attack, 

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute 

force attack. 

c) Variable block size – Encryption algorithm can work with any block length and thus 

not require padding, which result identical size of files both in original and encrypted 

file. So, KSOMSCT has no space overhead. 
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d) Variable key – 128/192/256 bit session key with high key space can be used in 

different sessions. Since the session key is used only once for each transmission, so 

there is a minimum time stamp which expires automatically at the end of each 

transmission of information. Thus the cryptanalyst may not be able guess the session 

key for that particular session. 

e) Complexity – The technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh 

through wireless communication. So, the KSOMSCT may be suitable in wireless 

communication. 

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value 

have been performed between the source and corresponding cipher streams 

generated using KSOMSCT. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good. 

g) Floating frequency – In the technique it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security for the technique.  

a) Entropy – The entropy of encrypted characters is near to eight which indicate the 

high degree of security for the proposed technique.  

h) Correlation – The cipher stream generated through proposed technique is negligibly 

correlated with the source stream. Therefore the proposed technique may effectively 

resist data correlation statistical attack. 

i) Key sensitivity – The technique generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 

j) Security and performance trade-off – The technique may be ideal for trade-off 

between security and performance of light weight devices having very low processing 

capabilities or limited computing power in wireless communication. 
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3.1 Introduction 

In this chapter a novel soft computing assisted cryptographic technique DHLPSCT, based on 

synchronization of two Double Hidden Layer Perceptron (DHLP)
[200]

, one at sender and 

another at receiver has been proposed. The KSOMSCT technique proposed in chapter 2 have 

some drawbacks like sender and receiver both have to be agreed on several predefined 

parameters which get send via public channel. So, there is an overhead of parameters passing 

and an associated risk in terms of security. Also initially large numbers of neurons need to 

form the KSOFM for which significant amount of memory as well as large amount of 

training cycles is required to train all the neurons in the map. Furthermore, there is no well 

defined terminating criteria to terminate the training of KSOFM. The existing Tree Parity 

Machine (TPM) and Permutation Parity Machine (PPM) are also not the best alternative 

solution which has already analysed in chapter 2. DHLPSCT eliminates all the above 

mentioned drawbacks of the KSOMSCT in chapter 2, existing TPM and PPM. The technique 

need less number of synchronization steps than earlier techniques. It also greatly handles the 

resource constraints criteria of wireless communication and passes fewer parameters than the 

earlier techniques which in turn significantly reduces the risk and hence increases the 

security.  

Here, DHLP based synchronization is performed for tuning both sender and receiver. On 

the completion of the tuning phase identical session keys are generated at the both end with 

the help of synchronized DHLP. This synchronized network can be used for transmitting 

message using any light weight encryption/decryption technique with the help of session key 

of the synchronized network. To illustrate the cryptographic technique using DHLP in 

wireless communication one of the simple and secure encryption/decryption technique has 

been presented. A plaintext is considered as a stream of binary bits. Genetic operation based 

Simulated Annealing (SA) guided enciphering technique
[201]

 with the help of DHLP tuned 

session key is used to generate the cipher text. The plaintext is regenerated from the cipher 

text using same technique with the help of DHLP tuned session key at the receiver. 

Section 3.2 represents a description of proposed technique in detail. Section 3.3 deals 

with the implementation of the proposed cryptographic technique. Section 3.4 discussed the 

security issues related to the proposed technique.  Discussions are presented in section 3.5.   
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3.2 The Technique  

The technique performs DHLP based synchronization for generation of secret session key at 

both ends. This synchronized session key of the tuned network is used for the transmission of 

secured message through wireless network with the help of any light weight 

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless 

communication one of the simple and secure encryption/decryption technique has been 

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is 

encrypted using genetic operation based SA generated fittest encryption/decryption 

keystream. The session key based on DHLP is used to encrypt intermediate output which 

produces final cipher text. Identical DHLP is used to tune the sender and receiver to generate 

the secret session key at both ends. Two DHLPs at sender and receiver start with common 

input vector and completely anonymous random weight vector. In each time DHLPs at both 

end compute their final output based on input and weight vector, and communicate to each 

other. If both are be in agreement on the mapping between the present input and the output, 

their weights are updated according to an appropriate learning rule. In case of discrete weight 

values this process leads to full synchronization in a finite number of steps. After 

synchronization weight vector of both DHLPs become identical. This indistinguishable 

weight vector forms the session key.  

Genetic operation based Simulated Annealing guided encryption/decryption process 

generates the initial population of individuals randomly (i.e. keystream) having population 

size of 200 individuals. Each individual that represents the candidate keystream is strings of 

characters ‘𝑎’ …  ’𝑝’. The letters ‘𝑎’ …  ’𝑝’ represent the numbers 0. . .15. Thus, each letter is a 

sequence of four bits. Fitness values of each keystream in the population are calculated 

depending on the randomness of the generated keystream, keystream period length and 

keystream length. Genetic operation based SA guided keystream generation algorithm set the 

initial temperature to 250 and select a value up to which the algorithm will iterate i.e. the 

maximum number of generation depend on the resource available at the time of wireless 

communication. Each generation the process checks whether the current generation number 

is less or equal to the maximum number of generations, if so, then the operations is repeated. 

At first the single point crossover is perform in the mating pool with a crossover probability 

of 0.6 to 0.9 on the keystrem having higher fitness. Then the mutation operation is performed 
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with comparatively lower mutation probabilities i.e. . 001 to . 01 to produce new generation 

having some genetic diversity. Fitness calculation is done again for this newly generated 

keystream and then checks whether the  fitness value of new generation is better than the 

fitness value of old generation, if so, then the process set the new population as the current 

population. Otherwise, it computes 𝑒 as the differences between fitness value of old 

generation and fitness of new generation after that 𝑃𝑟 = 𝑒/𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is computed. Now, 

if 𝑒𝑥𝑝(−𝑝𝑟) is grater than an arbitrary random number, then process set current population 

as an new population, otherwise temperature is updated by multiplying the temperature with 

an 𝛼 vale (in this experiment 𝛼 = 0.95). These steps is repeated in several generations until 

the best fittest keystream is obtained or maximum number of generation is reached 

whichever is earlier. If the length of the plaintext to be encrypted is grater then the length of 

generated keystream then triangle edge based key expansion method is used to extend the 

length of the keystream. Stream of plaintext is encrypted using the SA based 

keystream/extended keystream. Finally a cascaded Exclusive-OR operation is performed 

between SA encrypted text and the DHLP based session key to generate final cipher text. 

Receiver has same DHLP generated synchronized session key as a result of tuning. This 

session key is used to perform first step of the deciphering. In the next step, SA guided 

keystream based deciphering operation is performed to regenerate the plaintext.  

The DHLPSCT does not cause any storage overhead. This greatly handles the resource 

constraints criteria of wireless communication. A comparison of DHLPSCT with previously 

proposed technique in chapter 2, existing Tree Parity Machine (TPM), Permutation Parity 

Machine (PPM), and industry accepted AES, RC4, Vernam Cipher, Triple DES (TDES) and 

RSA have been done. Analyses of results are given in chapter 7.  

In DHLPSCT, encryption process takes the plaintext as a binary stream of bits which is 

encrypted using genetic operation based SA generated fittest keystream. SA encoded text is 

encrypt further through Exclusive-OR operation with the session key. The algorithm for the 

complete process is given in section 3.2.1.  
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3.2.1 DHLPSCT Algorithm at Sender  

      Input      :  Source file/source stream i.e. plaintext 

      Output   :  Encrypted file/encrypted stream i.e. cipher text 

      Method  : The process operates on binary stream and generates encrypted bit stream through 

DHLP guided Simulated Annealing (SA) based encryption technique. 

Step 1.    Perform tuning of sender’s and receiver’s DHLP to generate common 

secret session key. 

Step 2.       Generates SA based fittest encryption keystream. 

Step 3.   Perform SA based encryption operation on the plaintext. 

Step 4. Perform cascaded Exclusive-OR operation between DHLP based   

session key and outcomes of step 3. 

Step 1 of the algorithm generate common session key through synchronization of DHLP at 

both end. The detailed step is discussed in section 3.2.1.1. Step 2 of the algorithm generates 

SA based fittest encryption keystream. The detailed description of the process is given in 

section 3.2.1.2. Algorithm for performing SA based encryption operation (step 3) on the 

plaintext is discussed in 3.2.1.3. The technique of cascading encryption process (step 4) 

which takes the intermediate output generated in step 3 is given in details in section 3.2.1.4. 

3.2.1.1 Double Hidden Layer Perceptron (DHLP) based Synchronization and Session Key 

Generation 

It is seen that Artificial Neural Networks can synchronize. These mathematical models have 

been developed to study and simulate the activities of biological neurons at the beginning. 

But with a very short span of time it was discovered that complex problems in computer 

science can be solved by using Artificial Neural Networks. Neural synchronization is used to 

construct a cryptographic key-exchange protocol. Here, the partners are benefitted from 

mutual interactions, so that a passive attacker is usually prevented. If the synaptic depth (𝐿) is 

increased, the complexity of a successful attack grows exponentially, but there is only a 

polynomial increase of the effort needed to generate a key. Using the basic concept of neural 

synchronization, this chapter offers a novel session key generation technique using DHLP 

(Double Hidden Layer Perceptron) for transmitting the cipher text session wise using unique 
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session key. Here, both sender and receiver use an identical DHLP. DHLPs at both end start 

with identical input vector and anonymous random weight vector. In each time both DHLPs 

compute their output based on inputs and weight vector, and communicate to each other. If 

both are in agreement, their weights are updated through appropriate learning rules. In case 

of discrete weight values this process leads to full synchronization in a finite number of steps. 

On synchronization weight vector of both DHLPs become identical. From this 

indistinguishable weight vector session key for a particular session is formed. So, as a 

substitute of transferring the whole session key through public channel DHLP based 

synchronization process is carried out and outcomes of this is used as a secret session key for 

that entire session. In DHLP following salient features may be obtained to improve the 

security of the communication.        

 DHLP offers two hidden layers instead of single hidden layer in TPM 

 Instead of increasing number of hidden neurons in a single hidden layer, DHLP 

introduces an additional layer (second hidden layer) which actually increased the 

structural complexity of the network that in turn helps to make the attacker’s life 

difficult to guessing the internal representation of DHLP 

 Weight vector consisting of discrete values are used for faster synchronization 

 𝑆𝑌𝑁, 𝐴𝐶𝐾_𝑆𝑌𝑁, 𝑁𝐴𝐾_𝑆𝑌𝑁, 𝐹𝐼𝑁 frames are used to perform connection 

establishment and synchronization procedure 

 Three different learning rules are used based on the network size for faster 

synchronization 

 The process generates variable length bits length session key where key space is 

higher 

 DHLP enhance the security by increasing the range of the values of weight vector                      

(𝐿) 

The figure 3.1 shows a perceptron with two hidden layers. Here 𝐾1 = 4 and 𝐾2 = 2. So, the 

first hidden layer 𝐾1 has four hidden neurons. The second hidden layer 𝐾2 has two hidden 

neurons. The total number of inputs neurons are 𝑁 × 𝐾1, where 𝑁 is the number of inputs to 

each hidden neuron in layer 1.   
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Figure 3.1: A DHLP with two hidden layers 

A TPM usually consist of 𝐾 hidden neurons, 𝑁 × 𝐾 no. of input neurons having binary input 

vector, 𝑥𝑖𝑗 ∈ {−1, +1}, discrete weights are generated from input to output, are lies 

between −𝐿 and +𝐿, 𝑤𝑖𝑗 ∈ {−𝐿, −𝐿 + 1, … , +𝐿}.Where 𝑖 =  1, … , 𝐾 denotes the 𝑖th
 hidden 

unit of the TPM and 𝑗 =  1, … , 𝑁 the elements of the vector and one output neuron. So, there 

are 2𝐾−1 different internal representations (𝜎1, 𝜎2, . . . , 𝜎K), which lead to the same output 

value 𝜏. In DHLP, the parameter 𝐾 is divided into 𝐾1 and 𝐾2. 𝐾1 numbers of hidden 

neurons resides in the hidden layer adjacent to the input layer, that of 𝐾2 represents number 

of hidden neurons adjacent to the output layer. Now for each 𝐾1 hidden neurons there are 𝑁 

inputs possible. Hence, the input layer has 𝑁 × 𝐾1 input neurons. The size of the DHLP is 

represented by 𝑁 × 𝐾1 × 𝐾2 . 

Total number of weights generated by the DHLP is (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Decimal value 

of each weight is represented in eight bit binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) 

number of bits are present in a weight (length of a session key). If 𝑁 = 1, 𝐾1 = 8, 𝐾2 = 1 
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then   1 × 8 + 8 × 1 × 8 = 128 bits weight value may constitute the session key. 

Consider the synaptic depth i.e. weight limits 𝐿 = ±127. So, eight binary bits are needed to 

represents each weight, where the MSB represents the sign bit and rest of the seven bits 

represents the magnitude of the weight. The figure 3.2 shows the single path form input 

neuron to the output neuron. 

 

 

 

 

  

 

 

 

 

Figure 3.2: Snapshot of a single path of  DHLP 

Two DHLPs start with identical input vectors generated by sender’s and receiver’s identical 

secret seed value and completely different random weight vectors. DHLPs compute their 

final output based on input and weight vector, and communicate to each other. If both are in 

agreement, their weights are updated using appropriate learning rules. Within finite number 

of steps both DHLPs get synchronized and as a results weight vector of both DHLPs become 

identical. These indistinguishable weight vectors forms the session key for a particular 

session. 

In DHLPSCT both DHLPs start synchronization by exchanging control frames. The 

process involves message integrity and synchronization test. DHLP synchronization uses 

transmission of control frames at the time of three way handshaking based TCP connection 

establishment phase, as given in table 3.1. 
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Table 3.1 

Control frames of DHLP synchonization 
Frame Description 

𝑆𝑌𝑁 
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment 

phase 

𝐴𝐶𝐾_𝑆𝑌𝑁 
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝑁𝐴𝐾_𝑆𝑌𝑁 
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection 

 

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index 

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a 

timer and waits for a reply from the receiver. If the receiver does not take any action until a 

certain time limit and number of attempts exceeded a certain value, the sender restarts the 

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, it should carry out the 

integrity test. If the messages are received as sent (with no replication, incorporation, 

alteration, reordering, or replay) the receiver will execute the synchronization check. The 

sender and receiver have an identical 𝑇 variable formally store in their respective memory. 

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256 

bits weights to decrypt the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in 

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the 

networks are synchronized. This is the best case solution where sender and receiver 

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial 

stage. The receiver should send the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to alert the sender. But most of the time 

this best case is may not achievable. If decryption algorithm does not produce predictable 

result, the receiver should use the secret seed value of sender’s to produce the input 

vector(𝑋) which is identical to sender. With this input vector the receiver will work out its 

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ). If the outputs at both ends are different, the receiver should not fine-tune 

its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 frame to 

notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this technique is 

used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁 frame. If receiver’s 

output is equal to sender’s output i.e. (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ) then receiver update it weights. 
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At the end of updates, the receiver should report the sender that outputs are equal. The 

receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same 𝐼𝐷 value received from 

sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this technique is used for providing the positive 

acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the sender also 

updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. The sender will 

create new synchronization frame until receive the frame 𝐹𝐼𝑁_𝐴𝐶𝐾 from receiver. When the 

sender receives the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame, it stops the further synchronization. The proposed 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this technique is used for closing the connection. At end of 

synchronization, both networks provide the identical weight vector which acts as a session 

key identical to both end. Table 3.2 shows the different frames and their corresponding 

command codes. 

 

Table 3.2 

DHLP control frames and their command codes 
Frame Command 

𝑆𝑌𝑁 0000 

𝐹𝐼𝑁_𝑆𝑌𝑁 0001 

𝐴𝐶𝐾_𝑆𝑌𝑁 0010 

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011 

𝐴𝑈𝑇𝐻 0100 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111 

The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is 

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the 

sender sends a synchronization frame. The figure 3.3 shows the exchange of frames during 

DHLP synchronization process. 
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Figure 3.3: Exchange of control frames between sender and receiver during DHLP 

synchronization 

The detailed frame format of 𝑆𝑌𝑁 frame is discussed in section 3.2.1.1.1. The detailed frame 

format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 3.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 

frame has been discussed in section 3.2.1.1.3. The frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is 

discussed in section 3.2.1.1.4.  

3.2.1.1.1 Synchronization (𝑆𝑌𝑁) Frame 

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver 

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as 

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 . 

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in 

connection establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶 needs eight bits, 

𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟
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128 bits, one bits, 128 bits, sixteen bits respectively. When the receiver receive 𝑆𝑌𝑁 frame, 

the receiver should carry out integrity test. Receiver performs integrity test on receiving the 

𝑆𝑌𝑁 frame. If the messages are received as sent (with no replication, incorporation, 

alteration, reordering, or replay) the receiver will execute the synchronization test. In 

synchronization test receiver utilize its 128 first weights as key for decryption of 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  that was received from the sender. After decryption operation if 

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

Figure 3.4 shows the complete frame format of 𝑆𝑌𝑁 frame. 

           

 

 

                      4                  8             128              1                            128                               16 (𝑏𝑖𝑡𝑠)         

Figure 3.4: Synchronization (𝑆𝑌𝑁) frame 

3.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive 

acknowledgement of the parameters value. The proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 

needs sixteen bits for error checking purpose. Now check the condition i.e. If 

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑  

received from sender to produce the receiver input vector (𝑋) identical to sender input vector 

(𝑋) and calculates the output 𝜏 𝑅𝑒𝑐𝑒 𝑖𝑣𝑒𝑟 . If ( 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟  ) then receiver should 

update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  using learning rule. At end of 

weight updation of the receiver, it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the sender 

for updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights.  Figure 

3.5 shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame. 
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𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  
𝐶𝑒𝑐𝑘𝑒𝑟) 
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                                          4                           8                                   16 (𝑏𝑖𝑡𝑠) 

Figure 3.5: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 

3.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization 

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative 

acknowledgement of the parameters value. The proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If ( 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟  ) then the 

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver’s and sender’s 

outputs are different, the receiver should not fine-tune its weights and inform the sender. The 

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure 

3.6 shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame. 

  

 

 

                                     4                           8                                   16 (𝑏𝑖𝑡𝑠) 

Figure 3.6: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 

3.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This 

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four 

bits. The  𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for 

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose. 

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑   𝐶𝑜𝑑𝑒 
0010 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑   𝐶𝑜𝑑𝑒 
0011 

𝑆𝑌𝑁_𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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Receiver sends the FIN_SYN frame to the sender. Figure 3.7 shows the complete frame 

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 

 

 

 

                                             4                      8                          16 (𝑏𝑖𝑡𝑠) 

Figure 3.7: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 

 The DHLP synchronization algorithm for generating synchronized session key is discussed 

in section 3.2.1.1.5. Section 3.2.1.1.6 presents the complexity analysis of the DHLP 

synchronization algorithm and DHLP learning is discussed in section 3.2.1.1.7.  

3.2.1.1.5  DHLP Synchronization  

Input        :   Random weights and identical input vector(𝑋) for both DHLPs 

Output      :   Sender’s and receiver’s synchronized DHLP along with synchronized session key  

Method    :    Sender’s and receiver’s DHLPs both are be in agreement on the mapping 

between the present input and the output, their weights are updated according to 

an appropriate learning rule. After synchronization procedure weight vector of 

both DHLPs become identical. These indistinguishable weight vector forms the 

session key for a particular session. 

   

Step 1. Initialization of synaptic links (weight values) between input layer and 

first hidden layer also between first hidden layer and second hidden 

layer using random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .                                                  

                                          Repeat step 2 to step 11 until the full synchronization is achieved. 

Step 2. The input vector(𝑋) are generated by the sender using 128 bit secret 

seed value.   

Step 3. Computes the values of hidden neurons by the weighted sum over the 

current input values. Each hidden neuron in first hidden layer 

produces 𝜎1
i values and each hidden neuron in second hidden layer 

produces 𝜎2
p values.   

𝐶𝑜𝑚𝑚𝑎𝑛𝑑   𝐶𝑜𝑑𝑒 
0001 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶 

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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                                          These can be represented using equation 3.1 and 3.2 

                                                                          𝜎1
i =  𝑠𝑔𝑛    𝐾1

𝑖=1   𝑁
𝑗=1 𝑊𝑖 ,𝑗  𝑋𝑖,𝑗                     (3.1) 

                                                                          𝜎2
p =  𝑠𝑔𝑛    𝐾2

𝑝=1  𝑊𝑝 ,𝑖  
𝐾1
𝑖=1 𝜎𝑖

1                    (3.2)    

                                          𝑠𝑔𝑛(𝑥) is a function shown in equation 3.3, which returns −1, 0 𝑜𝑟 1:            

                                                                             𝑠𝑔𝑛(𝑥) =     

−1  𝑖𝑓 𝑥 < 0
0    𝑖𝑓 𝑥 =  0
1   𝑖𝑓  𝑥 > 0

                            (3.3)    

 If the weighted sum over its inputs is negative then set  𝜎𝑖 = −1.                

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or 

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0. 

Step 4.  Compute the value of the final output neuron by computing 

multiplication of all values produced by 𝐾2  number of hidden neurons 

using the equation 3.4. 

                                                                  𝜏 =  𝜎𝑝
2𝐾2

𝑝=1                                                  (3.4) 

Step 5. Sender utilizes its 128 initial weights as key for encryption of 𝑇 

variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .  

Step 6.  Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for 

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually 

comprises of several fields like 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 

Sender output  𝜏 𝑆𝑒𝑛𝑑𝑒𝑟  , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶 (Cyclic 

Redundancy Checker). 

Step 7. Receiver performs integrity test after receiving the 𝑆𝑌𝑁 frame and 

then receiver utilize its 128 weights as key for decryption of 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇   that was received from the sender.  

Step 8. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then 

networks are synchronized. Go to step 12. 

Step 9. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇then 

receiver use the secret seed received from sender to produce the 
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receiver input vector(𝑋) identical to sender input vector (𝑋) and 

calculates the output 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using step 3 and step 4. 

Step 10. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ) then  performs the following steps 

Step 10.1 Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟
 using any of the learning rules discussed 

in chapter 1 section 1.8.  

Step 10.2   At end of receiver’s weights updation, the receiver sends 

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights 

using step 10.1.  

Step 10.3 Sender transmits  

                                                                       𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇  to receiver. 

Step 10.4 Receiver checks 

if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 

                                           then networks are synchronized. Go to step 12. 

Step 10.5   Perform the following checking 

if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇 

                                                                then networks are still not synchronized. Go to step 10.1. 

Step 11. If  𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟   then the receiver sends the message 

𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. Go to step2.  

Step 12. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to 

finish the synchronization phase.  

3.2.1.1.6 Complexity Analysis  

In DHLP synchronization and session key generation technique initialization of weight 

vector takes (𝑁 × 𝐾1 +  𝐾1 × 𝐾2) amount of computations. For example, if 𝑁 = 2, 𝐾1 = 4,

𝐾2 = 2 then total numbers of synaptic links (weights) are (2 × 4 +  4 × 2) = 16. So, it takes 

sixteen amount of computations. Computation of the hidden neuron outputs takes  𝐾1 + 𝐾2  

computations. Where 𝐾1 and 𝐾2 are the number of hidden units in first and second layer 

respectively. Generation of 𝑁 number of input vector for each 𝐾1 number of hidden neurons 

takes (𝑁 × 𝐾1) amount of computations. Computation of final output value takes unit 
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amount of computation because it needs only a single operation to compute the value. 

Encryption of 𝑇 variable using Exclusive-OR operation takes unit amount of computations. 

Decryption of 𝑇 variable using Exclusive-OR operation also takes unit amount of 

computation. Check if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 __𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 or not, takes 

unit amount of computations. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 __𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇 

then step 3 and 4 iterated again with its respective time complexity. Weight updating 

procedure takes place where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  using any of the learning 

rules which takes (𝑛𝑜. 𝑜𝑓 
 
𝜎𝑘

𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟
= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ) amount of computations.  

In best case, sender’s and receiver’s arbitrarily chosen weight vectors are identical. So, 

networks are synchronized at initial stage do not needs to update the weight using learning 

rule. Here,   𝑁 × 𝐾1 +  𝑁 × 𝐾1 +  𝐾1 × 𝐾2 +  𝐾1 + 𝐾2   amount of computation is 

needed. So, in the  best case the computation complexity can be expressed is in form of 

O(initialization of input vector + initialization of weight vector + Computation of the hidden  

       neuron outputs ).   

If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in 

each iteration the weight vectors of the hidden unit which has a value equivalent to the 

pereceptron output are updated according to the learning rule. This scenario leads to average 

and worst case situation where 𝐼 number of iteration to be performed to generate the identical 

weight vectors at both ends. So, the total computation for the average and worst case is 

  𝑁 × 𝐾1 +  𝑁 × 𝐾1 +  𝐾1 × 𝐾2 +  𝑁 × 𝐾1 +  𝐾1 × 𝐾2 +  𝐾1 + 𝐾2  +

 𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 )   which is can be expressed as follws 

O Time complexity in first iteration+(No. of iteration × No. of weight updation) . 

3.2.1.1.7 DHLP Learning Mechanism 

If the output bits are different for sender (A) and receiver (B) i.e.𝜏𝐴 ≠ 𝜏𝐵 , nothing is done.          

If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated using 

any of the learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes 

less synchronization steps than other two learning rules in the range of 2 − 4 − 2 − 5 

(𝑁 − 𝐾1 − 𝐾2 − 𝐿) to 2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian rule takes more 
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steps to synchronize than other two learning rules. Here, Anti-Hebbian rules takes less time 

than the other two learning rules in the range of  2 − 4 − 2 − 20 to 2 − 4 − 2 − 30. Random 

Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital findings is that if the 

synaptic depth i.e. weight range (𝐿) is increased, the complexity of a successful attack grows 

exponentially, but there is only a polynomial increase of the effort needed to generate a key. 

So, increasing the 𝐿 value security of the system can be increased.  

3.2.1.2 Genetic Function based Simulated Annealing (SA) guided Fittest Keystream 

Generation   

In the DHLPSCT a genetic function based Simulated Annealing (SA) guided approach is 

used to construct the keystream for encryption/decryption. Instead of this technique any other 

light weight encryption/decryption technique also used for exchanging message between 

sender and receiver with the help of DHLP synchronized network. 

  SA is a randomization technique for solving optimization problems. It is a technique to 

generate appropriate solutions to a large diversity of combinatorial optimization problems. 

SA is a good technique for finding near global optimal solutions for complex problems. 

Generating encryption/decryption keystream of good properties with very minimal resource 

requirements in wireless communication is always a complex problem. The keystream 

generators proposed can assist to solve the problem of getting stuck in local optima and to 

escort towards the global optimal solution.  

The keystream (individual) in SA based technique are comprises of character sequence. 

Here, ‘𝑎’ …  𝑝’ represents the number 0 … 15. For representing 128 bit long SA based 

keystream 32 characters are chosen randomly among ‘𝑎’ …  𝑝’ characters, where each 

character represent a four bits binary number. So, one particular character may appear more 

than once in the sequence. Table 3.3 represents the different characters along with its decimal 

and binary representation. 
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Table 3.3 

Character table of SA 
Character Decimal Value Binary Value 

𝑎 0 0000 

𝑏 1 0001 

𝑐 2 0010 

𝑑 3 0011 

𝑒 4 0100 

𝑓 5 0101 

𝑔 6 0110 

 7 0111 

𝑖 8 1000 

𝑗 9 1001 

𝑘 10 1010 

𝑙 11 1011 

𝑚 12 1100 

𝑛 13 1101 

𝑜 14 1110 

𝑝 15 1111 

Each individual which represents candidate keystream is strings of characters and are 

represented using binary sequence. These rules should be preserved during the generation of 

the initial population. The keystream is represented using character sequence ‘𝑎’ …  ’𝑝’. These 

letters represent the numbers 0. . .15. Thus, each letter is a sequence of four bits. The 

following are examples of the chromosomes having 32 characters i.e. 128 bits: 

            Chromosome 1: 𝑚𝑒𝑙𝑎𝑝𝑒𝑘𝑎𝑏𝑟𝑑𝑜𝑗𝑒𝑛𝑝𝑔𝑑𝑗𝑙𝑛𝑐𝑚𝑎𝑜𝑓𝑗𝑙𝑛𝑐  

      Chromosome 2: 𝑎𝑗𝑐𝑘𝑒𝑝𝑒𝑔𝑛𝑏𝑚𝑑𝑎𝑜𝑓𝑒𝑔𝑜𝑙𝑝𝑙𝑎𝑐𝑓𝑏𝑒𝑝𝑓𝑗 

      Chromosome 3: 𝑐𝑝𝑑𝑚𝑗𝑎𝑙𝑜𝑏𝑔𝑒𝑗𝑎𝑓𝑛𝑏𝑙𝑖𝑐𝑝𝑑𝑎𝑚𝑙𝑖𝑒𝑗𝑐𝑙𝑒 

      Chromosome 4: 𝑗𝑙𝑎𝑘𝑓𝑑𝑝𝑛𝑜𝑎𝑑𝑓𝑙𝑎𝑏𝑝𝑚𝑓𝑛𝑚𝑎𝑛𝑙𝑜𝑘𝑔𝑎𝑗𝑏  

The fitness value is a measurement of the goodness of the keystream (individual), and it is 

used to control the application of the operations that modify a population. There are a number 

of metrics used to analyze keystream, which are keystream randomness, linear complexity 

and correlation immunity. Therefore, these metrics should be taken in account in designing 
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keystream (individual), and they are in general hard to be achieved. Three factors are 

considered in the fitness evaluation of the keystream (individual). These are: 

a. Randomness of the generated keystream (individual) 

b. Keystream (individual) period length 

c. Keystream (individual) length 

a.   Randomness of the generated keystream (individual) - The purpose of evaluation of 

randomness is to determine whether that number of ones and zeros in a sequence are 

approximately the same as would be expected for a truly random sequence. The test 

assesses the closeness of the fraction of ones to ½, that is, the number of ones and zeroes 

in a sequence should be about the same. The equation 3.5 is used for the evaluation of 

keystream randomness using the frequency and serial tests, in which, 𝑛𝑤  is the frequency 

of 𝑤 in the generated binary sequence.  

             𝑓1 =  𝑛0 − 𝑛1 +  𝑛00 −
𝑆𝑍

4
 +  𝑛01 −

𝑆𝑍

4
 +  𝑛10 −

𝑆𝑍

4
 +  𝑛11 −

𝑆𝑍

4
             (3.5) 

Fitness 𝑓1  calculates the frequency of the bits. This function is derived from the fact that 

in the random sequence, Probability (no) = Probability (n1) which checks frequency of 

0 and 1 in a binary string and Probability (n01) = Probability (n11) = Probability (n10) = 

Probability (n00) which checks the probability of occurrence of the pattern 00, 01, 10 and 

11 in a binary string. 

b. Keystream (individual) period length - The focus of keystream (individual) period length 

evaluation is to determine the total number of zero and one runs in the entire sequence, 

where a run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a 

run consists of exactly 𝑘 identical bits and is bounded before and after with a bit of the 

opposite value. The purpose of this evaluation is to determine whether the number of runs 

of ones and zeros of various lengths is as expected for a random sequence. In particular, 

this test determines whether the oscillation between such substrings is too fast or too 

slow. 
1

2𝑖 × 𝑛𝑟  of the runs in the sequence are of length 𝑖, where 𝑛𝑟  is the number of runs 

in the sequence. Thus, the following equation 3.6 represents the period length.  

                                                𝑓2 =    
1

2𝑖 × 𝑛𝑟 − 𝑛𝑖 
𝑀
𝑖=1  

                                          
(3.6)
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Where 𝑀 is maximum run length, and 𝑛𝑖  is the desired number of runs of length 𝑖.  

c. Keystream (individual) length - Another factor is considered in the evaluation of the 

fitness value which is the size of the candidate keystream (length of the individual).  

Thus, the fitness function used to evaluate the chromosome 𝑥 is given in equation 3.7, where 

𝑤𝑒𝑖𝑔𝑡 is a constant and 𝑠𝑧 is the key stream period length: 

                                                 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 =
𝑆𝑍

1+𝑓1+𝑓2
+

𝑤𝑒𝑖𝑔 𝑡

𝑙𝑒𝑛𝑔𝑡 (𝑥)
                                      (3.7)

                       

 

Crossover operation performs exchange of genetic information. It takes place between 

randomly selected parent chromosomes. Single point crossover is the most commonly used. 

In this technique single point crossover is performed with probability 0.6 to 0.9. Figure 3.8 

shows the single point crossover operation having chromosome length of eight. 

    

 

Figure 3.8: Single point Crossover operation 

Mutation operation is a random alternation in the genetic structure. It introduces genetic 

diversity into the population. performs exchange of genetic information. It takes place 

between randomly selected parent chromosomes. In this technique mutation is performed 

with probability 0.001 to 0.01. Figure 3.9 shows the mutation operation having chromosome 

length eight.    

 

Parent Chromosomes: 

Offspring Chromosomes: 
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Figure 3.9: Mutation operation 

The parameters used in this work have been set based on the experimental results, the 

parameter value that shows the highest performance has been chosen to be used in the 

implementation of this algorithm. Thus, the genetic operations used to update the population 

are single point crossover with probability 𝑝𝑐 (probability of crossover) = 0.6 to 0.9 and 

mutation with probability 𝑝𝑚 (probability of mutation) = .001 to 0.1. The selection strategy, 

used to select chromosomes for the genetic operations, is the binary tournament selection. 

The old population is completely replaced by the new population which is generated from the 

old population by applying the genetic operations. The maximum chromosome length is 256 

bits. The run of this algorithm is stopped after a fixed number of iterations depend on 

resource available in wireless communication. The solution is the best keystream (individual) 

of the final iteration. The figure 3.10 shows the flowchart of SA based fittest keystream 

generation and section 3.2.1.2.1 presents the SA based fittest keystream generation 

algorithm.  

 

 

 

 

 

 

 

Parent Chromosome 

Mutated Chromosome 
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Figure 3.10: Flow chart of Simulated Annealing (SA) based fittest keystream generation 
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3.2.1.2.1 Simulated Annealing based Fittest Keystream Generation Algorithm 

SA based fittest keystream generation algorithm takes length of the keystream and maximum 

number of iterations as an input. After complete iteration, algorithm generates the fittest 

keystream as an output. The maximum number of iterations depends on the resource 

available in wireless communication. 

      Input   :     Length of the keystream, maximum number of iteration  

      Output:     Simulated Annealing based best fittest keystream (individual) at the final iteration 

Method:  The process performs Simulated Annealing procedure on set of keystream and 

finally produces best fittest keystream.                                

Step 1. Generate the initial population (𝑝𝑜𝑝) randomly. 

Step 2. Evaluate the Population. 

Step 3. Set temperature:=250. 

Step 4. Perform the following steps until maximum number of generation 

reach. 

Step 4.1 Generate a new population (𝑝𝑜𝑝1) by applying crossover 

and mutation. 

Step 4.2 Evaluate the fitness of the new generated individual of 

𝑝𝑜𝑝1. 

Step 4.3 Calculate the averages of fitness values for 𝑝𝑜𝑝 and 𝑝𝑜𝑝1, 

𝑎𝑣 and 𝑎𝑣1 respectively. 

Step 4.4 𝐼𝑓 (𝑎𝑣1 >  𝑎𝑣) then replace the old population by the new 

one, 𝑝𝑜𝑝 =  𝑝𝑜𝑝1. Else compute 𝑒 =  𝑎𝑣 −  𝑎𝑣1 and                     

𝑃𝑟 =  𝑒/𝑇𝑒𝑚𝑝. Hence, generate a random number (𝑟𝑛𝑑) 

and check  𝑖𝑓 (𝑒𝑥𝑝(−𝑝𝑟)  >  𝑟𝑛𝑑) then assign 𝑝𝑜𝑝 =

 𝑝𝑜𝑝1. 

Step 4.5 Set 𝑇𝑒𝑚𝑝 =  𝑇𝑒𝑚𝑝 ×  0.95                                         (3.8) 

Step 5.       Return the best chromosome of the final generation 

 

The SA based fittest keystream is used to perform the encryption operation on the plaintext. 

The detail step of SA based encryption process is given in section 3.2.1.3. 
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3.2.1.3 Encryption Algorithm 

      Input      :  Source file/source stream i.e. plaintext 

      Output   :  Encrypted file/encrypted stream i.e. cipher text 

      Method :  The process operates on binary stream and generates encrypted bit stream through 

Simulated Annealing (SA) based encryption. 

Step 1.  Perform Exclusive-OR with Simulated Annealing (SA) generated              

128/192/256 bits key and the plaintext to form intermediate cipher 

text. If the size of the plaintext to be encrypted is larger than 128/

192/256 bits then triangle edge extension based keystream expansion 

strategy is perform to expand  the SA based keystream and then 

expanded keystream is Exclusive-OR with the plaintext for forming the 

intermediate cipher text.  

Step 2. Divide the outcomes of step 1 into variable blocks.  

Step 3. Perform following operation as per equations 3.9 and 3.10 on each 

block until the source block itself is generated.  

      𝑠0
𝑗

= 𝑠0
𝑗−1

                                                                                        (3.9) 

      𝑠𝑖
𝑗

= 𝑠𝑖−1
2 𝑠𝑖

𝑗−1
                                                                              (3.10) 

Step 4. Consider an intermediate 𝑖th
 step during the process of forming the 

cycle as the encrypted block.  

Step 5. Merge all the encrypted blocks of step 3. 

The details of triangle edge based keystream expansion in step 1 is discussed in section 

3.2.1.3.1. Step 2 of the algorithm is used to divide the outcomes of step 1 in variable blocks. 

After that in step 3 a pair of Exclusive-OR operation is performed on each block for forming 

the cycle. In step 4, 𝑖th
 step is considered as an encrypted block. Finally, in step 5 all the 

encrypted blocks of previous step is merged together to generate SA based encrypted text. 
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3.2.1.3.1 Triangle Edge Extension based Keystream Expansion Technique  

If the size of the plaintext to be encrypted is larger than 128/192/256 bits then triangle edge 

extension based keystream expansion strategy is performed to expand the keystream. 

Consider a keystream 𝐾 = 𝑘0
0 𝑘1

0 𝑘2
0 𝑘3 

0 𝑘4 
0 𝑘5

0 …  𝑘𝑛−2
0  𝑘𝑛−1

0  of size 𝑛 bits, where  𝑘𝑖
0 = 0 or 1 

for 0 ≤  𝑖 ≤  (𝑛 − 1). Now, starting from MSB (𝑘0
0) and the next-to-MSB (𝑘1

0), bits are           

pair-wise Excusive-OR, so that the first intermediate sub-keystream 𝐾1 is expressed as                            

𝐾1 = 𝑘0
1 𝑘1

1 𝑘2
1 𝑘3 

1 𝑘4 
1 𝑘5

1 …  𝑘𝑛−2
1   this is consisting of (𝑛 − 1) bits, where 𝑘𝑗

1 = 𝑘𝑗
0𝑘𝑗 +1

0 for 

0 ≤  𝑗 ≤  𝑛 − 2,  stands for the Exclusive-OR operation. This first intermediate                

sub-keystream 𝐾1 is also then pair-wise Excusive-OR to generate the second intermediate 

sub-keystream 𝐾2 = 𝑘0
2 𝑘1

2 𝑘2
2 𝑘3 

2 𝑘4 
2 𝑘5

2 …  𝑘𝑛−3
2  , of length (𝑛 − 2). This process continues 

(𝑛 − 1) times to ultimately generate 𝑘𝑛−1 = 𝑘0
𝑛−1, which is a single bit only. Thus the size 

of the first intermediate sub-stream is one bit less than the source sub-keystream; the size of 

each of the intermediate sub-keystreams starting from the second one is one bit less than that 

of the sub-keystream wherefrom it was generated; and finally the size of the final sub-

keystream in the process is one bit less than the final intermediate sub-keystream. In this way 

intermediate sub-keystream 𝐾𝑗 +1 = 𝑘0
𝑗 +1

 𝑘1
𝑗+1

 𝑘2
𝑗 +1

 𝑘3 
𝑗 +1

𝑘4 
𝑗+1

𝑘5
𝑗 +1

…  𝑘𝑛−(𝑗+2)
𝑗 +1

  is generated 

from the previous intermediate sub-keystream 𝐾𝑗 = 𝑘0
𝑗
 𝑘1

𝑗
 𝑘2

𝑗
 𝑘3 

𝑗
𝑘4 

𝑗
𝑘5

𝑗
…  𝑘𝑛−(𝑗 +1)

𝑗
. Figure 

3.11 shows the keystream expansion triangle with different colors and figure 3.12 represents 

the left side and right side expanded keystream. 

 

 

 

 

Figure 3.11: Triangle of different color sides, blue side represents the original key, red and 

green side represents the left and right side extended key 

1  1  1  0  1  0  1  0  1  0  0  1  0  1  0  1  1  1  0  0  0  0  1  0 

            Left side bits of the triangle                                           Right side bits of the triangle 

Figure 3.12: Expanded keystream 
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Bits of the left side of the triangle (i.e. 11101010) is generated at the front of the original key 

and bits of the right side of the triangle (i.e.11000010) is attached at the end. As per 

keystream expansion strategy the new expanded keystream will be three times longer than 

original one. 

3.2.1.4     Session Key based  Encryption  

During final step of the technique a cascaded Exclusive-OR operation between DHLP 

synchronized session key and SA encrypted cipher text is performed to generate final 

encoded cipher text.  

The decryption algorithm takes the cipher text as a binary stream of bits and perform first 

level of operation using DHLP generated synchronized session key to produce intermediate 

decrypted text. Finally, SA generated fittest keystream based decryption is performed on the 

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete 

process is given in section 3.2.2.        

3.2.2 DHLPSCT Algorithm at Receiver  

      Input      :  Encrypted file/encrypted stream i.e. cipher text  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on encrypted binary stream and generates decrypted bit 

stream through DHLP guided Simulated Annealing (SA) based decryption 

operations. 

Step 1. Perform cascaded Exclusive-OR operation between DHLP based 

session key and cipher text. 

Step 2. Perform Simulated Annealing (SA) based decryption on the outcomes 

of the step 1 to regenerate starting combination i.e. plaintext. 

Step 1 of the algorithm is discussed in section 3.2.2.1. Step 2 of the algorithm for performing 

SA based decryption is discussed in 3.2.2.2. 
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3.2.2.1     Session Key based  Decryption  

Initially cascaded Exclusive-OR operation between DHLP synchronized session key and 

cipher text is performed to produce session key decrypted text. Outcomes of this operation 

used as an input of decryption algorithm discussed in 3.2.2.2 to regenerate the plaintext.   

In the decryption process the SA based cipher text is divided into blocks. A pair of Exclusive-

OR operation based cycle decryption is performed on each block. After that all blocks are 

merged together. The SA generated keystream is use to Exclusive-OR with the merged blocks 

to regenerate the plaintext. The detail steps of decryption process is given in section 3.2.2.2. 

3.2.2.2     Decryption Algorithm 

Input      :  SA Encrypted file/ SA encrypted stream  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on SA encrypted bit stream and regenerates the plaintext 

through SA based decryption. 

Step 1. Divide the SA encrypted text into different blocks.  

Step 2. Perform operation given in equation given in 3.11 and 3.12 upto 

(𝑃 –  𝑖) steps on each block if the total number of iterations required to 

complete the cycle is 𝑃 and the 𝑖th
 step is considered to be the 

encrypted block. 

                                          𝑠0
𝑗

= 𝑠0
𝑗−1

                                                                                        (3.11) 

                                          𝑠𝑖
𝑗

= 𝑠𝑖−1
2 𝑠𝑖

𝑗−1
                                                                              (3.12) 

Step 3. Merge outcomes of step 2. 

Step 4. Check if the length of the SA based keystream is less than the length of 

outcomes of step 3 then perform triangle edge based keystream 

expansion method to enhance the length of the keystream. Otherwise, 

select the 128 bit fittest keystream for decryption. 
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Step 5.  Finally, perform Exclusive-OR operation between outcomes of step 3 

and SA generated fittest encryption keystream of same length to 

produce the plaintext. 

3.3    Implementation  

Consider Initial population size as 200 and randomly generated each keystream having 128 

bits. The population gets evaluated with the help of fitness function using generations 

through a fitness technique which consist of number of statistical tests to examine whether 

the pseudorandom number sequences are sufficiently random or not.  

On receipt of fittest generation the SA based keystream generation algorithm let generate the 

best fittest keystream having length of 128 bits. Let the binary form of 128 bits SA based 

keystream is  

11111101/10101110/00011111/11011010/11010010/10000010/10101101/01100110/ 

01001111/11101001/00001110/11110101/01010010 

Here “/” is used as the separator between successive bytes. 

Consider the plaintext to be encrypted is “SA Encryption”, binary representation of the 

ASCII value of plaintext is   

01000001/01010011/00100000/01000101/01101110/01100011/01110010/01111001/011100

00/01110100/01101001/01101111/01101110 

So, the plaintext size is 104 bits. As plaintext size is less than the size of the 128 bit SA 

based keystream, no need to perform keystream expansion operation. 

 

On performing Exclusive-OR operation between plaintext and SA based keystream the 

intermediate cipher text is  

10111100/11111101/00111111/10011111/10111100/11100001/11011111/00011111/ 

00111111/10011101/01100111/10011010/00111100  

Perform Exclusive-OR based cycle formation operation on intermediate cipher text by 

dividing into seven segments having variable size like 16, 32, 8, 16, 16, 8, 8 bits respectively.  
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Following are the different segments constructed from S (intermediate encrypted text): 

S1 = 1011110011111101 (16 bits) 

S2 = 00111111100111111011110011100001 (32 bits) 

S3 = 11011111 (8 bits) 

S4 = 0001111100111111 (16 bits) 

S5 = 1001110101100111 (16 bits) 

S6 = 10011010 (8 bits) 

S7 =00111100 (8 bits) 

Cycle formation operation is now performed on S1, S2, S3, S4, S5, S6, S7 segments 

respectively. For each of the segments, an arbitrary intermediate stream segment is 

considered as the encrypted stream segment. 

The formation of cycles for segments S1 (1011110011111101) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1001001101010001) after iteration-6 considered as an encrypted segment for the segment 

S1. 

1011110011111101  1101011101010110
1
1001101001100100

2
1110110001000111

3
     

1011011110000101
4
1101101011111001

5
1001001101010001

6
1110001001100001

7
    

1011110001000001
8
1101011110000001

9
1001101011111110

10
1110110010101011

11

1011011100110010
12
1101101000100011

13
1001001111000010

14
 

1110001010000011
15
   1011110011111101

16
 

The formation of cycles for segments S2 (00111111100111111011110011100001) is shown 

below. After 32 steps cycle is complete and the plaintext is regenerated. An arbitrary 

intermediate segment (00110000010010000010101110001010) after iteration-22 considered 

as an encrypted segment for the segment S2. 

0011111110011111101111001110000100101010111010101101011101000001
1
   

00110011010011001001101001111110
2
00100010011101110001001110101011

3
      

00111100010110100001110100110010
4
00101000011011000001011000100011

5
       

00110000010010000001101111000010
6
00100000011100000001001010000011

7
    

00111111101000000001110011111101
8
00101010110000000001011101010110

9
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00110011011111111110010110011011
10
00100010010101010100011011101101

11
      

00111100011001100111101101001001
12
00101000010001000101001001110001

13
       

00110000011110000110001110100001
14
00100000010100000100001011000001

15
        

00111111100111111000001101111110
16
00101010111010101111110110101011

17
    

00110011010011001010100100110010
18
00100010011101110011000111011100

19
      

00111100010110100010000101101000
20
00101000011011000011111001001111

21
   

00110000010010000010101110001010
22
00100000011100000011001011110011

23
      

00111111101000000010001101011101
24
00101010110000000011110110010110

25
     

00110011011111111101011011100100
26
00100010010101010110010010111000

27
        

00111100011001100100011100101111
28
00101000010001000111101000110101

29
        

00110000011110000101001111011001
30
00100000010100000110001010010001

31
       

00111111100111111011110011100001
32

 

The formation of cycles for segments S3 (11011111) is shown below. After 8 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (11010010) 

after iteration-4 considered as an encrypted segment for the segment S3. 

1101111110010101
1
11100110

2
10111011

3
11010010

4
10011100

5
11101000

6
   

10110000
7
11011111

8 

The formation of cycles for segments S4 (0001111100111111) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment I47 

(0001000010110000) after iteration-7 considered as an encrypted segment for the segment 

S4. 

00011111001111110001010111010101
1
0001100101100110

2
0001000110111011

3
   

0001111011010010
4
0001010010011100

5
0001100011101000

6
0001000010110000

7
   

0001111100100000
8
0001010111000000

9
0001100101111111

10
0001000110101010

11

0001111011001100
12
0001010010001000

13
0001100011110000

14
 

0001000010100000
15
0001111100111111

16
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The formation of cycles for segments S5 (1001110101100111) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1011101010000100) after iteration-6 considered as an encrypted segment for the segment 

S5. 

10011101011001111110100110111010
1
1011000100101100

2
1101111000110111

3
 

1001010000100101
4
1110011111000110

5
1011101010000100

6
101001100000111

7
 

1001110111111010
8
1110100101010011

9
1011000110011101

10
1101111011101001

11

1001010010110001
12
1110011100100001

13
1011101000111110

14
 

1101001111010100
15
1001110101100111

16
 

The formation of cycles for segments S6 (10011010) is shown below. After 8 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (11100010) 

after iteration-5 considered as an encrypted segment for the segment S6. 

1001101011101100
1
10110111

2
11011010

3
10010011

4
11100010

5
10111100

6
 

11010111
7
10011010

8
 

The formation of cycles for segments S7 (00111100) is shown below. After 8 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (00100000) 

after iteration-3 considered as an encrypted segment for the segment S7. 

0011110000101000
1
00110000

2
 00100000

3
 00111111

4
00101010

5
00110011

6
   

00100010
7
00111100

8
 

On completion of the cycle formation technique on each segment  as indicated above, seven 

intermediate blocks one for each segment are considered as the encrypted segments. On 

merging the above seven encrypted segments following SA based encrypted text is 

generated. 

10010011/01010001/00110000/01001000/00101011/10001010/11010010/00010000/101100

00/10111010/10000100/11100010/00100000 

Consider the Double Hidden Layer Perceptron (DHLP) synchronized 128 bits session key is  

00110010/11101001/10111000/11000101/00011001/01000111/00010000/01010100/110011

00/00011010/01101111/00100101/01000111/11001110/10101100/00101011 



 Arindam Sarkar, University of Kalyani, India 109 

Following is the session key encrypted final cipher text produce on performing               

Exclusive-OR operation between SA based encrypted text and DHLP synchronized session 

key.    

10100001/10111000/10001000/10001101/00110010/11001101/11000010/01000100/011111

00/10100000/11101011/11000111/01100111.  

 

3.4  Security Analysis 

In DHLPSCT, sender (A) and receiver (B) do not share a common secret but use their 

indistinguishable weights as a secret session key. The fundamental conception of DHLP 

based key exchange protocol focuses mostly on two key attributes of DHLP. Firstly, two 

nodes coupled over a public channel will synchronize even though each individual network 

exhibits disorganized behavior. Secondly, an outside network, even if identical to the two 

communicating networks, will find it exceptionally difficult to synchronize with those 

parties, are communicating over a public network. An attacker (E) who knows all the 

particulars of the algorithm and records through this channel finds it thorny to synchronize 

with the parties, and hence to calculate the common secret key. Synchronization by mutual 

learning (A and B) is much quicker than learning by listening (E). Usual cryptographic 

systems, improve the safety of the protocol by increasing of the key length. In the case of 

DHLP, security is improved by increasing the synaptic depth 𝐿 of the DHLP. The 

communication of DHLPs has been discussed as a substitute concept for secure symmetric 

key exchange. For the key exchange protocol eavesdropping attacks can all be made 

arbitrarily costly and thus can be defeated by simply increasing the parameter synaptic depth 

(𝐿) of the DHLP i.e. weight range. The security increases proportional to 𝐿2
 while the 

probability of a successful attack decreases exponentially with 𝐿. The approach is thus 

regarded computationally secure with respect to these attacks for sufficiently large 𝐿. For a 

brute force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁 

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For 

example, the DHLP configuration 𝐾1 = 3, 𝐾2 = 3, 𝐿 = 3 and the value of 𝑁 = 100 gives                                      

 (2 × 3 + 1)(3×100+3×3) key possibilities, making the attack unfeasible. E could start from all 

of the (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) initial weight vector and calculate the ones which are consistent 

with the input/output sequence. It has been shown, that all of these initial states move 
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towards the same final weight vector, the key is unique. This is not true for simple perceptron 

the most unbeaten cryptanalysis has two supplementary ingredients first; a group of attacker 

is used. Second, E makes extra training steps when A and B are quiet. So increasing synaptic 

depth 𝐿 of the DHLP we can make our DHLP safe. The main difference between the partners 

and the attacker in DHLP is that A and B are able to influence each other by communicating 

their output bits and while E can only listen to these messages. Of course, A and B use their 

advantage to select suitable input vector for adjusting the weights. This finally leads to 

different synchronization times for partners and attackers. Bidirectional interaction of the 

partners confirm that the security of DHLP key generation. Both A and B uses a secret seed 

for generating identical input vector. Whereas attacker does not know this secret seed state. 

By increasing synaptic depth (weight range) average synchronize time will be increased 

polynomial time. But success probability of attacker will be drop exponentially 

Synchronization by mutual learning is much faster than learning by adapting to example 

generated by other network. As E can’t influence A and B at the time they stop transmit due 

to synchronization. Only one weight get changed where, 𝜎𝑖 = 𝜏. So, difficult to find weight 

for attacker to know the actual weight without knowing internal representation it has to 

guess. It is important to note, though, that all of the existing attacks refer to a non-

authenticated key exchange, in which a MITM-attack on the symmetric principle is possible 

as well. Generally, for mutual authentication the two parties engage in a conversation to 

increase their confidence that it is a specific other party with whom they communicate. 

Additionally exchanging a new secret (session) key leads to authenticated key exchange. 

Assume that all communication among interacting parties is under the adversary’s control. In 

particular, the adversary can read the bit packages produced by the parties, provide her own 

bit packages to them, modify bit packages before they reach their destination, and delay bit 

packages as well as replay them. The scheme cannot be reduced to number-theoretic 

hardness assumptions. Yet, a proof that the authentication is sound is given, as well as a 

proof of its security with regard to eavesdropping-attacks that also use DHLPs. The structure 

of the network, the involved computations producing the output 𝜏𝐴/𝐵(𝑡). The different initial 

preliminary keys 𝑊𝑖𝑗
𝐴,𝐵 𝑡0  of the two parties are the secret information. If they were public, 

the resulting final keys could simply be calculated (by an adversary), because all further 

computations are completely deterministic. An implicit solution to include authentication 
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into the DHLP key exchange protocol bases on the simple but strong fact, that two 

interacting parties A and B which have different input vector 𝑥A
(t) ≠ 𝑥B

(t);   𝑥A
(t), 𝑥B

(t) ∈

 {0, 1}𝐾1×𝑁 cannot become synchronous. Equation 3.13 shows two DHLPs A and B are 

synchronous at iteration 𝑡s when all their weights are identical.  

             𝑊𝑖𝑗
𝐴 𝑡𝑠 = 𝑊𝑖𝑗

𝐵 𝑡𝑠   ∀ 𝑖, 𝑗                                        (3.13) 
Equation 3.14 shows two corresponding hidden units of two DHLPs A and B are 

synchronous at iteration 𝑡s when all their weights (components) are identical: 

             𝑊𝑖𝑗
𝐴 𝑡𝑠 = 𝑊𝑖𝑗

𝐵 𝑡𝑠  ∀𝑗 (𝑖 𝑓𝑖𝑥𝑒𝑑)                              (3.14) 

Once a summation unit is synchronous (i.e. it is in an identical state with the other party) it 

remains synchronous for all subsequent iterations. Two corresponding summation units 
A
i

and 𝜎𝑖
𝐵of two DHLPs A and B that have identical internal states 𝑊𝑖𝑗

𝐴 𝑡 = 𝑊𝑖𝑗
𝐵 𝑡  

∀𝑗  𝑖 𝑓𝑖𝑥𝑒𝑑  at an arbitrary iteration 𝑡𝑠 (that are synchronous at an arbitrary iteration 𝑡𝑠) 

remain synchronous for all 𝑡 > 𝑡𝑠 when having the same inputs and applying the same 

learning rule and bounding operation. Consider the subsequent iteration at time 𝑡𝑠 + 1. 

Formally, two cases can be distinguished, first is no adaptation at iteration 𝑡𝑠 +  1.            

If 𝜏𝐴 𝑡𝑠 + 1 ≠ 𝜏𝐵 𝑡𝑠 + 1 , no adaptation is performed and in this trivial case                       

𝑊𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐴 𝑡 = 𝑊𝑖𝑗
𝐵 𝑡 = 𝑊𝑖𝑗

𝐴 𝑡𝑠 + 1  , ∀𝑗  𝑖 𝑓𝑖𝑥𝑒𝑑  i.e. the summation units of 

both DHLPs remains synchronous. Second is adaptation at iteration 𝑡𝑠 + 1.  

If  𝜏𝐴 𝑡𝑠 + 1 =  𝜏𝐵 𝑡𝑠 + 1 = 𝜎𝑖
𝐴 𝑡𝑠 + 1 = 𝜎𝑖

𝐵 𝑡𝑠 + 1 , an adaptation is performed 

and each component 𝑗 of the weight vector of hidden unit 𝑖 of both parties will be changed 

according to the same learning rule given in equation 3.15 for the parties A and B. 

            𝑊𝑖𝑗
𝐴/𝐵 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐴/𝐵 𝑡𝑠 +  𝜏𝐴/𝐵 𝑡𝑠 + 1 𝑋𝑖𝑗
𝐴/𝐵 𝑡𝑠 + 1  , ∀𝑗  𝑖 𝑓𝑖𝑥𝑒𝑑             (3.15) 

      The adaptation is performed in the same direction given in equation 3.16 and 3.17.  

                                                 𝜏𝐴 𝑡𝑠 + 1 =  𝜏𝐵 𝑡𝑠 + 1                                                   (3.16) 

             𝑋𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑋𝑖𝑗

𝐵 𝑡𝑠 + 1 , ∀𝑖, 𝑗                                              (3.17) 

Thus 𝑊𝑖𝑗
𝐴 𝑡𝑠 + 1 = 𝑊𝑖𝑗

𝐵 𝑡𝑠 + 1 ,∀𝑗  𝑖 𝑓𝑖𝑥𝑒𝑑 – the summation units remain synchronous. 

Proposed mechanism has been compared with existing key exchange method like                    
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Diffie-Hellman Key exchange. In this existing method attackers can reside middle of sender 

and receiver and tries to capture all the information transmitting from both parties Intruders 

can act as sender and receiver simultaneously and try to steal secret session key at the time of 

exchanging key via public channel. 

In DHLPSCT,  problem of Man-In-The-Middle (MITM) attack of Diffie-Hellman Key 

exchange has been resolved by DHLP based session key generation technique where  both 

sender and receiver uses an identical DHLP. In each session sender’s and receiver’s both 

DHLPs are start synchronization by exchanging some control frames. During 

synchronization process message integrity test and synchronization test has been carried out. 

Synchronized identical weight vector forms the session key on synchronization for a 

particular session. So, in this technique session key instead of transferring through public 

channel DHLP based synchronization process is carried out and outcomes of this used as a 

secret session key for that entire session. That actually helps to get rid of famous Man-In-

The-Middle attack. The following standard attacks are considered to ensure the robustness of 

the DHLPSCT.  

 Cipher text only Attack: The DHLPSCT nullifies the success rate of this attack by 

producing a completely random SA based encryption/decryption keystream. The strength 

of resisting exhaustive key search attack relies on a large key space. Initially, SA based 

large keystream is used to encrypt the plaintext after that, outcomes of this passes through 

Exclusive-OR based cycle formation based encryption process and DHLP generated 

session key based encryption. So, cipher text produces by this technique is 

mathematically difficult to break. Thus a hacker has to try all such keystreams to find an 

appropriate one. This method makes it difficult for the hacker to find out the keystream 

used for encryption. The technique helps to generate long period of random keystreams 

along with no obvious relationship between the individual bits of the sequence. Also the 

generated keystreams are of large linear complex. Finally keystream have high degrees of 

correlation immunity. Thus it is practically difficult to perform a brute-force search in a 

key-space. 
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 Known Plaintext Attack: DHLPSCT offers better floating frequency of characters and in 

SA based encryption technique cycle formation operation also enhance the security of the 

technique. So, known plaintext attack is difficult in this technique.   

 Chosen Plaintext Attack: The technique passes the frequency (monobit) test, runs test, 

binary matrix rank test and in each session a fresh DHLP based session key is used for 

encryption which confirms that chosen plaintext attack is very difficult in this technique. 

 Chosen Cipher text Only Attack: The technique passes the discrete Fourier transform test, 

approximate entropy test, overlapping (periodic) template matching test which confirms 

that chosen plaintext attack is difficult in this technique.  

 Brute Force Attack: In DHLPSCT, security is improved by increasing the synaptic depth 

𝐿 of the DHLP. The security increases proportional to 𝐿2
 while the probability of a 

successful attack decreases exponentially with 𝐿. The approach is thus regarded 

computationally secure with respect to these attacks for sufficiently large 𝐿. For a brute 

force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁 

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For 

example, a DHLP with the configuration 𝐾1 =  3, 𝐾2 = 3, 𝐿 =  3 and 𝑁 =  100 

produces (2 × 3 + 1)(3×100+3×3)  amount of session key which makes the attack 

difficult.  

3.5 Discussions 

DHLPSCT is simple and easy to implement in various high level language. The test results 

show that the performance and security provided by the DHLPSCT is good and comparable to 

standard technique. The security provided by the technique is comparable with other 

techniques. To enhance the security of the technique, DHLPSCT offers changes of some 

parameters randomly in each session. To generate the secret session key secret seed get 

exchanged between sender and receiver. This technique has a unique ability to construct the 

secret key at both sides using this DHLP synchronization. Since the encryption and decryption 

times are much lower, so processing speed is very high. The method takes minimum amount 

of resources which is greatly handle the resource constraints criteria of wireless 



 Arindam Sarkar, University of Kalyani, India 114 

communication. DHLPSCT outperform than existing TPM, PPM and method proposed in 

chapter 2. No platform specific optimizations were done in the actual implementation, thus 

performance should be similar over varied implementation platform. The whole procedure is 

randomized, thus resulting in a unique process for a unique session, which makes it harder for 

a cryptanalyst to find a base to start with. This technique is applicable to ensure security in 

message transmission in any form and in any size in wireless communication.  

Some of the salient features of DHLPSCT are summarized as follows:   

a) Session key generation and exchange – Identical session key can be generate after the 

tuning of DHLP in both sender and receiver side. So, no need to transfer the whole 

session key via vulnerable public channel. 

b) Degree of security – The technique does not suffers from cipher text only attack, 

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute 

force attack and attacks during DHLP synchronization process.  

c) Variable block size – Encryption algorithm can work with any block length and thus 

not require padding, which result identical size of files both in original and encrypted 

file. So, DHLPSCT has no space overhead. 

d) Variable key – 128/192/256 bits DHLP based session key and 128/192/256 bits 

SA based encrypted keystream with high key space can be used in different sessions. 

Since the session key is used only once for each transmission, so there is a minimum 

time stamp which expires automatically at the end of each transmission of 

information. Thus the cryptanalyst may not be able guess the session key for that 

particular session. 

e) Complexity – The technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh 

through wireless communication. So, the DHLPSCT may be suitable in wireless 

communication. 

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value 

have been performed between the source and corresponding cipher streams 

generated using DHLPSCT. Measures indicate that the degree of non-homogeneity of 
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the encrypted stream with respect to the source stream is good. This technique has a 

better Chi-Square value than technique proposed in chapter 2. 

g) Floating frequency – In the DHLPSCT it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security for the technique. This 

technique has a better floating frequency than technique proposed in chapter 2. 

h) Entropy – The entropy of encrypted characters is near to eight which indicate the 

high degree of security of technique. This technique also has a better entropy value 

than technique proposed in chapter 2. 

i) Correlation – The cipher stream generated through proposed technique is negligibly 

correlated with the source stream. Therefore the DHLPSCT may effectively resist 

data correlation statistical attack. 

j) Key sensitivity – The technique generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 

k) Security and performance trade-off – The technique may be ideal for trade-off 

between security and performance of light weight devices having very low processing 

capabilities or limited computing power in wireless communication. 
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4.1 Introduction 

In this chapter a novel soft computing based cryptographic technique CDHLPSCT, on 

synchronization of Chaos based two Double Hidden Layer Perceptron (CDHLP), has been 

proposed. The DHLPSCT technique proposed in chapter 3 have some drawbacks like secret 

seed values used in the generation of identical input vector has to be transmitted to the other 

party via public channel in the 𝑆𝑌𝑁 frame in each iteration. This significantly increases the 

synchronization time. Also for ensuring the security this parameters should not be 

transmitted via public channel. Furthermore, till now all the synchronization techniques 

devised in previous chapters concentrated only in session key generation mechanism by 

tuning the sender and receiver. But the process of generating session keys does not guarantee 

the information security. Because, any attacker can also synchronize with an authorized 

device, because the protocol is a public knowledge. Proposed CDHLPSCT of this chapter 

eliminates all the above stated drawbacks of the DHLPSCT in chapter 3, KSOFMSCT in 

chapter 2 and existing TPM and PPM.  

Here, Chaos based Double Hidden Layer Perceptron (CDHLP) synchronization 

mechanism has been introduced between sender and receiver where instead of transmitting 

the secret seed values used in the generation of identical input vector in each iteration, Chaos 

is use to generate identical random seed value for generating common input vector at the 

both ends.
[202]

 This improves the security of the technique. Also to ensure that only entities 

authorized have access to information, authentication service has been introduced in this 

chapter. The function of the authentication service is to ensure the recipient that the message 

is from the source that it claims. CDHLPSCT performs secret keys authentication where both 

entities must have a common secret code. This newly introduced technique significantly 

reduces the risk and increases the security.  

On the completion of the tuning phase identical session keys is generated at the both end 

with the help of synchronized CDHLP. This synchronized network can be used for 

transmitting message using any light weight encryption/decryption technique with the help of 

session key of the synchronized network. To illustrate the cryptographic technique using 

CDHLP in wireless communication one of the simple and secure encryption/decryption 

technique has been presented. A plaintext is considered as a stream of binary bits. Genetic 

Algorithm (GA) guided enciphering technique
[203]

 with the help of CDHLP tuned session key 
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is used to generate the cipher text. The plaintext is regenerated from the cipher text using 

same technique with the help of CDHLP tuned session key at the receiver. 

Section 4.2 represents a description of proposed technique in detail. Section 4.3 deals 

with the implementation of the proposed cryptographic technique. Section 4.4 discussed the 

security issues related to the proposed technique. Discussions are presented in section 4.5.   

4.2 The Technique  

The technique performs the CDHLP based synchronization for generation of secret session 

key at both ends. This synchronized session key of the tuned network is used for the 

transmission of secured message through wireless network with the help of any light weight 

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless 

communication one of the simple and secure encryption/decryption technique has been 

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is 

encrypted using GA generated fittest encryption/decryption keystream. The session key 

based on CDHLP is used to encrypt intermediate output which produces final cipher text. 

Identical CDHLPs are used to tune the sender and receiver to generate the secret session key 

at both ends. Chaos helps to generate identical secret seed values (𝑧) at the both end using 

chaos synchronization. This identical seed value is used to generate identical input vector. 

For generating common seed value (𝑧) in sender and receiver side two chaotic system 

synchronized with each other by exchanging parameters ( 𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2 ) between 

sender and receiver. Some of the parameter which takes major roles to form the common 

seed value (𝑧) does not get transmitted via public channel, sender keeps these parameters 

secret. Two CDHLPs at sender and receiver start with common seed value (𝑧) based identical 

input vector and completely anonymous random weight vector. In each time both CDHLPs at 

both end compute their final output based on input and weight vector, and communicate to 

each other. If both are be in agreement on the mapping between the present input and the 

output, their weights are updated according to an appropriate learning rule. After 

synchronization weight vector of both CDHLPs become identical. This identical weight 

vector forms the session key.  
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 CDHLPSCT performs secret session keys authentication where both sender and receiver 

must have a common secret code. Here, two secret codes are used, called 𝑅𝑆𝐶 (Receiver 

Secret Code) and 𝑆𝑆𝐶 (Sender Secret Code). 

In GA based keystream generation technique LFSR (Linear Feedback Shift register) are 

used to generate the initial population of keystream (i.e. chromosomes). Each chromosome 

that represents candidate keystream is strings of characters ‘𝑎’ …  ’𝑝’ along with LFSR 

function (SR), bitwise OR, bitwise AND, bitwise Exclusive-OR and these are represented 

using prefix notation.The letters ‘𝑎’ …  ’𝑝’ represent the numbers 0. . .15. Thus, each letter is a 

sequence of four bits. The number of these letters must be even, because half of them are 

used for the initial state of the LFSR, and the second half for the feedback function of LFSR. 

GA based keystream generation algorithm first initialize the keystream (chromosome) size 

(maximum 300 characters for each chromosome), select a value up to which the algorithm 

will iterate i.e. the maximum number of generation depend on the resource available at the 

time of wireless communication and generate initial population of keystream randomly 

having size of 200 keystream. Then for each keystream in the population fitness is evaluated. 

Fitness values of each keystream in the population are calculated depending on the 

randomness of the generated keystream, keystream period length and keystream length.  The 

process checks whether the current generation number is less or equal to the maximum 

number of generations, if so, then the process performs uniform crossover and dynamically 

adjust the crossover probability and then mutation operation is performed through 

dynamically adjusted mutation probability. Newly generated chromosomes through genetic 

operations like uniform crossover and mutation formed a new population. So, fitness value of 

each chromosome in this newly formed population is evaluated. Fitness calculation is 

performed again for the newly generated keystream and then checks whether the fitness 

value of new generation is higher than the fitness value of old generation, if so, then the 

process set the new population as the current population. The process again check whether 

the current generation number is less or equal to the maximum number of generations, if the 

condition is still satisfied then operation is repeated until the best fittest keystream is found or 

maximum number of generation is reached whichever is earlier. If the length of the plaintext 

to be encrypted is grater then the length of GA based keystream then square edge based 

keystream expansion method is used to extend the length of the keystream. Stream of 
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plaintext is then encrypted using the GA based keystream/expanded keystream. Finally a 

cascaded Exclusive-OR operation is performed between GA encrypted text and the CDHLP 

based session key to generate final cipher text. 

Receiver has same CDHLP synchronized session key. This session key is used to perform 

first step of the deciphering technique. In the next step, GA guided keystream based 

deciphering operation is performed to regenerate the plaintext.  

The CDHLPSCT does not cause any storage overhead. This greatly handles the resource 

constraints criteria of wireless communication. A comparison of proposed technique with 

previously proposed technique in chapter 3, chapter 2, existing Tree Parity Machine (TPM), 

Permutation Parity Machine (PPM), and industry accepted AES, RC4, Vernam Cipher, 

Triple DES (TDES) and RSA have been done. Analyses of results are given in chapter 7.  

In CDHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits which 

is encrypted using GA generated fittest keystream. Chaos based DHLP synchronized session 

key is used to further encrypt the GA encoded text to produce final cipher text. The algorithm 

for the complete process is given in section 4.2.1. 

4.2.1 CDHLPSCT Algorithm at Sender 

Input     :   Source file/source stream i.e. plaintext 

      Output  :   Encrypted file/encrypted stream i.e. cipher text 

      Method :  The process operates on binary stream and generates encrypted bit stream through 

CDHLP guided Genetic Algorithm (GA) based encryption operations.  

Step 1.    Perform tuning of sender’s and receiver’s CDHLP to generate 

common secret session key. 

Step 2.       Generates GA based fittest encryption keystream. 

Step 3.  Perform GA based encryption operation on the plaintext. 

Step 4. Perform cascaded Exclusive-OR operation between CDHLP based 

session key and outcomes of step 3. 

Step 1 of the algorithm generate common session key through synchronization of CDHLP at 

both end. The detailed step is discussed in section 4.2.1.1. Step 2 of the algorithm generates 

GA based fittest encryption keystream. The detailed description of the process is given in 
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section 4.2.1.2. Algorithm for performing GA based encryption operation (step 3) on the 

plaintext is discussed in 4.2.1.3. The technique of cascading encryption process (step 4) 

which takes the intermediate output generated in step 3 is given in details in section 4.2.1.4. 

4.2.1.1 Chaos based Double Hidden Layer Perceptron (CDHLP) Synchronization and 

Session Key Generation 

A novel Chaos based scheme is introduce to generate identical seed values at the both sender 

and receiver end at the initial phase. There are several authentication methods, differentiated 

mainly by the use of secret-keys or public-keys. CDHLPSCT performs secret keys 

authentication where both entities must have a common secret code. Here, two secret codes 

are used, called 𝑅𝑆𝐶 (Receiver Secret Code) and 𝑆𝑆𝐶 (Sender Secret Code) which are known 

to both parties. This codes are used to examine whether the authenticate parties are involved 

in synchronization or not. The CDHLP synchronization technique use the already discussed 

architecture and parameters of DHLP synchronization technique of chapter 3 with some 

additional parameters for chaos synchronization. 

Common seed has been generated by synchronization of two chaotic systems using Pecora 

and Caroll (PC) method
[204]

. In this technique tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2) are 

being exchanged between sender and receiver for synchronization purpose. Some of the 

parameter which takes major roles to form the seed does not get transmitted via public 

channel, sender keeps these parameters secret. This way of handling parameter passing 

mechanism prevents any kind of attacks during exchange of parameters like sniffing, 

spoofing, phishing, or Man-In-The-Middle (MITM) attack.In this technique PC method is 

applied on the Edward Lorenz chaotic system
[205]

 to describe three equations 4.1, 4.2 and 4.3 

to form two secure sub systems i.e. initiator (sender) and responder (receiver).  

                                                           𝑥 = 𝜎 𝑥 − 𝑦                                                              (4.1) 

                          𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧                    (4.2)   
                                                           𝑧 = 𝑥𝑦 − 𝑏𝑧                                                               (4.3) 

The main objective of this technique is coordination of two chaotic systems.  This is refers to 

a method where two (or more) chaotic systems (either identical or non identical) regulate a 

given property of their motion to a similar performance owing to a pairing or to a forcing 
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(periodical or noisy). Proposed technique use the PC method to assume a dynamical system 

characterized by the state space equation 4.4. 

                                                                     𝑥  = 𝑓 𝑥                                                                  (4.4) 

Where 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛  the system vector and 𝑓 is an arbitrary mapping. Further system is 

decomposed into two following sub system represented by equation 4.5 and 4.6. 

    
 𝑢 
 = 𝑓 𝑢 , 𝑣  

𝑣  = 𝑔 𝑢 , 𝑣  
 𝑑𝑟𝑖𝑣𝑒𝑟                                         (4.5) 

                                                                                                           

 

                                                                 𝑤  =  𝑢 , 𝑤    𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒                                             (4.6) 

 

Driver signal 𝑢 (𝑡) is drives the response system. Using Lyapunov exponents of the response 

system along with consideration that the action of the driver is negative, Chaotic 

synchronization can be possible between these driver and response system. From the 

following equations two secure sub systems i.e. initiator and responder respectively can be 

defined by applying the PC method on the Lorenz system. The initiator (sender) ( 𝑥1 ,  𝑧1 ), 

can be defined by equations 4.7 and 4.8. 

                                                          𝑥1 = 𝜎(𝑥1 − 𝑦)                                                           (4.7) 

                                                          𝑧1 = 𝑥1𝑦 − 𝑏𝑧1                                                           (4.8) 

The responder (receiver) ( 𝑦2 ,  𝑧2 ) can be defined by equations 4.9 and 4.10. 

                                                          𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2                                                    (4.9) 

                                                          𝑧2 = 𝑥𝑦2 − 𝑏𝑧2                                                         (4.10)                                                                      

From the above two equations 4.9 and 4.10 it can be observed that the Lyapunov exponents 

of the system are both negative. The sender and receiver response subsystems are driven by 

the signal 𝑦(𝑡) and 𝑥(𝑡).  When 𝑡 trends to infinity value of  𝑧2 − 𝑧1  trends to zero. After 

synchronization of both the system a common value of both the system is obtained.  

Figure 4.1 shows that in this technique at first sender initialize the value of 𝜎 and 𝑏, after that 

value of 𝑏 is send to the receiver. Receiver initializes the value of  𝑟 and send to the sender. 

Sender initially generates random value for the point 𝑥1 and 𝑧1. Sender sends 𝑥1 to receiver. 

Receiver initially generates random value for the point 𝑦2, 𝑧2  and sends to the sender. So, 

receiver receives the value of 𝑏 and 𝑥1 from the sender and sender receives 𝑦2, 𝑧2, from the 

receiver.    
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Figure 4.1: Exchange of values between sender and receiver at the initial state  

Receiver calculates the new value of 𝑦2 and 𝑧2 with the help of 𝑟 and 𝑏 and 𝑥1 (received from 

sender) using the equation 4.11 and 4.12 and returns the value of 𝑦2 and 𝑧2 to the sender. In 

the equation 4.11the value of  𝑥 = 𝑥1 (current value received form sender).  

                                                          𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2                                                  (4.11) 

                                                    𝑧2 = 𝑥𝑦2 − 𝑏𝑧2                                                         (4.12) 

Sender calculates the new value of 𝑥1 and 𝑧1 with the help of receives value 𝑦2  from the 

receiver and own generated values 𝜎 and 𝑏 using the equation 4.13 and 4.14 and sends the 

value of new 𝑥1  to the receiver and so on. In equation 4.13 and 4.14  𝑦 = 𝑦2(current value 

received from receiver) 

                                                          𝑥1 = 𝜎 𝑥1 − 𝑦                                                          (4.13) 

                                                          𝑧1 = 𝑥1𝑦 − 𝑏𝑧1                                                         (4.14) 

 

The figure 4.2 shows the exchange of updated parameters. 

 

 

 

 

 

 

Figure 4.2: Exchange of updated values of the parameters 𝑥1 , 𝑦2 and 𝑧2   

𝑟, 𝑦2, 𝑧2 transmitted to the sender 

𝑏 , 𝑥1 transmitted to the receiver 
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After predefined amount of exchange of parameters sender generates a nonce which is a 

random number. This nonce gets encrypted using a symmetric cipher with 𝑧1 as the key and 

sends the results of the encryption using equation 4.15.  

                                            𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒            (4.15) 

The receiver receives 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 from sender. Then decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2  as the key 

and performs a defined function 𝑓( ) on it using equations 4.16and 4.17 respectively.  

                                                𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 

                                     (4.16) 

                                                          𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒                                           (4.17) 

The receiver encrypts the result of the previous step using 𝑧2  as the key and sends the result 

to the sender using equation 4.18.  

                                         𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 

                               (4.18)     

Figure 4.3 shows the exchange of  𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒. 

 

 

 

 

 

 

 

Figure 4.3: Exchange of 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 and 𝐸𝑁_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒
     

 

Sender receives the message 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 from receiver and tries to decrypts this message 

using 𝑧1 as the key and also performs the inverse of the pre-defined function 𝑓( ) and checks 

if the original nonce is obtained or not using equation 4.19.  

                                         𝑁𝑜𝑛𝑐𝑒 = 𝑓−1  𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒  

                           (4.19)    

If the original „Nonce‟ is generated it can be concluded that both chaotic system has the same 

value of z i.e. z1 = z2 on which they get synchronized.  Then z1 is used as a secret seed for 

generation of identical input vector for sender and receiver. Otherwise if original Nonce not 
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get obtained then again some predefined amount of message get exchanged between sender 

and receiver for chaos synchronization.
 

Two CDHLPs start with chaos synchronized secret seed value generated identical input 

vector and anonymous random weight vector. CDHLPs compute their final output based on 

input and weight vector, and communicate to each other. If both are in agreement, their 

weights are updated using appropriate learning rules. Within finite number of steps both 

CDHLPs is synchronized and as a results weight vector of both CDHLPs become identical. 

This indistinguishable weight vector forms the session key for a particular session. 

However, only the process of generating keys does not guarantee the information 

security. Therefore, any attacker can also synchronize with an authorized device, because the 

protocol is a public knowledge. Thus, to ensure that only entities authorized have access to 

information is necessary authentication service. The function of the authentication service is 

to ensure the recipient that the message is from the source that it claims. There are several 

authentication methods, differentiated mainly by the use of secret-keys or public-keys. 

Unlike encryption algorithms, in public-key authentication the user A send message 

encrypted with A‟s private-key. The recipient of the message uses the public-key to verify 

the message, thus ensuring that only the owner of the private-key could have encrypted the 

message. On secret keys authentication both entities must have a common secret code. In this 

proposed approach two secret codes are used, called 𝑅𝑆𝐶 (𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑆𝑒𝑐𝑟𝑒𝑡 𝐶𝑜𝑑𝑒) 

and  𝑆𝑆𝐶 (𝑆𝑒𝑛𝑑𝑒𝑟 𝑆𝑒𝑐𝑟𝑒𝑡 𝐶𝑜𝑑𝑒), as shown in the figure 4.4.  
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Figure 4.4: Exchange of authentication frame during session key certification phase 

In the proposed technique CDHLPs start synchronization by exchanging some control 

frames. The process involves message integrity and synchronization test. Proposed CDHLP 

synchronization uses transmission of control frames at the time of three way handshaking 

based TCP connection establishment phase, as given in table 4.1. 

Table 4.1 

Control frames of CDHLP synchronization 
Frame Description 

𝑆𝑌𝑁 
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment 

phase 

𝐴𝐶𝐾_𝑆𝑌𝑁 
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝑁𝐴𝐾_𝑆𝑌𝑁 
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection 

Sender‟s CDHLP Receiver‟s CDHLP 

  𝑻     𝑺𝑺𝑪 
𝑰𝑫     𝑹𝑺𝑪 

𝑻     𝑺𝑺𝑪 
        𝑹𝑺𝑪 

𝑨𝑼𝑻𝑯(𝑬𝒏𝒄𝒓𝒚𝒑𝒕 (𝑺𝑺𝑪)) 

𝑨𝑼𝑻𝑯(𝑬𝒏𝒄𝒓𝒚𝒑𝒕 (𝑹𝑺𝑪)) 

  

∑ 

∑ 

 

𝜋 

 

 

 

 
  . 

  . 

  .  

∑ 

 

∑ 

 

∑ 

 

∑ 

 

  

∑ 

∑ 

 

𝜋 

 

 

 

 
  . 

  . 

  .  

∑ 

 

∑ 

 

∑ 

 

∑ 

 



 Arindam Sarkar, University of Kalyani, India 128 

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index 

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a 

timer and waits for a reply from the receiver. If the receiver does not take any action until a 

certain time limit and number of attempts exceeded a certain value, the sender restarts the 

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, it carry out the 

integrity test. If the messages are received as sent (with no replication, incorporation, 

alteration, reordering, or replay) the receiver will execute the synchronization check. The 

sender and receiver have an identical 𝑇 variable formally store in their respective memory. 

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256 

bits weights to decrypt of the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in 

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the 

networks are synchronized. This is the best case solution where sender and receiver 

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial 

stage. The receiver should send the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to alert the sender. But most of the time 

this best case is may not achievable. If decryption algorithm does not produce predictable 

result, the receiver should use the secret seed of senders to produce the input vector (𝑋) 

which is identical to sender. With this input vector the receiver will work out its 

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ). If the receiver‟s and sender‟s outputs are different, the receiver should 

not fine-tune its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 

frame to notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this 

technique is used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁 frame. 

If receiver‟s output is equal to sender‟s output i.e. (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ) then receiver update 

it weights. At the end of weights update, the receiver should report the sender that outputs are 

equal. The receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same 𝐼𝐷 value 

received from sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this technique is used for providing 

the positive acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the 

sender also updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights. The 

sender will create new synchronization frame until receive the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame from 

receiver. When the sender receives the 𝐹𝐼𝑁_𝐴𝐶𝐾 frame, it stops the further synchronization. 

The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this technique is used for closing the connection.  At end of 

synchronization, both networks provide the identical weight vector which acts as a session 
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key identical to both ends. The figure 4.5 shows the exchange of frames during CDHLP 

synchronization process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Exchange of control frames between sender and receiver during CDHLP 

Synchronization 

Table 4.2 shows the different frames and their corresponding Command Codes 

Table 4.2 

CDHLP control frames and their command codes 
Frame Command 

𝑆𝑌𝑁 0000 

𝐹𝐼𝑁_𝑆𝑌𝑁 0001 

𝐴𝐶𝐾_𝑆𝑌𝑁 0010 

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011 

𝐴𝑈𝑇𝐻 0100 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111 

The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is 

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the 

sender sends a synchronization frame. The detailed frame format of 𝑆𝑌𝑁 frame is discussed 
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in section   4.2.1.1.1. The detailed frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 

4.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame has been discussed in section 4.2.1.1.3. The 

frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 4.2.1.1.4.  

4.2.1.1.1  Synchronization (𝑆𝑌𝑁) Frame 

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver 

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as 

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 . 

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in 

connection establishment phase.  𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has the fixed 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, five different fields like 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒 needs four bits. 

𝑆𝑌𝑁 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶 needs eight bits, one 

bits, 128 bits, sixteen bits respectively. When the receiver receive 𝑆𝑌𝑁 frame, the receiver 

should carry out integrity test. Receiver performs Integrity test on receiving the 𝑆𝑌𝑁 frame. 

If the messages are received as sent (with no replication, incorporation, alteration, reordering, 

or replay) the receiver will execute the synchronization test. In synchronization test receiver 

utilize its 128 first weights as key for decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  that is received 

from the sender. This received value is decrypted in the receiver end. After decryption 

operation if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are 

synchronized. Figure 4.6 shows the complete frame format of 𝑆𝑌𝑁 frame. 

           

 

 

                      4                  8                 1                           128                               16 (𝑏𝑖𝑡𝑠)         

Figure 4.6: Synchronization (𝑆𝑌𝑁) frame 

 

 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑  
 𝐶𝑜𝑑𝑒 
0000 

𝑆𝑌𝑁 𝐼𝐷 𝜏𝑆𝑒𝑛𝑑𝑒𝑟  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  

𝐶𝑅𝐶  
(𝐶𝑦𝑐𝑙𝑖𝑐         

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  
𝐶𝑒𝑐𝑘𝑒𝑟) 
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4.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 

needs sixteen bits for error checking purpose. Now check the condition i.e. If 

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑  

received from sender to produce the receiver input vector (𝑋) identical to sender input 

vector(𝑋) and calculates the output 𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ) then receiver should 

update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  using learning rule. At end of 

weight updation of the receiver, then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the 

sender for updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights.  

Figure 4.7 shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame. 

  

 

 

                                          4                           8                                  16 (𝑏𝑖𝑡𝑠) 

Figure 4.7: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 

4.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization 

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ) then the receiver 

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver and sender outputs are 

different, the receiver should not fine-tune its weights and inform the sender. The receiver 

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure 4.8 shows 

the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame. 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0010 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 



 Arindam Sarkar, University of Kalyani, India 132 

  

 

 

                                     4                          8                                   16 (𝑏𝑖𝑡𝑠) 

Figure 4.8: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 

4.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This 

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four 

bits. The  𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for 

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose. 

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

Receiver sends the FIN_SYN frame to the sender. Figure 4.9 shows the complete frame 

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 

 

 

 

                                             4                     8                          16 (𝑏𝑖𝑡𝑠) 

Figure 4.9: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 

 The CDHLP synchronization algorithm for generating synchronized session key is discussed 

in section 4.2.1.1.5. Section 4.2.1.1.6 presents the computational complexity of the CDHLP 

synchronization algorithm and CDHLP learning is discussed in section 4.2.1.1.7.  

4.2.1.1     CDHLP Synchronization  

Sender and receiver initially start Chaos synchronization between them to construct a 

common seed value at both ends. This Chaos synchronized identical seed value is used to 

generate the identical input vector at sender and receiver. Two CDHLPs start with Chaos 

synchronized common seed value generated identical input vector and anonymous random 

weight vector. In each time both CDHLPs compute their final output based on input and 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0011 

𝑆𝑌𝑁_𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0001 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶 

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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weight vector, and communicate to each other. If both are be in agreement on the mapping 

between the present input and the output, their weights are updated according to an 

appropriate learning rule. In the case of discrete weight values this process leads to full 

synchronization in a finite number of steps. After synchronization procedure weight vector of 

both CDHLPs become identical. These indistinguishable weight vector forms the session key 

for a particular session. 

Input      : Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2), random weights 

Output   : Sender’s and receiver’s synchronized CDHLP along with synchronized session key  

Method : Sender’s and receiver’s CDHLPs both are be in agreement on the mapping 

between the present input and the output, their weights are updated according to 

an appropriate learning rule. After synchronization procedure weight vector of 

both CDHLPs become identical. These indistinguishable weight vector forms the 

session key for a particular session. 

Step 1. Sender initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to 

the receiver. 

Step 2.    Receiver initializes the value of  𝑟.      

Step 3.    Sender generates the point 𝑥1 and 𝑧1.   

Step 4.    Receiver generates the point 𝑦2and 𝑧2.  

Step 5.       Sender sends 𝑥1 to receiver and receiver sends 𝑦2 and 𝑧2 to sender. 

Step 6.    Receiver calculates the new value of  𝑦2  and  𝑧2 with the help of 𝑟 and 

𝑏 using the equations 4.20 and 4.21 then returns the value of  𝑦2  and 

 𝑧2  to the sender.  

                                                                      𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2                               (4.20) 

                                        𝑧2 = 𝑥𝑦2 − 𝑏𝑧2                                      (4.21) 

Step 7.       Sender calculates the value of  𝑥1  and  𝑧1  with the help of 𝑦2, 𝜎 and 𝑏  

using equations 4.22 and 4.23 then sends the value of  𝑥1  to the 

receiver and so on.  

                                                                             𝑥1 = 𝜎 𝑥1 − 𝑦2                                     (4.22) 

                                                                             𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1                                    (4.23) 



 Arindam Sarkar, University of Kalyani, India 134 

Step 8.  Sender generates a nonce. This nonce gets encrypted using a 

symmetric cipher with 𝑧1 as the key and sends the results of the 

encryption using equation 4.24.  

                           𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒                       (4.24)  

Step 9.   The receiver decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2  as the key, performs a 

defined function on it using equation 4.25 and 4.26.  

                                                       𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 

                  (4.25) 

                                                                         𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 
                           (4.26)                                                                                              

Step 10.  The receiver encrypts the result of the previous step using 𝑧2 as the key 

and sends the result to the sender illustrated in equation 4.27. 

                       𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒              (4.27)

            

Step 11.  The sender decrypts this message using 𝑧1 as the key, performs the 

inverse of the pre-defined function and checks if the original nonce is 

obtained as shown in equation 4.28.  

                         𝑁𝑜𝑛𝑐𝑒 = 𝑓−1  𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒  

       (4.28)                                              
 

Step 12.  If synchronization is not achieved, the process is repeated from step 5. 

Step 13.  If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1  is used as a seed for 

a pseudo random number generator to generate identical                    

input vector(𝑋) at both end. 

Step 14. Initialization of synaptic links between input layer and first hidden 

layer and between first hidden layer and second hidden layer using 

random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .                                                  

                                          Repeat step 15 to step 24 until the full synchronization is achieved,  

Step 15. The input vector(𝑋) is generated both end using Chaos synchronized 

seed value.   

Step 16. Computes the values of hidden neurons by the weighted sum over the 

current input values. Each hidden neurons in first hidden layer 

produces 𝜎1
i values and each hidden neuron in second hidden layer 

produces 𝜎2
p values.   
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                                          These can be represented using equation 4.29 and 4.30. 

                                                                       𝜎1
i =  𝑠𝑔𝑛    𝐾1

𝑖=1   𝑁
𝑗=1 𝑊𝑖 ,𝑗  𝑋𝑖,𝑗                      

(4.29)
 

                             𝜎2
p =  𝑠𝑔𝑛    𝐾2

𝑝=1  𝑊𝑝 ,𝑖  
𝐾1
𝑖=1 𝜎𝑖

1                     
(4.30)

 

                                          𝑠𝑔𝑛(𝑥) is a function represents in equation 4.31, which returns the  

value −1, 0 𝑜𝑟 1:            

                                                                     𝑠𝑔𝑛(𝑥) =     

−1  𝑖𝑓 𝑥 < 0
0    𝑖𝑓 𝑥 =  0
1   𝑖𝑓  𝑥 > 0

                                  
(4.31)

 

If the weighted sum over its inputs is negative then set  𝜎𝑖 = −1.                

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or 

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0. 

Step 17.  Compute the value of the final output neuron by computing 

multiplication of all values produced by 𝐾2  no. hidden neurons using 

the equation 4.32. 

                                                                          τ =  𝜎𝑝
2𝐾2

𝑝=1                                         
(4.32)

 

Step 18.  Sender utilizes its 128 first weights as key for encryption of 𝑇 variable 

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .  

Step 19. Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for 

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually 

comprises of several fields 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, Sender 

output(𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶 (Cyclic 

Redundancy Checker). 

Step 20. Receiver performs Integrity test after receiving the SYN frame and 

then Receiver utilize its 128 first weights as key for decryption of 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇   that was received from the sender.  

Step 21. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then 

networks are synchronized. Go to step 25. 
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Step 22.  If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) ≠ 𝑇then 

receiver use the chaos synchronized secret seed to produce the 

receiver input vector(𝑋) identical to sender input vector(𝑋) and 

calculates the output 𝜏Receiver
 using step 16 and step 17. 

Step 23. If (𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ) then  performs the following steps 

Step 23.1 Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules discussed 

in chapter 1 section 1.8.  

Step 23.2 At end of receiver’s weights updation, the receiver sends 

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights 

using step 23.1.  

Step 23.3 Sender transmits  

                                                             𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝑇) to receiver. 

Step 23.4 Receivers checks 

                if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 

                                          then networks are synchronized. Go to step 25. 

Step 23.5 Perform the following checking 

                                   if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖 𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 

                                                             then networks are still not synchronized. Go to step 23.1. 

Step 24.  If (𝜏𝑆𝑒𝑛𝑑𝑒𝑟 ≠ 𝜏𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ) then the receiver sends the message 

𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. Go to step 15.  

Step 25. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to 

finish the synchronization phase.  

4.2.1.2 Complexity Analysis  

In CDHLP synchronization algorithm initialization of the value of 𝜎 and 𝑏 takes unit amount 

of computation at sender. Receiver initialization of the value of  𝑟 also takes unit amount of 

computation. Generation of the point 𝑥1  and 𝑧1  needs unit amount of computation. 

Generation of the point 𝑦2 and 𝑧2  requires unit amount of computation. Receiver calculates 

the new value of 𝑦2 and 𝑧2  with the help of 𝑟 and 𝑏. This step also takes unit amount of 
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computation. Sender calculates the value of 𝑥1  and 𝑧1  with the help of 𝑦2, 𝜎 and 𝑏.  This step 

also takes unit amount of computation. Sender generates a nonce having a random value. 

This nonce is encrypted using a symmetric cipher with 𝑧1 as the key and sends the results of 

the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The receiver 

decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key. It also takes  𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡  amount of 

computation. The receiver encrypts the result of the previous step using 𝑧2 as the key. It 

takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The sender decrypts this message using 𝑧1 

as the key, performs the inverse of the pre-defined function and checks if the original nonce 

is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. Initialization of 

weight vector takes (𝑁 × 𝐾1 +  𝐾1 × 𝐾2) amount of computations. For example, if  𝑁 =

2, 𝐾1 = 4, 𝐾2 = 2 then total numbers of synaptic links (weights) are (2 × 4 +  4 × 2) = 16. 

So, it takes 16 amount of computations. Generation of 𝑁 number of input vector for each 𝐾1 

number of hidden neurons takes (𝑁 × 𝐾1) amount of computations. Computation of the 

hidden neuron outputs takes  𝐾1 + 𝐾2  amount of computations. Where 𝐾1 and 𝐾2 are the 

number of hidden units in first and second layer respectively. Computation of final output 

value takes unit amount of computation because it needs only a single operation to compute 

the value. Encryption of 𝑇 using Exclusive-OR operation also takes unit amount of 

computation. Decryption of 𝑇 using Exclusive-OR operation also takes unit amount of 

computation. Checking 𝑖𝑓 (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 or not 

takes unit amount of computation. Weight updating procedure takes place where 

𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  using any of the learning rules which 

takes 𝑂 𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟   amount of computations.  

In best case of DHLP synchronization algorithm, sender’s and receiver’s arbitrarily 

chosen weight vectors are identical. So, networks are synchronized at initial stage do not 

needs to update the weight using learning rule. Here,  𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +  𝑁 × 𝐾1 +  𝑁 × 𝐾1 +  𝐾1 × 𝐾2 +  𝐾1 + 𝐾2   amount 

of computation is needed in best case which is in form of 

O Generation of common seed value + initialization of input vector +

initialization of weight vector + Computation of the hidden neuron outputs .  
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If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in each 

iteration the weight vectors of the hidden unit which has a value equivalent to the 

pereceptron output are updated according to the learning rule. This scenario leads to average 

and worst case situation where 𝐼 number of iteration to be performed to generate the identical 

weight vectors at both ends. So, the total computation for the average and worst case is 

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +  𝑁 × 𝐾1 +

 𝑁 × 𝐾1 +  𝐾1 × 𝐾2 +  𝐾1 + 𝐾2  +  𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  
 
)   

This is can be expressed as O Time complexity in first iteration + (No. of iteration ×

No. of weight updation) . 

4.2.1.3       CDHLP Learning Mechanism 

If the output bits are different for sender (A) and receiver (B) i.e. 𝜏𝐴 ≠ 𝜏𝐵, nothing get 

changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be 

updated. The weight vector of this hidden unit is adjusted using any of the learning rules 

discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes less synchronization 

steps than other two learning rules in the range of 2 − 4 − 2 − 5 (𝑁 − 𝐾1 − 𝐾2 − 𝐿) to 

2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian rule takes more steps to synchronize 

than other two learning rules. Here, Anti-Hebbian rules takes less time than the other two 

learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 − 2 − 30. Random Walk outperform 

from 2 − 4 − 2 − 35 and beyond that. The most vital findings is that if the synaptic depth 

i.e. weight range (𝐿) is increased, the complexity of a successful attack grows exponentially, 

but there is only a polynomial increase of the effort needed to generate a key. So, increasing 

the 𝐿 value security of the system can be increased.  
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4.2.1.2 Genetic Algorithm (GA) guided Fittest Keystream Generation 

A Genetic Algorithm (GA) guided approach is used to construct the keystream for 

encryption/decryption. Instead of this technique any other light weight encryption/decryption 

technique also may use for exchanging message between sender and receiver.  

Ordinary version of GA suffers from many troubles such as getting stuck in a local minimum 

and parameters dependence. In the proposed encryption/decryption keystream generation self 

acclimatize GA approach some useful improvements have been proposed to enhance the 

performance of the simple GA, by dynamically adjusts selected control parameters, such as 

population size and genetic operation rates, during the course of evolving a problem solution. 

That is because, one of the main problems related to GA is to find the optimal control 

parameter values that it uses, when a poor parameter setting is made for an evolutionary 

computation algorithm, the performance of the algorithm will be seriously degraded. Thus, 

different values may be necessary during the course of a run. A widely practiced approach to 

identify a good set of parameters for a problem is through experimentation. For these 

reasons, proposed technique offers the most appropriate exploration and exploitation 

behavior.  Following sub sections discussed about methodology used in self acclimatize GA 

based encryption/decryption keystream generation. 

The LFSR (Linear Feedback Shift Register) based generator is used to generate the 

chromosomes (solution) in self acclimatize GA. The operator used in this work is presented 

in table 4.3. 

Table 4.3 

Operator‟s format and their meaning  
Operator Format Meaning 

| |𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝑂𝑅 

& &𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝐴𝑁𝐷 

^ ^𝑎𝑏 𝐵𝑖𝑡𝑤𝑖𝑠𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 − 𝑂𝑅 

𝑋  𝐶𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 ‘𝑎’ …  𝑝’ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 0. .15 

𝑆𝑅 𝑆𝑅𝑥 𝑆𝑖𝑓𝑡 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑠 𝑆𝑅 𝑎𝑛𝑑 𝑥 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  

Each chromosome that represents candidate keystream generators is strings of characters 

which are represented using prefix notation. These syntactic rules should be preserved during 

the generation of the initial population. The initial states and feedback functions of the shift 

registers are represented as strings of the letters ‘𝑎’ …  ’𝑝’. These letters represent the 
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numbers 0. . .15. Thus, each letter is a sequence of four bits. So, from this (16 × 8)=128 bit 

keystream get generated. The length of a LFSR is determined by the number of letters which 

are initially generated randomly. The number of these letters must be even, because half of 

them for the initial state, and the second half for the feedback function. For example, if the 

number of these letters is eight, then four letters are used for the feedback function, thus, the 

length of LFSR is 16 bits (4 ×  4). Furthermore, the first zeros of the feedback function are 

ignored. 

For example, consider the LFSR “𝑆𝑅 𝑚𝑒𝑖𝑝” So, binary representation of the                        

LFSR “SR meip” will be 1100 0100 1000 1111. Here 1100 0100 (𝑚𝑒) is used for the initial 

state and rest half i.e. 1000 1111 (𝑖𝑝) is used for the feedback function.  Representation of „𝑖‟ 

is number (8)10 =  (1000)2 then the first three zeros are ignored. Now, here length of 1111 

(𝑝) is four bits and length of 1000 (i) is 1bit after ignoring first three zeros from LSB. So, the 

length of this LFSR will be five bits ( 4 + 1) = 5. The following are examples of the 

chromosomes: 

Chromosome 1: 𝑆𝑅𝑎𝑖𝑗 

Chromosome 2: ∧ 𝑆𝑅𝑚𝑐𝑝𝑆𝑅𝑛𝑐𝑜𝑒 

Chromosome 3: 𝑆𝑅𝑎𝑗𝑓𝑙𝑝𝑑𝑚𝑜𝑏𝑒𝑛𝑘𝑎 

Chromosome 4: |&𝑆𝑅𝑎𝑗 ∧ 𝑆𝑅𝑓&|𝑆𝑅𝑔𝑙𝑛𝑐 ∧ 𝑆𝑅𝑏𝑎𝑐𝑓𝑆𝑅𝑝𝑜𝑆𝑅𝑙𝑛 

The fitness value is a measurement of the goodness of the keystream (individual), and it is 

used to control the application of the operations that modify a population. There are a number 

of metrics used to analyze keystream, which are keystream randomness, linear complexity 

and correlation immunity. Therefore, these metrics should be taken in account in designing 

keystream (individual), and they are in general hard to be achieved. Three factors are 

considered in the fitness evaluation of the keystream (individual) which are: 

a. Randomness of the generated keystream (individual) 

b. Keystream (individual) period length 

c. Keystream (individual) length 

a.   Randomness of the generated keystream (individual) - The purpose of evaluation of 

randomness is to determine whether that number of ones and zeros in a sequence are 

approximately the same as would be expected for a truly random sequence. The test 
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assesses the closeness of the fraction of ones to ½, that is, the number of ones and zeroes 

in a sequence should be about the same. The equation 4.33 is used for the evaluation of 

keystream randomness using the frequency and serial tests, in which, 𝑛𝑤  is the frequency 

of 𝑤 in the generated binary sequence.  

             𝑓1 =  𝑛0 − 𝑛1 +  𝑛00 −
𝑆𝑍

4
 +  𝑛01 −

𝑆𝑍

4
 +  𝑛10 −

𝑆𝑍

4
 +  𝑛11 −

𝑆𝑍

4
             (4.33) 

Fitness 𝑓1  calculates the frequency of the bits. This function is derived from the fact that 

in the random sequence, Probability (no) = Probability (n1) which checks frequency of 

0 and 1 in a binary string and Probability (n01) = Probability (n11) = Probability (n10) = 

Probability (n00) which checks the probability of occurrence of the pattern 00, 01, 10 and 

11 in a binary string. 

b. Keystream (individual) period length - The focus of keystream (individual) period length 

evaluation is to determine the total number of zero and one runs in the entire sequence, 

where a run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a 

run consists of exactly 𝑘 identical bits and is bounded before and after with a bit of the 

opposite value. The purpose of this evaluation is to determine whether the number of runs 

of ones and zeros of various lengths is as expected for a random sequence. In particular, 

this test determines whether the oscillation between such substrings is too fast or too 

slow. 
1

2𝑖 × 𝑛𝑟  of the runs in the sequence are of length 𝑖, where 𝑛𝑟  is the number of runs 

in the sequence. Thus, the following equation 4.34 represents the period length.  

                                                𝑓2 =    
1

2𝑖
× 𝑛𝑟 − 𝑛𝑖 

𝑀
𝑖=1  

                                          
(4.34)

 

Where 𝑀 is maximum run length, and 𝑛𝑖  is the desired number of runs of length 𝑖.  

c. Keystream (individual) length - Another factor is considered in the evaluation of the 

fitness value which is the size of the candidate keystream (length of the individual).  

Thus, the fitness function used to evaluate the chromosome 𝑥 is given in equation 4.35, 

where 𝑤𝑒𝑖𝑔𝑡 is a constant and 𝑠𝑧 is the key stream period length: 

                                                 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 =
𝑆𝑍

1+𝑓1+𝑓2
+

𝑤𝑒𝑖𝑔 𝑡

𝑙𝑒𝑛𝑔𝑡 (𝑥)
                                      (4.35)
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More copies to good strings and fewer copies to bad string get selected using Roulette wheel 

selection. In this proportional selection scheme number of copies taken to be directly 

proportional to its fitness. It mimics the natural selection procedure to some extent. The 

selection strategy, used to select chromosomes for the genetic operations, is the roulette 

selection. The old population is completely replaced by the new population which is 

generated from the old population by applying the genetic operations.  

Crossover operation performs exchange of genetic information. It takes place between 

randomly selected parent chromosomes. In this scheme uniform crossover is performed with 

probability 0.6 to 0.9. Before applying the crossover operation chromosomes are converterd 

into binary representation. Figure 4.10 shows the uniform crossover operation having binary 

chromosome length of eight.    

 

 

Figure 4.10: Uniform Crossover operation 

Mutation operation is a random alternation in the genetic structure. It introduces genetic 

diversity into the population. performs exchange of genetic information. It takes place 

between randomly selected parent chromosomes. In this scheme mutation is performed with 

probability 0.001 to 0.01. Figure 4.11 shows the mutation operation having chromosome 

length eight.    

 

Parent Chromosomes: 

Offspring Chromosomes: 

Crossover Mask: 
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Figure 4.11: Mutation operation 

The goals of GA with adaptive probabilities of crossover and mutation are to maintain the 

genetic diversity in the population and prevent the GAs to converge prematurely to local 

minima. Crossover rate and Mutation rate get modified using the equation 4.36 , 4.37, 4.38 

and 4.39. 

 

𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≥ max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠) 𝑡𝑒𝑛 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 −
 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 − 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏2  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

 max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
 

(4.36) 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 −
 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 − 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏2  𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

 max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
 

(4.37) 

𝑒𝑙𝑠𝑒 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1                                                                                                          (4.38) 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏 = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1                                                                                                                           (4.39) 

  

Where max_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the highest fitness value in the population. 𝑎𝑣𝑔_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the 

average fitness value in every population. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is higher fitness value between two 

individuals. 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏1 = 1.0, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏2 = 0.7 and 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 =

0.2, and 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏1 = 0.01. The parameters used in this work were set based on the 

experimental results, the parameter value that show the highest performance was chosen to 

be used in the implementation of the algorithm. Population size is usually fixed in this 

experiment.  String length also usually fixed and a probability of crossover is kept high and a 

Parent Chromosome: 

Mutated Chromosome: 
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probability of mutation is kept low. The maximum chromosome length is 300 characters. 

The run of GA is stopped after a fixed number of generations. The solution is the best 

chromosome of the final generation. Thus, the genetic operations used to update the 

population are uniform crossover with probability 𝑝𝑐 (probability of crossover) = 0.6 𝑡𝑜 0.9 

and mutation with probability 𝑝𝑚 (probability of mutation) = .001 𝑡𝑜 0.1. The probability of 

the function 𝑆𝑅 is 0.5, and all other function are of probability 0.5. Finally, the maximum 

LFSR length is 20 bits. The run of this proposed algorithm is stopped after a fixed number of 

iterations depend on resource available in wireless communication. The solution is the best 

keystream (chromosome) of the final iteration. The figure 4.12 shows the flowchart of GA 

based keystream generation and section 4.2.1.2.1 presents the complete 

encryption/decryption keystream generation algorithm.  
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Figure 4.12:  Flow chart of GA based keystream generation 
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4.2.1.2.1   Genetic Algorithm based Fittest Keystream Generation Algorithm 

GA based encryption/decryption keystream generation algorithm takes length of the 

keystream and maximum number of iterations as an input. After the final number of iteration 

algorithm generates the fittest keystream as an output. The maximum number of iterations 

depends on the resource available in wireless communication. 

Input       : Length of the keystream, Maximum number of iteration  

Output    : Genetic Algorithm based best fittest keystream (chromosome) at the final iteration 

Method  :  The process performs Genetic Algorithm procedure on set of  keystream and 

finally produces best fittest keystream.   .                              

Step 1.       Generate the initial population (pop) randomly. 

Step 2. Evaluate the Population. 

Step 3.  Perform the following steps until maximum number of generation 

reach. 

Step 3. 1. Generate a new population (pop1) by applying crossover 

and mutation and self acclimatizing adjustment of the 

population size, crossover and mutation probabilities 

Step 3. 2. Evaluate the fitness of the new generated chromosomes of 

pop1. 

Step 3. 3. Calculate the averages of fitness values for pop and pop1, 

av and av1 respectively. 

Step 3. 4. 𝐼𝑓 (𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 >  𝑜𝑙𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) then replace the old 

population by the new one.  

Step 4.      Return the best chromosome of the final generation 

 

The GA based fittest keystream is used to perform the encryption operation on the plaintext. 

The detail step of GA based encryption process is given in section 4.2.1.3. 
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4.2.1.3 Encryption Algorithm 

Input      :  Source file/source stream i.e. plaintext 

Output   :  Encrypted file/encrypted stream i.e. cipher text 

Method :  The process operates on binary stream and generates encrypted bit stream through 

Genetic Algorithm (GA) based encryption. 

Step 1. Perform Exclusive-OR with Genetic Algorithm (GA) generated 

128/192/256 bits key and the plaintext to form intermediate cipher 

text. If the size of the plaintext to be encrypted is larger than                    

128/192/256 bits then square edge extension based keystream 

expansion strategy get perform to expand the GA based keystream and 

then expanded keystream get Exclusive-OR with the plaintext for 

forming the intermediate cipher text.  

Step 2.       Divide the outcomes of step 1 into variable blocks.  

Step 3. For each block 𝑆 = 𝑠0 𝑠1  𝑠2 𝑠3 𝑠4 …  𝑠𝐿−1 of length 𝐿 bits, where      

 𝐿 = 8 perform the following operation in a stepwise manner to 

generate the target block 𝑇 = 𝑡0  𝑡1  𝑡2 𝑡3 𝑡4 …  𝑡𝐿−1 of the same length 

(𝐿).   

Step 3. 1.    Corresponding to the each block 𝑆 = 𝑠0 𝑠1  𝑠2 𝑠3 𝑠4 …  𝑠𝐿−1, 

evaluate the equivalent decimal integer, 𝐷𝐿. 

Step 3. 2.   Apply step 3.3 and step 3.4 exactly 𝐿 number of times, for 

the values of the variable 𝑃 ranging from 0 to (𝐿 − 1) 

increasing by 1 after each execution of the loop. 

Step 3. 3. Apply modulo-2 operation on 𝐷𝐿−𝑃 to check if 𝐷𝐿−𝑃  is 

even or odd. 

Step 3. 4. If 𝐷𝐿−𝑃 is found to be even, compute 𝐷𝐿−𝑃−1 = 𝐷𝐿−𝑃/2 , 

where 𝐷𝐿−𝑃−1 is its position in the series of natural even 

numbers. Assign 𝑡𝑃 = 0. 

If 𝐷𝐿−𝑃is found to be odd, compute 𝐷𝐿−𝑃−1 = (𝐷𝐿−𝑃 +

1)/2, where 𝐷𝐿−𝑃−1 is its position in the series of natural 

odd numbers. Assign 𝑡𝑃 = 1.  
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Step 3. 5. With the values of all the 𝑡𝑃’s being available, 𝑝 ranging 

from 0 to (𝐿 − 1), 𝑇 = 𝑡0 𝑡1  𝑡2 𝑡3 𝑡4 …  𝑡𝐿−1 constructs the 

target block corresponding to 𝑆 = 𝑠0 𝑠1  𝑠2 𝑠3 𝑠4 …  𝑠𝐿−1. 

Step 4. Merge all the encrypted blocks of step 3. 

The detail of square edge based keystream expansion in step 1 is discussed in section 

4.2.1.3.1. Step 2 of the algorithm is used to divide the outcomes of step 1 in variable blocks. 

After that in step 3 a modulo-2 based even odd checking operation is performed on each 

block. Finally, in step 4 all the encrypted blocks of previous step is merged together to 

generate GA based encrypted text. 

4.2.1.3.1 Square Edge Extension based Keystream Expansion Technique  

If the size of the plaintext to be encrypted is larger than 128/192/256 bits then square edge 

extension based key expansion strategy get perform to expand the keystream. Considers the 

keystream as a stream of finite number of bits 𝑁, and is divided into a finite number of 

blocks, each also containing a finite number of bits n, where 1 ≤  𝑛 ≤  𝑁. 

Let 𝐾 = 𝑘0
0  𝑘1

0 𝑘2
0 𝑘3 

0 𝑘4
0 …  𝑘𝑛−1

0  is a block of size n in the plaintext. Then the first 

intermediate block 𝐼1 = 𝑘0
1 𝑘1

1 𝑘2
1  𝑘3 

1 𝑘4
1 …  𝑘𝑛−1

1  can be generated from 𝐾 in the following 

way: 

                       𝑘0
1 = 𝑘0

0                      (4.40) 

                       𝑘𝑛−1
1 = 𝑘𝑛−1

0                                                                                                                                                     (4.41) 

                       𝑘𝑖
1 = 𝑘𝑖−1

1  𝑘𝑖
0, 1 ×  𝑖 ×  (𝑛 − 2);                                                                        (4.42) 

 stands for the Exclusive-OR operation. Now, in the same way, the second intermediate 

block 𝐼2 = 𝑘0
2 𝑘1

2 𝑘2
2 𝑘3 

2 𝑘4
2 …  𝑘𝑛−1

2  of the same size (𝑛) can be generated by: 

                       𝑘0
2 = 𝑘0

1                                                                                                                    (4.43) 

                       𝑘𝑛−1
2 = 𝑘𝑛−1

1                                                                                                       (4.44) 

                       𝑘𝑖
2 = 𝑘𝑖−1

2  𝑘𝑖
1, 1 ×  𝑖 ×  (𝑛 − 2);                                                                        (4.45) 

After this process continues for a finite number of iterations, which depends on the value of 

𝑛, the source keystream block 𝑘 is regenerated. 
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If the number of iterations required to regenerate the source block is assumed to be 𝐼, the 

generation of any intermediate or the final block can be generalized as follows: 

                       𝑘0
𝑗

= 𝑘0
𝑗−1

                                                                                                      (4.46) 

                       𝑘𝑛−1
𝑗

= 𝑘𝑛−1
𝑗−1

                                                                                                    (4.47) 

                 𝑘𝑖
𝑗

= 𝑘𝑖−1
2  𝑘𝑖

𝑗−1
, 1 ×  𝑖 ×  (𝑛 − 2); where 1 ×  𝑗 ×  𝐼.                                     (4.48) 

In this generalized formulation system, the final block, which in turn is the source keystream 

block, is generated when  𝑗 =  𝐼.  

Figure 4.13 shows the different color side, black side represents the original key, red and blue 

side represents the left and right side of square.  

 

 

 

 

 

 

 

Figure 4.13: Different color side, black side represents the original key, red and blue side 

represents the left and right side of square 

Any of the intermediate state is attached at the front and end of the original keystream. The 

new expanded keystream shown in figure 4.14.     

 

     1       1       1       0       1       1       0       0       1       0       0       0     

             Left extended key                      Original key                        Right extended key 

Figure 4.14: Expanded keystream 

Bits of the left edge of the square (i.e. 1110) is generated at the front of the original key and 

bits of the right edge of the square (i.e. 1000) is attached at the end. As per keystream 

expansion strategy the new expand key will be three times longer than original one. 
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4.2.1.4 Session Key based  Encryption  

During final step of the technique a cascaded Exclusive-OR operation between CDHLP 

synchronized session key and GA encrypted cipher text is performed to generate final 

encoded cipher text.  

The decryption algorithm takes the cipher text as a binary stream of bits and perform first 

level of operation using CDHLP generated synchronized session key to produce intermediate 

decrypted text. Finally, GA generated fittest keystream based decryption is performed on the 

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete 

process is given in section 4.2.2.        

4.2.2 CDHLPSCT Algorithm at Receiver  

      Input      :  Encrypted file/encrypted stream i.e. cipher text  

      Output   :  Source file/source stream i.e. plaintext 

Method : The process operates on encrypted binary stream and generates decrypted bit 

stream through Chaos based DHLP guided Genetic algorithm (GA) based 

decryption operations. 

Step 1. Perform cascaded Exclusive-OR operation between CDHLP based 

session key and cipher text. 

Step 2. Perform Genetic Algorithm (GA) based decryption on the outcomes of 

the step 1 to regenerate starting combination i.e. plaintext. 

Step 1 of the algorithm is discussed in section 4.2.2.1. Step 2 of the algorithm for performing 

Genetic Algorithm based decryption is discussed in section 4.2.2.2. 
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4.2.2.1       Session Key based  Decryption  

Initially cascaded Exclusive-OR operation between CDHLP synchronized session key and 

cipher text is performed to produce session key decrypted text. Outcomes of this operation 

used as an input of GA based decryption algorithm discussed in 4.2.2.2 to regenerate the 

plaintext.   

 In the decryption process the GA based cipher text is divided into blocks. Modulo-2 

guided odd even based decryption is performed on each block. After that all blocks are 

merged together. The GA generated keystream is use to Exclusive-OR with the merged 

blocks to regenerate the plaintext. The detail step of GA based decryption process is given in 

section 4.2.2.2. 

4.2.2.2       GA based Decryption Algorithm 

Input      :  GA encrypted file/ GA encrypted stream  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on GA encrypted bit stream and regenerates the plaintext 

through GA based decryption. 

Step 1. Divide the GA encrypted text into different blocks.  

Step 2. Perform decryption operation on each block of step 1. For each block                

𝑇 = 𝑡0 𝑡1  𝑡2 𝑡3 𝑡4 …  𝑡𝐿−1of length 𝐿 bits, the following scheme is 

followed in a stepwise manner.  

Step 2. 1.  Set 𝑃 = 𝐿 –  1 and 𝑇 = 1. 

Step 2. 2. Repeat step 3.3 and step 3.4 for the value of P ranging  

from (𝐿 − 1) to 0. 

Step 2. 3. If 𝑡𝑃 = 0, 𝑇 = 𝑇th
 even number in the series of natural 

even numbers; 

         If 𝑡𝑃 = 1, 𝑇 = 𝑇th
 odd number in the series of natural   

even numbers. 

Step 2. 4.  Set 𝑃 = 𝑃 –  1. 
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Step 2. 5. Convert 𝑇 into the corresponding stream of bits                                  

𝑆 = 𝑠0 𝑠1  𝑠2 𝑠3 𝑠4 …  𝑠𝐿−1.  

Step 3. Merge outcomes of step 2. 

Step 4. Check if the length of the GA based keystream is less than the length of 

outcomes of step 3 then perform triangle edge based key expansion 

method to enhance the length of the keystream. Otherwise, select the 

128 bit fittest keystream for decryption. 

Step 1. Finally, perform Exclusive-OR operation between outcomes of step 3 

and GA generated fittest encryption keystream of same length to 

produce the plaintext.  

4.3    Implementation  

Consider Initial population size as 200 and randomly generated each keystream having 128 

bits.  The population gets evaluated with the help of fitness function using generations 

through a fitness technique which consist of number of statistical tests to examine whether 

the pseudorandom number sequences are sufficiently random or not.  

On receipt of fittest generation the proposed GA based key generation algorithm let generate 

the best fittest keystream having length of 128 bits. Let the binary form of 128 bits GA 

based keystream is  

10011011/01011110/11001101/10010111/01010100/11010001/10101010/10110011/ 

01001010/01110001/01010101/10011100/11111001/01101110/11011111/00110101     

Consider the plaintext to be encrypted is “Network Security”, binary representation of the 

ASCII value of plaintext is   

01001110/01100101/01110100/01110111/01101111/01110010/01101011/00100000/ 

01010011/01100101/01100011/01110101/01110010/01101001/01110100/01111001 

Here “/” is used as the separator between successive bytes.  

Perform Exclusive-OR operation between plaintext and GA based keystream. So, GA based 

key stream encoded intermediate cipher text is  

11010101/00111011/10111001/11100000/00111011/10100011/11000001/10010011/ 
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00011001/00010100/00110110/11101001/10001011/00000111/10101011/01001100 

Divide the intermediate cipher text into different segments illustrate below. Here segment of 

variable size has been chosen. Say, following are the different stream segments constructed 

from S (level 1 encoded text): 

S1 = 11010101001110111011100111100000 (32 bits) 

S2 = 00111011101000111100000110010011 (32 bits) 

S3 = 00011001000101000011011011101001 (32 bits) 

S4 = 10001011000001111010101101001100 (32 bits) 

For the segment S1, corresponding to which the decimal value is (3577461216)10, the process 

of encryption is shown below: 

3577461216 1788730608
0 
 894365304

0 
 447182652

0 
 223591326

0 
 

111795663
0 
 55897832

1 
 27948916

0 
 13974458

0 
 6987229

0 
 3493615

1 
 

1746808
1 
 873404

0 
 436702

0 
 218351

0 
 109176

1 
 54588

0 
 27294

0 
 

13647
0
 6824

1 
 3412

0 
 1706

0 
 853

0 
427

1 
 214

1 
 107

0 
 54

1 
 27

0 
14

1 
 

7
0 
 4

1 
 2

0 
 1

0 
 1

1
. 

So, T1 =000001000110001000100011010101001 

For the segment S2, corresponding to which the decimal value is (1000587667)10, the process 

of encryption is shown below: 

1000587667 500293834
1 
 250146917

0 
 125073459

1 
 62536730

1 
 31268365

0 

 15634183
1 
 7817092

1 
 3908546

0 
 1954273

0 
 977137

1 
 488569

1 
 244285

1 

 122143
1 
 61072

1 
 30536

0 
 15268

0 
 7634

0 
 3817

0
 1909

1 
 955

1 
 478

1 

 239
0 
120

1 
 60

0 
 30

0 
 15

0 
 8

1 
 4

0 
 2

0 
 1

0 
 1

1
. 

So, T2 =1011011001111100001110100010001 

For the segment S3, corresponding to which the decimal value is (420755177)10, the process 

of encryption is shown below: 

420755177 210377589
1 
 105188795

1 
 52594398

1 
 26297199

0 
 13148600

1 
 

6574300
0 
 3287150

0 
 1643575

0 
 821788

1 
 410894

0 
 205447

0 
 102724

1 
 

51362
0 
 25681

0 
 12841

1 
 6420

1 
 3210

0 
 1605

0
 803

1 
 402

1 
 201

1 
 101

1 

51
1 
 26

1 
 13

0 
 7

1 
 4

1 
 2

0 
 1

0 
 1

1
. 

So, T3 =111010001001001100111111011001 
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For the segment S4, corresponding to which the decimal value is (2332535628)10, the process 

of encryption is shown below:  

2332535628 1166267814
0 
 583133907

0 
 291566954

1 
 145783477

0 
 

72891738
0 
 36445869

0 
 18222935

1 
 9111468

1 
 4555734

0 
 2277867

0 
 

1138934
1 
 569467

0 
 284734

1 
 142367

0 
 71184

1 
 35592

0 
 17796

0 
 8898

0
 

4449
0 
 2225

1 
 1113

1 
 557

1 
279

1 
 140

1 
 70

0 
 35

0 
 18

1 
 9

0 
 5

1 
3

1 
 

2
1 
 1

0 
 1

1
. 

So, T4 =001000110010101000011111001011101 

The following stream is constructed on merging segments T1, T2, T3 and T4.   

00000010/00110001/00010001/10101010/01101101/10011111/00001110/10001000/ 

11110100/01001001/10011111/10110010/01000110/01010100/00111110/01011101 

Let Chaos based Double Layer Perceptron (CDHLP) generated 128 bits following session 

key is generated  

11100011/01001100/11011101/01100110/01010011/11000010/10010101/11010110/    

01101101/01011001/01101101/01100111/11010101/01011110/01001101/11101010 

Session key encrypted final cipher text produce on performing Exclusive-OR operation 

between merged segments T1, T2, T3 and T4and session key.    

10100101/01101110/11101000/00101011/11100000/00100011/01000100/11001000/ 

10011001/00010000/11110010/11010101/10010011/00001010/01110011/10110111.  

4.4    Security Analysis 

The security of DHLP based technique proposed in chapter 3 has been enhanced in chapter 4 

by introducing chaos synchronization and authentication step during synchronization to 

prevent synchronization of unauthorized entity. In this section some of the attacks are 

considered to check the immunity power of the proposed cryptographic technique against the 

attack. In key exchange protocol the major threat is the attacker who resides in the middle of 

the sender and receiver has access to all the messages exchanged by both synchronizing 

parties, also he/she knows all about the protocol details. The following standard attacks are 

considered to ensure the robustness of the proposed technique.  
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 Attacks during synchronization attempts: In this type of attack, the attacker tries to 

synchronize with the chaotic system by eavesdropping on all the messages exchanged by 

sender and receiver. This type of attack will not work as the attacker does not know the 

initial conditions of any of the 𝑧 components of any of the chaotic systems, and also the 

parameters 𝑎 and 𝑟 are hidden too. By nature, the Lorenz system is very sensitive to 

initial conditions meaning that the error between attacker and receiver is going to grow 

exponentially if there is a very slight difference between their initial conditions. The main 

difference between receiver and attacker is that the output of receiver (𝑦2) influences the 

sender chaotic system and hence affects its output (𝑥1) resulting in a lack of 

synchronization between sender and attacker.  

 Attacks by solving the chaotic system differential equations: As the nature of chaotic 

systems, the problem of solving the system of differential equations representing the 

system is proven to be very hard. Numerical solution is of no use due to the 

approximation nature of the numerical methods and the butter fly effect of chaotic 

systems.  

 Cipher text only Attack: This technique nullifies the success rate of this attack by 

producing a completely random GA based encryption/decryption keystream. The strength 

of resisting exhaustive key search attack relies on a large key space. Initially, GA based 

large keystream is used to encrypt the plaintext after that, outcomes of this passes through 

CDHLP guided encryption. So, cipher text produces by this proposed technique  is 

mathematically difficult to break. This method makes it difficult for the hacker to find out 

the keystream used for encryption. Proposed methodology helps to generate long period 

of random keystreams along with no obvious relationship between the individual bits of 

the sequence. Also the generated keystreams are of large linear complex. Finally key 

stream have high degrees of correlation immunity. Thus it is practically difficult to 

perform a brute-force search in a key-space.   

 Known Plaintext Attack: The technique offers better floating frequency of characters and 

in GA based encryption technique cycle formation operation also enhance the security of 

the technique. So, known plaintext attack is difficult in this proposed technique.   
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 Chosen Plaintext Attack: Proposed technique passes the frequency (monobit) test, runs 

test, binary matrix rank test and in each session a fresh CDHLP based session key is used 

for encryption which confirms that chosen plaintext attack is very difficult in this 

technique. 

 Chosen Cipher text Only Attack: Proposed technique passes the discrete Fourier 

transform test, approximate entropy test, overlapping (periodic) template matching test 

which confirms that chosen plaintext attack is difficult in this technique.   

 Brute Force Attack: In CDHLPSCT, security is improve by increasing the synaptic depth 

𝐿 of the CDHLP. The security increases proportional to 𝐿2
 while the probability of a 

successful attack decreases exponentially with 𝐿. The approach is thus regarded 

computationally secure with respect to these attacks for sufficiently large 𝐿. For a brute 

force attack using 𝐾1 hidden neurons in layer 1, 𝐾2 hidden neurons in layer 2, 𝐾1 × 𝑁 

input neurons and boundary of weights 𝐿, gives (2𝐿 + 1)(𝐾1×𝑁+𝐾1×𝐾2) possibilities. For 

example, the configuration 𝐾1 =  3, 𝐾2 = 3, 𝐿 =  3 and 𝑁 =  100 gives  (2 × 3 +

1)(3×100+3×3) key possibilities, making the attack difficult.  

 Consider an attack where eavesdropper E just trains a third CDHLP with the examples 

consisting of input vector 𝑌 and output bits 𝜏A
. These can be obtained easily by 

intercepting the messages transmitted by the partners over the public channel. E‟s 

CDHLP has the same structure as A‟s and B‟s and starts with random initial weights, too. 

In each time step the attacker calculates the output of his/her CDHLP. Afterwards E uses 

the same learning rule as the partners, but 𝜏E
 is replaced by 𝜏A

. Thus the update of the 

weights is given by one of the following equations  4.49, 4.50 and 4.51: 

            Hebbian learning rule:     BAAE
i

A
ji

E
ji

E xwgw ji  
,,,            (4.49)

 

            Anti-Hebbian learning rule:     BAAE
i

A
ji

E
ji

E xwgw ji  
,,,         (4.50) 

            Random Walk learning rule:     BAAE
iji

E
ji

E xwgw ji  
,,,         (4.51) 
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So, E uses the internal representation (𝜎1, 𝜎2, . . . , 𝜎K)  of his/her own network in order to 

estimate A‟s, even if the total output is different. As 𝜏𝐴 ≠ 𝜏𝐸 indicates that there is at least 

one hidden unit with 𝜎𝑖
𝐴 ≠ 𝜎𝑖

𝐸 , this is certainly not the best algorithm available for an 

attacker. 

 Consider an attack at the time of CDHLP synchronization process where the attacker (E) 

can imitates one of the parties (A or B), but if attacker output disagrees with the imitated 

party‟s output 𝜏𝐸 ≠ 𝜏𝐴, attacker certainly knows that either one or all hidden units are 

mistaken. In order to get 𝜏𝐸 = 𝜏𝐴 attacker negates the sign of one of attacker‟s hidden 

units. As 𝜎 = 𝑠𝑔𝑛   the unit most likely to be wrong is the one with the minimal   , 

therefore that is the unit which is negate. This policy results a immense enhancement in 

the attacker‟s achievement. It can be seen that the success rate is quite high for all 𝐿 

values presented, but it drops exponentially as 𝐿 increases. On the other hand parties‟ 

synchronization time increases like 𝐿2
, and therefore it can be conclude that in the 

boundary of large 𝐿 values the proposed technique is secure against the this attack.  

4.5 Discussions 

The technique is simple and easy to implement in various high level language. The test results 

show that the performance and security provided by the CDHLPSCT is good and comparable 

to standard technique. The security provided by the proposed technique is comparable with 

other techniques. To enhance the security of the technique, CDHLPSCT offers chaos 

synchronization between sender and receiver for generating identical seed value for 

generating common input vector. During chaos synchronization some parameters which take 

major roles for synchronization of two end never get transmit through private channel, which 

confirms the security against MITM attack. Also the technique introduces an authentication 

step which nullifies the possibility of synchronization of unauthorized entity and also prevents 

MITM attack. Since the encryption and decryption times are much lower, so processing speed 

is very high. Proposed method takes minimum amount of resources which is greatly handle 

the resource constraints criteria of wireless communication. CDHLPSCT outperform than 

existing TPM, PPM and method proposed in chapter 2 and chapter 3. No platform specific 

optimizations were done in the actual implementation, thus performance should be similar 
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over varied implementation platform. The whole procedure is randomized, thus resulting in a 

unique process for a unique session, which makes it harder for a cryptanalyst to find a base to 

start with. This technique is applicable to ensure security in message transmission in any form 

and in any size in wireless communication. 

    Some of the salient features of CDHLPSCT are summarized as follows:   

a) Session key generation and exchange – Identical session key can be generate after the 

tuning of CDHLP in both sender and receiver side with the help of chaos 

synchronization. So, no need to transfer the whole session key via vulnerable public 

channel. 

b) Degree of security – Proposed technique does not suffers from cipher text only attack, 

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute 

force attack and attacks during CDHLP synchronization process. It offers 

authentication steps during synchronization.  

c) Variable block size – Encryption algorithm can work with any block length and thus 

not require padding, which result identical size of files both in original and encrypted 

file. So, CDHLPSCT has no space overhead. 

d) Variable key – 128/192/256 bit CDHLP based session key and 128/192/256 bits 

GA based encrypted keystream with high key space can be used in different sessions. 

Since the session key is used only once for each transmission, so there is a minimum 

time stamp which expires automatically at the end of each transmission of 

information. Thus the cryptanalyst may not be able guess the session key for that 

particular session. 

e) Complexity – The technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh 

through wireless communication. So, the proposed technique is very much suitable in 

wireless communication. 

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value 

have been performed between the source and corresponding cipher streams 

generated using proposed technique. All measures indicate that the degree of non-
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homogeneity of the encrypted stream with respect to the source stream is good. This 

technique has a better Chi-Square value than technique proposed in chapter 2 and 3. 

g) Floating frequency – In CDHLPSCT it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security for the proposed 

technique. This technique has a better floating frequency than technique proposed in 

chapter 2 and 3. 

h) Entropy – The entropy of encrypted characters is near to eight which indicate the 

high degree of security of technique. This technique also has a better entropy value 

than technique proposed in chapter 2 and 3. 

i) Correlation – The cipher stream generated through CDHLPSCT is negligibly 

correlated with the source stream. Therefore the proposed technique may effectively 

resist data correlation statistical attack. 

j) Key sensitivity – The technique generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 

k) Security and performance trade-off – The technique may be ideal for trade-off 

between security and performance of light weight devices having very low processing 

capabilities or limited computing power in wireless communication.  
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5.1 Introduction 

In this chapter a novel soft computing assisted cryptographic technique CTHLPSCT, based 

on synchronization of Chaos based two Triple Hidden Layer Perceptron (CTHLP), one at 

sender and another at receiver has been proposed. The CDHLPSCT technique proposed in 

chapter 4 had some drawbacks like for the increased of length of the session key if number of 

neurons in input layer get increased then  it in turn increase the number of synaptic links 

(weight) between input layer and hidden layer. So, the synchronization also get increased. 

Again large diversity among each weight values generated randomly can slower down the 

synchronization process. Also in the CDHLPSCT technique proposed in chapter 4, 

authentication steps are performed after the synchronization steps which consumes 

significant amount of time for authentication purpose. Proposed CTHLPSCT method of this 

chapter eliminates all the above stated drawbacks of the CSHLPSCT in chapter 4. This novel 

method of presented in this chapter introduces chaos based Triple Hidden Layer Perceptron 

(CTHLP) synchronization mechanism where CTHLP uses three hidden layers.
[206]

 Addition 

of one extra layer enhances the security by making the complex internal structure of the 

CTHLP. It will be difficult for the attacker to guess the internal structure of the proposed 

CTHLP. Here, number of neurons in input layer does not get increased as the increased of 

length of the session key because neurons in extra hidden layers helps to increased the key 

length. Also a novel parallel key exchange and authentication techniques using secret 

common input vector has been proposed. So, attacker can‟t be able to make distinguish 

between synchronization steps and authentication steps. At the time of key exchange 

procedure key authentication technique is performed parallel by selecting last 𝑚 bits of the 

identical input vector and transmitting directly as an output bit towards the other party over 

public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of identical input 

vector. If both the sequences are same then both are authenticated otherwise authentication 

fails.  

Here, CTHLP based synchronization is performed for tuning both sender and receiver. 

On the completion of the tuning phase identical session keys is generated at the both end with 

the help of synchronized CTHLP.  This synchronized network can be used for transmitting 

message using any light weight encryption/decryption technique with the help of session key 

of the synchronized network.  To illustrate the cryptographic technique using CTHLP in 
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wireless communication one of the simple and secure encryption/decryption technique has 

been presented. A plaintext is considered as a stream of binary bits. Ant Colony Intelligence 

(ACI) guided enciphering technique
[207]

 with the help of CTHLP tuned session key is used to 

generate the cipher text. The plaintext is regenerated from the cipher text using same 

technique with the help of CTHLP tuned session key at the receiver. 

 Section 5.2 represents a description of proposed technique in detail. Section 5.3 deals 

with the implementation of the proposed cryptographic technique. Section 5.4 discussed the 

security issues related to the proposed technique. Discussions are presented in section 5.5.  

5.2 The Technique  

The technique performs the CTHLP based synchronization for generation of secret session 

key at both ends. This synchronized session key of the tuned network is used for the 

transmission of secured message through wireless network with the help of any light weight 

encryption/decryption algorithm. To illustrate the cryptographic technique in wireless 

communication one of the simple and secure encryption/decryption technique has been 

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is 

encrypted using ACI generated fittest encryption/decryption keystream. The session key 

based on CTHLP is used to encrypt intermediate output which produces final cipher text. 

Identical CTHLP is used to tune sender and receiver to generate the secret session at both 

end. Session key is generated by performing CTHLP based synchronization and 

authentication procedure in parallel between sender and receiver side using secret common 

input vector. In this proposed technique for key generation purpose both sender and receiver 

uses its own CTHLP having identical structure of three hidden layers. Both parties‟ uses 

identical input vector with the help of Chaos synchronized common seed value and use 

anonymous random weight vector to initializes the weights of the synaptic links of CTHLP. 

Identical input vector for both the parties kept secret for security reason. Depending on these 

input vector and weights value both the machine produces some output value. Then these 

output values is transmitted to the receiver over public channel. If output values are same for 

both the sender and receiver machine then CTHLP learning step is applied to both machines 
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for synchronization purpose. When the full synchronization is achieved both machines then 

produce identical weights vector which is used as a secret session key.  

Ant Colony Intelligence (ACI) based encryption/decryption  procedure is used to produce 

group of characters based on distribution of characters in the plaintext known as keystream 

having a size less than or equal to the length of the plaintext. As the ants move, they deposit a 

chemical substance called pheromone on their path. In the ACI based keystream generation 

technique pheromone composed of characters that imply the key. In this technique an ant 

agent having a pheromone deposition consisting of a group of alphanumeric characters is 

called a keystream and each character in the key stream is known as key. Plaintext is 

examined to find out total number of characters matched with the characters presents in 

pheromone of an ant agent. Each ant has an energy level which is computed by counting 

number of characters in the plaintext matched with the pheromone characters (key) divided 

by the total number of character in the pheromone (key). A threshold value is selected to 

evaluate against energy level of each ant agent. Ant agent having highest energy level more 

than predefined threshold value is selected as a keystream for encryption. If the length of the 

plaintext is grater than the length of the ACI based keystream then the values of the 

keystream are added to a predetermined value to generate the keys for the characters in the 

plaintext which is at a position grater than the length of the keystream. Stream of plaintext is 

then encrypted using the ACI based keystream/extended keystream. Finally a cascaded 

Exclusive-OR operation is performed between ACI encrypted text and the CTHLP based 

session key to generate final cipher text.  

Receiver has same CTHLP synchronized session key. This session key is used to perform 

first step of the deciphering technique. In the next step, ACI guided keystream based 

deciphering operation gets performed to regenerate the plaintext. 

The CTHLPSCT does not cause any storage overhead. This greatly handles the resource 

constraints criteria of wireless communication. A comparison of CTHLPSCT with previously 

proposed technique in chapter 4, chapter 3, chapter 2, existing Tree Parity Machine (TPM), 

Permutation Parity Machine (PPM), and industry accepted AES, RC4, Vernam Cipher, 

Triple DES (TDES) and RSA have been done. Analyses of results are given in chapter 7.  

In CTHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits which is 

encrypted using ACI generated fittest encryption keystream based encryption process. Chaos 
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based THLP synchronized session key is used to further encrypt the ACI encoded text to 

produce final cipher text. The algorithm for the complete process is given in section 5.2.1. 

5.2.1 CTHLPSCT Algorithm at Sender 

Input     :   Source file/source stream i.e. plaintext 

      Output  :   Encrypted file/encrypted stream i.e. cipher text 

      Method :  The process operates on binary stream and generates encrypted bit stream through 

CTHLP guided Ant Colony Intelligence (ACI) based encryption operations.  

Step 1.    Perform tuning of sender’s and receiver’s CTHLP to generate 

common secret session key. 

Step 2.       Generates ACI based fittest encryption keystream. 

Step 3.  Perform ACI based encryption operation on the plaintext. 

Step 4. Perform cascaded Exclusive-OR operation between CTHLP based 

session key and outcomes of step 3. 

Step 1 of the algorithm generate common session key through synchronization of CTHLP at 

both end. The detailed step is discussed in section 5.2.1.1. Step 2 of the algorithm generates 

ACI based fittest encryption keystream. The detailed description of the process is given in 

section 5.2.1.2. Algorithm for performing ACI based encryption operation (step 3) on the 

plaintext is discussed in 5.2.1.3. The technique of cascading encryption process (step 4) 

which takes the intermediate output generated in step 3 is given in details in section 5.2.1.4. 

5.2.1.1  Chaos based Triple Hidden Layer Perceptron (CTHLP) Synchronization and Session 

Key Generation 

Chaos based Triple Hidden Layer (CTHLP) guided synchronization mechanism has been 

proposed to improve the efficiency and enhance the security of the Chaos based Double 

Hidden Layer (CDHLP) guided synchronization, proposed in chapter 4. For the increased of 

length of the session key if number of neurons in input layer get increased then  it in turn 

increase the number of synaptic links between input layer and hidden layer. So, the 

synchronization steps also get increased. Again large diversity among each weight values 
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generated randomly can slower down the synchronization process. Also in the previously 

proposed CDHLPSCT method in chapter 4, authentication steps are performed after the 

synchronization steps which consumes significant amount of time for authentication purpose. 

The proposed method of the current chapter introduces chaos based two Triple Hidden Layer 

Perceptron (CTHLP) synchronization mechanism where CTHLP uses three hidden layers 

instead of two. Addition of this extra layer enhances the security by making the complex 

internal architecture. So, it will be difficult for the attacker to guess the internal architecture 

of the CTHLP. In CTHLP technique number of neurons in input layer does not get increased 

as the increased of length of the session key because neurons in extra hidden layers helps to 

increased the key length. So, number of input required in each iteration also gets minimized 

by minimizing the number of neurons in input layer. This also significantly improves the 

synchronization time. In this technique for key generation both sender and receiver uses its 

own machine having identical structure of three hidden layers. Both parties‟ uses identical 

input vector generated using Chaos synchronized seed and use anonymous random weight 

vector to initializes the weights of the synaptic links of CTHLP. Identical input vector for 

both the parties kept secret for security reason. Attackers has no idea about the internal state 

of both the machines at a particular instant of time and this is achievable by keeping secret 

the common input vector and internal state of the machine. Depending on these input vector 

and random weights value both the machine produces some output value. Then these output 

values is transmitted to the receiver over public channel. If output values are same for both 

the sender and receiver machine then CTHLP learning step is applied to both machines for 

synchronization purpose. When the full synchronization is achieved both machines then 

produce identical weights vector and which is use as a secret session key. At the time of key 

exchange key authentication technique is also performed parallel by selecting last 𝑚 bits of 

the identical input vector and transmitting directly as an output bit towards the other party 

over public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of identical 

input vector. If both the sequences are same then both are authenticated otherwise not. 

Attacker does not have identical input vector like sender and receiver. By sniffing the public 

channel attacker can gets some bits but from them attacker will not be able to understand 

which one is output bit of the machine and which one is one of the bits of 𝑚 bits sequence of 

the identical input vector. Even if attacker hacks the 𝑚 bits then for getting the rest of the 
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(𝑑 − 𝑚) bits of the identical input vector attacker has to perform checking with all (𝑑 − 𝑚) 

combination that is computationally infeasible. Here 𝑑 is the total number of bits in the 

identical input vector of proposed technique offers synchronization and authentication step in 

parallel. An attacker also cannot distinguish an authentication step from a synchronization 

step from observing the exchanged outputs. Attacker thus does not know, whether the 

currently observed output bit is used for either of the two purposes if the attacker does not 

know the secret identical common input vector. The figure 5.1 shows the single path from 

input neuron to the output neuron. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Snapshot of the single path from input neuron to the output neuron. 

The figure 5.2 shows a perceptron with three hidden layers. Here the 𝐾1 = 8 and 𝐾2 = 4  

and 𝐾3 = 2. So, the first hidden layer from the top has 𝐾1 = 8 hidden neurons. The second 

hidden layer has 𝐾2 = 4 hidden neurons. The third hidden layer has 𝐾3 = 2 hidden neurons. 

The total number of inputs neurons = 𝑁 × 𝐾1, where 𝑁 is the number of inputs to each 

hidden neuron in layer 1.   
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Figure 5.2: A CTHLP with three hidden layers 

The CTHLP consist of one input layer, one output layer and three hidden layers instead of 

two hidden layers in DHLP and CDHLP technique in chapter 3 and chapter 4 respectively. 

Here, the parameter 𝐾 is being divided into 𝐾1, 𝐾2 and 𝐾3 value.  𝐾1 hidden neurons resides 

in the hidden layer adjacent to the input layer. 𝐾2 represents number of hidden neurons in the 

middle hidden layer. For each 𝐾1 hidden neurons there are N inputs possible. So, finally it 

can be stated that, the input layer has 𝑁 × 𝐾1 input neurons. The size of the CTHLP is 

represented by 𝑁 × 𝐾1 × 𝐾2 × 𝐾3. Each hidden neuron in hidden layer number 1 produces 

𝜎1
i values. Similarly, each hidden neuron in hidden layer number 2 produces 𝜎2

i value. Each 

hidden neuron in hidden layer number 3 produces 𝜎3
i value. These can be represented using 

equation 5.1, 5.2 and 5.3. 
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                                                         𝜎1
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝑊𝑖 ,𝑗  𝑋𝑖 ,𝑗                                                  (5.1) 

                                                        𝜎2
i =  𝑠𝑔𝑛    𝑁

𝑗 =1 𝜎𝑖
1                                                           (5.2) 

                                                        𝜎3
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝜎𝑖
2                                                           (5.3) 

𝑆𝑔𝑛 is a function, which returns −1, 0 or 1 illustrate in equation 5.4. 

                                         𝑠𝑔𝑛 =    

−1  𝑖𝑓 𝑥 < 0
0    𝑖𝑓 𝑥 =  0
1   𝑖𝑓  𝑥 > 0

                                                          (5.4) 

The output of CTHLP is then computed as the multiplication of all values produced by 

hidden elements given in equation 5.5.  

                                                 𝜏 =   𝜎𝑖
3𝐾2

𝑖=1                                                                  (5.5) 

Total number of weights generated by the CTHLP is (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each 

weight decimal value can be represented in eight bits binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 ×

𝐾2+𝐾2×𝐾3×8) numbers of bits present in a weight (length of a session key). If  𝑁= 2, 

𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2, 𝐿 = 5 then   2 × 2 + 2 × 3 + 3 × 2 × 8 = 128 bits weight 

value act as a session key. Consider the synaptic depth i.e. weight limits 𝐿 = ±127. So, eight 

binary bits are needed to represents each weight, where the MSB represents the sign bit and 

rest of the seven bits represents the magnitude of the weight.  

In CTHLP based session key generation technique if sender‟s (A) and receiver‟s (B) do 

not have the identical input vector i.e.∀𝑡: 𝑋𝐴(𝑡) ≠ 𝑋𝐵(𝑡) then synchronization is not 

achievable between them. If the inputs are identical for both parties then only two parties can 

be trained using each other outputs. Given diverse inputs, the two parties are trying to learn 

totally dissimilar relations between inputs 𝑋𝐴/𝐵(𝑡) and output 𝜏𝐴/𝐵(𝑡) as result 

synchronization is not possible and thus in turn prevent the generation of time-dependent 

equal weights. The development of normalized sum of absolute differences 

𝑑𝑖𝑓𝑓 𝑊𝐴 𝑡 , 𝑊𝐵 𝑡  ∈  0,1 
 over time for different offsets .∀𝑡: 𝑋𝐴 𝑡 = 𝑋𝐵 𝑡 + 𝜑 , 𝜑 ∈ 𝑁 

in the input vector and for completely different input vector. If attackers are deals with 

completely different set of inputs then attacker never synchronized with two parties. Because 

the distance between attackers and two parties that do not acquire the same inputs remains 

fluctuating within a certain limited range and never decreases towards zero. Two parties A 
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and B with entirely diverse inputs illustrate the same qualitative performance. Taking into 

consideration the number of repulsive and attractive steps, it can be observed that on average 

there must be as many repulsive as attractive steps for such performance. Two parties A and 

B having the same inputs (offset zero) soon decrease their distance and synchronies. If both 

parties A and B uses identical inputs but a certain proportion of uniformly scattered „noise‟ 

has been imposed on the transmitted outputs of either party. Despite of presence of noise in a 

certain time, the system would synchronies with a delay of approximately the duration of the 

noisy period plus the time used up for unproductive synchronization before the noisy period. 

So, if dissimilar random input vector are considered for two parties then the distance between 

the weights value of A and B is therefore not going to zero after each bounding action and 

the two parties deviate. So, no common inputs lead to the non-synchronization. For this 

reason common input of both parties i.e. 𝑋𝐴/𝐵(𝑡) kept secret between the two parties in 

addition to their own arbitrarily assigned secret initial weights 𝑊𝐴/𝐵(𝑡). Here, brute force 

attacks become computationally very costly because of 2K1×N  −  1 computations are needed 

for finding out possible common inputs. By this authentication scheme attack likes Man-In-

The-Middle (MITM) attack and all other known attacks can be prevented. 

The CTHLP technique usually allows splitting a protocol into an iterative procedure of 

comparatively light communication, as an alternative of a single (heavy) transmission which 

is not feasible in wireless communication because of resource constraints. Typically such a 

principle depends on random numbers in some way. The security that can be achieved is 

probabilistic, i.e. depending on the number of interactions, but security can always be 

increased beyond some acceptable variable security threshold. In CTHLP input of both 

parties acts as a common secret. The probability of an input vector 𝑋𝐴/𝐵(𝑡) having a 

particular parity 𝑝 ∈  {0, 1} is 0.5. For authentication purpose this parity will at this moment 

use the output bit 𝜏𝐴/𝐵(𝑡). At any given time 𝑡 with common inputs for both parties, the 

probability of identical output is given in equation 5.6.  

            𝑃(𝜏𝐴 𝑡 = 𝑝 = 𝜏𝐵(𝑡)) =
1

2
             (5.6)

 

Given a number 𝑛 (1 ≤  𝑛 ≤  𝛼) of pure authentication steps, in which one transmits the 

parity of the consequent input vector as output 𝜏𝐴/𝐵(𝑡)  directly, the probability that the two 

parties subsequently produce the same output 𝑛 times (and thus are likely to have the same 𝑛 



 Arindam Sarkar, University of Kalyani, India 171 

inputs) decreases exponentially with 𝑛 i.e. 𝑃(𝜏𝐴 𝑡 = 𝑝 = 𝜏𝐵(𝑡)) =
1

2𝑛
 

For statistical 

security of  𝜀 ∈  [0, 1] select 𝑛 =  𝛼 authentication steps such that 1 −
1

2𝛼 ≥ 𝜀 
 
which can be 

computed as 𝛼 =  𝑙𝑜𝑔2  
1

1−𝜀
  

 

With 𝛼 = 14 the achievable statistical security                         

𝜀 =  0.9999 (𝑖. 𝑒. 99.9999 %). The synchronization period for this technique therefore 

increases by 𝛼 authentication steps depending on the necessary level of security 𝜀. Select 

certain bit sub pattern in the input vector used for authentication only, such that the security 

threshold will be reached soon enough with a certain probability. Inputs are uniformly 

distributed so last 𝑚 bit are also uniformly distributed. Now select those entries that possess 

a defined bit sub-pattern (e.g. ‘0101’ for 𝑚 = 4). The probability of such a fixed bit sub 

pattern of 𝑚 bit to occur is 
1

2𝑚 , because each bit has a fixed value with a probability of 0.5. 

Thus for four bit, on average every sixteenth input would be used for authentication. 

Authentication step is performed when the sub pattern arise and then one of the party send 

out the parity of the consequent input vector as output 𝜏𝐴/𝐵(𝑡).  This will only occur at the 

other party if it has the same inputs. Such an authentication does not manipulate the learning 

process at all. Because of the truth that the inputs are secret, an attacker cannot know when 

exactly such an authentication procedure takes place. Let the 64 bits identical input vector is  

11011001/11010101/00010111/11100101/01011010/11110100/10100010/10100011.     

Select the last fifteen bits of the identical input vector (where 𝑚 = 15) 010001010100011 

and transmit towards the other party. Attacker can have access the 𝑚 bits from the public 

channel. Then for getting the rest of the (𝑑 − 𝑚) bits of the identical input vector attacker 

has to perform checking with all (𝑑 − 𝑚) combination. That is computationally difficult. 

Where, 𝑑 is the total number of bits in the identical input vector. In this technique A always 

succeeds in convincing B by synchronies within a finite time if A knows the common secret 

i.e. the same inputs. In the case of the authentication principle, A will reach the security 

threshold   in the specified α authentication steps. If A does not know the secret input of B 

then success probability of A becomes very small. As a result synchronization will be 

unsuccessful. The two parties will always be diverse by the repulsive steps. In the case of 

authentication principle, A will not reach the security threshold 𝜀 in the specified 𝛼 

authentication steps and will be rejected. At the time of synchronization procedure No 

information on the common secret is seep out at all. The only information transmitted is the 
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unknown bit-strings. In the case of the authentication the inputs are randomly chosen only for 

authentication principle. An attacker also cannot differentiate an authentication step from a 

synchronization step from observing the exchanged outputs. Attackers are not able to know 

whether the currently observed output bit is used for authentication or synchronization 

purpose if attackers do not know the common input vector.  

In the CTHLP technique CTHLPs start synchronization by exchanging control frames. 

The process involves message integrity and synchronization test. CTHLP synchronization 

uses transmission of control frames at the time of three way handshaking based TCP 

connection establishment phase, as given in table 5.1. 

Table 5.1 

Control frames of CTHLP synchronization 
Frame Description 

𝑆𝑌𝑁 
𝑆𝑌𝑁 frame transmitted to the receiver for synchronization in connection establishment 

phase 

𝐴𝐶𝐾_𝑆𝑌𝑁 
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the sender for positive acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝑁𝐴𝐾_𝑆𝑌𝑁 
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the sender for negative acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection 

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index 

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the sender starts a 

timer and waits for a reply from the receiver. If the receiver does not take any action until a 

certain time limit and number of attempts exceeded a certain value, the sender restarts the 

synchronization procedure. When the receiver receives the 𝑆𝑌𝑁 frame, the it carry out the 

integrity test. If the messages are received as sent (with no replication, incorporation, 

alteration, reordering, or replay) the receiver will execute the synchronization check. The 

sender and receiver have an identical 𝑇 variable formally store in their respective memory. 

The sender sends the encrypted 𝑇 to the receiver. Here the receiver utilizes its 128/192/256 

bits weights to decrypt the encrypted 𝑇. If the result is identical to 𝑇 formerly stored in 

receiver memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the 

networks are synchronized. This is the best case solution where sender and receiver 

arbitrarily choose weight vector which are identical. So, networks are synchronized at initial 
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stage.  The receiver should send the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to alert the sender. But most of the time 

this best case is not achievable. If decryption algorithm does not produce predictable result, 

the receiver should use the Chaos synchronized secret seed to generate the input vector (𝑋) 

which is identical to sender. With this input vector the receiver will work out its 

𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ). If the receiver‟s and sender‟s outputs are different, the receiver should 

not fine-tune its weights and inform the sender its output. The receiver sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 

frame to notify the sender, with the same 𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this 

methodology is used for providing the negative acknowledgement in respect to the 𝑆𝑌𝑁 

frame. If receiver‟s output is equal to sender‟s output i.e. (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ) then receiver 

update it weights. At the end of weights update, the receiver should report the sender that 

outputs are equal. The receiver uses the 𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the sender, with the same 

𝐼𝐷 value received from sender. The proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this methodology is used 

for providing the positive acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt 

of 𝐴𝐶𝐾_𝑆𝑌𝑁, the sender also updates its weight. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should 

update its weights. The sender will create new synchronization frame until receive the 

𝐹𝐼𝑁_𝐴𝐶𝐾 frame from receiver. When the sender receives the frame  𝐹𝐼𝑁_𝐴𝐶𝐾, it stops the 

further synchronization. The proposed 𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this methodology is used for 

closing the connection. At end of synchronization, both networks provide the identical 

weight vector which acts as a session key identical to both end. The figure 5.3 shows the 

exchange of frames during CTHLP synchronization process. 
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Figure 5.3: Exchange of control frames between sender and receiver during CTHLP 

synchronization 

Table 5.2 shows the different frames and their corresponding command codes. 

 

Table 5.2 

CTHLP control frames and their command codes 
Frame Command 

𝑆𝑌𝑁 0000 

𝐹𝐼𝑁_𝑆𝑌𝑁 0001 

𝐴𝐶𝐾_𝑆𝑌𝑁 0010 

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011 

𝐴𝑈𝑇𝐻 0100 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111 

Sender‟s CTHLP 
Receiver‟s CTHLP 
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𝑆𝑌𝑁 (𝐼𝐷, 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑, 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟
 

 , 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑠𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝑇)  ) 

  

𝐴𝐶𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷) 

𝑁𝐴𝐾_𝑆𝑌𝑁 (𝑆𝑌𝑁_𝐼𝐷) 

𝐹𝐼𝑁_𝑆𝑌𝑁  
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The identifier (𝐼𝐷) is the function of informing the sender and receiver where the message is 

a recent message. The variable 𝐼𝐷 starts with zero and is incremented every time that the 

sender sends a synchronization frame. The detailed frame format of 𝑆𝑌𝑁 frame is discussed 

in section 5.2.1.1.1. The detailed frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 

5.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame has been discussed in section 5.2.1.1.3. The 

frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is discussed in section 5.2.1.1.4.  

5.2.1.1.1  Synchronization (𝑆𝑌𝑁) Frame 

During synchronization process sender constructs a 𝑆𝑌𝑁 frame and transmit to the receiver 

for handshaking in connection establishment phase. Sender utilizes its initial 128 weights as 

key for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 . 

Sender constructs a 𝑆𝑌𝑁 frame and transmitted to the receiver for handshaking purpose in 

connection establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,

𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 𝐶𝑅𝐶. 𝑆𝑌𝑁 

frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. 

𝑆𝑌𝑁 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 

𝐶𝑅𝐶 needs eight bits, one bits, 128 bits, 𝑚 bits and sixteen bits respectively. When the 

receiver receive 𝑆𝑌𝑁 frame, the receiver should carry out integrity test. Receiver performs 

Integrity test on receiving the 𝑆𝑌𝑁 frame. If the messages are received as sent (with no 

replication, incorporation, alteration, reordering, or replay) the receiver will execute the 

synchronization test. In synchronization test receiver utilize its 128 first weights as key for 

decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  that was received from the sender. After decryption 

operation if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are 

synchronized. Figure 5.3 shows the complete frame format of 𝑆𝑌𝑁 frame. 

                4                  8                1                           128                                    𝑚                     16 (𝑏𝑖𝑡𝑠)         

Figure 5.3: Synchronization (𝑆𝑌𝑁) frame 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑  
 𝐶𝑜𝑑𝑒 
0000 

𝑆𝑌𝑁 𝐼𝐷 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  
𝐴𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑖𝑜𝑛 

 

bits 

𝐶𝑅𝐶  
(𝐶𝑦𝑐𝑙𝑖𝑐         

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  
𝐶𝑒𝑐𝑘𝑒𝑟) 
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5.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for positive 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 

needs sixteen bits for error checking purpose. Now check the condition i.e. If 

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 then receiver use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑  

received from sender to produce the receiver input vector (𝑋) identical to sender input vector 

(𝑋) and calculates the output 𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 . If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ) then receiver should update 

their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

= 𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  using learning rule. At end of weight 

updation of the receiver, then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the sender for 

updating the weights. If sender receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights.  Figure 5.4 

shows the complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame. 
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Figure 5.4: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 

5.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization 

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the receiver to the sender in respect of 𝐴𝐶𝐾 frame for negative 

acknowledgement of the parameters value. This proposed frame comprises of three fields, 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣 𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟  ) then the 

receiver sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender. If the receiver and sender outputs 

are different, the receiver should not fine-tune its weights and inform the sender. The receiver 

sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the sender, with the same 𝐼𝐷 value. Figure 5.5 shows 

the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame. 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0010 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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Figure 5.5: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 

5.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This 

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four 

bits. The  𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for 

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose. 

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

Receiver sends the 𝐹𝐼𝑁_𝑆𝑌𝑁 frame to the sender. Figure 5.6 shows the complete frame 

format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 
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Figure 5.6: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 

 The CTHLP synchronization algorithm for generating synchronized session key is discussed 

in section 5.2.1.1.5. Section 5.2.1.1.6 presents the computational complexity of the CTHLP 

synchronization algorithm and CTHLP learning is discussed in section 5.2.1.1.7.  

5.2.1.1.5 CTHLP Synchronization  

Sender and receiver initially initiate Chaos synchronization between them to construct a 

common seed value at both sides. The Chaos synchronized identical seed value is used to 

generate the common input vector for sender and receiver. Two CTHLPs start with identical 

input vector and anonymous random weight vector. In each time both CTHLPs compute their 

final output based on input and weight vector, and communicate to each other. If both are be 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0011 

𝑆𝑌𝑁_𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0001 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶 

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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in agreement on the mapping between the present input and the output, their weights are 

updated according to an appropriate learning rule. In the case of discrete weight values this 

process leads to full synchronization in a finite number of steps. After synchronization 

procedure weight vector of both CTHLP‟s become identical. This indistinguishable weight 

vector forms the session key for a particular session. Authentication steps also get performed 

parallel to the synchronization steps.  

      Input      :  Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1, 𝑦2 and 𝑧2), random weights 

      Output   : Sender’s and receiver’s synchronized CTHLP along with synchronized session key 

Method :  Sender’s and receiver’s CTHLPs both are be in agreement on the mapping 

between the present input and the output, their weights are updated according to 

an appropriate learning rule. After synchronization procedure weight vector of 

both CTHLPs become identical. These indistinguishable weight vector forms the 

session key for a particular session.  

Step 1. Sender initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to 

the receiver. 

Step 2.    Receiver initializes the value of  𝑟.      

Step 3.    Sender generates the point 𝑥1 and 𝑧1.   

Step 4.    Receiver generates the point 𝑦2and 𝑧2.  

Step 5.       Sender sends 𝑥1 to receiver and receiver sends 𝑦2 and 𝑧2 to sender.    

Step 6.       Receiver calculates the new value of  𝑦2  and  𝑧2 with the help of 𝑟 and 

𝑏 using the equations 5.7 and 5.8 then returns the value of  𝑦2  and 

 𝑧2  to the sender.  

                                                                      𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2                                 (5.7) 

                                        𝑧2 = 𝑥𝑦2 − 𝑏𝑧2                                        (5.8) 

Step 7.       Sender calculates the value of  𝑥1  and  𝑧1  with the help of 𝑦2, 𝜎 and 𝑏  

using equations 5.9 and 5.10 then sends the value of  𝑥1  to the receiver 

and so on.  

                                                                             𝑥1 = 𝜎 𝑥1 − 𝑦2                                       (5.9) 

                                                                             𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1                                    (5.10) 
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Step 8.  Sender generates a nonce. This nonce gets encrypted using a 

symmetric cipher with 𝑧1 as the key and sends the results of the 

encryption using equation 5.11.  

                           𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒                       (5.11)  

Step 9.   The receiver decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2  as the key, performs a 

defined function on it using equation 5.12 and 5.13.  

                                                       𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 

                  (5.12) 

                                                                         𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒                            (5.13)                                                                                              

Step 10.  The receiver encrypts the result of the previous step using 𝑧2 as the key 

and sends the result to the sender illustrated in equation 5.14. 

                       𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒              (5.14)

            

Step 11.  The sender decrypts this message using 𝑧1 as the key, performs the 

inverse of the pre-defined function and checks if the original nonce is 

obtained as shown in equation 5.15.  

                         𝑁𝑜𝑛𝑐𝑒 = 𝑓−1  𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒  

       (5.15)                                              
 

Step 12.  If synchronization is not achieved, the process is repeated from step 5. 

Step 13.  If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1  is used as a seed for 

a pseudo random number generator to generate identical                    

input vector(𝑋) at both end. 

Step 14. Initialization of synaptic links between input layer and first hidden 

layer and between first hidden layer and second hidden layer using 

random weights values. Where,𝑊𝑖𝑗 𝜖 −𝐿, −𝐿 + 1, … , +𝐿 .                                                  

                                    Repeat step 15 to step 24 until the full synchronization is achieved,  

Step 15. The input vector(𝑋) is generated both end using the Chaos 

synchronized seed value.   

Step 16. Computes the values of hidden neurons by the weighted sum over the 

current input values. Each hidden neuron in first Hidden layer 

produces 𝜎1
i values. Similarly, each hidden neuron in second hidden 

layer produces 𝜎2
i value. Each hidden neuron in hidden layer number 
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3 produces 𝜎3
i value. These can be represented using equation 5.16, 

5.17 and 5.18. 

                                                                      𝜎1
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝑊𝑖 ,𝑗  𝑋𝑖,𝑗                                   (5.16) 

                                                                               𝜎2
i =  𝑠𝑔𝑛    𝑁

𝑗 =1 𝜎𝑖
1                                               (5.17) 

                                                                               𝜎3
i =  𝑠𝑔𝑛    𝑁

𝑗 =1 𝜎𝑖
2                                               (5.18)     

                                          𝑠𝑔𝑛(𝑥) is a function represents in equation 5.19, which returns 

                                               −1, 0 or 1:         

                                                               𝑠𝑔𝑛 𝑥 =     

−1  𝑖𝑓 𝑥 < 0
0    𝑖𝑓 𝑥 =  0
1   𝑖𝑓  𝑥 > 0

                                         (5.19)     

If the weighted sum over its inputs is negative then set  𝜎𝑖 = −1.                

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or 

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0. 

Step 17. Compute the value of the final output neuron by computing 

multiplication of all values produced by 𝐾2  no. hidden neurons using 

equation 5.20.  

                                                                  𝜏 =   𝜎𝑖
3𝐾2

𝑖=1                                               (5.20) 

Step 18. Sender utilizes its 128 weights as key for encryption of 𝑇 variable 

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 .  

Step 19.  Sender constructs a SYN frame and transmitted to the receiver for 

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually 

comprises of the 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝐼𝐷, 𝑆𝑒𝑛𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ), 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇  and CRC (Cyclic Redundancy Checker) and 

last 𝑚 bits of the identical input vector. In this way performed 

authentication step parallel by selecting last 𝑚 bits of the identical 

input vector and transmitting towards the other party over public 

channel using 𝑆𝑌𝑁 frame.  

Step 20.  Receiver performs Integrity test after receiving the 𝑆𝑌𝑁 frame.  Then 

receiver perform authentication step to  
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                                          Check 𝑖𝑓 (𝑆𝑒𝑛𝑑𝑒𝑟 (𝑚 𝑏𝑖𝑡𝑠) = 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 (𝑚 𝑏𝑖𝑡𝑠)) 𝑡𝑒𝑛  

                    𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸                                                                                                                         

𝐸𝑙𝑠𝑒                                                                                          

𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐹𝐴𝐿𝑆𝐸 

If authentication is true then receiver utilize its 128 first weights as 

key for decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇   that was received from 

the sender.  

If authentication is false then receiver sends 𝐴𝐶𝐾_𝑁𝐴𝐾 to sender. 

Step 21. If  (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then 

networks are synchronized. Go to step 25. 

Step 22. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ then receiver 

use the Chaos based secret seed  to produce the receiver input 

vector(𝑋) identical to sender input vector(𝑋) and calculates the 

output 𝜏Receiver
 using step 16 and step 17 

Step 23. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝜏 𝑆𝑒𝑛𝑑𝑒 𝑟)  then performs the following steps. 

Step 23.1    Receiver update their weights where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules discussed 

in chapter 1 section 1.8. 

Step 23.2 At the end of receivers weights update, the receiver sends 

ACK_SYN to instruct the sender for updating the weights 

using step 23.1.  

Step 23.3 Sender transmits  

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇  to receiver. 

Step 23.4    Receiver checks                                                        
if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 

                                           then networks are synchronized. Go to step 25. 

Step 23.5  Perform the following checking 

  if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 

                                           then networks are still not synchronized. Go to step 23.1. 
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Step 24. If (𝜏 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 ≠ 𝜏 𝑆𝑒𝑛𝑑𝑒𝑟 ) then the receiver sends the message 

NAK_SYN to notify the sender. Go to step 15.  

Step 25. Finally, the receiver sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the sender to 

finish the synchronization phase. 

5.2.1.1.6 Complexity Analysis  

In CTHLP synchronization algorithm sender initialization of the value of 𝜎 and 𝑏 takes needs 

unit amount of computation. Receiver initialization of the value of  𝑟 also takes unit amount 

of computation. Generation of the point 𝑥1  and 𝑧1  takes unit amount of computation. 

Generation of the point 𝑦2 and 𝑧2  takes unit amount of computation. Receiver calculates the 

new value of 𝑦2  and 𝑧2  with the help of 𝑟 and 𝑏. This step also takes unit amount of 

computation. Sender calculates the value of 𝑥1  and 𝑧1  with the help of 𝑦2, 𝜎 and 𝑏.  This step 

also takes unit amount of computation. Sender generates a nonce having a random value. 

This nonce is encrypted using a symmetric cipher with 𝑧1 as the key and sends the results of 

the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The receiver 

decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2 as the key. It also takes  𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡  amount of 

computation. The receiver encrypts the result of the previous step using 𝑧2 as the key. It 

takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The sender decrypts this message using 𝑧1 

as the key, performs the inverse of the pre-defined function and checks if the original nonce 

is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. Initialization of 

weight vector takes  (𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) amount of computations. For 

example, if 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then total numbers of synaptic links (weights) 

are (2 × 2 +  2 × 3 + 3 × 2) = 16. So, it takes sixteen amount of computations. Generation 

of 𝑁 number of input vector for each 𝐾1 number of hidden neurons takes (𝑁 × 𝐾1) amount 

of computations. Computation of the hidden neuron outputs takes  𝐾1 + 𝐾2 + 𝐾3  amount 

of computations. Where 𝐾1,𝐾2 and 𝐾3 are the number of hidden units in 1
st
, 2

nd
 and 3

rd
 layer 

respectively. Computation of final output value takes unit amount of computation because it 

needs only a single operation to compute the value. Encryption of 𝑇 using Exclusive-OR 

operation also takes unit amount of computations. Decryption of 𝑇 using Exclusive-OR 

operation also takes unit amount of computations. Checking 𝑖𝑓 
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(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑒𝑛𝑑𝑒𝑟 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇  or not takes unit amount of 

computation. In CTHLP the weight updating procedure takes place where 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 using any of the learning rules which takes  𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

 
  amount of computations. 

In best case of CTHLP synchronization algorithm, sender’s and receiver’s arbitrarily 

chosen weight vectors are identical. So, networks are synchronized at initial stage do not 

needs to update the weight using learning rule. Here, (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + (𝑁 × 𝐾1) + (𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) +  (𝐾1 +

𝐾2 + 𝐾3)) amount of computation is needed in best case which is in form of 

𝑂 Generation of common seed value + initialization of input vector +

initialization of weight vector + Computation of the hidden neuron outputs .  

If the sender’s and receiver’s arbitrarily chosen weight vector are not identical then in 

each iteration the weight vectors of the hidden unit which has a value equivalent to the 

pereceptron output are updated according to the learning rule. This scenario leads to average 

and worst case situation where 𝐼 number of iteration to be performed to generate the identical 

weight vectors at both ends. So, the total computation for the average and worst case is 

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +  𝑁 × 𝐾1 +

 𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 +   𝐾1 + 𝐾2 + 𝐾3  +  𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟  
 
)  which is can be expressed in O Time complexity in first iteration +

(No. of iteration × No. of weight updation) . 

5.2.1.1.7 CTHLP Learning Mechanism 

In learning mechanism if the output bits are different for sender (A) and receiver (B) i.e.                 

𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 

𝜎𝑘

𝐴

𝐵 = 𝜏
𝐴

𝐵  will be updated. The weight vector of this hidden unit is adjusted using any of the 

learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian takes less 

synchronization steps than other two learning rules in the range of 2 − 2 − 3 − 2 − 5 

 𝑁 − 𝐾1 − 𝐾2 − 𝐾3 − 𝐿  to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases Hebbian rule 

takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules take 
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fewer steps than the other two learning rules in the range of 2 − 2 − 3 − 2 − 8 − 20 to 2 −

2 − 3 − 2 − 30. Random walk outperform from 3 − 2 − 2 − 8 − 35 and beyond that. The 

most vital findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the 

complexity of a successful attack grows exponentially, but there is only a polynomial 

increase of the effort needed to generate a key. So, increasing the 𝐿 value security of the 

system can be increased.  

5.2.1.2 Ant Colony Intelligence (ACI) based Fittest Keystream Generation 

In this section Ant Colony Intelligence (ACI) based keystream generation technique for 

message encryption/decryption has been presented to illustrate the complete cryptographic 

technique. Instead of this technique any other light weight encryption/decryption technique 

also may use for exchanging message between sender and receiver.  

In the Ant Colony Intelligence (ACI) based approach an ant agent is used to denote a 

keystream (collection of alphanumeric characters). Each Ant can have multiple dimensions. 

Each dimension denotes an individual key within that keystream. The dimensions in the 

keystream can be filled or unfilled. For example if the ceiling of dimension of each Ant is 

equal to 192 then it is represented by equation 5.21. 

                             𝐴𝑛𝑡𝑖  𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1, 𝐾𝑒𝑦2, …  , 𝐾𝑒𝑦192)                     (5.21) 

This signifies a keystream comprises of 192 keys i.e. 192 alphanumeric characters.  

Keystream length can be obtained by counting number of dimensions are filled in the 

keystream. Generally keystream length is less than or equal to the plaintext. With 192 

alphanumeric characters multiple keystream can be generated of predetermined fixed length 

by permutation of these predetermined fixed length characters ordering all feasible ways 

without any reappearance. So, for example if total number of alphanumeric characters = 192 

and keystream length = 128 then among 192  alphanumeric characters 128 alphanumeric 

characters are elected such a way so that by ordering all possible ways without any 

duplication these 128 characters forms multiple keystream having fixed length i.e. 128. For 

an example if five characters A, C, M, H, R are taken to form keystream of length four among 

192 alphanumeric characters. Then there are 120 possible ways of obtaining keystream 

which are as follows.    
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ACMHR, CAMHR, MACHR, HACMR, RACMH 

ACMRH, CAMRH, MACRH, HACRM, RACHM 

ACHMR, CAHMR, MAHCR, HAMCR, RAMCH 

ACHRM, CAHRM, MAHRC, HAMRC, RAMHC 

ACRMH, CARMH, MARCH, HARCM, RAHCM 

ACRHM, CARHM, MARHC, HARMC, RAHMC 

AMCHR, CMAHR, MCAHR, HCAMR, RCAMH 

AMCRH, CMARH, MCARH, HCARM, RCAHM 

AMHCR, CMHAR, MCHAR, HCMAR, RCMAH 

AMHRC, CMHRA, MCHRA, HCMRA, RCMHA 

AMRCH, CMRAH, MCRAH, HCRAM, RCHAM 

AMRHC, CMRHA, MCRHA, HCRMA, RCHMA 

AHCMR, CHMRA, MHACR, HMACR, RMACH 

AHCRM, CHMAR, MHARC, HMARC, RMAHC 

AHMCR, CHRMA, MHCAR, HMCAR, RMCAH 

AHMRC, CHRAM, MHCRA, HMCRA, RMCHA 

AHRCM, CHAMR, MHRAC, HMRAC, RMHAC 

AHRMC, CHARM, MHRCA, HMRCA, RMHCA 

ARCMH, CRAMH, MRACH, HRACM, RHACM 

ARCHM, CRAHM, MRAHC, HRAMC, RHAMC 

ARMCH, CRMAH, MRCAH, HRCAM, RHCAM 

ARMHC, CRMHA, MRCHA, HRCMA, RHCMA 

ARHCM, CRHAM, MRHAC, HRMAC, RHMAC 

ARHMC, CRHMA, MRHCA, HRMCA, RHMCA 

Using 192 characters total number of generated possible keystream is given in equation 5.22. 

                                   
192!

 192−𝑐 !

192
𝑐=1 ≈ 192!  𝑒 ≈ 192! × 2.718                                       (5.22)

                           
According to Ant Colony Intelligence technique each ant should have an allied energy. The 

ACI technique also offers energy for each and every ant or keystream. The energy value of 

the ant agent is computed by taking the number of characters in the keystream occurring in 

the plaintext divided by the keystream length. The pheromone deposition of the ant agent 
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with a maximum energy value greater than a specified threshold value is the solution and the 

keystream is chosen for encryption i.e. 𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛 

𝑟𝑒𝑡𝑢𝑟𝑛 (𝐴𝑛𝑡i 𝑤𝑖𝑡 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) = 𝑚𝑎𝑥 𝑒𝑛𝑒𝑟𝑔𝑦 𝑣𝑎𝑙𝑢𝑒). Energy value for each ant agent 

is computed by the equation 5.23. 

                𝐸𝑛𝑒𝑟𝑔𝑦  𝐴𝑛𝑡𝑖 = (𝑐𝑜𝑢𝑛𝑡 (𝑘𝑒𝑦 𝑗   𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡))/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖) )      (5.23) 

                 𝑤𝑒𝑟𝑒 𝑗 = 1, 2, … , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖) 

In the pheromone updating phase of Ant agent 𝑊𝑖𝑙𝑒 (𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) < 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒)  

change the keystream i.e. update the pheromone deposition of 𝐴𝑛𝑡𝑖  agent until 

𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖𝑖𝑛 𝑎 𝑡𝑟𝑖𝑎𝑙) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒). For update the pheromone deposition at first 

energy value for each ant agent in the current trial is evaluated. Next select the ant agent 

where, 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙) > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒) and return 𝐴𝑛𝑡𝑖  in current trial 

with 𝐸𝑛𝑒𝑟𝑔𝑦(𝐴𝑛𝑡𝑖) = 𝑚𝑎𝑥 𝑒𝑛𝑒𝑟𝑔𝑦 value in current trial.  

 

In ACI based keystream generation technique following parameters are used  

 Maximum length of ACI based keystream i.e. maximum number of character represents a 

keystream is 𝐿 = 192. 𝑁 is the number of characters to represents keystream. Maximum 

value of 𝑁 is 𝐿 i.e. 192.  

 A predefined threshold value for describing energy factor of Ant agent. This scheme used 

0.65 as a threshold value.  

 A predetermined value to generate the keys for the characters in the plaintext which is at 

a position greater than the length of the keystream. The technique uses equation 5.24 to 

compute the predetermined value. 

                       𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 =  𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                         (5.24) 

The figure 5.8 shows the flowchart of ACI based keystream generation and section 5.2.1.2.1 

presents the complete encryption/decryption keystream generation algorithm.  
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Figure 5.8:      Flow chart of Ant Colony Intelligence (ACI) based fittest keystream generation 

  

Select Anti  

or Keystreami(Key1 , Key2 , …  , Key192 ) 

Start 

Yes 

No 

Evaluate Energy  Anti = (count (key j  plain text))/(lengthof(Anti) ) 

Evaluate Energy  Anti  

Update the pheromone by changing the character composition in the keystream. 

 

Select the ant agent where,Energy(Antiin current trial)  > threshold value) 

Where n =  pheromone dimension 
Set pheromone =  (Energy_char1, Energy_char2, … , Energy_charn) 

 

Highest Energy  Anti   
> 

Predefined Threshold 

Is 

Stop 

return Anti  in current trial with 
max energy value in current trial 
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5.2.1.2.1 Ant Colony Intelligence (ACI) based Fittest Keystream Generation Algorithm 

ACI based encryption/decryption keystream generation algorithm a threshold value is 

selected to weigh against energy level of each ant agent. Ant agent having highest energy 

level more than predefined threshold value is selected as a keystream. 

       Input    :   Ant agent with Pheromone 

      Output  :   ACI based keystream 

      Method :  A threshold value is selected to weigh against energy level of each ant agent. Ant 

agent having highest energy level more than predefined threshold value is 

selected as a keystream. 

Step 1. Set length of a keystream as 𝐿. Choose arbitrary 𝑁 characters to 

representing pheromone deposition. 

Step 2. Perform possible permutation by choosing arbitarily 𝑁 characters to 

represents keystream denoting the pheromone deposition of length 𝐿. 

Step 3. Evaluate energy value of each ant agent iAnt according to the 

following equation 5.25. 

𝐸𝑛𝑒𝑟𝑔𝑦  𝐴𝑛𝑡𝑖 = (𝑐𝑜𝑢𝑛𝑡 (𝑘𝑒𝑦𝑗   𝑝𝑙𝑎𝑖𝑛 𝑡𝑒𝑥𝑡))/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝐴𝑛𝑡𝑖) )  
                                             

(5.25)
 

Step 4. Check, 𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦  𝐴𝑛𝑡𝑖 >  𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑) then chooses 

keystream for encryption having maximum energy value grater than 

threshold. 

Step 5. Else repeat the following steps until  

 (𝐻𝑖𝑔𝑒𝑠𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎 𝑡𝑟𝑖𝑎𝑙 >  𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑) 

Step 5. 1. Update the pheromone by changing the character 

composition in the keystream. 

Step 5. 2. Compute the energy value for updated pheromone 

deposition. 

Step 5. 3. Select the ant agent,  

𝑖𝑓 (𝐸𝑛𝑒𝑟𝑔𝑦  𝐴𝑛𝑡𝑖 >  𝑃𝑟𝑒𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑇𝑟𝑒𝑠𝑜𝑙𝑑)                    

then return ant agent having maximum energy value. 
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Step 6. If the length of the text is greater than the length of the keystream then 

the values of the keystream are added to a predetermined value to 

generate the keys for the characters in the text which is at a position 

greater than the length of the keystream. 

The ACI based fittest keystream is used to perform the encryption operation on the plaintext. 

The detail step of ACI based encryption process is given in section 5.2.1.3. 

5.2.1.3 Encryption Algorithm 

 Input     :  Source file/source stream i.e. plaintext 

Output   :  Encrypted file/encrypted stream i.e. cipher text 

Method  : The process operates on binary stream and generates encrypted bit stream through 

Ant Colony Intelligence (ACI) based encryption. 

Step 1. If the length of the plaintext is grater than the length of the ACI based 

keystream then the values of the keystream are added to a 

predetermined value to generate the keys for the characters in the 

plaintext which is at a position grater than the length of the key 

stream. Predetermined value is calculated using the equation 5.26. 

                                    𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                  (5.26) 

Step 2. For the very first plaintext block keys are form by the values of the 

characters in the ACI based keystream.  

Step 3. For the successive plaintext blocks ACI based keys are generated by 

adding predetermined value with the keys of the previous block given 

in equation 5.27 for reducing the key storage load that in turn reduces 

the space complexity. 

      𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 = 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 − 1 +  𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,    

      𝑤𝑒𝑟𝑒 𝑖 >= 2                                                                                (5.27) 

Step 4. Perform Exclusive-OR operation between plaintext block with key in 

the ACI based keystream. 
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Step 5. Considers the outcomes of step 4 as a stream of finite number of bits 

𝑁, and is divided into a finite number of blocks, each also containing a 

finite number of bits 𝑛, where 1 ≤  𝑛 ≤  𝑁. Consider the block 

𝐶 = 𝑐0
𝑗  
𝑐1 

𝑗  
𝑐2

𝑗  
𝑐3

𝑗  
𝑐4

𝑗  
…  𝑐𝑛−1

𝑗  
 of size 𝑛 in the outcomes of step 4. 

Step 6. Perform cycle formation techniques on 𝐶 = 𝑐0
𝑗  
𝑐1 

𝑗  
𝑐2

𝑗  
𝑐3

𝑗  
𝑐4

𝑗  
…  𝑐𝑛−1

𝑗  
 of 

block of size 𝑛. In the following cases  is used to represents the 

Exclusive-OR operation. Perform the operations given in equation 

5.34 to 5.37 for generating the intermediate block  

𝐼𝑗 = 𝑐0
𝑗+1

𝑐1 
𝑗 +1 

𝑐2
𝑗+1 

𝑐3
𝑗+1

𝑐4
𝑗+1 

…  𝑐𝑛−1
𝑗 +1 

 from 𝐶 in the following way: 

                                          𝑐𝑛−1
𝑗 +1 

= 𝑐𝑛−1
𝑗  

                                                                                     (5.28) 

                           𝑐𝑛−2
𝑗 +1 

=𝑐𝑛−2
𝑗

 𝑐𝑛−1
𝑗 +1 

                                                                          (5.29)  

                           𝑐1 
𝑗 +1 

= 𝑐1 
𝑗  
 𝑐2

𝑗 +1 
                                                                            (5.30) 

                           𝑐0
𝑗 +1 

= 𝑐0 
𝑗
 𝑐1 

𝑗+1 
                                                                           (5.31) 

The process continues for a finite number of iterations, which depends 

on the value of n, the source block 𝐶 is regenerated. If the number of 

iterations required regenerating the source block is assumed to be 𝐼, 

then any of the intermediate block is considered as a encrypted block.  

5.2.1.4 Session Key based  Encryption  

During final step of the technique a cascaded Exclusive-OR operation between CTHLP 

synchronized session key and ACI encrypted cipher text is performed to generate final 

encoded cipher text.  

The decryption algorithm takes the cipher text as a binary stream of bits and perform first 

level of operation using CTHLP generated synchronized session key to produce intermediate 

decrypted text. Finally, ACI generated fittest keystream based decryption is performed on the 

intermediate decrypted text to regenerate the plaintext. The algorithm for the complete 

process is given in section 5.2.2.        
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5.2.2 CTHLPSCT Algorithm at Receiver  

      Input       : Encrypted file/encrypted stream i.e. cipher text  

      Output    : Source file/source stream i.e. plaintext 

     Method : The process operates on encrypted binary stream and generates decrypted bit 

stream through Chaos based CTHLP guided Genetic algorithm (ACI) based 

decryption operations. 

Step 1. Perform cascaded Exclusive-OR operation between CTHLP based 

session key and cipher text. 

Step 2. Perform Ant Colony Intellogence (ACI) based decryption on the 

outcomes of the step 1 to regenerate starting combination i.e. 

plaintext. 

Step 1 of the algorithm is discussed in section 5.2.2.1. Step 2 of the algorithm for performing 

Genetic Algorithm based decryption is discussed in section 5.2.2.2. 

5.2.2.1       Session Key based  Decryption  

Initially cascaded Exclusive-OR operation between CTHLP synchronized session key and 

cipher text is performed to produce session key decrypted text. Outcomes of this operation 

used as an input of ACI based decryption algorithm discussed in 5.2.2.2 to regenerate the 

plaintext.   

 In the decryption process the ACI based cipher text is divided into blocks. Exclusive-OR 

guided cycle formation based decryption is performed on each block. After that all blocks are 

merged together. The ACI generated keystream is use to Exclusive-OR with the merged 

blocks to regenerate the plaintext. The detail step of ACI based decryption process is given in 

section 5.2.2.2. 
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5.2.2.2      Decryption Algorithm 

Input      :  ACI Encrypted file/ ACI encrypted stream  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on ACI encrypted bit stream and regenerates the plaintext 

through ACI based decryption. 

Step 1. Divide the ACI encrypted text into different blocks.  

Step 2. Perform operation given in equation 5.42 to 5.45 upto                  

(𝑃 –  𝑖) steps on each block 𝑇 = 𝑡0
𝑖  𝑡1 

𝑖  𝑡2
𝑖 𝑡3

𝑖  𝑡4
𝑖  …  𝑡𝑛−1

𝑖   if the total 

number of iterations required to complete the cycle is 𝑃 and the 𝑖th
 

step is considered to be the encrypted block. 

                           𝑡𝑛−1
𝑖  = 𝑡𝑛−1

𝑖−1                                                                                       (5.32) 

                           𝑡𝑛−2
𝑖  = 𝑡𝑛−2

𝑖  𝑡𝑛−1
𝑖                                                                             (5.33) 

                           𝑡1 
𝑖  = 𝑡1 

𝑖−1  𝑡2
𝑖                                                                                   (5.34) 

                           𝑡0
𝑖   = 𝑡0 

𝑖−1 𝑡1 
𝑖                                                                                  (5.35)                           

Step 3. Merge outcomes of step 2. 

Step 4. Compute the predetermined value. 

Step 5. Using predetermined value and keys in the ACI based keystream 

receiver generates the keys for the portion of the text exceeding the 

length of the ACI based keystream. 

Step 6. Generate plaintext by performing Exclusive-OR operation between 

outcomes of step 3 and ACI based keystream.  

5.3    Implementation  

Consider the plaintext to be encrypted is “antcolonyintelligence” threshold value is assumed 

to be 0.65. Each ant agent has a pheromone deposition comprising of characters representing 

the keystream. The energy level of the ant agent is a count of the characters in the keystream 

occurring in the plaintext divided by the length of the keystream. The ant agent with a 

maximum energy level greater than the specified threshold value is chosen as the key stream 

for text encryption. Table 5.3 show the pheromone deposition of ant agents denoting the 
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keystream and their corresponding energy value. Since the second ant agent in second 

iteration has the maximum energy value 0.66 which is greater than the threshold value, the 

keystream “ueigunscaoblyt” corresponding to that ant agent is chosen for encryption. Each 

character in the keystream is chosen as the key for encryption. Since the keystream is smaller 

than the length of the plaintext to be encoded, the values of the keys of the keystream are 

added to a predetermined value to generate the keys for the remaining portion of the 

plaintext. The predetermined value can be generated by dividing the length of the plaintext 

by half of its length. Here the value is chosen as 15. Thus the keys for the portion of the 

plaintext exceeding the length of the keystream is generated by adding the values of the keys 

in the keystream with the value 15.  

Table 5.3 

ACI based keystream generation  
Iteration 1 Energy Iteration 2 Energy 

ckyaptseifdorgq 0.46 cyusadkleownjgm 0.53 

anwghqbcletzduo 0.53 ueigunscaoblyt 0.66 

yurtdfbnczfsvam 0.33 tedcbkhouesxvaq 0.40 

rqewcalkygtxifo 0.60 ivbjtwaxrdgnzpu 0.33 

Highest energy  𝟎. 𝟔𝟎 Highest energy  𝟎. 𝟔𝟔 

 

Binary representations of ASCII value of the plaintext is 

01100001/01101110/01110100/01100011/01101111/01101100/01101111/01101110/011110

01/01101001/01101110/01110100/01100101/01101100/01101100/01101001/01100111/011

00101/01101110/01100011/01100101 

The ACI based keystream “ueigunscaoblyt” has 14 characters. The plaintext 

“antcolonyintelligence” has 21 characters. So, for the extra seven characters ACI based keys 

are generated by adding predetermined value with the keys of the previous block for reducing 

the key storage load that in turn reduces the space complexity. Predetermined value gets 

calculated by the equation 5.36. 

                            𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 =  𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                             (5.36) 

So, the predetermined value will be  
21

2
 = 10 

So, binary representation of ASCII value of the ACI based keystream is  

01110101/01100101/01101001/01100111/01110101/01101110/01110011/01100011/011000

01/01101111/01100010/01101100/01111001/01110100/01111111/01101111/01110011/011

10001/01111111/01111000/01111101 
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On performing ACI keystream based encryption operation the new intermediate encoded text 

is 

00010100/00001011/00011101/00000100/00011010/00000010/00011100/00001101/ 

00011000/00000110/00001100/00011000/00011100/00011000/00010011/00000110/ 

00010100/00010100/00010001/00011011/00011000 

Binary representations of ASCII value of the ACI encrypted text are divided into variable 

size segments. Following are the different segments constructed from S. 

S1 = 0001010000001011 (16 bits) 

S2 = 0001110100000100 (16 bits) 

S3 = 0001101000000010 (16 bits) 

S4 = 0001110000001101 (16 bits) 

S5 = 0001100000000110 (16 bits) 

S6 = 0000110000011000 (16 bits) 

S7 = 0001110000011000 (16 bits) 

S8 = 0001001100000110 (16 bits) 

S9 = 00010100 (8 bits) 

S10 = 0001010000010001 (16 bits) 

S11 = 00011011 (8 bits) 

S12 = 00011000 (8 bits) 

Cycle formation operation is now performed on S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 

segments respectively. For each of the segments, an arbitrary intermediate stream segment is 

considered as the encrypted stream segment. 

The formation of cycles for segments S1 (0001010000001011) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0110001100100111) after iteration-6 considered as an encrypted segment for the segment 

S1. 

00010100000010111111001111111001
1
0101000101010111

2
0011000011001101

3
      

1110111110111011
4
1010010101101001

5
0110001100100111

6
0010000100011101

7
        

0001111100001011
8
0000101011111001

9
0000011001010111

10
1111110111001101

11

0101010010111011
12
1100110001101001

13
0100010000100111

14
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0011110000011101
15
0001010000001011

16
 

The formation of cycles for segments S2 (0001110100000100) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1111100001010100) after iteration-10 considered as an encrypted segment for the segment 

S2. 

00011101000001001111010011111100
1
1010110001010100

2
1001101111001100

3
      

1000100101000100
4
1000011100111100

5
0111110100010100

6
0010101100001100

7
        

0001100100000100
8
0000100011111100

9
1111100001010100

10
0101011111001100

11

1100110101000100
12
1011101100111100

13
0110100100010100

14
 

0010011100001100
15
0001110100000100

16
 

The formation of cycles for segments S3 (0001101000000010) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1010100001100110) after iteration-3 considered as an encrypted segment for the segment 

S3. 

00011010000000100000100111111110
1
1111100010101010

2
1010100001100110

3
      

1001100000100010
4
1000100000011110

5
0111100000001010

6
0010100000000110

7
        

0001100000000010
8
1111011111111110

9
0101001010101010

10
1100111001100110

11

1011101000100010
12
1001011000011110

13
0111001000001010

14
 

0010111000000110
15
0001101000000010

16
 

The formation of cycles for segments S4 (0001110000001101) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0001000100001101) after iteration-8 considered as an encrypted segment for the segment 

S4. 

00011100000011010000101111111011
1
0000011010101001

2
0000001001100111

3
      

0000000111011101
4
1111111101001011

5
0101010100111001

6
0011001100010111

7
        

0001000100001101
8
1111000011111011

9
1010111110101001

10
0110010101100111

11

1101110011011101
12
1011010001001011

13
0110110000111001

14
 

0010010000010111
15
0001110000001101

16
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The formation of cycles for segments S5 (0001100000000110) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1111111001100110) after iteration-4 considered as an encrypted segment for the segment 

S5. 

00011000000001100000100000000010
1
0000011111111110

2
0000001010101010

3
      

1111111001100110
4
1010101000100010

5
0110011000011110

6
0010001000001010

7
        

0001111000000110
8
0000101000000010

9
1111100111111110

10
1010100010101010

11

1001100001100110
12
1000100000100010

13
0111100000011110

14
 

0010100000001010
15
0001100000000110

16
 

The formation of cycles for segments S6 (0000110000011000) is shown below. After 8 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1100110010001000) after iteration-5 considered as an encrypted segment for the segment 

S6. 

00001100000110000000010000001000
1
0000001111111000

2
1111111010101000

3
      

0101010110011000
4
1100110010001000

5
0100010001111000

6
0011110000101000

7
        

0001010000011000
8
0000110000001000

9
1111101111111000

10
0101011010101000

11

1100110110011000
12
0100010010001000

13
0011110001111000

14
 

0001010000101000
15
0000110000011000

16
 

The formation of cycles for segments S7 (0001110000011000) is shown below. After 8 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0101001111111000) after iteration-2 considered as an encrypted segment for the segment 

S7. 

00011100000110001111010000001000
1
0101001111111000

2
1100111010101000

3
      

0100010110011000
4
0011110010001000

5
0001010001111000

6
0000110000101000

7
        

0000010000011000
8
1111110000001000

9
1010101111111000

10
0110011010101000

11

1101110110011000
12
1011010010001000

13
0110110001111000

14
 

0010010000101000
15
0001110000011000

16
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The formation of cycles for segments S8 (0001001100000110) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(1111001100000010) after iteration-9 considered as an encrypted segment for the segment 

S8. 

00010011000001101111000100000010
1
0101000011111110

2
1100111110101010

3
      

0100010101100110
4
1100001100100010

5
0100000100011110

6
0011111100001010

7
        

0001010100000110
8
1111001100000010

9
1010111011111110

10
0110010110101010

11

0010001101100110
12
1110000100100010

13
0101111100011110

14
 

0011010100001010
15
0001001100000110

16
 

The formation of cycles for segments S9 (00010100) is shown below. After 8 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (11001100) 

after iteration-5 considered as an encrypted segment for the segment S9. 

0001010000001100
1
00000100

2
11111100

3
01010100

4
11001100

5
01000100

6
 

00111100
7
00010100

8
 

The formation of cycles for segments S10 (0001010000010001) is shown below. After 8 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0000010000000101) after iteration-2 considered as an encrypted segment for the segment 

S10. 

00010100000100010000110000001111
1
0000010000000101

2
1111110000000011

3
      

0101010000000001
4
0011001111111111

5
0001000101010101

6
0000111100110011

7
        

0000010100010001
8
0000001100001111

9
0000000100000101

10
1111111100000011

11

0101010100000001
12
1100110011111111

13
0100010001010101

14
 

0011110000110011
15
0001010000010001

16
 

The formation of cycles for segments S11 (00011011) is shown below. After 16 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (10011001) 

after iteration-5 considered as an encrypted segment for the segment S11. 

0001101100001001
1
00000111

2
11111101

3
10101011

4
10011001

5
01110111

6
 

00101101
7
00011011

8
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The formation of cycles for segments S12 (00011000) is shown below. After 16 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (10011000) 

after iteration-4 considered as an encrypted segment for the segment S12. 

0001100000001000
1
11111000

2
10101000

3
10011000

4
10001000

5
01111000

6
 

00101000
7
00011000

8
 

On completion of the cycle formation technique on each segment twelve intermediate 

segments are considered as the encrypted segments. After merging the above twelve 

encrypted segments following ACI based encrypted text is generated. 

01100011/00100111/11111000/01010100/10101000/01100110/00010001/00001101/111111

10/01100110/11001100/10001000/01010011/11111000/11110011/00000010/11001100/000

00100/00000101/10011001/10011000 

For example CTHLP based following session key is generated  

10100101/01101110/11101000/00101011/11100000/00100011/01000100/11001000/100110

01/00010000/11110010/11010101/100100110/00010100/11101010/00101111/00101000/00

101010/10111111/1010111/01101110 

Following is the session key encrypted final cipher text produce on performing               

Exclusive-OR operation between ACI based encrypted text and CTHLP based session key.    

11000110/01001001/00010000/01111111/01001000/01000101/01010101/11000101/011001

11/01110110/00111110/01011101/11000000/11110010/10000110/00010101/01011000/000

10001/01011010/01001110/11110110 

5.4     Security Analysis 

In CTHLPSCT, identical input vector for both the parties kept secret for security reason. 

Attackers has no idea about the internal state of both the machines at a particular instant of 

time and this is achievable by keeping secret the common input vector. At the time of key 

exchange procedure key authentication technique is also performed parallel by selecting last 

𝑚 bits of the identical input vector and transmitting directly as an output bit towards the 

other party over public channel. Receiving party checks these last 𝑚 bits to its last 𝑚 bits of 

identical input vector. If both the sequences are same then both are authenticated otherwise 
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not. Attacker does not have identical input vector like sender and receiver. By sniffing the 

public channel attacker can gets some bits but from them attacker will not be able to 

understand which one is output bit of the machine and which one is one of the bits of 𝑚 bits 

sequence of the identical input vector. Even if attacker hacks the m bits then for getting the 

rest of the (𝑑 − 𝑚) bits of the identical input vector attacker has to perform checking with all 

(𝑑 − 𝑚) combination that is computationally infeasible. Where 𝑑 is the total number of bits 

in the identical input vector. The security aspects of the algorithm are discussed based on the 

attack model. It is assumed that the detail of encryption or decryption algorithm is known to 

the cryptanalyst. The following standard attacks are considered to ensure the robustness of 

the CTHLPSCT. 

 Cipher text only Attack: The technique nullifies the success rate of this attack by 

producing a robust Chaos based Group session key and ACI based encrypted cipher text. 

The strength of resisting exhaustive key search attack relies on a large key space. The 

cryptanalyst has only the cipher text to work with.  In this ACI technique the key is 

changed for each character of the plaintext to produce a cipher text that is mathematically 

difficult to break. Since 192 characters are taken and a permutation of these characters is 

done to get groups of characters of all possible orderings without any repetition forming 

the keystream, the total number of keystreams will be 192! × 2.718. Thus the possible 

number of combinations to be searched is 192! × 2.718. Thus a hacker has to try all such 

keystreams to find an appropriate one. This method makes it difficult for the hacker to 

find out the keystream used for encryption. Thus the size of the key space is 192! ×

2.718.  The technique helps to generate long period of random keystreams along with no 

obvious relationship between the individual bits of the sequence. Also the generated 

keystreams are of large linear complex. Finally keystream have high degrees of 

correlation immunity. Thus it is practically difficult to perform a brute-force search in a 

key-space.  

 Known Plaintext Attack: The plaintext is encoded using the cycle formation technique. 

This would increase the security in such a manner that it is difficult to know the values 

assigned for the characters in the plaintext. This is because there are 2𝑙  
possible 

combination and the hacker has to search those combinations for the values. Here, 
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𝑙 denotes the length of block. Also the keys used for encryption has to be found by the 

cryptanalyst. The technique offers better floating frequency of characters. So, known 

plaintext attack is difficult in this technique.   

 Chosen Plaintext Attack: The objective of this attack is to find the secret key. This attack 

is difficult because there is no obvious relationship between the individual bits of the 

sequence in plaintext and cipher text. In the technique the cipher text is obtained by 

performing an Exclusive-OR operation between the encoded plaintext and the characters 

in the key stream. This technique is not vulnerable to chosen-plaintext attack, since the 

plaintext is encoded first using cycle generation technique then outcomes of this get 

Exclusive-OR with ACI based keystream and the outcomes of this is Exclusive-OR with 

the  session key. It is difficult for the hacker to find the key chosen for encryption. So, it 

is difficult to choose a plaintext of his/her choice and get the corresponding cipher text. 

The technique passes the frequency (monobit) test, runs test, binary matrix rank test and 

in each session a fresh CTHLP based session key is used for encryption which confirms 

that chosen plaintext attack is very difficult in this technique. 

 Chosen Cipher text Only Attack: The technique has a good Chi-Square value this 

confirms good degree of non-homogeneity and also it passes the discrete Fourier 

transform test, approximate entropy test, overlapping (periodic) template matching test 

which confirms that chosen plaintext attack is difficult in this technique. So, it will be 

difficult get plaintext from the cipher text.  

 Brute Force Attack: The ACI based key is changed for each character of the plaintext to 

produce a cipher text that is mathematically impossible to break. Since 192 characters are 

chosen the total number of keystreams will be 192! × 2.718. Thus a hacker has to try all 

such keystreams to find an appropriate one. This method makes it difficult for the hacker 

to find out the keystream used for encryption. Encryption is an important issue in 

wireless communication since it is carried out over the air interface, and is more 

vulnerable to fraud and eavesdropping. Also the keystream is used to generate the keys 

for the portion of the plaintext exceeding the length of the keystream. This method of 

encryption reduces the number of keys to be stored and distributed. Due to high 

complexity brute force attack will not be feasible. The technique has a good entropy 
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value near to eight which indicates that brute force attack is not be possible in this 

technique.  

 Consider an attack where E takes 𝜏𝐸  and the local fields of his/her hidden units into 

account. In fact, it is the most successful method for an attacker using only a single 

CTHLP. E tries to imitate B without being able to interact with A. As long as 𝜏𝐴 = 𝜏𝐸 , 

this can be done by just applying the same learning rule as the partners A and B. But in 

the case of 𝜏𝐸 ≠ 𝜏𝐴 .  E cannot stop A‟s update of the weights. Instead the attacker tries to 

correct the internal representation of his/her own DHLP using the local fields 1
𝐸 , 

2
𝐸 , … , 𝑘

𝐸 as additional information. These quantities can be used to determine the level 

of confidence associated with the output of each hidden unit. As a low absolute value 

 𝑖
𝐸  indicates a high probability of  𝜎𝑖

𝐴 ≠ 𝜎𝑖
𝐸 , the attacker changes the output 𝜎𝑖

𝐸  of the 

hidden unit with minimal  𝑖
𝐸  and the total output 𝜏𝐸  before applying the learning rule. 

Of course, this attack does not always succeed in estimating the internal representation of 

A‟s CTHLP correctly. Sometimes there are several hidden units with  𝜎𝑖
𝐴 ≠ 𝜎𝑖

𝐸 . In this 

case the change of one output bit is not enough. It is also possible that   𝜎𝑖
𝐴 = 𝜎𝑖

𝐸for the 

hidden unit with minimal  𝑖
𝐸 , so that the correction makes the result worse than before. 

5.5 Discussions 

The technique is very simple and easy to implement in various high level language. The test 

results also show that the performance and security provided by the technique is good and 

comparable to standard technique. The security provided by the CTHLPSCT is comparable 

with other techniques. To enhance the security of the technique, CTHLPSCT offers changes 

of some parameters randomly in each session. To generate the secret session key index mask 

get exchanged between sender and receiver. This technique has a unique ability to construct 

the secret key at both sides using this exchanged information. Since the encryption and 

decryption times are much lower, so processing speed is very high. The method takes 

minimum amount of resources which is greatly handle the resource constraints criteria of 

wireless communication. This method generates a large number of keys which is the same 

number of neurons in the map. For ensuring the randomness in every session, some of the 
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parameters get change randomly at each session. CTHLPSCT outperform than existing TPM, 

PPM, Diffie-Hellman Key exchange methods and does not suffers from Brute Force or Man-

In-The-Middle (MITM) attack. No platform specific optimizations were done in the actual 

implementation, thus performance should be similar over varied implementation platform. 

The whole procedure is randomized, thus resulting in a unique process for a unique session, 

which makes it harder for a cryptanalyst to find a base to start with. This technique is 

applicable to ensure security in message transmission in any form and in any size in wireless 

communication. Some of the salient features of CTHLPSCT are summarized as follows:   

a) Session key generation and exchange – Identical session key can be generate after the 

tuning of CTHLP in both sender and receiver side with the help of chaos 

synchronization. So, no need to transfer the whole session key via vulnerable public 

channel. 

b) Degree of security – The technique does not suffers from cipher text only attack, 

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute 

force attack and attacks during CTHLP synchronization process. It offers 

authentication steps during synchronization.  

c) Variable block size – Encryption algorithm can work with any block length and thus 

not require padding, which result identical size of files both in original and encrypted 

file. So, CTHLPSCT has no space overhead. 

d) Variable key – 128/192/256 bit CTHLP based session key and 128/192/256 bits 

ACI based keystream with high key space can be used in different sessions. Since the 

session key is used only once for each transmission, so there is a minimum time stamp 

which expires automatically at the end of each transmission of information. Thus the 

cryptanalyst may not be able guess the session key for that particular session. 

e) Complexity – The technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh 

through wireless communication. So, the CTHLPSCT may be suitable in wireless 

communication. 
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f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value 

have been performed between the source and corresponding cipher streams 

generated using proposed technique. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good. This 

technique has a better Chi-Square value than technique proposed in chapter 2, 3 and 

4. 

g) Floating frequency – In the CTHLPSCT it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security for the proposed 

technique. This technique has a better floating frequency than technique proposed in 

chapter 2, 3 and 4. 

h) Entropy – The entropy of encrypted characters is near to eight which indicate the 

high degree of security of technique. This technique also has a better entropy value 

than technique proposed in chapter 2, 3 and 4. 

i) Correlation – The cipher stream generated through the technique is negligibly 

correlated with the source stream. Therefore the the technique may effectively resist 

data correlation statistical attack. 

j) Key sensitivity – The technique generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 

k) Security and performance trade-off – The technique may be ideal for trade-off 

between security and performance of light weight devices having very low processing 

capabilities or limited computing power in wireless communication. 
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6.1 Introduction 

In this chapter a novel soft computing assisted cryptographic technique CGTHLPSCT, based 

on synchronization of Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP)
[208]

, 

has been proposed. The CTHLPSCT technique proposed in chapter 5 are only considered 

synchronization among two parties for generation of session key. Since in CTHLP technique 

each communicating party has to synchronize with other. So, if there are 𝑛 parties then total 

number of synchronizations needed is 𝑂(𝑛2). This is quite computationally complicated 

especially in wireless communication where the computational power and the resource 

constrain is a major issue. CGTHLPSCT of this chapter eliminates all the above stated 

drawbacks of the CTHLPSCT in chapter 5. CGTHLPSCT of the present chapter introduces 

Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) synchronization 

mechanism for offering synchronization of group of parties. In CGTHLPSCT a key swap 

over by synchronization among cluster of CTHLP has been proposed which is a fresh 

addition to the field of cryptography. The proposed technique implements the key swap over 

technique with the help of complete binary tree framework which makes the technique scales 

logarithmically with the number of parties participating in the key swap over protocol. In the 

previous chapter it has been shown how two parties can swap over a common key using 

synchronization between their own CTHLP. But the problem crop up when group of 𝑛 

parties desire to swap over a key.  Using proposed technique a set of 𝑛 parties can be able to 

share a common key with only 𝑂(𝑙𝑜𝑔2 𝑛) synchronization steps. This is logarithmic 

complexity and feasible in wireless communication with limited amount of resources.    

Here, CGTHLP based synchronization is performed for tuning of group of parities by 

placing on the complete binary tree framework. On the completion of the tuning phase 

identical session key is generated for the entire group with the help of synchronized 

CGTHLP.  This synchronized network can be used for transmitting message using any light 

weight encryption/decryption technique with the help of session key of the synchronized 

network. To illustrate the cryptographic technique using CGTHLP in wireless 

communication one of the simple and secure encryption/decryption technique has been 

presented. A plaintext is considered as a stream of binary bits. Particle Swarm Intelligence 

(PSI) guided enciphering technique
[209]

 with the help of CGTHLP tuned session key is used 
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to generate the cipher text. The plaintext is regenerated from the cipher text using same 

technique with the help of CGTHLP tuned session key. 

Section 6.2 represents a description of proposed technique. Section 6.3 deals with the 

implementation of the proposed cryptographic technique. Section 6.4 discussed the security 

issue related to the proposed technique. Discussions are presented in section 6.5.   

6.2 The Technique  

The technique performs the CGTHLP based synchronization for generation of secret session 

key for the entire group. This synchronized group session key of the tuned network is used 

for the transmission of secured message through wireless network with the help of any light 

weight encryption/decryption algorithm. To illustrate the cryptographic technique in wireless 

communication one of the simple and secure encryption/decryption technique has been 

proposed, where plaintext (i.e. the input file) is considered as a stream of binary bits, which is 

encrypted using PSI generated fittest encryption/decryption keystream. The session key 

based on CGTHLP is used to encrypt intermediate output which produces final cipher text.  

The technique uses Chaos based Grouped of THLP to generate the group session key. This 

scheme implements the key swap over algorithm with the help of complete binary tree 

framework which makes the algorithm scales logarithmically with the number of parties 

participating in the key swap over protocol.  

In Particle Swarm Intelligence (PSI) based encryption/decryption technique, particle and 

velocity vector are formed for generation of keystream by setting up the maximum 

dimension of each particle and velocity vector. Each particle position and probability value is 

evaluated. Probability value of each particle can be determined by dividing the position of a 

particular particle by its length. If probability value of a particle is less than minimum 

probability value then a velocity is applied to move each particle in a new position. After that 

probability value of the particle at new position is calculated. A threshold value is selected to 

evalutae against velocity level of each particle. Particle having highest velocity more than 

predefined threshold value is selected as a keystream for encryption. If the length of the 

plaintext is grater than the length of the PSI based keystream then the values of the keystream 

are added to a predetermined value to generate the keys for the characters in the plaintext 
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which is at a position grater than the length of the keystream. Stream of plaintext is then 

encrypted using the PSI based keystream/extended keystream. Finally a cascaded Exclusive-

OR operation is performed between PSI encrypted text and the CGTHLP based session key 

to generate final cipher text. 

All the parties in the group have the same CGTHLP synchronized group session key. 

This session key is used to perform first step of the deciphering technique. In the next step, 

PSI guided keystream based deciphering operation is performed to regenerate the plaintext. 

The CGTHLPSCT does not cause any storage overhead. This greatly handles the 

resource constraints criteria of wireless communication. A comparison of CGTHLPSCT with 

previously proposed technique in chapter 5, chapter 4, chapter 3, chapter 2, existing Tree 

Parity Machine (TPM), Permutation Parity Machine (PPM), and industry accepted AES, 

RC4, Vernam Cipher, Triple DES (TDES) and RSA have been done. Analyses of results are 

given in chapter 7.  

In CGTHLPSCT, encryption algorithm takes the plaintext as a binary stream of bits 

which is encrypted using PSI generated fittest encryption keystream based encryption 

process. CGTHLP synchronized group session key is used to further encrypt the PSI encoded 

text to produce final cipher text. The algorithm for the complete process is given in section 

6.2.1. 

6.2.1 CGTHLPSCT Algorithm at Sender 

Input     :   Source file/source stream i.e. plaintext 

      Output  :   Encrypted file/encrypted stream i.e. cipher text 

      Method :  The process operates on binary stream and generates encrypted bit stream through 

CGTHLP guided Ant Colony Intelligence (PSI) based encryption operations.  

Step 1.    Perform tuning of CGTHLPs to generate common group secret session 

key. 

Step 2.       Generates PSI based fittest encryption keystream. 

Step 3. Perform PSI based encryption operation on the plaintext. 

Step 4. Perform cascaded Exclusive-OR operation between CGTHLP based 

session key and outcomes of step 3. 
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Step 1 of the algorithm generate common session key through synchronization of CGTHLP 

at both end. The detailed step is discussed in section 6.2.1.1. Step 2 of the algorithm 

generates PSI based fittest encryption keystream. The detailed description of the process is 

given in section 6.2.1.2. Algorithm for performing PSI based encryption operation (step 3) on 

the plaintext is discussed in 6.2.1.3. The technique of cascading encryption process (step 4) 

which takes the intermediate output generated in step 3 is given in details in section 6.2.1.4. 

6.2.1.1  Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) Synchronization 

and Session Key Generation 

Chaos based Grouped Triple Hidden Layer Perceptron (CGTHLP) guided synchronization 

mechanism has been proposed here to improve the efficiency and enhance the security of the 

Chaos based Triple Hidden Layer Perceptron (CTHLP) guided synchronization between two 

parties, proposed in chapter 5. The most important hazard of cryptography is how to firmly 

swap over the shared secrets between the parties. As a result, key exchange protocols are 

mandatory for transferring keys in a protected manner.  As the same time as key exchange 

protocols are developed for exchanging key between two parties, many applications do 

necessitate the need of swapping over a secret key among group of parties. So, if there are 𝑛 

parties then total number of synchronizations needed is 𝑂(𝑛2). Which is quite 

computationally complicated especially in wireless communication where the computational 

power and the memory constrain is a major issue. The method of this chapter eliminates all 

the above stated drawbacks of the method of chapter 5. The method of the current chapter 

introduces CGTHLP synchronization mechanism for offering synchronization of group of 

parties. Here, a complete binary tree framework is used to synchronize group of CTHLP, 

which makes the algorithm scales logarithmically with the number of parties participating in 

the key swap over protocol. In the CGTHLP synchronized group key exchange algorithm, 𝑛 

CTHLP need to synchronize together and they are represented by an 𝑚 number of leaves of a 

complete binary tree where 𝑚 is defined as 𝑚 =  2𝑙𝑜𝑔2 𝑛  . In the technique 𝑛 CTHLP having 

identical structure of three hidden layers are participated for group key generation purpose. 

Here, each CTHLP considered as a node of a complete binary tree framework. CTHLP in the 

group initially start Chaos synchronization between two pair of leaves to construct a common 

seed value at both sides. This Chaos synchronized identical seed values is used to generate 
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the common input vector for the two nodes 𝑛𝑜𝑑𝑒𝑖(sending node) and 𝑛𝑜𝑑𝑒𝑗  (receiving node) 

of the complete binary tree framework participating in the synchronization process. Now, 

two nodes  𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  in the same pair start synchronization with common input 

vector and completely random weight vector. In each time both 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  compute 

their final output based on input and weight vector, and communicate to each other. If both 

are be in agreement on the mapping between the present input and the output, their weights 

are updated according to an appropriate learning rule. After synchronization procedure 

weight vector of both 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  become identical. Now one of these two 

synchronized 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  is elected for proceed further synchronization steps with the 

elected 𝑛𝑜𝑑𝑒𝑖  form other branch of the tree. If all the nodes in the group are synchronized in 

this manner then indistinguishable weight vector forms the group session key for a particular 

session. Authentication steps also get performed parallel to the synchronization steps. Both 

parties’ uses identical input vector generated using Chaos synchronized seed and use 

anonymous random weight vector to initializes the weights of the synaptic links of CTHLP. 

Identical input vector for both the parties kept secret for security reason. Attackers has no 

idea about the internal state of both the CTHLPs of 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  at a particular instant of 

time and this is achievable by keeping secret the common input vector and internal state of 

the CTHLP. At the time of key exchange procedure key authentication technique is also 

performed parallel by selecting last 𝑚 bits of the identical input vector and transmitting 

directly as an output bit towards the other party over public channel. Receiving party checks 

these last 𝑚 bits to its last 𝑚 bits of identical input vector. If both the sequences are same 

then both are authenticated otherwise not. Attacker does not have identical input vector like 

sender and receiver. By sniffing the public channel attacker can gets some bits but from them 

attacker will not be able to understand which one is output bit of the machine and which one 

is one of the bits of 𝑚 bits sequence of the identical input vector. Even if attacker hacks the 

𝑚 bits then for getting the rest of the (𝑑 −𝑚) bits of the identical input vector attacker has to 

perform checking with all (𝑑 −𝑚) combination that is computationally infeasible. Here 𝑑 is 

the total number of bits in the identical input vector of the technique offers synchronization 

and authentication step in parallel. An attacker also cannot distinguish an authentication step 

from a synchronization step from observing the exchanged outputs. Attacker thus does not 
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know, whether the currently observed output bit is used for either of the two purposes if the 

attacker does not know the secret identical common input vector.    

In a complete binary tree a node with no child is called leaf node. Figure 6.1 represents 

the scenario when 𝑙𝑒𝑎𝑣𝑒𝑠 = 8 (number of leaves in the figure 6.1) 𝑗 = 1 (𝑗 is the round 

number).  Then complete binary tree is divided into 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑎𝑣𝑒𝑠/2𝑗  
 
subtrees each 

with 2𝑗  leaves i.e. four sub trees with two leaves each represented by red oval. Each pair of 

leaves sharing the same parent (two leaves in a single red oval) involved in mutual learning 

at height four.  

 

Figure 6.1: Initial state of group synchronization 

After round 1 each pair of leaves sharing the same parent become synchronized using mutual 

learning step. Figure 6.2 represents the scenario where same colored leaves become 

synchronized. From each sub tree a node is nominated as a leader among the nodes having 

same parents to perform the next round of operation. 
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 Arindam Sarkar, University of Kalyani, India 212 

 

Figure 6.2: First round of group synchronization 

At round 2 when 𝑗 = 2, 𝑙𝑒𝑎𝑣𝑒 = 8 (number of leaves in a complete binary tree framework). 

Then tree is divided into two sub trees with four leaves at height 3 shown in figure 6.3.  

 

 

Figure 6.3:  Second round of group synchronization 

In this way next rounds are performed until the root node at height 1 is synchronized. On the 

completion of the synchronization process all the nodes in the group become synchronized 

based on a common group session key. In proposed technique CTHLPs start synchronization 

by exchanging control frames. The process involves message integrity and synchronization 
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test. CGTHLP synchronization uses transmission of control frames at the time of three way 

handshaking based TCP connection establishment phase, as given in table 6.1. 

Table 6.1 

Control frames of CGTHLP synchronization 
Frame Description 

𝑆𝑌𝑁 
𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑗 for synchronization in connection establishment 

phase 

𝐴𝐶𝐾_𝑆𝑌𝑁 
𝐴𝐶𝐾_𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑖  for positive acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝑁𝐴𝐾_𝑆𝑌𝑁 
𝑁𝐴𝐾_𝑆𝑌𝑁 frame transmitted to the 𝑛𝑜𝑑𝑒𝑖  for negative acknowledgement respect to 𝑆𝑌𝑁 

frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 𝐹𝐼𝑁_𝑆𝑌𝑁 frame transmitted by either party for closing the connection 

The 𝑆𝑌𝑁 frame is used to establish the connection to the other side. It carries index 

information of different initial parameters. On transmitting the 𝑆𝑌𝑁 frame, the 𝑛𝑜𝑑𝑒𝑖  starts a 

timer and waits for a reply from the receiver. If the 𝑛𝑜𝑑𝑒𝑗  does not take any action until a 

certain time limit and number of attempts exceeded a certain value, the 𝑛𝑜𝑑𝑒𝑖  restarts the 

synchronization procedure. When the 𝑛𝑜𝑑𝑒𝑗  receives the 𝑆𝑌𝑁 frame, it carry out the integrity 

test. If the messages are received as sent (with no replication, incorporation, alteration, 

reordering, or replay) the 𝑛𝑜𝑑𝑒𝑗  will execute the synchronization check. The 𝑛𝑜𝑑𝑒𝑖 and 

𝑛𝑜𝑑𝑒𝑗  have an identical 𝑇 variable formally store in their respective memory. The 

𝑛𝑜𝑑𝑒𝑖  sends the encrypted 𝑇 to the receiver. Here the 𝑛𝑜𝑑𝑒𝑗  utilizes its 128/192/256 bits 

weights to decrypt the encrypted  𝑇. If the result is identical to 𝑇 formerly stored in 𝑛𝑜𝑑𝑒𝑗  

memory i.e. (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡(𝑇)) = 𝑇 then the networks are 

synchronized. This is the best case solution where 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗  arbitrarily choose weight 

vector which are identical. So, networks are synchronized at initial stage. The 𝑛𝑜𝑑𝑒𝑗  should 

send the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to alert the sender. But most of the time this best case is not 

achievable.  If decryption algorithm does not produce predictable result, the 𝑛𝑜𝑑𝑒𝑗  should use 

the chaos synchronized secret seed of 𝑛𝑜𝑑𝑒𝑖’s produce the input vector (𝑋) which is identical 

to 𝑛𝑜𝑑𝑒𝑖 . With this input vector the 𝑛𝑜𝑑𝑒𝑗  will work out its 𝑜𝑢𝑡𝑝𝑢𝑡 (𝜏 𝑛𝑜𝑑𝑒 𝑗 ). If the 𝑛𝑜𝑑𝑒𝑖  

and 𝑛𝑜𝑑𝑒𝑗  outputs are different, the 𝑛𝑜𝑑𝑒𝑗  should not fine-tune its weights and inform the 
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𝑛𝑜𝑑𝑒𝑖  its output. The 𝑛𝑜𝑑𝑒𝑗 sends the 𝑁𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the 𝑛𝑜𝑑𝑒𝑖 , with the same 

𝐼𝐷 value. The proposed 𝑁𝐴𝐾_𝑆𝑌𝑁 frame in this methodology is used for providing the 

negative acknowledgement in respect to the 𝑆𝑌𝑁 frame.  If 𝑛𝑜𝑑𝑒𝑗 ’s  output is equal to 

𝑛𝑜𝑑𝑒𝑖’s  output i.e. (𝜏 𝑛𝑜𝑑𝑒 𝑗  =  𝜏 𝑛𝑜𝑑𝑒 𝑖) then 𝑛𝑜𝑑𝑒𝑗  update it weights. At the end of weights 

update, the 𝑛𝑜𝑑𝑒𝑗  should report the 𝑛𝑜𝑑𝑒𝑖  that outputs are equal. The 𝑛𝑜𝑑𝑒𝑗  uses the 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame to notify the 𝑛𝑜𝑑𝑒𝑖 , with the same 𝐼𝐷 value received from 𝑛𝑜𝑑𝑒𝑖 . The 

proposed 𝐴𝐶𝐾_𝑆𝑌𝑁 frame in this methodology is used for providing the positive 

acknowledgement in respect to the 𝑆𝑌𝑁 frame. On receipt of 𝐴𝐶𝐾_𝑆𝑌𝑁, the 𝑛𝑜𝑑𝑒𝑖  also 

updates its weight. If 𝑛𝑜𝑑𝑒𝑖  receives 𝐴𝐶𝐾 _𝑆𝑌𝑁 it should update its weights. The 𝑛𝑜𝑑𝑒𝑖  will 

create new synchronization frame until receive the frame 𝐹𝐼𝑁_𝐴𝐶𝐾 from 𝑛𝑜𝑑𝑒𝑗 . When the 

𝑛𝑜𝑑𝑒𝑖  receives the frame  𝐹𝐼𝑁_𝐴𝐶𝐾, it stops the further synchronization. The proposed 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame in this methodology is used for closing the connection. At end of 

synchronization, both nodes provide the identical weight vector which acts as a session key 

identical to both. Table 6.2 shows the different frames and their corresponding command 

codes 

Table 6.2 

CGTHLP control frames and their command codes 
Frame Command 

𝑆𝑌𝑁 0000 

𝐹𝐼𝑁_𝑆𝑌𝑁 0001 

𝐴𝐶𝐾_𝑆𝑌𝑁 0010 

𝑁𝐴𝐾_ 𝑆𝑌𝑁 0011 

𝐴𝑈𝑇𝐻 0100 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 0101-1111 

The identifier is the function of informing the 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗where the message is a recent 

message. The variable 𝐼𝐷 starts with zero and is incremented every time that the 𝑛𝑜𝑑𝑒𝑖  sends 

a synchronization frame. The figure 6.4 shows the exchange of frames during CGTHLP 

synchronization process. 
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Figure 6.4: Exchange of control frames between 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗during CGTHLP 

synchronization 

The detailed frame format of 𝑆𝑌𝑁 frame is discussed in section 6.2.1.1.1. The detailed frame 

format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame is given in section 6.2.1.1.2. The frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 

frame has been discussed in section 6.2.1.1.3. The frame format of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame is 

discussed in section 6.2.1.1.4. 
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6.2.1.1.1  Synchronization (𝑆𝑌𝑁) Frame 

During synchronization process 𝑛𝑜𝑑𝑒𝑖  constructs a 𝑆𝑌𝑁 frame and transmit to the 𝑛𝑜𝑑𝑒𝑗  for 

handshaking in connection establishment phase. 𝑛𝑜𝑑𝑒𝑖  utilizes its initial 128 weights as key 

for encryption of 𝑇 variable (formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 . 𝑛𝑜𝑑𝑒𝑖  

constructs a 𝑆𝑌𝑁 frame and transmitted to the 𝑛𝑜𝑑𝑒𝑗  for handshaking purpose in connection 

establishment phase. 𝑆𝑌𝑁 usually comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝑛𝑜𝑑𝑒𝑖  

 𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑛𝑜𝑑𝑒 𝑖), 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇  , authentication bits and 𝐶𝑅𝐶. 𝑆𝑌𝑁 frame has the 

fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0000. So, number of bits required for 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 is four. 

𝑆𝑌𝑁 𝐼𝐷,𝑛𝑜𝑑𝑒𝑖  𝑜𝑢𝑡𝑝𝑢𝑡(𝜏 𝑛𝑜𝑑𝑒 𝑖),𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 , authentication bits and 𝐶𝑅𝐶 needs 

eight bits, one bits, 128 bits, 𝑚 bits and sixteen bits respectively. When the 𝑛𝑜𝑑𝑒𝑗  receive 

𝑆𝑌𝑁 frame, the receiver should carry out integrity test. 𝑛𝑜𝑑𝑒𝑗   performs Integrity test on 

receiving the 𝑆𝑌𝑁 frame. If the messages are received as sent (with no replication, 

incorporation, alteration, reordering, or replay) the 𝑛𝑜𝑑𝑒𝑗  will execute the synchronization 

test. In synchronization test 𝑛𝑜𝑑𝑒𝑗  utilize its 128 first weights as key for decryption of 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇  that was received from the 𝑛𝑜𝑑𝑒𝑖 . After decryption operation if 

(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗  _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

Figure 6.5 shows the complete frame format of 𝑆𝑌𝑁 frame. 
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Figure 6.5: Synchronization (𝑆𝑌𝑁) frame 

6.2.1.1.2 Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) Acknowledgement Frame 

𝐴𝐶𝐾_𝑆𝑌𝑁 frame send by the 𝑛𝑜𝑑𝑒𝑗  to the 𝑛𝑜𝑑𝑒𝑖  in respect of 𝐴𝐶𝐾 frame for positive 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑐𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame has 

the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0010. Eight bits is used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 

needs sixteen bits for error checking purpose. Now check the condition i.e. If 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑  
 𝐶𝑜𝑑𝑒 
0000 

𝑆𝑌𝑁 𝐼𝐷 𝜏 𝑛𝑜𝑑𝑒𝑖 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇  
𝐴𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑖𝑜𝑛 

 

 𝑏𝑖𝑡𝑠 

𝐶𝑅𝐶  
(𝐶𝑦𝑐𝑙𝑖𝑐         
𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  
𝐶𝑒𝑐𝑘𝑒𝑟) 
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(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗  _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 then 𝑛𝑜𝑑𝑒𝑗  use the 𝑆𝑒𝑐𝑟𝑒𝑡 𝑆𝑒𝑒𝑑  

received from 𝑛𝑜𝑑𝑒𝑖  to produce the 𝑛𝑜𝑑𝑒𝑗  inputs (𝑋) identical to 𝑛𝑜𝑑𝑒𝑖 input (𝑋) and 

calculates the output 𝜏 𝑛𝑜𝑑𝑒 𝑗  . If (𝜏 𝑛𝑜𝑑𝑒 𝑗  = 𝜏 𝑛𝑜𝑑𝑒 𝑖 ) then 𝑛𝑜𝑑𝑒𝑗  should update their weights 

where 𝜎𝑘
𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗  = 𝜏𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗   using learning rule. At end of weight updation of the 

𝑛𝑜𝑑𝑒𝑗  , then it sends 𝐴𝐶𝐾_𝑆𝑌𝑁 with the same 𝐼𝐷 to instruct the 𝑛𝑜𝑑𝑒𝑖  for updating the 

weights. If 𝑛𝑜𝑑𝑒𝑖 receives 𝐴𝐶𝐾_𝑆𝑌𝑁 it should update its weights.  Figure 6.6 shows the 

complete frame format of 𝐴𝐶𝐾_𝑆𝑌𝑁 frame. 
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Figure 6.6: Acknowledgement of Synchronization (𝐴𝐶𝐾_𝑆𝑌𝑁) frame 

6.2.1.1.3 Negative Acknowledgement (𝑁𝐴𝐾_𝑆𝑌𝑁) Frame of Synchronization 

𝑁𝐴𝐾_𝑆𝑌𝑁 frame send by the 𝑛𝑜𝑑𝑒𝑗  to the 𝑛𝑜𝑑𝑒𝑖  in respect of 𝐴𝐶𝐾 frame for negative 

acknowledgement of the parameters value. This proposed frame comprises of 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷, 𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four bits. The  𝐴𝐶𝐾_𝑆𝑌𝑁 frame 

has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0011. Eight bits are used for representing the 𝑆𝑌𝑁 𝐼𝐷 and 

𝐶𝑅𝐶 needs sixteen bits for error checking purpose. If (𝜏 𝑛𝑜𝑑𝑒 𝑗  ≠ 𝜏 𝑛𝑜𝑑𝑒 𝑖  ) then the 

𝑛𝑜𝑑𝑒𝑗  sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the 𝑛𝑜𝑑𝑒𝑖  . If the 𝑛𝑜𝑑𝑒𝑗  ’s and 𝑛𝑜𝑑𝑒𝑖  ’s outputs 

are different, the 𝑛𝑜𝑑𝑒𝑗  should not fine-tune its weights and inform the 𝑛𝑜𝑑𝑒𝑖  . The 

𝑛𝑜𝑑𝑒𝑗  sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to notify the 𝑛𝑜𝑑𝑒𝑖  , with the same 𝐼𝐷 value. Figure 6.7 

shows the complete frame format of 𝑁𝐴𝐾_𝑆𝑌𝑁 frame. 

  

 

 

                                     4                          8                                   16 (𝑏𝑖𝑡𝑠) 

Figure 6.7: Negative Acknowledgement of Synchronization (𝑁𝐴𝐾_𝑆𝑌𝑁) frame 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0010 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0011 

𝑆𝑌𝑁_𝐼𝐷 
𝐶𝑅𝐶  

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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6.2.1.1.4 Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) Frame 

𝐹𝐼𝑁_𝑆𝑌𝑁 frame send by the either party for finish the synchronization process. This 

proposed frame comprises of 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, 𝑆𝑌𝑁 𝐼𝐷,𝐶𝑅𝐶. 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 needs four 

bits. The  𝐹𝐼𝑁_𝑆𝑌𝑁 frame has the fixed 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 i.e. 0001. Eight bits is used for 

representing the 𝑆𝑌𝑁 𝐼𝐷 and 𝐶𝑅𝐶 needs sixteen bits for error checking purpose. 

If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 then networks are synchronized. 

𝑛𝑜𝑑𝑒𝑗  sends the FIN_SYN frame to the 𝑛𝑜𝑑𝑒𝑖 . Figure 6.8 shows the complete frame format 

of 𝐹𝐼𝑁_𝑆𝑌𝑁 frame. 

 

 

 

                                             4                     8                          16 (𝑏𝑖𝑡𝑠) 

Figure 6.8: Finish Synchronization (𝐹𝐼𝑁_𝑆𝑌𝑁) frame 

 The CGTHLP synchronization algorithm for generating synchronized session key is 

discussed in section 6.2.1.1.5. Section 6.2.1.1.6 presents the computational complexity of the 

CGTHLP synchronization algorithm and CGTHLP learning is discussed in section 6.2.1.1.7.  

6.2.1.1.5    CGTHLP Synchronization  

Chaos synchronization initiated between 𝑛𝑜𝑑𝑒𝑖  and 𝑛𝑜𝑑𝑒𝑗   to construct a common seed value 

at both sides. The Chaos synchronized identical seed value is used to generate the common 

input vector for 𝑛𝑜𝑑𝑒𝑖   and 𝑛𝑜𝑑𝑒𝑗  . Two CTHLPs one at 𝑛𝑜𝑑𝑒𝑖   and another at 𝑛𝑜𝑑𝑒𝑗  start 

with identical input vector and anonymous random weight vector. In each time both CTHLPs 

compute their final output based on input and weight vector, and communicate to each other. 

If both are be in agreement on the mapping between the present input and the output, their 

weights are updated according to an appropriate learning rule. After synchronization 

procedure of all parties (nodes in a complete binary tree) in the group weight vector of the 

group CTHLPs become identical. These indistinguishable weight vector forms the session 

key for a particular session. Authentication steps also get performed parallel to the 

synchronization steps.  

𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒 
0001 

𝑆𝑌𝑁 𝐼𝐷 
𝐶𝑅𝐶 

(𝐶𝑦𝑐𝑙𝑖𝑐 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦  𝐶𝑒𝑐𝑘𝑒𝑟) 
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      Input      :  Tuning parameters (𝜎, 𝑏, 𝑟, 𝑥1,𝑦2 and 𝑧2), random weights, group of  𝑛 CTHLPs 

with 𝑙 leaves in a complete binary tree framework 

      Output   :  Secret session key through group synchronization 

Method :  Two CTHLPs in a pair are be in agreement on the mapping between the present 

input and the output, their weights are updated according to an appropriate 

learning rule. After synchronization procedure weight vector of both CTHLPs 

become identical. Now one of these two synchronized CTHLPs is elected for 

proceed further synchronization steps with the elected CTHLP form other branch 

of the tree. If all the CTHLP are synchronized in this manner then 

indistinguishable weight vector forms the group session key for a particular 

session. 

Step 1. Represents the 𝑛 CTHLPs by the 𝑙 leaves node in a complete binary 

tree.  

Step 2. Set  = height of the complete binary tree and 𝑝𝑜𝑠 =  − 1 where 

𝑝𝑜𝑠 denotes the initial starting position of the mutual learning 

algorithm 

Step 3. 𝑛𝑜𝑑𝑒𝑖  initializes the value of 𝜎 and 𝑏, after that value of 𝑏 is send to 

the 𝑛𝑜𝑑𝑒𝑗 . 

Step 4.    𝑛𝑜𝑑𝑒𝑗  initializes the value of  𝑟.      

Step 5.    𝑛𝑜𝑑𝑒𝑖  generates the point 𝑥1 and 𝑧1.   

Step 6.    𝑛𝑜𝑑𝑒𝑗  generates the point 𝑦2and 𝑧2.  

Step 7.       𝑛𝑜𝑑𝑒𝑖  sends 𝑥1 to 𝑛𝑜𝑑𝑒𝑗  and 𝑛𝑜𝑑𝑒𝑗  sends 𝑦2 and 𝑧2 to 𝑛𝑜𝑑𝑒𝑖 . 

Step 8.    𝑛𝑜𝑑𝑒𝑗  calculates the new value of  𝑦2  and  𝑧2 with the help of 𝑟 and 𝑏 

using the equations 6.1 and 6.2 then returns the value of  𝑦2  and  𝑧2  to 

the 𝑛𝑜𝑑𝑒𝑖 .  

                                                                      𝑦2 = 𝑟𝑥 − 𝑦2 − 𝑥𝑧2                                  (6.1) 

                                        𝑧2 = 𝑥𝑦2 − 𝑏𝑧2                                         (6.2) 

Step 9.      𝑛𝑜𝑑𝑒𝑖  calculates the value of  𝑥1  and  𝑧1  with the help of 𝑦2, 𝜎 and 𝑏  

using equations 6.3 and 6.4 then sends the value of  𝑥1  to the 𝑛𝑜𝑑𝑒𝑗   

and so on.  
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                                                                             𝑥1 = 𝜎 𝑥1 − 𝑦2                                       (6.3) 

                                                                             𝑧1 = 𝑥1𝑦2 − 𝑏𝑧1                                      (6.4) 

Step 10.  𝑛𝑜𝑑𝑒𝑖  generates a nonce. This nonce gets encrypted using a symmetric 

cipher with 𝑧1 as the key and sends the results of the encryption using 

equation 6.5.  

                           𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧1
 𝑁𝑜𝑛𝑐𝑒                          (6.5)  

Step 11.   The 𝑛𝑜𝑑𝑒𝑗  decrypts 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 using 𝑧2  as the key, performs a defined 

function on it using equation 6.6 and 6.7.  

                                                       𝐷𝑒_𝑁𝑜𝑛𝑐𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐸𝑛_𝑁𝑜𝑛𝑐𝑒 

                     (6.6) 

                                                                         𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝑓 𝐷𝑒_𝑁𝑜𝑛𝑐𝑒                              (6.7)                                                                                              

Step 12.  The 𝑛𝑜𝑑𝑒𝑗  encrypts the result of the previous step using 𝑧2 as the key 

and sends the result to the sender illustrated in equation 6.8. 

                       𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑧2
 𝐹𝑛_𝑁𝑜𝑛𝑐𝑒                  (6.8)

            

Step 13.  The  𝑛𝑜𝑑𝑒𝑖  decrypts this message using 𝑧1 as the key, performs the 

inverse of the pre-defined function and checks if the original nonce is 

obtained as shown in equation 6.9.  

                         𝑁𝑜𝑛𝑐𝑒 = 𝑓−1  𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑧1
 𝐸𝑛_𝐹𝑛_𝑁𝑜𝑛𝑐𝑒  

          (6.9)                                              
 

Step 14.  If synchronization is not achieved, the process is repeated from step 5. 

Step 15.  If synchronization is achieved i.e. 𝑧1 = 𝑧2 then 𝑧1  is used as a seed for 

a pseudo random number generator to generate identical                    

input vector 𝑋  at both node. 

Step 16. Initialization of synaptic links between input layer and first hidden 

layer and between first hidden layer and second hidden layer using 

random weights values. Where, 𝑊𝑖𝑗 𝜖 −𝐿,−𝐿 + 1,… , +𝐿 .                                                  

                                         Repeat step 17 to step 26 until the full synchronization is achieved,  

Step 17. The input vector(𝑋) is generated both end using the Chaos 

synchronized seed value.   

Step 18. Computes the values of hidden neurons by the weighted sum over the 

current input values. Each hidden neuron in first Hidden layer 
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produces 𝜎1
i values. Similarly, each hidden neuron in second hidden 

layer produces 𝜎2
i value. Each hidden neuron in third hidden layer 

produces 𝜎3
i value. These can be represented using equation 6.10, 

6.11 and 6.12. 

                                                                      𝜎1
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝑊𝑖 ,𝑗  𝑋𝑖,𝑗                                   (6.10) 

                                                                               𝜎2
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝜎𝑖
1                                               (6.11) 

                                                                               𝜎3
i =  𝑠𝑔𝑛    𝑁

𝑗=1 𝜎𝑖
2                                               (6.12)     

                                          𝑠𝑔𝑛(𝑥) is a function represents in equation 6.13, which returns 

                                               −1, 0 or 1:         

                                                               𝑠𝑔𝑛 𝑥 =     

−1  𝑖𝑓 𝑥 < 0
0    𝑖𝑓 𝑥 =  0
1   𝑖𝑓  𝑥 > 0

                                         (6.13)     

If the weighted sum over its inputs is negative then set  𝜎𝑖 = −1.                

Hence, set 𝜎𝑖 = +1, if the weighted sum over its inputs is positive, or 

else if weighted sum is zero then it is set to, 𝜎𝑖 = 0. 

Step 19. Compute the value of the final output neuron by computing 

multiplication of all values produced by 𝐾2  no. hidden neurons using 

equation 6.14.  

                                                                  𝜏 =   𝜎𝑖
3𝐾2

𝑖=1                                               (6.14) 

Step 20. 𝑛𝑜𝑑𝑒𝑖  utilizes its 128 weights as key for encryption of 𝑇 variable 

(formerly stored in its memory) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇 .  

Step 21.  𝑛𝑜𝑑𝑒𝑖  constructs a SYN frame and transmitted to the 𝑛𝑜𝑑𝑒𝑗  for 

handshaking purpose in connection establishment phase. 𝑆𝑌𝑁 usually 

comprises of the fields 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝐶𝑜𝑑𝑒, ID,𝑛𝑜𝑑𝑒𝑖 output (𝜏 𝑛𝑜𝑑𝑒 𝑖  ), 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡 𝑇  and 𝐶𝑅𝐶 (Cyclic Redundancy Checker) and 

last 𝑚 bits of the identical input vector. In this way performed 

authentication step parallel by selecting last m bits of the identical 

input vector and transmitting towards the other party over public 

channel using 𝑆𝑌𝑁 frame.  
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Step 22.  𝑛𝑜𝑑𝑒𝑗  performs Integrity test after receiving the 𝑆𝑌𝑁 frame. Then 

𝑛𝑜𝑑𝑒𝑗  perform authentication step to  

                                          Check 𝑖𝑓 ( 𝑛𝑜𝑑𝑒𝑖   (𝑚 𝑏𝑖𝑡𝑠) =  𝑛𝑜𝑑𝑒𝑗   (𝑚 𝑏𝑖𝑡𝑠)) 𝑡𝑒𝑛  

                    𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸                                                                                                                         

𝐸𝑙𝑠𝑒                                                                                          

𝑎𝑢𝑡𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐹𝐴𝐿𝑆𝐸 

If authentication is true then receiver utilize its 128 weights as key for 

decryption of 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖  _𝑤𝑒𝑖𝑔 𝑡
 𝑇   that was received from the 

sender.  

If authentication is false then  𝑛𝑜𝑑𝑒𝑗   sends 𝐴𝐶𝐾_𝑁𝐴𝐾 to sender. 

Step 23. If  (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇 ) = 𝑇 then networks 

are synchronized. Go to step 25. 

Step 24. If (𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑛𝑜𝑑𝑒 𝑗 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑤𝑒𝑖𝑔 𝑡
 𝑇 ) ≠ then  𝑛𝑜𝑑𝑒𝑗  use 

the Chaos based secret seed to produce the 𝜏 𝑛𝑜𝑑𝑒 𝑗  input vector (𝑋) 

identical to sender input vector(𝑋) and calculates the output 𝜏 𝑛𝑜𝑑𝑒 𝑗  

using step 18 and step 19 

Step 25. If (𝜏 𝑛𝑜𝑑𝑒 𝑗 = 𝜏  𝑛𝑜𝑑𝑒 𝑖  )  then performs the following steps. 

Step 25.1  𝑛𝑜𝑑𝑒𝑗  update their weights where 𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 =

𝜏  𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗using any of the     learning rules discussed in 

chapter 1 section 1.8.  

Step 25.2 At the end of 𝑛𝑜𝑑𝑒𝑗  weights update, the 𝑛𝑜𝑑𝑒𝑗  sends 

𝐴𝐶𝐾_𝑆𝑌𝑁 to instruct the sender for updating the weights 

using step 25.1.  

Step 25.3  𝑛𝑜𝑑𝑒𝑖  transmits  

                   𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇  to 𝑛𝑜𝑑𝑒𝑗 . 

Step 25.4  𝑛𝑜𝑑𝑒𝑗  checks                                                        
if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) = 𝑇 

                                           then networks are synchronized. Go to step 27. 

Step 25.5  Perform the following checking 
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  if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗 _𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 _𝑤𝑒𝑖𝑔 𝑡 𝑇 ) ≠ 𝑇 

                                       then networks are still not synchronized. Go to step 25.1. 

Step 26. If (𝜏  𝑛𝑜𝑑𝑒 𝑗 ≠ 𝜏  𝑛𝑜𝑑𝑒 𝑖) then the  𝑛𝑜𝑑𝑒𝑗  sends the message 𝑁𝐴𝐾_𝑆𝑌𝑁 to 

notify the 𝑛𝑜𝑑𝑒𝑖 . Go to step 17.  

Step 27. Finally, the  𝑛𝑜𝑑𝑒𝑗  sends the frame 𝐹𝐼𝑁_𝑆𝑌𝑁 to inform the 𝑛𝑜𝑑𝑒𝑖  to 

finish the synchronization phase. 

Step 28. Increment  𝑗 by 1 and from each sub tree, a node is nominated and the 

mutual learning algorithm is executed by the nominated nodes and the 

rest if the nodes follow then goto step 3.  

Step 29. Terminates when the algorithm reaches the root. Hence, CTHLPs are 

synchronized and share the same weight vector. Otherwise, go to step 

1.  

6.2.1.1.6 Complexity Analysis  

For every step 𝑗 (starting at 𝑗 =  1) of the CGTHLP algorithm the complete binary tree is 

divided into 
𝑚

2𝑗
 sub trees each with 2𝑗  leaves, where 𝑚 is the total number of leaves. When 

𝑗 = 1 number of sub tree will be 
𝑚

2

 

along with two leaves. When 𝑗 = 2 number of sub tree 

will be 
𝑚

4

 
 
along with four leaves so on. In this way a structure of complete binary tree get 

form and the height of the binary tree will be 𝑙𝑜𝑔2𝑛. In CGTHLP synchronization algorithm 

 node i initialization of the value of σ and b takes needs unit amount of computation. 

 𝑛𝑜𝑑𝑒𝑗   initialization of the value of  𝑟 also takes unit amount of computation. Generation of 

the point 𝑥1  and 𝑧1  takes unit amount of computation. Generation of the point 𝑦2 and 𝑧2  takes 

unit amount of computation.  𝑛𝑜𝑑𝑒𝑗   calculates the new value of 𝑦2 and 𝑧2  with the help of 

𝑟 and 𝑏. This step also takes unit amount of computation.  𝑛𝑜𝑑𝑒𝑖   calculates the value of 𝑥1  

and 𝑧1  with the help of 𝑦2, 𝜎 and 𝑏. This step also takes unit amount of computation. 

 𝑛𝑜𝑑𝑒𝑖   generates a nonce. This nonce is encrypted using a symmetric cipher with 𝑧1 as the 

key and sends the results of the encryption. This step needs (𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of 

computation. The 𝑛𝑜𝑑𝑒𝑗  decrypts En_Nonce using 𝑧2 as the key. It also takes 

(𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The  𝑛𝑜𝑑𝑒𝑗   encrypts the result of the previous step 
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using 𝑧2 as the key. It takes (𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of computation. The  𝑛𝑜𝑑𝑒𝑖  decrypts 

this message using 𝑧1 as the key, performs the inverse of the pre-defined function and checks 

if the original nonce is or not. It takes (𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡) amount of 

computation. Initialization of weight vector takes  (𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3) amount 

of computations. For example, if 𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then total numbers of 

synaptic links (weights) are (2 × 2 +  2 × 3 + 3 × 2) = 16. So, it takes 16 amount of 

computations. Generation of 𝑁 number of input vector for each 𝐾1 number of hidden 

neurons takes (𝑁 × 𝐾1) amount of computations. Computation of the hidden neuron outputs 

takes  𝐾1 + 𝐾2 + 𝐾3  amount of computations. Where 𝐾1, 𝐾2 and 𝐾3 are the number of 

hidden units in 1
st
, 2

nd
 and 3

rd
 layer respectively. Computation of final output value takes unit 

amount of computation because it needs only a single operation to compute the value. 

Encryption of 𝑇 variable using Exclusive-OR operation also takes unit amount of 

computations. Decryption of 𝑇 variable using Exclusive-OR operation also takes unit amount 

of computations. Checking if (𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑗  _𝑤𝑒𝑖𝑔 𝑡
(𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑛𝑜𝑑𝑒 𝑖 _𝑤𝑒𝑖𝑔 𝑡

 𝑇 ) = 𝑇  or not 

takes unit amount of computation. Weight updating procedure takes place where 

𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 = 𝜏  𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗  using any of the learning rules which 

takes  𝑛𝑜. 𝑜𝑓 𝜎𝑘
 𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗 = 𝜏  𝑛𝑜𝑑𝑒 𝑖/𝑛𝑜𝑑𝑒 𝑗  amount of computations. Increment  𝑗 by 1 and 

from each sub tree, a node is nominated and the chaos synchronization and mutual learning 

algorithm is executed by the nominated nodes and the rest if the nodes follow. This take  

O(no. of pair in mutual learning) computation. Terminates when the algorithm reaches the 

root. Hence, all the CTHLPs are synchronized and share the same weight vector. From the 

above complexity analysis it can be observed that each level of complete binary tree needs at 

most O(no. of pair in mutual learning) computation complexity and height of the complete 

binary tree is 𝑙𝑜𝑔2𝑛.  

In best case of CGTHLP synchronization algorithm, 𝑛𝑜𝑑𝑒𝑖  ’s and  𝑛𝑜𝑑𝑒𝑗 ’s arbitrarily 

chosen weight vectors are identical. So, networks are synchronized at initial stage do not 

needs to update the weight using learning rule. Here,  𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +  𝑁 × 𝐾1 +  𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 +

  𝐾1 + 𝐾2 + 𝐾3 × 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑖𝑛 𝑚𝑢𝑡𝑢𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 × 𝑙𝑜𝑔2𝑛  amount of computation is 

needed in best case which is in form of O Generation of common seed value +
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initialization of input vector + initialization of weight vector +

Computation of the hidden neuron outputs × no. of pair in mutual learning × log2n .  

If the 𝑛𝑜𝑑𝑒𝑖 ’s and  𝑛𝑜𝑑𝑒𝑗 ’s arbitrarily chosen weight vector are not identical then in each 

iteration the weight vectors of the hidden unit which has a value equivalent to the 

pereceptron output are updated according to the learning rule. This scenario leads to average 

and worst case situation where 𝐼 number of iteration to be performed to generate the identical 

weight vectors at both ends. So, the total computation for the average and worst case is 

 𝑛𝑜𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡 +  𝑁 × 𝐾1 +

 𝑁 × 𝐾1 +  𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 +   𝐾1 + 𝐾2 + 𝐾3  +  𝐼 × (𝑛𝑜. 𝑜𝑓 𝜎𝑘
𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

=

𝜏𝑆𝑒𝑛𝑑𝑒𝑟 /𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 × 𝑛𝑜. 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑖𝑛 𝑚𝑢𝑡𝑢𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 × 𝑙𝑜𝑔2𝑛 
 
)  which is can be expressed 

O Time complexity in first iteration + (No. of iteration × No. of weight updation ×

 no. of pair in mutual learning × log2n) . 

6.2.1.1.7 CGTHLP Learning Mechanism 

In learning mechanism if the output bits are different for 𝑛𝑜𝑑𝑒𝑖  (A) and 𝑛𝑜𝑑𝑒𝑗  (B) i.e.                 

𝜏𝐴 ≠ 𝜏𝐵 , nothing get changed. If 𝜏𝐴 = 𝜏𝐵 = 𝜏, only the weights of the hidden units with 

𝜎𝑘
𝐴/𝐵

= 𝜏𝐴/𝐵 will be updated. The weight vector of this hidden unit is adjusted using any of 

the following learning rules discussed in chapter 1 section 1.8. For small 𝐿 values Hebbian 

takes less synchronization steps than other two learning rules in the range of 2 − 2 − 3 −

2 − 5  𝑁 − 𝐾1 − 𝐾2 − 𝐾3 − 𝐿  to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases Hebbian 

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules 

take fewer steps than the other two learning rules in the range of 2 − 2 − 3 − 2 − 8 −

20 to 2 − 2 − 3 − 2 − 30. Random walk outperform from 3 − 2 − 2 − 8 − 35 and beyond 

that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is increased, 

the complexity of a successful attack grows exponentially, but there is only a polynomial 

increase of the effort needed to generate a key. So, increasing the 𝐿 value security of the 

system can be increased.  
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6.2.1.2 Particle Swarm Intelligence (PSI) based Fittest Keystream Generation 

In this section Particle Swarm Intelligence (PSI) based kestream generation technique  for 

message encryption/decryption has been presented to illustrate the complete cryptographic 

technique. Instead of this technique any other light weight encryption/decryption technique 

also may use for exchanging message between sender and receiver. 

The PSI technique begins with an initial population comprises of set of valid and 

complete set of particles. Then some operators like particles local best and global best 

positions along with velocity updating rules are used to generate feasible valid particle from 

the existing one. In this technique a collection of alphanumeric characters is called a 

keystream and each character in the keystream is known as key. The keystream measurement 

lengthwise constantly be less than or equal to the plaintext to be encrypt and production of 

keystream is based on sharing of characters in the plaintext for encryption principle.    

In PSI based approach a particle is used to designate a keystream (set of alphanumeric 

characters). Each particle can have numerous dimensions. Each dimension signifies an 

individual key inside that keystream. The dimensions in the keystream can be packed or 

unpacked. For example if the ceiling of dimension of each particle is equal to 256 then it is 

characterized by equation 6.15. 

                     𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖  𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1,𝐾𝑒𝑦2,…  ,𝐾𝑒𝑦256 )                     (6.15) 

Which actually indicate a keystream comprises of 256 keys i.e. 256 alphanumeric 

characters.  Keystream length can be attained by counting number of dimensions are packed 

in the keystream. Usually keystream length is less than or equal to the plaintext.  With 256 

alphanumeric characters various keystream can be generated of preset rigid length by 

variation of these prearranged set length characters ordering all viable ways devoid of any 

recurrence. So, for example if total number of alphanumeric characters =  256 and if key 

stream length = 192 then among 256  alphanumeric characters 192 alphanumeric characters 

are nominated such a way so that by ordering all achievable ways with no replication these 

192 characters forms multiple keystream having monotonous length i.e. 192. For an 

example if four characters 𝐴, 𝑆,𝑀,𝐾 are taken to structure keystream of length four among 

256 alphanumeric characters. Then there are 24 doable ways of obtaining keystream which 

are as follows.     
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𝐴𝑆𝑀𝐾,𝐴𝑆𝐾𝑀,𝐴𝑀𝑆𝐾,𝐴𝑀𝐾𝑆,𝐴𝐾𝑀𝑆 𝐴𝐾𝑆𝑀, 

𝑆𝐴𝑀𝐾, 𝑆𝐴𝐾𝑀, 𝑆𝑀𝐴𝐾, 𝑆𝑀𝐾𝐴, 𝑆𝐾𝑀𝐴, 𝑆𝐾𝐴𝑀, 

𝑀𝐴𝑆𝐾,𝑀𝐴𝐾𝑆,𝑀𝑆𝐴𝐾,𝑀𝑆𝐾𝐴,𝑀𝐾𝑆𝐴,𝑀𝐾𝐴𝑆, 

𝐾𝐴𝑆𝑀,𝐾𝐴𝑀𝑆,𝐾𝑆𝐴𝑀,𝐾𝑆𝑀𝐴,𝐾𝑀𝑆𝐴,𝐾𝑀𝐴𝑆 

 

Using 256 characters total number of generated potential keystream is given in equation 

6.16. 

                                          
256!

 256−𝑐 !

256
𝑐=1 ≈ 256!  𝑒 ≈ 256! × 2.718                                (6.16)

                           
According to PSI technique each particle should have an allied velocity. The PSI 

technique also offers velocity for each and every particle or keystream. This velocity vector 

also has multiple dimensions. The number of velocity dimension is calculated using 

following logic. 

𝐼𝑓  𝑙𝑒𝑛𝑔𝑡𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡  ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑡𝑒𝑛 

              𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑛 ≤ (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡))  −  (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)) 

 
       𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑡𝑒𝑛 

                       𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑛 

≤  (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)  −  (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)) 

The dimensions in the velocity vector can be filled or unfilled. Total number of engaged 

dimension in the velocity vector denotes the length of the velocity vector. Velocity vector of 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 is denoted by 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  which is a set of 𝑛 velocity values one for each character 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟1,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟2,…  ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟𝑛). Group of velocity 

characters form a velocity vector. In this technique maximum keystream dimension is 256. 

So, 

      𝐼𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) ≤ 256 𝑡𝑒𝑛 

             𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤ (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡))  −  (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)) 

 
       𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 256 𝑡𝑒𝑛 

                     𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤  256 −  (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)) 
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Each particle position is evaluated by counting number of characters in the keystream 

belonging to a plaintext.  Using equation 6.17 particle position is evaluated.   

                   𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑒𝑦𝑗 ∈ 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡),             (6.17) 

𝑤𝑒𝑟𝑒 𝑗 = 1, 2,… , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) 

Likelihood of characters in the keystream appearing in the plaintext is calculated using 

equation 6.18.  

     𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)      (6.18) 

𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛 

             𝑟𝑒𝑡𝑢𝑟𝑛 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 

      𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) < 𝑚𝑖𝑛 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛 

            𝑟𝑒𝑝𝑒𝑎𝑡 𝑎𝑝𝑝𝑙𝑦 𝑎 𝑛𝑒𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒 𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑜𝑡𝑖𝑜𝑛 

Each particle having an old velocity 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 and can be moved to a new location by 

applying a new velocity (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘) on it. The velocity applied to a particle is a number of 

characters in the velocity vector occurring in the plaintext and characters are chosen such a 

way so that these group of characters not occurring in the keystream and velocity vector. 

Once applying velocity on a particle the velocity characters occupy the dimension which is 

vacant in the velocity vector given in equation 6.19.  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 =  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 1
,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 2

,…  ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 𝑚 , 

                 𝑤𝑒𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 ∉ (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) and  

𝑚  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =    𝑛  𝑝𝑟𝑒𝑣𝑜𝑖𝑢𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  −

                                                                          𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖)                                       (6.19) 

The current position of a particle is found by toting up the previous position with the applied 

velocity given in equation 6.20. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)  + 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘              (6.20) 

The current likelihood value can be computed by dividing the particle current position with 

the summation of particle length and velocity vector length.  

𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)  + 

                                                                                                                     𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖))     (6.21) 
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𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  & 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘                                                                (6.22) 

𝑅𝑒𝑡𝑢𝑟𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖  𝑎𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥  𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒             (6.23) 

This velocity updating phase continued   

𝑢𝑛𝑡𝑖𝑙 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 

In this PSI based keystream generation technique following parameters are used  

 Maximum length of PSI based keystream i.e. maximum number of character represents a 

keystream is 𝐿 = 256. 𝑁 is the number of characters to represents keystream. Maximum 

value of 𝑁 is 𝐿 i.e. 256.  

 A predefined threshold value for describing energy factor of Ant agent. This scheme used 

0.75 as a threshold value.  

 A predetermined value to generate the keys for the characters in the plaintext which is at 

a position greater than the length of the key stream. The technique uses equation 6.24 to 

compute the predetermined value. 

                       𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                         (6.24) 

The figure 6.9 shows the flowchart of PSI based keystream generation and section 6.2.1.2.1 

presents the complete encryption/decryption keystream generation algorithm.  
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Figure 6.9: Flow chart of Particle Swarm Intelligence (PSI) based fittest keystream generation 

Select Particlei  

or Keystreami(Key1 , Key2 ,…  , Key256 ) 

Start 

where j =  1, 2,… , lengthof(Particlei) 

Evaluate Particle_Position(Particlei )  =  count (Keyj ∈ Plaintext),              

 

Compute Current_position(Particlei)  =  previous_position(Particlei )  +  Velocityk  

Compute Velocityi  =  Velocityi&  Velocityk  

lengthof (Velocityi )) 

Compute Prob(Particlei) = Current_position(Particlei)/(lengthof(Particlei)  + 

Where n =  Velocity dimension 
Set Velocity1 =  (Velocity_char1, Velocity_char2,… , Velocity_charn) 

 

Stop 

Yes No 
Is 

lengthof  Plaintext         
≤ 

keystream dimension ? 

Set 

velocity dimension =
 (lengthof(Plaintext)) −
 key stream dimension dimension 

 

Set 

velocity dimension =
 maximum  keystream  

     Prob(Particlei )  =  Particle_Position(Particlei)/lengthof (Particlei)       . 

 

Yes No 
Is 

(Prob(Particlei)  
≥ min probability 

? 

 Set Velocityk  =   Velocitychar 1
, Velocitychar 2

,…  , Velocitychar m
 , 

 where Velocityk ∉ (Particlei , Velocityi ) and  

 current velocity dimension =  prevoius velocity dimension − lengthof(Velocityi)   

Return 
(Particlei  and Velocityi) 

with Prob(Particlei )
= max  prob value  
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6.2.1.2.1 PSI based Keystream Generation Algorithm 

PSI based keystream generation algorithm a threshold value is selected to weigh against 

velocity level of each Particle. Particle having highest energy level more than predefined 

threshold value is selected as a keystream. 

Input     :   Particle with velocity 

Output  :   PSI based keystream 

Method : A threshold value is selected to weigh against velocity level of each particle. 

Particle having highest probability more than predefined threshold value is 

selected as a keystream. 

Step 1.     Select particle and velocity vector for generation of keystream. Set the 

maximum dimension of each particle (keystream) equal to 256. Where                           

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖  𝑜𝑟 𝐾𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚𝑖 = (𝐾𝑒𝑦1,𝐾𝑒𝑦2,…  ,𝐾𝑒𝑦256 )            (6.25) 

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟1,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟2,…  ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑐𝑎𝑟𝑛) 

                                                                                                                      (6.26) 

                                 𝐼𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) ≤ 256 𝑡𝑒𝑛 

                                       𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑛 ≤  𝑙𝑒𝑛𝑔𝑡𝑜𝑓 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡  −

                                                                                                      𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚)          (6.27) 

                                𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)) > 256 𝑡𝑒𝑛 

                                              𝑆𝑒𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛) ≤  256 −  (𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚))    (6.28) 

Step 2. Evaluate particle position using following function  

                              𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑐𝑜𝑢𝑛𝑡 (𝐾𝑒𝑦𝑗 ∈ 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡),  (6.29) 

𝑤𝑒𝑟𝑒 𝑗 =  1, 2,… , 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) 

                                  Evaluate the probability value using following equation                                                 

𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)  =

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)/𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)                (6.30)     

Step 3. 𝐼𝑓 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) ≥ 𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) 𝑡𝑒𝑛 

                                          𝑟𝑒𝑡𝑢𝑟𝑛 (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 

 (6.31) 
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Step 4. 𝑊𝑖𝑙𝑒 (𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) <  𝑚𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒) do  

                  repeat apply a  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘   

                                          𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘  =  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 1
,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 2

,…  ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑐𝑎𝑟 𝑚 , 

(6.32) 

                                          𝑤𝑒𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 ∉ (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ,𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  ) and                                  

                                               𝑚  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =

                                                         𝑛  𝑝𝑟𝑒𝑣𝑜𝑖𝑢𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖) 

(6.33)          

                                          𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖)  +

                                                                                                               𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘                                                (6.34) 

                                         𝑃𝑟𝑜𝑏 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 = 

                                                             𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 /(𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) 

                                                             +𝑙𝑒𝑛𝑔𝑡𝑜𝑓 (𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖))                                      (6.35) 

                                    𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  &  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘                           (6.36)            

                                    𝑢𝑛𝑡𝑖𝑙  𝑃𝑟𝑜𝑏 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 ≥ 𝑚𝑎𝑥  𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒          

                                    𝑅𝑒𝑡𝑢𝑟𝑛 

                                               (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖  𝑎𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  𝑤𝑖𝑡 𝑃𝑟𝑜𝑏(𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖) 

                                                                                                        = 𝑚𝑎𝑥 𝑝𝑟𝑜𝑏 𝑣𝑎𝑙𝑢𝑒 (6.37) 

Step 5. If the length of the plaintext is grater than the length of the keystream 

then the values of the keystream are added to a predetermined value to 

generate the keys for the characters in the plaintext which is at a 

position grater than the length of the ke stream. 

The PSI based fittest keystream is used to perform the encryption operation on the plaintext. 

The detail step of PSI based encryption process is given in section 6.2.1.3. 
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6.2.1.3 Encryption Algorithm 

Input      :  Source file/source stream i.e. plaintext 

Output   :  Encrypted file/encrypted stream i.e. cipher text 

Method  : The process operates on binary stream and generates encrypted bit stream through 

Particle Swarm Intelligence (PSI) based encryption. 

Step 1. If the length of the plaintext is grater than the length of the PSI based 

keystream then the values of the keystream are added to a 

predetermined value to generate the keys for the characters in the 

plaintext which is at a position grater than the length of the keystream. 

Predetermined value is calculated using the equation 6.38. 

                                    𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                  (6.38) 

Step 2. For the very first plaintext block keys are form by the values of the 

characters in the PSI based keystream.  

Step 3. For the successive plaintext blocks PSI based keys are generated by 

adding predetermined value with the keys of the previous block given 

in equation 6.39 for reducing the key storage load that in turn reduces 

the space complexity. 

      𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 = 𝐾𝑒𝑦𝑓𝑜𝑟𝑏𝑙𝑜𝑐𝑘 𝑖 − 1 +  𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,     

      𝑤𝑒𝑟𝑒 𝑖 >= 2                                                                                (6.39) 

Step 4. Perform Exclusive-OR operation between plaintext block with key in 

the PSI based keystream. 

Step 5. Considers the outcomes of step 4 as a stream of finite number of bits 

N, and is divided into a finite number of blocks, each also containing a 

finite number of bits 𝑛, where 1 ≤  𝑛 ≤  𝑁. Consider the block 

𝐶 = 𝑐0
𝑗  
𝑐1 
𝑗  
𝑐2
𝑗  
𝑐3
𝑗  
𝑐4
𝑗  
…  𝑐𝑛−1

𝑗  
 having size 𝑛 in the outcomes of step 4. 

Step 6. Perform cycle formation techniques on 𝐶 = 𝑐0
𝑗  
𝑐1 
𝑗  
𝑐2
𝑗  
𝑐3
𝑗
𝑐4
𝑗  
…  𝑐𝑛−1

𝑗  
 of 

block of size 𝑛. In the following cases  is used to represents the 

Exclusive-OR operation. Perform the operations given in equation 

6.40 to 6.43 for generating the first intermediate block  

                           𝐼1 = 𝑐0
𝑗+1

𝑐1 
𝑗+1 

𝑐2
𝑗+1 

𝑐3
𝑗+1 

𝑐4
𝑗+1 

…  𝑐𝑛−1
𝑗+1 

 from 𝐶 in the following way: 
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                           𝑐𝑛−1
𝑗+1 

= 𝑐𝑛−1
𝑗  

                                                                                     (6.40) 

                           𝑐𝑛−2
𝑗+1 

=𝑐𝑛−2
𝑗

 𝑐𝑛−1
𝑗+1 

                                                                          (6.41)  

                           𝑐1 
𝑗+1 

= 𝑐1 
𝑗  
 𝑐2

𝑗+1 
                                                                            (6.42) 

                           𝑐0
𝑗+1 

 = 𝑐0 
𝑗

                                                                                       (6.43) 

                       This process continues for a finite number of iterations, which 

depends on the value of n, the source block 𝐶 is regenerated. If the 

number of iterations required regenerating the source block is 

assumed to be 𝐼, then any of the intermediate block is considered as a 

encrypted block.  

6.2.1.4 Session Key based  Encryption  

During final step of the technique a cascaded Exclusive-OR operation between CGTHLP 

synchronized group session key and PSI encrypted cipher text is performed to generate final 

encoded cipher text.  

The decryption algorithm takes the cipher text as a binary stream of bits and perform first 

level of operation using CGTHLP generated synchronized session key to produce 

intermediate decrypted text. Finally, PSI generated fittest keystream based decryption is 

performed on the intermediate decrypted text to regenerate the plaintext. The algorithm for 

the complete process is given in section 6.2.2.        

6.2.2 CGTHLPSCT Algorithm at Receiver  

      Input       : Encrypted file/encrypted stream i.e. cipher text  

      Output    : Source file/source stream i.e. plaintext 

     Method : The process operates on encrypted binary stream and generates decrypted bit 

stream through Chaos based CGTHLP guided Particle Swarm Intelligence (PSI) 

based decryption operations. 

Step 1. Perform cascaded Exclusive-OR operation between CGTHLP based 

session key and cipher text. 
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Step 2. Perform Particle Swarm Intelligence (PSI) based decryption on the 

outcomes of the step 1 to regenerate starting combination i.e. 

plaintext. 

Step 1 of the algorithm is discussed in section 6.2.2.1. Step 2 of the algorithm for performing 

Particle Swarm Intelligence (PSI) based decryption is discussed in section 6.2.2.2. 

6.2.2.1       Session Key based  Decryption  

Initially cascaded Exclusive-OR operation between CGTHLP synchronized session key and 

cipher text is performed to produce session key decrypted text. Outcomes of this operation 

used as an input of PSI based decryption algorithm discussed in 6.2.2.2 to regenerate the 

plaintext.   

 In the decryption process the PSI based cipher text is divided into blocks. Exclusive-OR 

guided cycle formation based decryption is performed on each block. After that all blocks are 

merged together. The PSI generated keystream is use to Exclusive-OR with the merged 

blocks to regenerate the plaintext. The detail step of PSI based decryption process is given in 

section 6.2.2.2. 

6.2.2.2      Decryption Algorithm 

Input      :  PSI Encrypted file/ PSI encrypted stream  

      Output   :  Source file/source stream i.e. plaintext 

      Method : The process operates on PSI encrypted bit stream and regenerates the plaintext 

through PSI based decryption. 

Step 1. Divide the PSI encrypted text into different blocks.  

Step 2. Perform operation given in equation 6.44 to 6.47 upto                  

(𝑃 –  𝑖) steps on each block 𝑇 = 𝑡0
𝑖  𝑡1 

𝑖  𝑡2
𝑖 𝑡3

𝑖  𝑡4
𝑖  …  𝑡𝑛−1

𝑖   if the total 

number of iterations required to complete the cycle is 𝑃 and the 𝑖th 

step is considered to be the encrypted block. 
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                           𝑡𝑛−1
𝑖  = 𝑡𝑛−1

𝑖−1                                                                                       (6.44) 

                           𝑡𝑛−2
𝑖  = 𝑡𝑛−2

𝑖  𝑡𝑛−1
𝑖                                                                             (6.45) 

                           𝑡1 
𝑖  = 𝑡1 

𝑖−1  𝑡2
𝑖                                                                                   (6.46) 

                           𝑡0
𝑖   = 𝑡0 

𝑖−1                                                                                         (6.47)                           

Step 3. Merge outcomes of step 2. 

Step 4. Compute the predetermined value. 

Step 5. Using predetermined value and keys in the PSI based keystream 

receiver generates the keys for the portion of the text exceeding the 

length of the PSI based keystream. 

Step 6. Generate plaintext by performing Exclusive-OR operation between 

outcomes of step 3 and PSI based keystream.  

6.3    Implementation  

Consider the text to be encrypted is “softcomputing”. The minimum probability value is 

assumed to be 0.75. Each particle comprises of characters representing the particle 

keystream. The position of the particle is computed by counting the number of characters in 

the particle key stream occurring in the plaintext. The probability value is found by dividing 

the particle position by the length of the particle keystream. If the value is less than the 

minimum probability value a velocity is applied to the particle to move to a new position and 

the position of the new particle and the probability value is found. The particle having 

maximum probability value greater than or equal to the minimum probability value in the 

iteration is the solution. The corresponding particle keystream and velocity keystream are 

concatenated which forms the keystream for encryption. Table 6.3 shows the process of 

obtaining the keystream using PSI based approach. A group of particles denoting the key 

stream are taken. In this the first particle has a particle keystream “hcv”. Since one character 

in the particle keystream occurs in the plaintext to be encrypted the position of the particle is 

one. The probability value of the particle is found to be 0.33 which is less than the minimum 

probability value. Thus a velocity containing one character “gm” is given to the particle to 

move the particle to a new position. Since the character in the group denoting the velocity 

occurs in the plaintext, the velocity is found to be two. This is added to the old position of the 
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particle and the new position of the particle is found to have a value of three. The characters 

in the group denoting the velocity occupy the dimensions in the velocity keystream. The 

probability value is found to be 0.6 by dividing the new position by the sum of particle 

keystream length and the velocity keystream length. Since this is also lesser than the 

minimum probability value a velocity is again given to the particle and the process is 

repeated and the probability value is found to be 0.75 which is equal than the minimum 

probability value. This procedure is repeated for other particles in the group. Since the first 

particle in iteration three has the maximum probability value 0.75 which is greater than the 

minimum probability value the particle keystream “hcv” and the velocity keystream “gmtof” 

corresponding to that particle are concatenated to form the keystream “hcvgmtof” chosen for 

encryption. Each character in the keystream is chosen as the key for encryption. The keys 

used for encryption looks like a series of random numbers. Using this method the keys 

cannot be cracked since the keys depends on the characters in the plaintext and a random 

stream generator is not used for key generation. 

Table 6.3 

PSI based keystream generation  

 

Consider the plaintext to be encrypted is “softcomputing”, binary representation of the 

ASCII value of plaintext is   

01110011/01101111/01100110/01110100/01100011/01101111/01101101/01110000/011101

01/01110100/01101001/01101110/01100111 

Binary representations of ASCII value of the plaintext are divided into variable size 

segments. Following are the different segments constructed from S. 

 

Particle 

Keystream 

 

Position 

 

Probability 

Value 

 

Velocity 

 

New 

Position 

 

Velocity 

Keystream 

 

Probability 

Value 

 

Velocity 

 

New 

Position 

 

Velocity 

Keystream 

 

Probability 

Value 

 

hcv 

 
1 0.33 

gm−2 
 

3 gm 
0.6 

 

tof−3 
 

6 
gmtof 

 
0.75 

 

rbzlsy 

 
1 0.16 

pcu−3 
 

4 pcu 
0.44 

 

ma−1 
 

5 
pcuma 

 
0.45 

 

csegdx 

 
3 0.5 

jb−0 
 

3 jb 
0.37 

 

pm−2 
 

5 
jbpm 

 
0.50 

 

ecg 

 
2 0.66 

𝑢𝑣 − 1 
 

3 uhv 
0.50 

 

gre−1 
 

4 
uhvgre 

 
0.44 

 
Maximum 

Probability  

Value 
 

 𝟎.𝟔𝟔    
𝟎.𝟔 

 
   

𝟎.𝟕𝟓 
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S1 = 0111001101101111 (16 bits) 

S2 = 0110011001110100 (16 bits) 

S3 = 0110001101101111 (16 bits) 

S4 =0110110101110000 (16 bits) 

S5 =0111010101110100 (16 bits) 

S6 = 01101001 (8 bits) 

S7 = 0110111001100111 (16 bits) 

For each of the segments, an arbitrary intermediate segment, is considered as the encrypted 

segment.  

The formation of cycles for segments (0111001101101111) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0101001111100011) after iteration-10 considered as an encrypted segment for the segment 

S1. 

01110011011011110101000100100101
1
0011000011100011

2
0110111110100001

3
      

0101101010011111
4
0011011001110101

5
0110110111010011

6
0010010010110001

7
        

0001110001101111
8
0111010000100101

9
0101001111100011

10
0100111010100001

11

0100010110011111
12
0100001101110101

13
0011111011010011

14
 

0001010110110001
15
0111001101101111

16
 

The formation of cycles for segments S2 (0110011001110100) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0001001001110100) after iteration-8 considered as an encrypted segment for the segment 

S2. 

01100110011101000010001000101100
1
0110000111100100

2
0101111101011100

3
      

0011010100110100
4
0110110011101100

5
0101101110100100

6
0011011010011100

7
        

0001001001110100
8
0000111000101100

9
0000010111100100

10
0000001101011100

11

0000000100110100
12
0000000011101100

13
0111111110100100

14
 

0010101010011100
15
0110011001110100

16
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The formation of cycles for segments S3 (0110001101101111) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0101010110011111) after iteration-12 considered as an encrypted segment for the segment 

S3. 

01100011011011110010000100100101
1
0110000011100011

2
0101111110100001

3
      

0100101010011111
4
0100011001110101

5
0011110111010011

6
0001010010110001

7
        

0000110001101111
8
0000010000100101

9
0000001111100011

10
0111111010100001

11

0101010110011111
12
0011001101110101

13
0110111011010011

14
 

0010010110110001
15
0110001101101111

16
 

The formation of cycles for segments S4 (0110110101110000) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0100101001110000) after iteration-4 considered as an encrypted segment for the segment 

S4. 

01101101011100000010010011010000
1
0110001110110000

2
0101111010010000

3
      

0100101001110000
4
0011100111010000

5
0110100010110000

6
0010011110010000

7
        

0001110101110000
8
0111010011010000

9
0101001110110000

10
0100111010010000

11

0011101001110000
12
0110100111010000

13
0101100010110000

14
 

0011011110010000
15
0110110101110000

16
 

The formation of cycles for segments S5 (0111010101110100) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0110011001011100) after iteration-11 considered as an encrypted segment for the segment 

S5. 

01110101011101000101001100101100
1
0100111011100100

2
0011101001011100

3
      

0001011000110100
4
0000110111101100

5
0000010010100100

6
0000001110011100

7
        

0000000101110100
8
0111111100101100

9
0010101011100100

10
0110011001011100

11

0010001000110100
12
0110000111101100

13
0010000010100100

14
 

0001111110011100
15
0111010101110100

16
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The formation of cycles for segments S6 (01101001) is shown below. After 8 steps cycle is 

complete and the plaintext is regenerated. An arbitrary intermediate segment (00011101) 

after iteration-2 considered as an encrypted segment for the segment S6. 

0110100100100111
1
00011101

2
00001011

3
01111001

4
01010111

5
01001101

6
 

00111011
7
01101001

8
 

The formation of cycles for segments S7 (0110111001100111) is shown below. After 16 steps 

cycle is complete and the plaintext is regenerated. An arbitrary intermediate segment 

(0010110011111011) after iteration-6 considered as an encrypted segment for the segment 

S7. 

01101110011001110010010111011101
1
0110001101001011

2
0010000100111001

3
      

0001111100010111
4
0111010100001101

5
0010110011111011

6
0001101110101001

7
        

0000100101100111
8
0111100011011101

9
0010100001001011

10
0001100000111001

11

0000100000010111
12
0111100000001101

13
0101011111111011

14
 

0011001010101001
15
0110111001100111

16
 

On completion of the cycle formation technique on each segment seven intermediate 

segments are considered as the encrypted segments. On merging the above seven encrypted 

segments following PSI based encrypted text is generated. 

01010011/11100011/00010010/01110100/01010101/10011111/01001010/01110000/011001

10/01011100/00011101/00101100/11111011 

The PSI based keystream “hcvgmtof” has eight characters. Whereas the plaintext 

“softcomputing” has thirteen characters. So, for the extra five characters PSI based keys are 

generated by adding predetermined value with the keys of the previous block for reducing the 

key storage load that in turn reduces the space complexity. Predetermined value is calculated 

by the equation 6.48. 

                                   𝑃𝑟𝑒𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 =  𝑙𝑒𝑛𝑔𝑡𝑜𝑓(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)/2                     (6.48) 

So, the predetermined value will be  
13

2
 = 6  

So binary representation of ASCII value of the PSI based keystream is  

01101000/01100011/01110110/01100111/01101101/01110100/01101111/01100110/011011

10/01101001/01111100/01101101/01110011 
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On performing PSI keystream based encryption operation new intermediate encoded text is 

00111011/10000000/01100100/00010011/00111000/11101011/00100101/00010110/000010

00/00110101/01100001/01000001/10001000 

For example CGTHLP based following group session key is generated  

10010101/01010010/11111000/01010101/01011101/01111110/00110101/01001111/100010

10/00011100/10001010/10010010/11011100 

Following is the session key encrypted final cipher text produce after performing               

Exclusive-OR operation between PSI based encrypted text and CGTHLP based session key.    

10101110/11010010/10011100/01000110/01100101/10010101/00011010/00101100/000100

00/01101010/11000010/10000011/00010000      

6.4    Security Analysis 

The security of CGTHLPSCT can be analyzed by considering an attacker E with a CTHLP 

of identical structure to the CTHLP of parties A and B in the group, as well as with identical 

output generation as, can never remain synchronous with A or B having different inputs from 

the synchronizing parties A and B. Consider the two CTHLPs A and B and a third CTHLP of 

Attacker E all with identical structure. Suppose parties A and B are not synchronous at 

iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 ≠ 𝑊𝑖𝑗

𝐵 𝑡𝑠   
for at least one component 𝑗 in an arbitrary summation 

unit 𝑖. Let the attacker E already be synchronous to A (or B) at iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 =

𝑊𝑖𝑗
𝐸 𝑡𝑠   

∀𝑖, 𝑗. Note that if the attacker is synchronous to A and B, the two parties themselves 

would be synchronous already. Again, two CTHLPs can only become synchronous, when all 

their corresponding summation units become synchronous. Assume only one component 

remains that is not identical at iteration 𝑡𝑠, i.e. 𝑊𝑖𝑗
𝐴 𝑡𝑠 ≠ 𝑊𝑖𝑗

𝐵 𝑡𝑠  for a particular component 

𝑗. As inputs are considered to be different for any subsequent iteration for at least one 

arbitrary component 𝑗 in each summation unit 𝑖, E cannot remain synchronous even if E is 

synchronous (by guessing e.g.) in one iteration. For different inputs, the two parties are trying 

to adapt completely different non-linear relations between (different) inputs  𝑥𝐴(𝑡) ≠  𝑥𝐵(𝑡) 

and outputs  𝜏𝐴/𝐵(𝑡). The random walks with reflecting boundaries performed by the 

coefficients in the iterative process now make uncorrelated moves. Even moves in the wrong 
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direction with regard to the aim of learning common outputs are made. Two corresponding 

components 𝑊𝑖𝑗
𝐴 𝑡 and 𝑊𝑖𝑗

𝐴 𝑡  now receive a different random component 𝑥𝑖𝑗
𝐴 𝑡 ≠ 𝑥𝑖𝑗

𝐵 𝑡  of 

their (differing) input vector. The distance between the components is thus no longer 

successively reduced to zero after each bounding operation and the two parties’ coefficients 

remain different. Parties with identical inputs always converge to the dynamic common 

trajectory. Parties with differing always diverge. Partner A and B have the advantage over an 

attacker E in because only A and B have the Chaos synchronized seed values for generating 

identical input vector. The following standard attacks are considered to ensure the robustness 

of the CGTHLPSCT. 

 Cipher text only Attack: The technique nullifies the success rate of this attack by 

producing a robust Chaos based Grouped session key and ACI based encrypted cipher 

text. The strength of resisting exhaustive key search attack relies on a large key space. 

The cryptanalyst has only the cipher text to work with.  In this PSI technique the key is 

changed for each character of the plaintext to produce a cipher text that is mathematically 

difficult to break. Since 256 characters are taken and a permutation of these characters is 

done to get groups of characters of all possible orderings without any repetition forming 

the key stream, the total number of key streams will be 256! × 2.718. Thus the possible 

number of combinations to be searched is 256! × 2.718. Thus a hacker has to try all such 

key streams to find an appropriate one. This method makes it difficult for the hacker to 

find out the key stream used for encryption. Thus the size of the key space is 256! ×

2.718.  The technique helps to generate long period of random key streams along with no 

obvious relationship between the individual bits of the sequence. Also the generated 

keystreams are of large linear complex. Finally keystream have high degrees of 

correlation immunity. Thus it is practically difficult to perform a brute-force search in a 

key-space.  

 Known Plaintext Attack: The plaintext is encoded using the cycle formation technique. 

This would increase the security in such a manner that it is difficult to know the values 

assigned for the characters in the plaintext. This is because there are 2𝑙𝑒𝑛𝑔𝑡 𝑜𝑓𝑏𝑙𝑜𝑐𝑘  
 

possible combination and the hacker has to search those combinations for the values. 

Also the keys used for encryption has to be found by the cryptanalyst. The technique 
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offers better floating frequency of characters. So, known plaintext attack is difficult in 

this technique.   

 Chosen Plaintext Attack: The objective of this attack is to find the secret key. This attack 

is difficult because there is no obvious relationship between the individual bits of the 

sequence in plaintext and cipher text. In the technique the cipher text is obtained by 

performing an Exclusive-OR operation between the encoded plaintext and the characters 

in the key stream. This technique is not vulnerable to chosen-plaintext attack, since the 

plaintext is encoded first using cycle generation technique then outcomes of this get 

Exclusive-OR with PSI based keystream and the outcomes of this is Exclusive-OR with 

the  session key. It is difficult for the hacker to find the key chosen for encryption. So, it 

is difficult to choose a plaintext of his/her choice and get the corresponding cipher text. 

The technique passes the frequency (monobit) test, runs test, binary matrix rank test and 

in each session a fresh CGTHLP based session key is used for encryption which confirms 

that chosen plaintext attack is very difficult in this technique. 

 Chosen Cipher text Only Attack: This technique has a good Chi-Square value this 

confirms good degree of non-homogeneity and also it passes the discrete Fourier 

transform test, approximate entropy test, overlapping (periodic) template matching test 

which confirms that chosen plaintext attack is difficult in this technique. So, it will be 

difficult get plaintext from the cipher text.  

 Brute Force Attack: The PSI based key is changed for each character of the plaintext to 

produce a cipher text that is mathematically impossible to break. Since 256 characters are 

chosen the total number of keystreams will be 256! × 2.718. Thus a hacker has to try all 

such keystreams to find an appropriate one. This method makes it difficult for the hacker 

to find out the keystream used for encryption. Encryption is an important issue in 

wireless communication since it is carried out over the air interface, and is more 

vulnerable to fraud and eavesdropping. Also the keystream is used to generate the keys 

for the portion of the plaintext exceeding the length of the keystream. This method of 

encryption reduces the number of keys to be stored and distributed. Due to high 

complexity brute force attack will not be feasible. The technique has a good entropy 
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value near to eight which indicates that brute force attack is not be possible in this 

technique.  

6.5 Discussions 

The technique is very simple and easy to implement in various high level language. The test 

results also show that the performance and security provided by the technique is good and 

comparable to standard technique. The security provided by the CGTHLPSCT is comparable 

with other techniques. To enhance the security of the technique, CGTHLPSCT offers 

changes of some parameters randomly in each session. To generate the secret session key 

index mask get exchanged between sender and receiver. This technique has a unique ability 

to construct the secret key at both sides using this exchanged information. Since the 

encryption and decryption times are much lower, so processing speed is very high. The 

method takes minimum amount of resources which is greatly handle the resource constraints 

criteria of wireless communication. This method generates a large number of keys which is 

the same number of neurons in the map. For ensuring the randomness in every session, some 

of the parameters get change randomly at each session. CGTHLPSCT outperform than 

existing TPM, PPM, Diffie-Hellman Key exchange methods and does not suffers from Brute 

Force or Man-In-The-Middle (MITM) attack. No platform specific optimizations were done 

in the actual implementation, thus performance should be similar over varied implementation 

platform. The whole procedure is randomized, thus resulting in a unique process for a unique 

session, which makes it harder for a cryptanalyst to find a base to start with. This technique is 

applicable to ensure security in message transmission in any form and in any size in wireless 

communication. 

      Some of the salient features of CGTHLPSCT are summarized as follows:   

a) Session key generation and exchange – Identical session key can be generate after the 

tuning of group CTHLPs with the help of chaos synchronization. So, no need to 

transfer the whole session key via vulnerable public channel. 

b) Degree of security – The technique does not suffers from cipher text only attack, 

known plaintext attack, chosen plaintext attack, chosen cipher text only attack, brute 



 Arindam Sarkar, University of Kalyani, India 245 

force attack and attacks during CGTHLP synchronization process. It offers 

authentication steps during synchronization.  

c) Variable block size – Encryption algorithm can work with any block length and thus 

not require padding, which result identical size of files both in original and encrypted 

file. So, CGTHLPSCT has no space overhead. 

d) Variable key – 128/192/256 bits CGTHLP based session key and 128/192/256 

bits PSI based keystream with high key space can be used in different sessions. Since 

the session key is used only once for each transmission, so there is a minimum time 

stamp which expires automatically at the end of each transmission of information. 

Thus the cryptanalyst may not be able guess the session key for that particular 

session. 

e) Complexity – The technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh 

through wireless communication. So, the proposed technique may be suitable in 

wireless communication. 

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value 

have been performed between the source and corresponding cipher streams 

generated using proposed technique. All measures indicate that the degree of non-

homogeneity of the encrypted stream with respect to the source stream is good. This 

technique has a better Chi-Square value than technique proposed in chapter 2, 3, 4 

and 5. 

g) Floating frequency – In CGTHLPSCT it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security of proposed technique. 

This technique has a better floating frequency than technique proposed in chapter 2, 

3 , 4 and 5. 

h) Entropy – The entropy of encrypted characters is near to eight which indicate the 

high degree of security of technique. This technique also has a better entropy value 

than technique proposed in chapter 2, 3 , 4 and 5. 
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i) Correlation – The cipher stream generated through CGTHLPSCT is negligibly 

correlated with the source stream. Therefore the proposed technique may effectively 

resist data correlation statistical attack. 

j) Key sensitivity – The technique generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 

k) Security and performance trade-off – The technique may be ideal for trade-off 

between security and performance of light weight devices having very low processing 

capabilities or limited computing power in wireless communication. 
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Results and Analysis 
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7.1 Introduction 

In this chapter results of the techniques proposed in different chapters are computed on 

different types of files with extensive analysis. The comparative study among proposed 

techniques, Tree Parity Machine (TPM) and Permutation Parity Machine (PPM), RSA, 

Triple-DES (168 bits), AES (128 bits), RC4 and Vernam Cipher has been done based on 

twenty files by performing different types of experiment.  

 All statistical analysis of the NIST test suite have been performed to evaluate randomness 

of the synchronized session key proposed in different chapters. These tests focused on a 

variety of different types of non-randomness that could exist in a sequence. Some tests are 

decomposable into a variety of subtests. All fifteen tests are performed for the proposed 

techniques along with existing TPM and results of these tests compared and analyzed in 

section 7.2. Section 7.3 presented the performance comparisons among proposed and existing 

techniques for generation of session key through tuning. Analysis of the average time (in 

cycle) needed for generating variable size session key through synchronization between two 

machines and group of machines, memory heap used, relative time spent in GC and thread 

required in synchronization phase, trends of average fitness values in different number of 

generations, length of plan text vs. encryption/decryption key storage has been analyzed and 

compared with proposed and existing techniques. Twenty files each of four different types 

(.dll, .exe, .txt, .doc) with sizes varying from 1KB to 6.3MB (approx.) have been taken. 

Results are generated using proposed techniques, RSA, TDES (168 bits) and AES (128 bits) 

for all files. Using these results, comparison of encryption and decryption time presented in 

section 7.4. Avalanche, Strict Avalanche effects and Bit independence has been done and 

presented in section 7.5. Comparison based on Chi-Square values are presented in section 

7.6. Nine different file types (.dll, .com, .exe, .cpp, .txt) with varying file sizes have been 

taken to perform character frequency, entropy, floating frequency and autocorrelation test in 

section 7.7. Section 7.8 presents the analysis based on the results. 

 

 



 Arindam Sarkar, University of Kalyani, India 250 

7.2 NIST Statistical Test and Analysis 

A total of fifteen statistical tests recommended in the NIST
 
test Suite have been performed to 

evaluate randomness of the synchronized session key proposed in different chapters.  These 

tests focused on a variety of different types of non-randomness that could exist in a sequence. 

Some tests are decomposable into a variety of subtests. The fifteen tests are performed for the 

proposed and existing TPM scheme and results of these tests get compared and analyzed. 

The fifteen tests are following:  

1. The Frequency (Monobit) Test 

2. The Test for Frequency within a Block 

3. The Runs Test 

4. The Longest Run of Ones in a Block 

5. The Binary Matrix Rank Test 

6. The Discrete Fourier Transform Test 

7. The Non-overlapping Template Matching Test 

8. The Overlapping (Periodic) Template Matching Test   

9. Maurer's "Universal Statistical" Test 

10. The Linear Complexity Test 

11. The Serial Test 

12. The Approximate Entropy Test 

13. The Cumulative Sums (Cusums) Test 

14. The Random Excursions Test 

15. The Random Excursions Variant Test 

For analysis of the statistical test, a large number of samples of bit sequences in the key has 

been considered. For 𝑚 samples of bit sequences obtained from the key of a technique are 

tested by producing one P-value, a statistical threshold value is defined using equation 7.1. 

                                  𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 =  1 − 𝛼 − 3  
𝛼×(1−𝛼)

𝑚
                                    (7.1) 
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In frequency (monobits) test, frequency within a block test, runs test, longest run of ones in a 

block test, binary matrix rank test, discrete Fourier transom test, non-overlapping (aperiodic) 

template matching test, overlapping (periodic) template matching test, Maurer’s universal 

statistical test, linear complexity test, approximate entropy test,  the value of significance 

level(𝛼) = 0.01. The size of 𝑚 is grater than inverse of 𝛼. If 𝑚 = 300 the 

𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = 0.972766. This means that such a test is considered statistically 

successful, if at least 292 sequences out of the given 300 sequences do pass the test. For a 

serial and cumulative sums test producing 𝑛 P-values, for the calculation of 

𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider  𝑚 × 𝑛 instead of 𝑚. With same values of  𝛼 and m, 

the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.977814 such a test is considered statistically successful if at least 

294 sequences out of the given 300 sequences do pass the test. Random excursions test 

producing n P-values, for the calculation of 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider  𝑚 ×

𝑛 instead of m. With same values of  𝛼 and 𝑚, the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.983907 such a 

test is considered statistically successful if at least 296 sequences out of the given 300 

sequences do pass the test. Random excursions variant test producing 𝑛 P-values, for the 

calculation of 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 one should consider  𝑚 × 𝑛 instead of 𝑚. With same 

values of  𝛼 and m, the 𝑇𝑟𝑒𝑠𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is 0.985938 such a test is considered statistically 

successful if at least 297 sequences out of the given 300 sequences do pass the test. A 

methodology has been stipulated in NIST document to calculate the P-value of P-values, 

where it is stated that P-values for a particular test can be considered uniformly distributed, if 

it’s P-value of P-values≥ 0.0001. 
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7.2.1 Frequency (Monobits) Test 

The objective of the test is to find proportion of zeroes and ones for the entire sequence 

which determine whether the number of ones and zeros in a sequence are approximately the 

same as would be expected for a truly random sequence. The test assesses the closeness of 

the fraction of ones to ½, that is, the number of ones and zeroes in a sequence should be 

about the same. In this experiment expected proportion for passing the test has been set 

to 0.972766 using equation 7.1. Table 7.1 and 7.2 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges. 

Table: 7.1 

Proportion of passing and uniformity of distribution for frequency  

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.973333 Success 2.781309e-08 Non-uniform 

KSOMSCT 0.976329 Success 2.835246e-03 Uniform 

DHLPSCT 0.979437 Success 3.122711e-10 Non-uniform 

CDHLPSCT 0.983333 Success 3.571386e-01 Uniform 

CTHLPSCT 0.984871 Success 3.915294e-07 Non-uniform 

CGTHLPSCT 0.986667 Success 4.122711e-10 Non-uniform 

 

Table: 7.2 

Counting of P-values lying in the given ranges for frequency  

Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 5 34 29 26 20 30 37 47 0 43 29 

KSOMSCT 8 23 42 26 34 31 33 43 0 43 17 

DHLPSCT 4 18 25 20 34 37 46 40 0 49 27 

CDHLPSCT 6 29 41 21 25 33 38 46 0 47 20 

CTHLPSCT 5 20 28 18 35 35 35 42 0 42 23 

CGTHLPSCT 8 32 37 27 32 39 40 47 0 43 26 

From table 7.1 and 7.2 it is seen that all proposed techniques along with existing TPM based 

technique passed the frequency (monobits) test successfully because observed proportion 

values of all the proposed techniques are grater than expected proportion value. It is also 

noticed that in case of proposed techniques, observed proportion for passing the test are in 

increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 
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CGTHLPSCT. It can be concluded that all proposed techniques outperform than existing 

TPM based technique. 

7.2.2 Test for Frequency within a Block 

The focus of the test is to find the proportion of zeroes and ones within M-bit blocks. This 

test determine whether the frequency of ones in an 𝑀-bit block is approximately 
𝑀

2
. In this 

experiment expected proportion for passing the test has been set to 0.972766 using equation 

7.1. Table 7.3 and 7.4 shows proportion of passing uniformity of distribution and counting of 

P-values lying in the given ranges. 

Table: 7.3 

Proportion of passing and uniformity of distribution for frequency within a block  

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.963333 Unsuccess 3.393663e+11 Non-uniform 

KSOMSCT 0.972818 Success 3.407162e-04 Uniform 

DHLPSCT 0.977942 Success 3.529802e-01 Uniform 

CDHLPSCT 0.980000 Success 3.639271e-06 Non-uniform 

CTHLPSCT 0.984792 Success 3.903719e-03 Uniform 

CGTHLPSCT 0.990000 Success 3.949802e-01 Uniform 

 

Table: 7.4 

Counting of P-values lying in the given ranges for frequency within a block  
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 6 48 44 30 35 26 30 22 16 26 17 

KSOMSCT 11 44 41 52 32 25 28 19 23 12 13 

DHLPSCT 3 22 27 38 32 37 25 33 35 23 25 

CDHLPSCT 12 24 23 39 34 37 29 22 15 29 18 

CTHLPSCT 10 39 35 48 31 26 23 34 32 17 27 

CGTHLPSCT 8 47 45 51 33 29 30 31 37 21 24 
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From table 7.3 and 7.4 it is seen that all the proposed techniques passed the frequency within 

a block test successfully because observed proportion values of all the proposed techniques 

are grater than expected proportion value, whereas existing TPM based technique does not. is 

also noticed that in case of proposed techniques, observed proportion for passing the test are 

in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT. It can be concluded that all proposed techniques outperform than existing 

TPM based technique. 

7.2.3 Runs Test 

The focus of this test is the total number of zero and one runs in the entire sequence, where a 

run is an uninterrupted sequence of identical bits. A run of length 𝑘 means that a run consists 

of exactly k identical bits and is bounded before and after with a bit of the opposite value. 

The purpose of the runs test is to determine whether the number of runs of ones and zeros of 

various lengths is as expected for a random sequence. In particular, this test determines 

whether the oscillation between such substrings is too fast or too slow. In this experiment 

expected proportion for passing the test has been set to 0.972766 using equation 7.1. Table 

7.5 and 7.6 shows proportion of passing and uniformity of distribution and counting of         

P-values lying in the given ranges. 

Table: 7.5 

Proportion of passing and uniformity of distribution for runs  

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.974275 Success 1.093862e-02 Uniform 

KSOMSCT 0.975746 Success 0.321683e-01 Uniform 

DHLPSCT 0.977263 Success 0.831790e-01 Uniform 

CDHLPSCT 0.986997 Success 1.160128e-01 Uniform 

CTHLPSCT 0.990000 Success 1.174101e-01 Uniform 

CGTHLPSCT 0.993333 Success 1.191964e-01 Uniform 
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Table: 7.6 

Counting of P-values lying in the given ranges for runs  
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 2 31 24 28 26 35 32 41 21 38 22 

KSOMSCT 3 21 46 26 27 22 36 33 28 31 27 

DHLPSCT 5 16 36 23 28 44 31 33 30 23 31 

CDHLPSCT 7 14 42 26 23 32 28 37 29 37 32 

CTHLPSCT 4 18 29 21 27 27 30 32 25 29 30 

CGTHLPSCT 6 26 33 27 29 42 36 34 31 22 32 

From table 7.5 and 7.2 it is seen that all the proposed techniques along with existing TPM 

based technique passed the runs test successfully because observed proportion values of all 

the proposed techniques are grater than expected proportion value. In case of proposed 

techniques, observed proportion for passing the test are in increasing order in the sequence of 

KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and all the proposed 

techniques outperform than existing TPM based technique. 

7.2.4 Longest Run of Ones in a Block  

This test finds the longest run of ones within 𝑀-bit blocks. The purpose of this test is to 

determine whether the length of the longest run of ones within the tested sequence is 

consistent with the length of the longest run of ones that would be expected in a random 

sequence. Note that an irregularity in the expected length of the longest run of ones implies 

that there is also an irregularity in the expected length of the longest run of zeroes. Long runs 

of zeroes were not evaluated separately due to a concern about statistical independence 

among the tests. Expected proportion for passing the test has been set to 0.972766 using 

equation 7.1.Table 7.7 and 7.8 shows proportion of passing and uniformity of distribution 

and counting of P-values lying in the given ranges.  
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Table: 7.7 

Proportion of passing and uniformity of distribution for longest run of ones in a block  

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.986667 Success 2.197745e-02 Uniform 

KSOMSCT 0.97051 Unsuccess 1.491737e+02 Uniform 

DHLPSCT 0.988026 Success 2.351830e-02 Uniform 

CDHLPSCT 0.990000 Success 2.749211e-03 Uniform 

CTHLPSCT 0.993174 Success 2.896945e-03 Uniform 

CGTHLPSCT 0.996667 Success 3.100264e-02 Uniform 

 

Table: 7.8 

Counting of P-values lying in the given ranges for longest run of ones in a block  
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 4 30 33 37 33 17 42 31 21 32 20 

KSOMSCT 3 18 42 23 36 20 39 18 38 35 28 

DHLPSCT 1 18 27 35 24 28 43 24 43 31 26 

CDHLPSCT 3 19 37 31 35 19 39 28 24 33 27 

CTHLPSCT 2 27 29 25 33 29 41 17 26 31 25 

CGTHLPSCT 3 17 35 34 28 27 38 24 37 33 21 

From table 7.7 and 7.8 it is seen that the proposed techniques except KSOMSCT passed the 

longest run of ones in a block test successfully because observed proportion values of all the 

proposed techniques are grater than expected proportion value. Existing TPM based 

technique has also passed test. In case of proposed techniques, observed proportion for 

passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT.  
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7.2.5 Binary Matrix Rank Test  

The purpose of this test is to check for linear dependence among fixed length substrings of 

the original sequence. In this experiment expected proportion for passing the test has been set 

to 0.972766 using equation 7.1. Table 7.9 and 7.10 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges.  

Table: 7.9 

Proportion of passing and uniformity of distribution for binary matrix rank test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.970173 Unsuccess 7.186328e+03 Uniform 

KSOMSCT 0.990000 Success 7.491904e-02 Uniform 

DHLPSCT 0.992619 Success 7.571843e-02 Uniform 

CDHLPSCT 0.993333 Success 7.194751e-01 Uniform 

CTHLPSCT 0.995493 Success 8.281049e-01 Uniform 

CGTHLPSCT 0.996667 Success 8.378459e-02 Uniform 

 

Table: 7.10 

Counting of P-values lying in the given ranges for binary matrix rank test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 3 24 42 24 27 40 20 37 28 29 26 

KSOMSCT 2 27 33 31 27 41 30 28 29 24 28 

DHLPSCT 1 26 22 32 29 32 37 44 31 19 27 

CDHLPSCT 1 23 37 31 28 34 28 41 32 29 28 

CTHLPSCT 3 26 29 31 27 39 20 30 29 19 26 

CGTHLPSCT 1 28 25 27 26 31 27 42 36 27 29 

From table 7.9 and 7.10 it is seen that all the proposed techniques passed the binary matrix 

rank test successfully because observed proportion values of all the proposed techniques are 

grater than expected proportion value. But existing TPM based technique does not. In case of 

proposed techniques, observed proportion for passing the test are in increasing order in the 

sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT. This 

confirms that one is outperform than other. It can be concluded that all the proposed 

techniques outperform than existing TPM based technique. 
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7.2.6 Discrete Fourier Transform Test   

The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near 

each other) in the tested sequence that would indicate a deviation from the assumption of 

randomness. In this experiment expected proportion for passing the test has been set 

to 0.972766 using equation 7.1. Table 7.11 and 7.12 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges.  

Table: 7.11 

Proportion of passing and uniformity of distribution for discrete Fourier transform test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.951467 Unsuccess 0.000000e+00 Non-uniform 

KSOMSCT 0.968329 Unsuccess 0.000000e+00 Non-uniform 

DHLPSCT 1.000000 Success 0.000000e+00 Non-uniform 

CDHLPSCT 1.000000 Success 0.000000e+00 Non-uniform 

CTHLPSCT 1.000000 Success 0.000000e+00 Non-uniform 

CGTHLPSCT 1.000000 Success 0.000000e+00 Non-uniform 

Table: 7.12 

Counting of P-values lying in the given ranges for discrete Fourier transform test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 1 6 6 23 27 35 52 50 0 69 31 

KSOMSCT 0 4 11 18 23 41 37 61 0 58 47 

DHLPSCT 0 1 14 24 26 43 34 48 0 75 35 

CDHLPSCT 2 2 13 24 28 44 36 52 0 57 37 

CTHLPSCT 1 5 14 26 24 39 47 45 0 73 42 

CGTHLPSCT 0 2 12 21 27 42 36 56 0 69 38 

From table 7.11 and 7.12 it is seen that the proposed techniques except KSOMSCT passed 

the discrete Fourier transform test successfully because observed proportion values of all the 

proposed techniques are grater than expected proportion value. Also existing TPM based 

technique does not passed. It is also noticed that in case of proposed techniques, observed 

proportion for passing the test are in increasing order in the sequence of, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT.  



 Arindam Sarkar, University of Kalyani, India 259 

7.2.7 Non-overlapping (Aperiodic) Template Matching Test                  

The purpose of this test is to reject sequences that exhibit too many occurrences of a given 

non-periodic (aperiodic) pattern. For this test and for the overlapping template matching test, 

an 𝑚-bit window is used to search for a specific 𝑚-bit pattern. If the pattern is not found, the 

window slides one bit position. For this test, when the pattern is found, the window is reset to 

the bit after the found pattern, and the search resumes. In this experiment expected proportion 

for passing the test has been set to 0.972766 using equation 7.1. Table 7.13 and 7.14 shows 

proportion of passing and uniformity of distribution and counting of P-values lying in the 

given ranges.  

Table: 7.13 

Proportion of passing and uniformity of distribution for non-overlapping (aperiodic) template 

matching test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.987164 Success 7.309571e-05 Non-uniform 

KSOMSCT 0.988891 Success 7.895104e-03 Uniform 

DHLPSCT 0.992275 Success 8.218760e-01 Uniform 

CDHLPSCT 0.994872 Success 8.592518e-01 Uniform 

CTHLPSCT 0.998941 Success 8.698073e-01 Uniform 

CGTHLPSCT 1.000000 Success 8.812965e-01 Uniform 

 

Table: 7.14 

Counting of P-values lying in the given ranges for non-overlapping                                   

(aperiodic) template matching test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 3 29 36 29 29 20 34 32 27 29 32 

KSOMSCT 8 36 31 29 25 24 26 30 29 34 28 

DHLPSCT 1 13 24 30 29 31 23 30 27 37 55 

CDHLPSCT 3 16 36 30 27 30 27 30 29 35 29 

CTHLPSCT 1 31 32 28 29 28 32 31 26 31 32 

CGTHLPSCT 1 15 26 29 25 30 34 30 28 36 48 
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From table 7.13 and 7.14 it is seen that all the proposed techniques along with existing TPM 

based technique passed the non-overlapping (aperiodic) template matching test successfully 

because observed proportion values of all the proposed techniques are grater than expected 

proportion value. It is also noticed that in case of proposed techniques, observed proportion 

for passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT.  

7.2.8 Overlapping (Periodic) Template Matching Test  

The focus of this test is the number of pre-defined target substrings. The purpose of this test 

is to reject sequences that show deviations from the expected number of runs of ones of a 

given length. Note that when there is a deviation from the expected number of ones of a 

given length, there is also a deviation in the runs of zeroes. Runs of zeroes were not 

evaluated separately due to a concern about statistical independence among the tests. For this 

test and for the non-overlapping template matching test, an m-bit window is used to search 

for a specific m-bit pattern. If the pattern is not found, the window slides one bit position. For 

this test, when the pattern is found, the window again slides one bit, and the search is 

resumed. In this experiment expected proportion for passing the test has been set to 

0.972766 using equation 7.1. Table 7.15 and 7.16 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges.  

Table: 7.15 

Proportion of passing and uniformity of distribution for overlapping (periodic) template 

matching test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.970173 Unsuccess 7.037531e+03 Uniform 

KSOMSCT 0.980201 Success 7.259823e-02 Uniform 

DHLPSCT 0.982107 Success 7.573992e-02 Uniform 

CDHLPSCT 0.983932 Success 7.729034e-01 Uniform 

CTHLPSCT 0.985028 Success 7.750939e-01 Uniform 

CGTHLPSCT 0.985739 Success 7.890822e-02 Uniform 
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Table: 7.16 

Counting of P-values lying in the given ranges for overlapping (periodic) template matching 

test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 5 30 30 28 20 28 30 32 21 48 58 

KSOMSCT 8 23 49 20 28 20 31 38 26 10 71 

DHLPSCT 10 12 31 21 22 39 37 30 31 34 41 

CDHLPSCT 14 15 42 27 29 36 22 32 22 62 29 

CTHLPSCT 19 19 26 22 23 22 34 31 28 10 34 

CGTHLPSCT 21 21 33 24 28 41 38 34 30 28 22 

From table 7.15 and 7.16 it is seen that all the proposed techniques passed the overlapping 

(periodic) template matching test successfully because observed proportion values of all the 

proposed techniques are grater than expected proportion value. But existing TPM based 

technique does not. is also noticed that in case of proposed techniques, observed proportion 

for passing the test are in increasing order in the sequence of KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT. This confirms that one is outperform than other, 

also from TPM. 

7.2.9 Maurer’s “Universal Statistical” Test  

The purpose of the test is to detect whether or not the sequence can be significantly 

compressed without loss of information. An overly compressible sequence is considered to 

be non-random. In this experiment expected proportion for passing the test has been set 

to 0.972766 using equation 7.1. Table 7.17 and 7.18 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges.  
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Table: 7.17 

Proportion of passing and uniformity of distribution for Maurer’s “universal statistical” test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

1.000000 Success 7.828473e-01 Uniform 

KSOMSCT 1.000000 Success 7.830128e-01 Uniform 

DHLPSCT 1.000000 Success 7.830903e-01 Uniform 

CDHLPSCT 1.000000 Success 7.831719e-01 Uniform 

CTHLPSCT 1.000000 Success 7.839116e-01 Uniform 

CGTHLPSCT 1.000000 Success 7.842736e-01 Uniform 

Table: 7.18 

Counting of P-values lying in the given ranges for Maurer’s “Universal Statistical” test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 2 31 37 37 36 32 24 21 29 29 31 

KSOMSCT 7 34 31 35 32 21 23 11 22 25 33 

DHLPSCT 4 27 29 33 38 24 38 34 23 38 35 

CDHLPSCT 7 39 23 32 37 27 27 15 24 39 30 

CTHLPSCT 2 32 34 39 36 30 25 27 26 26 32 

CGTHLPSCT 1 30 31 30 3 21 32 22 21 24 32 

From table 7.17 and 7.18 it is seen that all the proposed techniques along with existing TPM 

based technique passed the Maurer’s “universal statistical” test successfully because 

observed proportion values of all the proposed techniques are grater than expected proportion 

value. It is also noticed that in case of proposed techniques, observed proportion for passing 

the test are in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, 

CTHLPSCT, CGTHLPSCT.  

7.2.10 Linear Complexity Test  

The focus of this test is to find the length of a generating feedback register. The purpose of 

this test is to determine whether or not the sequence is complex enough to be considered 

random. Random sequences are characterized by a longer feedback register. A short feedback 

register implies non-randomness. In this experiment expected proportion for passing the test 

has been set to 0.972766 using equation 7.1. Table 7.19 and 7.20 shows proportion of 

passing and uniformity of distribution and counting of P-values lying in the given ranges.  
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Table: 7.19 

Proportion of passing and uniformity of distribution for linear complexity test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.973333 Success 2.754287e-01 Uniform 

KSOMSCT 0.975318 Success 2.945727e-01 Uniform 

DHLPSCT 0.994763 Success 2.978459e-02 Uniform 

CDHLPSCT 1.000000 Success 3.866280e-01 Uniform 

CTHLPSCT 1.000000 Success 3.871537e-01 Uniform 

CGTHLPSCT 1.000000 Success 3.873217e-02 Uniform 

Table: 7.20 

Counting of P-values lying in the given ranges for linear complexity test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 2 23 28 28 37 40 25 29 27 38 23 

KSOMSCT 5 35 24 20 33 27 33 27 37 34 25 

DHLPSCT 0 32 29 31 29 28 21 28 35 46 21 

CDHLPSCT 2 32 28 33 28 29 29 27 33 44 26 

CTHLPSCT 4 37 29 30 31 38 35 29 38 43 25 

CGTHLPSCT 0 29 26 29 32 42 24 27 31 39 20 

From table 7.19 and 7.20 it is seen that all the proposed techniques along with existing TPM 

passed the linear complexity test successfully because observed proportion values of all the 

proposed techniques are grater than expected proportion value. It is also noticed that in case 

of proposed techniques, observed proportion for passing the test are in increasing order in the 

sequence of KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT. This 

confirms that one is outperform than other.  

7.2.11 Serial Test  

The focus of this test is to obtain the frequency of each and every overlapping m-bit pattern 

across the entire sequence. The purpose of this test is to determine whether the number of 

occurrences of the 2𝑚  𝑚-bit overlapping patterns is approximately the same as would be 

expected for a random sequence. The pattern can overlap. In this experiment expected 

proportion for passing the test has been set to 0.977814 using equation 7.1. Table 7.21 and 
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7.22 shows proportion of passing and uniformity of distribution and counting of P-values 

lying in the given ranges.  

Table: 7.21 

Proportion of passing and uniformity of distribution for serial test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.977814 

0.971333 Unsuccess 0.000000e+00 Non-uniform 

KSOMSCT 0.973903 Unsuccess 0.000000e+00 Non-uniform 

DHLPSCT 0.979874 Success 2.049380e-03 Uniform 

CDHLPSCT 0.980850 Success 2.160305e-03 Uniform 

CTHLPSCT 0.981476 Success 2.142839e-03 Uniform 

CGTHLPSCT 0.991667 Success 2.187234e-03 Uniform 

 

Table: 7.22 

Counting of P-values lying in the given ranges for serial test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 31 55 44 38 21 25 24 21 17 23 19 

KSOMSCT 30 27 33 38 29 29 33 24 22 30 34 

DHLPSCT 5 35 47 51 74 60 72 67 49 60 80 

CDHLPSCT 10 46 43 36 58 57 69 64 48 62 79 

CTHLPSCT 17 38 49 39 33 30 38 28 29 56 68 

CGTHLPSCT 4 49 38 42 46 37 27 28 43 42 43 

From table 7.21 and 7.22 it is seen that proposed techniques except KSOMSCT passed serial 

test successfully because observed proportion values of the proposed techniques are grater 

than expected proportion value. Also existing TPM based technique does not passed test. It is 

also noticed that in case of proposed techniques, observed proportion for passing the test are 

in increasing order in the sequence of, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT.  
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7.2.12 Approximate Entropy Test  

The focus of this test is to obtain the frequency of each and every overlapping m-bit pattern. 

The purpose of the test is to compare the frequency of overlapping blocks of two 

consecutive/adjacent lengths (𝑚 and 𝑚 + 1) against the expected result for a random 

sequence. In this experiment expected proportion for passing the test has been set 

to 0.972766 using equation 7.1. Table 7.23 and 7.24 shows proportion of passing and 

uniformity of distribution and counting of P-values lying in the given ranges.  

Table: 7.23 

Proportion of passing and uniformity of distribution for approximate entropy test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.972766 

0.983333 Success 2.490301e-01 Uniform 

KSOMSCT 0.985830 Success 2.837463e-02 Uniform 

DHLPSCT 0.987328 Success 2.977321e-01 Uniform 

CDHLPSCT 0.991739 Success 3.219583e-01 Uniform 

CTHLPSCT 0.9968372 Success 3.335839e-02 Uniform 

CGTHLPSCT 0.998174 Success 3.473627e-01 Uniform 

Table: 7.24 

Counting of P-values lying in the given ranges for approximate entropy test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 2 32 30 33 37 36 19 20 29 29 33 

KSOMSCT 5 38 36 33 32 23 32 16 25 25 35 

DHLPSCT 5 28 22 31 31 28 32 30 27 31 35 

CDHLPSCT 4 32 28 30 35 29 25 18 28 32 32 

CTHLPSCT 6 35 32 33 34 32 24 28 27 27 38 

CGTHLPSCT 3 31 33 32 35 25 32 27 26 28 35 

From table 7.23 and 7.24 it is seen that all proposed techniques along with existing TPM 

based technique passed the approximate entropy test successfully because observed 

proportion values of all the proposed techniques are grater than expected proportion value. It 

is also noticed that in case of proposed techniques, observed proportion for passing the test 

are in increasing order in the sequence of KSOMSCT, DHLPSCT, CDHLPSCT, 

CTHLPSCT, CGTHLPSCT.  
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7.2.13 Cumulative Sums Test  

The focus of this test is the maximal excursion (from zero) of the random walk defined by 

the cumulative sum of adjusted (−1, +1) digits in the sequence. The purpose of the test is to 

determine whether the cumulative sum of the partial sequences occurring in the tested 

sequence is too large or too small relative to the expected behavior of that cumulative sum 

for random sequences. This cumulative sum may be considered as a random walk. For a 

random sequence, the random walk should be near zero. For non-random sequences, the 

excursions of this random walk away from zero will be too large. In this experiment expected 

proportion for passing the test has been set to 0.977814 using equation 7.1. Table 7.25 and 

7.26 shows proportion of passing and uniformity of distribution and counting of P-values 

lying in the given ranges.  

Table: 7.25 

Proportion of passing and uniformity of distribution for cumulative sums test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.977814 

0.953762 Unsuccess 0.000000e+00 Non-uniform 

KSOMSCT 0.971289 Unsuccess 0.000000e+00 Non-uniform 

DHLPSCT 0.980000 Success 1.915204e-06 Uniform 

CDHLPSCT 0.987291 Success 2.336568e-04 Uniform 

CTHLPSCT 0.995218 Success 2.402179e-01 Uniform 

CGTHLPSCT 0.998543 Success 2.526391e-01 Uniform 

 

Table: 7.26 

Counting of P-values lying in the given ranges for cumulative Sums test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 6 81 63 59 67 44 61 42 40 87 50 

KSOMSCT 12 67 76 58 75 45 45 44 51 73 54 

DHLPSCT 5 49 48 56 102 64 41 54 56 75 50 

CDHLPSCT 9 75 47 53 94 62 54 49 52 83 54 

CTHLPSCT 7 73 43 52 71 58 58 43 59 72 59 

CGTHLPSCT 5 49 56 59 95 52 55 53 56 79 54 
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From table 7.25 and 7.26 it is seen that proposed techniques except KSOMSCT passed the 

cumulative sums test successfully because observed proportion values of the proposed 

techniques are grater than expected proportion value. Also existing TPM based technique 

does not passed test. It is also noticed that in case of proposed techniques, observed 

proportion for passing the test are in increasing order in the sequence of, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT.  

7.2.14  Random Excursions Test  

The focus of this test is to find the number of cycles having exactly 𝐾 visits in a cumulative 

sum random walk. The cumulative sum random walk is found if partial sums of the (0,1) 

sequence are adjusted to (−1, +1). A random excursion of a random walk consists of a 

sequence of n steps of unit length taken at random that begin at and return to the origin. The 

purpose of this test is to determine if the number of visits to a state within a random walk 

exceeds what one would expect for a random sequence. In this experiment expected 

proportion for passing the test has been set to 0.983907 using equation 7.1. Table 7.27 and 

7.28 shows proportion of passing and uniformity of distribution and counting of P-values 

lying in the given ranges.  

Table: 7.27 

Proportion of passing and uniformity of distribution for random excursions test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.983907 

0.935000 Unsuccess 0.000000e+00 Non-uniform 

KSOMSCT 0.942500 Unsuccess 0.000000e+00 Non-uniform 

DHLPSCT 0.987359 Success 2.020816e-01 Uniform 

CDHLPSCT 0.993964 Success 2.090373e-01 Uniform 

CTHLPSCT 0.996667 Success 2.135391e-01 Uniform 

CGTHLPSCT 0.997274 Success 2.139863e-01 Uniform 
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Table: 7.28 

Counting of P-values lying in the given ranges for random excursions test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 156 275 181 187 170 185 196 200 227 245 378 

KSOMSCT 138 274 169 185 167 224 200 202 235 260 346 

DHLPSCT 32 246 241 223 255 226 250 244 235 220 228 

CDHLPSCT 76 249 195 217 276 228 247 236 231 256 287 

CTHLPSCT 80 267 231 201 287 221 243 244 233 249 321 

CGTHLPSCT 94 281 223 196 265 227 257 253 235 232 236 

From table 7.27 and 7.28 it is seen that the proposed techniques except KSOMSCT passed 

the random excursions test successfully because observed proportion values of the proposed 

techniques are grater than expected proportion value. Also existing TPM based technique 

does not passed test. It is also noticed that in case of proposed techniques, observed 

proportion for passing the test are in increasing order in the sequence of, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT.  

  

7.2.15  Random Excursions Variant Test  

The focus of this test is to find the number of times that a particular state occurs in a 

cumulative sum random walk. The purpose of this test is to detect deviations from the 

expected number of occurrences of various states in the random walk. In this experiment 

expected proportion for passing the test has been set to 0.985938 using equation 7.1. Table 

7.29 and 7.30 shows proportion of passing and uniformity of distribution and counting of     

P-values lying in the given ranges.  
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Table: 7.29 

Proportion of passing and uniformity of distribution for random excursions variant test 

Technique 
Expected 

Proportion 

Observed 

Proportion 

Status for 

Proportion 

of passing 

P-value of          

P-values 

Status for     

Uniform/            

Non-uniform 

distribution 

TPM 

0.985938 

0.972593 Unsuccess 0.000000e+00 Non-uniform 

KSOMSCT 0.972963 Unsuccess 0.000000e+00 Non-uniform 

DHLPSCT 0.986893 Success 1.370847e-01 Uniform 

CDHLPSCT 0.988286 Success 1.406195e-01 Uniform 

CTHLPSCT 0.989103 Success 1.429043e-01 Uniform 

CGTHLPSCT 0.989928 Success 1.430975e-01 Uniform 

 

Table: 7.30 

Counting of P-values lying in the given ranges for random excursions variant test 
Technique 0‐.01 .01‐.1 .1‐.2 .2‐.3 .3‐.4 .4‐.5 .5‐.6 .6‐.7 .7‐.8 .8‐.9 .9‐1 

TPM 148 296 406 481 520 598 637 640 630 586 458 

KSOMSCT 146 268 349 499 596 659 628 613 617 564 461 

DHLPSCT 74 435 519 495 527 544 533 578 547 578 570 

CDHLPSCT 95 327 403 521 535 634 597 632 619 568 557 

CTHLPSCT 75 292 511 493 587 562 604 560 553 583 498 

CGTHLPSCT 81 398 428 516 526 549 571 574 569 588 571 

From table 7.29 and 7.30 it is seen that the proposed technique except KSOMSCT passed the 

random excursions variant test successfully because observed proportion values of the 

proposed techniques are grater than expected proportion value. Also existing TPM based 

technique does not passed test. It is also noticed that in case of proposed techniques, 

observed proportion for passing the test are in increasing order in the sequence of, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT.  
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7.3 Performance Analysis 

In this section performance of all the proposed and existing techniques are compared with 

each other in terms of average synchronization time for generation of session key and 

grouped session key consisting of variable  bit using fixed weight range and different number 

of neurons in input and hidden layer, different weight range and fixed number of neurons in 

input and hidden layer, amount of heap used for generating 128 bit session key, amount of 

relative time spent in GC used for generating 128 bit session key, amount of thread required 

for generating 128 bit session key, number of generation vs. average fitness value in SA and 

GA and key storage comparisons. The comparisons and analysis of performance of proposed 

and existing techniques are made using following attributtes. 

 Average synchronization time (in cycle) for generating 128/192/256 bit session key 

among proposed and existing techniques 

 Average synchronization time (in cycle) for generating 128/192/256 bit grouped 

session key (Group size = 4) among proposed and existing techniques 

 Average synchronization time (in cycle) for generating 128/192/256 bit session key 

using fixed weight range (𝐿 = 5) and different number of neurons in input and hidden 

layer for the proposed DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT techniques 

 Average synchronization time (in cycle) for generating 128/192/256 bit session key 

using proposed techniques 

 Average synchronization time (in cycle) for generating 128 bit session key using 

different weight range (𝐿 = 5 to 50) and fixed number of neurons in input and hidden 

layer (2 − 4 − 2) using DHLPSCT, CDHLPSCT techniques 

 Average synchronization time (in cycle) for generating 128 bit session key using 

different weight range (𝐿 = 5 to 50) and fixed number of neurons in input and hidden 

layer (2 − 2 − 3 − 2) using CTHLPSCT, CGTHLPSCT techniques 
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 Average synchronization time (in cycle) for generating 128 bit session key using 

Hebbian learning rule with different weight range (𝐿 = 5 to 50) and fixed number of 

neurons in input and hidden layer (2 − 4 − 2) using DHLPSCT, CDHLPSCT, 

techniques 

 Average synchronization time (in cycle) for generating 128 bit session key using 

Hebbian learning rule with different weight range (𝐿 = 5 to 50) and fixed number of 

neurons in input and hidden layer (2 − 2 − 3 − 2) using CTHLPSCT, CGTHLPSCT 

techniques 

 Memory heap used in proposed and existing techniques for generation of 128 bit session 

key 

 Relative time spent in GC to generate 128 bit session key using  proposed and existing 

techniques  

 Thread required to generate 128 bit session key using  proposed and existing techniques 

 Number of generations vs. average fitness value in Simulated Annealing based 

encryption/decryption key generation in DHLPSCT technique 

 Number of generations vs. average fitness value in Genetic Annealing based 

encryption/decryption key generation in CDHLPSCT technique 

 Length of plaintext vs. encryption/decryption key storage among proposed and existing 

techniques 
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7.3.1 Average Synchronization Time (in cycle) for Generating variable bit Session 

Key  

Table: 7.31 

Average synchronization time (in cycle) for generating 128 bit session key  
Key Length (128 bit) Average Synchronization time (in cycle) 

CTHLPSCT (2-2-2-4-25)NS=32 2302,83 

CDHLPSCT (4-4-2-25)NS=32  2397,02 

DHLPSCT (4-4-2-25)NS=32  2421,71 

KSOMSCT 2516,41 

TPM (L=25) 2624,27 

PPM 2811,04 

Here, NS denotes Network Size. 

 

Figure 7.1: 128 bit key length vs. average synchronization time (in cycle)  

0 500 1000 1500 2000 2500 3000

CTHLPSCT (2-2-2-4-25)NS=32

CDHLPSCT (4-4-2-25)NS=32 

DHLPSCT (4-4-2-25)NS=32 

KSOMSCT

TPM (L=25)

PPM 

Average Synchronization time (in cycle)

K
e
y
 L

e
n

g
th

 (
12

8
 b

it
)

Average Synchronization time (in 
cycle)



 Arindam Sarkar, University of Kalyani, India 273 

Table 7.31 and figure 7.1 shows the proposed CTHLPSCT (2 − 2 − 2 − 2 − 25), 

CDHLPSCT  4 − 4 − 2 − 25 ,  DHLPSCT  4 − 4 − 2 − 25  and KSOMSCT requires 

(2302,83), (2397,02), (2421,71), (2516,41) cycles respectively in average to generate 

session key having a length of 128 bit. Whereas existing TPM (𝐿 = 25) and PPM needs 

2624,27 and 2811,04 cycles respectively, which larger than all the proposed techniques.  

From Table and figure it has been seen that CTHLPSCT takes minimum amount of time to 

generate 128 bit session key compared to other proposed techniques and other two existing 

techniques TPM and PPM. In architecture point of view though DHLPSCT, CDHLPSCT and 

CTHLPSCT has the same network size i.e. 32 but in CTHLPSCT the input layer contains 

only two input neurons. So, the overhead of input generation through PRNG for the input 

layer is much lower than others.  Because of this reason CTHLPSCT able to synchronize 

faster than others CTHLPSCT outperforms over all the proposed techniques (CDHLPSCT, 

DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is quite affordable in terms of 

resources available in wireless communication. 

Table: 7.32 

Average synchronization time (in cycle) for generating 192 bit session key  
Key Length (192 bit) Average Synchronization time (in cycle) 

CTHLPSCT (2-2-5-2-25)NS=40  2463,21 

CDHLPSCT (3-3-5-25)NS=45  2789,43 

DHLPSCT (3-3-5-25)NS=45  2807,36 

KSOMSCT 3173,41 

TPM (L=25) 3347,15 

PPM 3571,48 
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Figure 7.2: 192 bit key length vs. average synchronization time (in cycle)  
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techniques (CDHLPSCT, DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is 

quite affordable in terms of resources available in wireless communication. 

Table: 7.33 

Average synchronization time (in cycle) for generating 256 bit session key 
Key Length (256 bit) Average Synchronization time (in cycle) 

CTHLPSCT (2-2-7-2-25)NS=56   3682,18 

CDHLPSCT (4-4-4-25)NS=64   4208,42 

DHLPSCT (4-4-4-25)NS=64   4233,62 

KSOMSCT 4719,72 

TPM (L=25) 4851,86 

PPM 5193,03 

Figure 7.3: 256 bit key length vs. average synchronization time (in cycle)  
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Table 7.33 and figure 7.3 shows CTHLPSCT  2 − 2 − 7 − 2 − 25 , CDHLPSCT  4 − 4 −

4−25, DHLPSCT 4−4−4−25 and KSOMSCT needs 3682,18,  4208,42,  4233,62, 

(4719,72) cycles respectively in average to generate session key having a length of 128 bit. 

Whereas existing TPM (𝐿 = 25) and PPM needs 4851,86 and 5193,03 cycles respectively, 

which larger than all the proposed techniques.  From Table and figure it has been seen that 

CTHLPSCT takes minimum amount of time to generate 256 bit session key compared to 

other proposed techniques and other two existing techniques TPM and PPM. In architecture 

point of view though DHLPSCT, CDHLPSCT and CTHLPSCT has the network size 64  but 

in CTHLPSCT  the network size is only 56 also the  input layer contains only two input 

neurons in case of CTHLPSCT. So, the overhead of input generation through PRNG for the 

input layer is much lower than others.  Because of this reason CTHLPSCT able to 

synchronize faster than others CTHLPSCT outperforms over all the proposed techniques 

(CDHLPSCT, DHLPSCT, and KSOMSCT) and existing TPM and PPM. This is quite 

affordable in terms of resources available in wireless communication. 

7.3.2 Average Synchronization Time (in cycle) for Generating variable bit 

Grouped Session (Group size = 4) Key  

Table: 7.34 

Average synchronization time (in cycle) for generating 128 bit grouped                                        

session (Group size =  4) key  

Key Length (128 bit) 

No. of Parties participating 

in the Group 

Synchronization 

Average 

Synchronization time 

(in cycle) 

CGTHLPSCT (2-2-2-4-25)NS=32 4 4394,91 

CTHLPSCT (2-2-2-4-25)NS=32 4 13816,98 

CDHLPSCT (4-4-2-25)NS=32 4 14382,12 

DHLPSCT (4-4-2-25)NS=32 4 14530,26 

KSOMSCT 4 15098,46 

TPM (L=25) 4 15745,62 

PPM 4 16866,24 
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Figure 7.4: 128 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size = 4)  
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Table: 7.35 

Average synchronization time (in cycle) for generating 192 bit grouped                              

session (Group size = 4) key  

Key Length (192 bit) 

No. of Parties participating 

in the Group 

Synchronization 

Average 

Synchronization time 

(in cycle) 

CGTHLPSCT (2-2-5-2-25)NS=40 4 4700,99 

CTHLPSCT (2-2-5-2-25)NS=40 4 14779,26 

CDHLPSCT (3-3-5-25)NS=45 4 16736,58 

DHLPSCT (3-3-5-25)NS=45 4 16844,16 

KSOMSCT 4 19040,46 

TPM (L=25) 4 20082,90 

PPM 4 21428,88 

 

Figure 7.5: 192 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size= 4)  
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Table 7.35 and figure 7.5 shows CGTHLPSCT (2 − 2 − 5 − 2 − 25), CTHLPSCT (2 − 2 −

5 − 2 − 25), CDHLPSCT(3 − 3 − 5 − 25), DHLPSCT (3 − 3 − 5 − 25) and KSOMSCT 

needs (4700,99), (14779,26), (16736,58), (16844,16), (19040,46) cycles respectively in 

average to generate session key having a length of 192 bit for synchronize group of four 

parties. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this 

technique use complete binary tree based framework for synchronizing n parties. Whereas 

other proposed and existing techniques needs 
𝑛(𝑛−1)

2
 number of synchronizations for 

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of 

synchronizations. Whereas other techniques needs 
4(4−1)

2
= 6 synchronizations steps. This 

clearly indicates that proposed CGTHLPSCT outperforms than all other proposed and 

existing techniques at the time of group synchronization. 

  

Table: 7.36 

Average synchronization time (in cycle) for generating 256 bit grouped                                        

session (Group size =  4) key  

Key Length (256 bit) 

No. of Parties 

participating in the 

Group Synchronization 

Average 

Synchronization time 

(in cycle) 

CGTHLPSCT (2-2-7-2-25)NS=56 4 7027,38 

CTHLPSCT (2-2-7-2-25)NS=56 4 22093,08 

CDHLPSCT (4-4-4-25)NS=64 4 25250,52 

DHLPSCT (4-4-4-25)NS=64 4 25401,72 

KSOMSCT 4 28318,32 

TPM (L=25) 4 29111,16 

PPM 4 31158,18 
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Figure 7.6: 256 bit key length vs. average synchronization time (in cycle) for grouped 

synchronization (Group size= 4)  

Table 7.36 and figure 7.6 shows CGTHLPSCT (2 − 2 − 5 − 2 − 25), CTHLPSCT (2 − 2 −

5 − 2 − 25), CDHLPSCT (3 − 3 − 5 − 25), DHLPSCT (3 − 3 − 5 − 25) and KSOMSCT 

needs (7027,38), (22093,08), (25250,52), (25401,72), (28318,32) cycles respectively in 

average to generate session key having a length of 192 bit for synchronize group of  four 

parties. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this 

technique use complete binary tree based framework for synchronizing n parties. Whereas 

other proposed and existing techniques needs 
𝑛(𝑛−1)

2
 number of synchronizations for 

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of 

synchronizations. Whereas other techniques needs 
4(4−1)

2
= 6 synchronizations steps. This 

clearly indicates that proposed CGTHLPSCT outperforms than all other proposed and 

existing techniques at the time of group synchronization. 
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7.3.3 Average Synchronization Time (in cycle) for Generating 128 bit Session 

Key using fixed Weight range (𝐿 = 5) with variable Neurons  

Table: 7.37 

 Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

DHLPSCT  

DHLP Size N-K1-K2-L 
Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

8 1-8-1-5 112,73 139,18 148,62 

16 2-4-2-5 209,94 233,36 241,49 

24 2-2-6-5 306,97 329,19 348,07 

24 6-2-2-5 309,49 337,45 356,32 

32 4-2-4-5 410,13 432,69 451,28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in DHLPSCT  
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Figure 7.8: Weight distribution in Hebbian learning rule with weight range (𝐿)  = 5 in 

DHLPSCT  

From the table 7.37 and figure 7.7 it has been observed that several DHLPSCT configuration 

(in terms of different neurons in different layers) can be use to generate 128 bit session key 

with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 𝑁 × 𝐾1 is 

number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the number of 

hidden units in layer 2. For the first row in the table DHLPSCT size is eight where 𝑁 =  1,

𝐾1 = 8, 𝐾2 = 1, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are   

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight decimal value can be represented in eight bit binary. So, 

total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session 

key). If 𝑁 =  1, 𝐾1 = 8, 𝐾2 = 1 then   1 × 8 + 8 × 1 × 8 = 128 bits weight value act 

as a session key. Among three learning rules Hebbian rules outperform over other two rules 

(Anti-Hebbian and Random Walk). Hebbian rules perform better where network size is 

comparatively small because weights are not getting well distributed in the Hebbian rules 

shown in figure 7.8. So, small network with 128 bit session key Hebbian makes the 

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much 

more amount of synchronization time due to the weight distribution process. 
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Table: 7.38 

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CDHLPSCT  
CDHLP 

Size 
N-K1-K2-L 

Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

8 1-8-1-5 95,42 118,73 127,12 

16 2-4-2-5 192,06 212,58 223,86 

24 2-2-6-5 288,13 310,79 331,14 

24 6-2-2-5 289,72 311,18 332,94 

32 4-2-4-5 383,96 407,05 422,89 

 

 

Figure 7.9: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CDHLPSCT  
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Figure 7.10: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in 

CDHLPSCT  

From the table 7.38 and figure 7.9 it has been observed that several CDHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 128 bit 

session key with fixed weight range 𝐿 = 5. CDHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the 

number of hidden units in layer 2. For the first row DHLPSCT size is eight, where 𝑁 =  1,

𝐾1 = 8, 𝐾2 = 1, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are       

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight decimal value can be represented in eight bit binary. So, 

total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session 

key). If 𝑁 =  1, 𝐾1 = 8, 𝐾2 = 1 then   1 × 8 + 8 × 1 × 8 = 128 bits weight value act 

as a session key. Among three learning rules Hebbian rules outperform over other two rules 

(Anti-Hebbian and Random Walk). Hebbian rules perform better where network size is 

comparatively small because weights are not getting well distributed in the Hebbian rules 

shown in figure 7.10. So, small network with 128 bit session key Hebbian makes the 

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much 

more amount of synchronization time due to the weight distribution process. 
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Table: 7.39 

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CTHLPSCT  
CTHLP 

Size 
N-K1-K2-K3-L 

Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

24 2-2-3-2-5 287,81 309,23 320,52 

24 2-3-2-2-5 288,77 310,35 323,15 

32 2-2-2-4-5 382,93 406,87 421,36 

32 4-2-2-2-5 383,18 406,91 421,89 

 

 

Figure 7.11: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CTHLPSCT  
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Figure 7.12: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in 

CTHLPSCT  

From the table 7.39 and figure 7.11 it has been observed that several CTHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 128 bit 

session key with fixed weight range 𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, 

where 𝑁 × 𝐾1 is number of input, 𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the 

number of hidden unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first 

row CTHLPSCT size is 24, where 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2, 𝐿 = 5. Total number 

of weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight 

value represented in eight bit binary. So, total   𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8  

numbers of bits present in a weight (length of a session key). If  𝑁 =  2, 𝐾1 = 2, 𝐾2 = 3,

𝐾3 = 2 then ((2 × 2 + 2 × 3 + 3 × 2) × 8) = 128 bits weight value act as a session key. 

Among three learning rules Hebbian rules outperform over other two rules (Anti-Hebbian 

and Random Walk). Hebbian rules perform better where network size is comparatively small 

because weights are not getting well distributed in the Hebbian rules shown in figure 7.12. 

So, small network with 128 bit session key Hebbian makes the synchronization faster but for 

the small network Anti-Hebbian and Random Walk takes much more amount of 

synchronization time due to the weight distribution process. 
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Table: 7.40 

Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CGTHLPSCT  

CGTHLP 

Size 
N-K1-K2-K3-L 

No. of CGTHLP 

Participated at 

Group Session Key 

Generation 

Average Synchronization Steps 

Hebbian Anti-Hebbian Random Walk 

24 2-2-3-2-5 4 549,28 590,16 611,70 

32 2-2-2-4-5 4 730,81 776,50 804,15 

24 2-3-2-2-5 8 1952,31 2098,20 2184,74 

32 4-2-2-2-5 8 2590,59 2751,03 2852,30 

 

 

Figure 7.13: Generation of 128 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CGTHLPSCT  
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Figure 7.14: Weight distribution in Hebbian learning rule with weight range (𝐿) = 5 in 

CGTHLPSCT 

From the table 7.40 and figure 7.13 it has been observed that group of CTHLPSCT with 

configuration (in terms of different neurons in different layers) can be use to generate 128 bit 

session key with fixed weight range 𝐿 = 5. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of 

synchronizations because this technique use complete binary tree based framework for 

synchronizing 𝑛 parties. Whereas other proposed and existing techniques needs 
𝑛(𝑛−1)

2
 

number of synchronizations for synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs 

only 4𝑙𝑜𝑔(4 − 1) number of synchronizations. Each CTHLPSCT in the group have the size 

of   𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁 × 𝐾1 is number of input, 𝐾1 is the number of hidden unit 

in layer 1 , 𝐾2 is the number of hidden unit in layer 2 and 𝐾3 is the number of hidden unit in 

layer 3. For the first row CTHLPSCT size is 24, where 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 =

2, 𝐿 = 5. Total number of weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 +

𝐾2 × 𝐾3). Each weight value represented in eight bit binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 ×

𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of bits present in a weight (length of a session key). If 

𝑁 = 2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then   2 × 2 + 2 × 3 + 3 × 2 × 8 = 128 bits weight 

value act as a session key. Among three learning rules Hebbian rules outperform over other 
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two rules (Anti-Hebbian and Random Walk). Hebbian rules perform better where network 

size is comparatively small because weights are not getting well distributed in the Hebbian 

rules shown in figure 7.14. So, small network with 128 bit session key Hebbian makes the 

synchronization faster but for the small network Anti-Hebbian and Random Walk takes much 

more amount of synchronization time due to the weight distribution process. 

7.3.4 Average Synchronization Time (in cycle) for Generating 192 bit Session 

Key using fixed Weight range (𝐿 = 5) with variable  Neurons 

Table: 7.41 

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

DHLPSCT  

DHLP Size N-K1-K2-L 
Average synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

24 2-6-2-5 328,73 346,23 374,89 

32 2-4-4-5 419,26 441,64 457,08 

32 4-4-2-5 417,39 438,48 453,11 

36 3-4-3-5 452,73 469,91 481,03 

45 3-3-5-5 598,27 573,62 588,18 

45 5-3-3-5 607,42 581,83 597,39 

48 4-3-4-5 643,61 609,10 623,27 

72 6-2-6-5 956,71 904,28 909,37 
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Figure 15: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in DHLPSCT 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in 

DHLPSCT 
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From the table 7.41 and figure 7.15 it has been observed that several DHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 192 bit 

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the 

number of hidden units in layer 2. For the first row DHLPSCT size is 24, where 𝑁 =  2,

𝐾1 = 6, 𝐾2 = 2, 𝐿 = 5. Total number of weights generated by the DHLPSCT are          

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total         

( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key). If 

𝑁 =  2, 𝐾1 = 6, 𝐾2 = 2 then   2 × 6 + 6 × 2 × 8 = 192 bits weight value act as a 

session key. Among three learning rules Anti-Hebbian rules outperform over other two rules 

when network size is medium (45 to 72). Hebbian rules perform better where network size is 

small (less than 45). In Anti-Hebbian rule weights are getting well distributed than Hebbian 

rules shown in figure 7.16. So, network having medium size with 192 bit session key      

Anti-Hebbian makes the synchronization faster but for this range Hebbian and Random Walk 

takes much more amount of synchronization time.  

Table: 7.42 

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CDHLPSCT  

CDHLP Size N-K1-K2-L 
Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

24 2-6-2-5 289,35 311,62 332,14 

32 2-4-4-5 383,78 406,89 422,17 

32 4-4-2-5 384,10 406,15 421,08 

36 3-4-3-5 418,69 427,83 435,86 

45 3-3-5-5 559,18 538,59 546,13 

45 5-3-3-5 560,23 539,26 547.64 

48 4-3-4-5 602,76 574,35 581,08 

72 6-2-6-5 923,85 862,19 866,11 
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Figure 7.17: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CDHLPSCT 

 

Figure 7.18: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in 
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From the table 7.42 and figure 7.17 it has been observed that several CDHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 192 bit 

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the 

number of hidden units in layer 2. For the first row CDHLPSCT size is 24, where            

𝑁 =  2, 𝐾1 = 6, 𝐾2 = 2, 𝐿 = 5. Total numbers of weights generated by the CDHLPSCT 

are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total                       

( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key). If 

𝑁 =  2, 𝐾1 = 6, 𝐾2 = 2 then   2 × 6 + 6 × 2 × 8 = 192 bits weight value act as a 

session key. Among three learning rules Anti-Hebbian rules outperform over other two rules 

when network size is medium (45 to 72). Hebbian rules perform better where network size is 

small (less than 45). In Anti-Hebbian rule weights are getting well distributed than Hebbian 

rules shown in figure 7.18. So, network having medium size with 192 bit session key Anti-

Hebbian makes the synchronization faster but for this range Hebbian and Random Walk 

takes much more amount of synchronization time.  

Table: 7.43 

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CTHLPSCT  

CTHLP Size N-K1-K2-K3-L 
Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

40 2-2-5-2-5 451,17 434,83 443,02 

40 2-5-2-2-5 454,37 436,11 447,19 

54 2-3-3-3-5 677,76 645,89 653,92 

54 3-3-3-2-5 679,23 646,05 655,11 

64 2-2-2-8-5 805.71 765,53 776,84 

64 4-1-4-4-5 806.16 766,10 777,61 

64 4-4-1-4-5 806.98 766,87 778,41 

64 8-2-2-2-5 807.24 767,63 779,12 
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Figure 7.19: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CTHLPSCT 

 

Figure 7.20: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in 

CTHLPSCT  
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From the table 7.43 and figure 7.19 it has been observed that several CTHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 128 bit 

session key with fixed weight range 𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, 

where N is number of input, 𝐾1 is the number of hidden unit in layer 1 , 𝐾2 is the number of 

hidden unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first row 

CTHLPSCT size is 40, where 𝑁 =  2, 𝐾1 = 5, 𝐾2 = 2, 𝐾3 = 2, 𝐿 = 5. Total number of 

weights generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight 

value represented in eight bit binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8) 

numbers of bits present in a weight (length of a session key). If 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 3,

𝐾3 = 2 then   2 × 5 + 5 × 2 + 2 × 2 × 8 = 192 bits weight value act as a session key. 

Among three learning rules Anti-Hebbian rules outperform over other two rules (Hebbian 

and Random walk). Anti-Hebbian rules perform better where network size is medium. In 

Anti-Hebbian rule weights are getting well distributed than Hebbian rules shown in 7.20. So, 

network having medium size with 192 bit session key Anti-Hebbian makes the 

synchronization faster but for this range Hebbian and Random walk takes much more amount 

of synchronization time.  

Table: 7.44 

Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CGTHLPSCT  

CTHLP 

Size 
N-K1-K2-K3-L 

No. of CTHLP 

Participated at 

Group Session 

Key Generation 

Average Synchronization steps in cycle 

Hebbian Anti-Hebbian Random Walk 

40 2-2-5-2-5 4 861,05 829,86 845,49 

40 2-5-2-2-5 8 3071,89 2948,44 3023,35 

54 2-3-3-3-5 4 1293,49 1232,67 1247,99 

54 3-3-3-2-5 8 4592,12 4367,80 4429,05 

64 2-2-2-8-5 4 1537,68 1461,00 1482,58 

64 4-1-4-4-5 8 5450,27 5179,43 5257,25 

64 4-4-1-4-5 10 7700,54 7317,79 7427,91 

64 8-2-2-2-5 12 10087,84 9592,84 9736,43 
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Figure 7.21: Generation of 192 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CGTHLPSCT 

 

Figure 7.22: Weight distribution in Anti-Hebbian learning rule with weight range (𝐿) = 5 in 

CGTHLPSCT  
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From the table 7.44 and figure 7.21 it has been observed that several CTHLPSCT makes a 

group and different or same configuration (in terms of different neurons in different layers)  

of each CTHLPSCT can be use to generate 192 bit session key with fixed weight range 

𝐿 = 5. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where N is number of input, 𝐾1 is the 

number of hidden unit in layer 1, 𝐾2 is the number of hidden unit in layer 2 and 𝐾3 is the 

number of hidden unit in layer 3. For the first row CTHLPSCT size is 40, where              

 𝑁 =  2, 𝐾1 = 5, 𝐾2 = 2, 𝐾3 = 2, 𝐿 = 5. Total numbers of weights generated by the 

CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value represented in eight 

bit binary. So, total   𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8  numbers of bits present in a 

weight (length of a session key). If 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 3, 𝐾3 = 2 then   2 × 5 + 5 ×

2 + 2 × 2 × 8 = 192 bits weight value act as a session key. CGTHLPSCT needs 

𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this technique use complete binary tree 

based framework for synchronizing 𝑛 parties. Whereas other proposed and existing 

techniques needs 
𝑛(𝑛−1)

2
 number of synchronizations for synchronizing 𝑛 parties. If 𝑛 = 4 

then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of synchronizations.Among three 

learning rules Anti-Hebbian rules outperform over other two rules (Hebbian and Random 

Walk).   Anti-Hebbian rules perform better where network size is medium. In Anti-Hebbian 

rule weights are getting well distributed than Hebbian rules shown in figure 7.22. So, 

network having medium size with 192 bit session key Anti-Hebbian makes the 

synchronization faster but for this range Hebbian and Random Walk takes much more 

amount of synchronization time.  
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7.3.5 Average Synchronization Time (in cycle) for Generating 256 bit Session 

Key using fixed Weight range (𝐿 = 5) with variable Neurons  

Table: 7.45 

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

DHLPSCT 
DHLPSCT 

Size 
N-K1-K2-L 

Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

32 2-8-2-5 406,39 432,07 459,28 

64 4-4-4-5 861,47 797,29 803,12 

128 8-2-8-5 1752,83 1632,94 1573,48 

256 16-1-16-5 3517,29 3339,08 3154,61 

 

 

Figure 7.23: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in DHLPSCT  
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Figure 7.24: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in 

DHLPSCT  

From the table 7.45 and graph 7.23 it has been observed that several DHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 256 bit 

session key with fixed weight range 𝐿 = 5. DHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the 

number of hidden units in layer 2. For the first row DHLPSCT size is 32, where 𝑁 =  2,

𝐾1 = 8, 𝐾2 = 2, 𝐿 = 5. Total numbers of weights generated by the DHLPSCT are        

(𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total          

( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8) numbers of bits present in a weight (length of a session key). 

𝑁 =  2, 𝐾1 = 8, 𝐾2 = 2 then   2 × 8 + 8 × 2 × 8 = 256 bits weight value act as a 

session key. Among three learning rules Random Walk rules outperform over other two rules 

(Hebbian and Anti-Hebbian) when network sixe is large (128 and more). In Random Walk 

rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in 

figure 7.24. So, network having size grater than equal to 128 Random Walk makes the 

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount 

of synchronization step.  
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Table: 7.46 

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CDHLPSCT 

CDHLP Size N-K1-K2-L 
Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

32 2-8-2-5 383,64 407,14 427,33 

64 4-4-4-5 826,16 765,85 770,32 

128 8-2-8-5 1687,28 1582,13 1531,42 

256 16-1-16-5 3429,73 3248,29 3062,74 

 

 

Figure 7.25: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CDHLPSCT 
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Figure 7.26: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in 

CDHLPSCT  

From the table 7.46 and graph 7.25 it has been observed that several CDHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 256 bit 

session key with fixed weight range 𝐿 = 5. CDHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2, where 

𝑁 × 𝐾1 is number of input units, 𝐾1 is the number of hidden units in layer 1 and 𝐾2 is the 

number of hidden units in layer 2. For the first row CDHLPSCT size is 32, where 𝑁 =  2,

𝐾1 = 8, 𝐾2 = 2, 𝐿 = 5. Total number of weights generated by the CDHLPSCT are  

 (𝑁 × 𝐾1 + 𝐾1 × 𝐾2). Each weight value represented in eight bit binary. So, total         

  𝑁 × 𝐾1 + 𝐾1 × 𝐾2 × 8  numbers of bits present in a weight (length of a session key). 

𝑁 =  2, 𝐾1 = 8, 𝐾2 = 2 then   2 × 8 + 8 × 2 × 8 = 256 bits weight value act as a 

session key. Among three learning rules Random Walk rules outperform over other two rules 

(Hebbian and Anti-Hebbian) when network sixe is large (128 and more). In Random Walk 

rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in 

figure 7.26. So, network having size greater than equal to 128 Random Walk makes the 

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount 

of synchronization step.  
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Table: 7.47 

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CTHLPSCT 
CTHLP 

Size 
N-K1-K2-K3-L 

Average Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

56 2-2-7-2-5 722,16 669,34 673,71 

56 2-7-2-2-5 724,03 670,19 674,25 

128 4-2-4-4-5 1686,93 1581,87 1519,18 

128 4-4-2-4-5 1687,32 1582,17 1521,38 

 

Figure 7.27: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CTHLPSCT  

600

800

1000

1200

1400

1600

1800

2-2-7-2-5 2-7-2-2-5 4-2-4-4-5 4-4-2-4-5

A
ve

ra
g

e
 S

y
n

c
h

ro
n

iz
a
ti

o
n

 t
im

e
 i

n
 c

y
c
le

N-K1-K2-K3-L

Average Synchronization time in 
Hebbian (in cycle)

Average Synchronization time in 
Anti-Hebbian (in cycle)

Average Synchronization time in 
Random Walk (in cycle)



 Arindam Sarkar, University of Kalyani, India 303 

 

Figure 7.28: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in 

CTHLPSCT  

From the table 7.47 and graph 7.27 it has been observed that several CTHLPSCT 

configuration (in terms of different neurons in different layers) can be use to generate 128 bit 

session key with fixed weight range 𝐿 = 5. CTHLP size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁 

is number of input, 𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the number of hidden 

unit in layer 2 and 𝐾3 is the number of hidden unit in layer 3. For the first row CTHLPSCT 

size is 40, where 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2, 𝐿 = 5. Total number of weights 

generated by the CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value 

represented in eight bit binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of 

bits present in a weight (length of a session key). If  𝑁 =  2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2 then 

  2 × 2 + 2 × 7 + 7 × 2 × 8 = 256 bits weight value act as a session key. Among three 

learning rules Random Walk rules outperform over other two rules (Hebbian and            

Anti-Hebbian). Random Walk rules perform better where network size is big. In Random 

Walk rule weights are getting well distributed than Hebbian and Anti-Hebbian rules shown in 

figure 7.28. So, network having size grater than equal to 128 Random Walk makes the 

synchronization faster but for this range Hebbian and Anti-Hebbian takes much more amount 

of synchronization time.  
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Table: 7.48 

Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable neurons in 

CGTHLPSCT 

CTHLP 

Size 

N-K1-K2-

K3-L 

No. of CTHLP 

Participated at 

Group Session 

Key Generation 

Average Synchronization steps in cycle 

Hebbian 

 

Anti-Hebbian 

 

Random walk 

 

56 2-2-7-2-5 4 1378,23 1277,42 1285,76 

128 4-2-4-4-5 4 3219,48 3018,97 2899,33 

56 2-7-2-2-5 8 4895,01 4531,01 4558,45 

128 4-4-2-4-5 8 11407,61 10696,71 10285,72 

 

 

 

Figure 7.29: Generation of 256 bit session key using fixed weight range (𝐿 = 5) with variable 

neurons in CGTHLPSCT 
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Figure 7.30: Weight distribution in Random Walk learning rule with weight range (𝐿) = 5 in 

CGTHLPSCT  

From the table 7.48 and graph 7.29 it has been observed that a group of CTHLPSCT can 

synchronize together. Each CTHLPSCT configuration (in terms of different neurons in 

different layers) can be use to generate 256 bit session key with fixed weight range 𝐿 = 5 in 

the group. CGTHLPSCT needs 𝑛𝑙𝑜𝑔(𝑛 − 1) number of synchronizations because this 

technique use complete binary tree based framework for synchronizing 𝑛 parties. Whereas 

other proposed and existing techniques needs 
𝑛(𝑛−1)

2
 number of synchronizations for 

synchronizing 𝑛 parties. If 𝑛 = 4 then CGTHLPSCT needs only 4𝑙𝑜𝑔(4 − 1) number of 

synchronizations. CTHLPSCT size is the 𝑁 × 𝐾1 × 𝐾2 × 𝐾3, where 𝑁 is number of input, 

𝐾1 is the number of hidden unit in layer 1, 𝐾2 is the number of hidden unit in layer 2 and 𝐾3 

is the number of hidden unit in layer 3. For the first row CTHLPSCT size is 40, where 

𝑁 =  2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2, 𝐿 = 5. Total number of weights generated by the 

CTHLPSCT are (𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3). Each weight value represented in eight 

bit binary. So, total ( 𝑁 × 𝐾1 + 𝐾1 × 𝐾2 + 𝐾2 × 𝐾3 × 8) numbers of bits present in a 

weight (length of a session key). If 𝑁 =  2, 𝐾1 = 2, 𝐾2 = 7, 𝐾3 = 2 then   2 × 2 + 2 ×
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7 + 7 × 2 × 8 = 256 bits weight value act as a session key. Among three learning rules 

Random Walk rules outperform over other two rules (Hebbian and Anti-Hebbian). Random 

Walk rules perform better where network size is big. In Random Walk rule weights are 

getting well distributed than Hebbian and Anti-Hebbian rules shown in figure 7.30. So, 

network having size greater than equal to 128 Random Walk makes the synchronization 

faster but for this range Hebbian and Anti-Hebbian takes much more amount of 

synchronization time.  

7.3.6 Average synchronization time (in cycle) for generating variable session key  

 

Figure 7.31: Average synchronization time (in cycle) for generating variable session key in 

KSOMSCT  

From figure 7.31 it has been observed that if the length of the session key get increased then 

the increased of average synchronization steps is linear.  
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Figure 7.32: Average synchronization time (in cycle) for generating variable session key in 

DHLPSCT  

From figure 7.32 it has been observed that if the length of the session key get increased then 

the increased of average synchronization steps is linear. This technique needs less amount of 

iterations than KSOMSCT.   

 

Figure 7.33: Average synchronization time (in cycle) for generating variable session key in 

CDHLPSCT  

From figure 7.33 it has been observed that if the length of the session key get increased then 

the increased of average synchronization steps is linear. This technique needs less amount of 

iterations than DHLPSCT and KSOMSCT.   
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Figure 7.34: Average synchronization time (in cycle) for generating variable session key in 

CTHLPSCT  

From figure 7.34 it has been observed that if the length of the session key get increased then 

the increased of average synchronization steps is linear. This technique needs less amount of 

iterations than CDHLPSCT, DHLPSCT and KSOMSCT.   

 

Figure 7.35: Average synchronization time (in cycle) for generating variable session key in 

CGTHLPSCT  

From figure 7.35 it has been observed that if the length of the session key get increased then 

the increased of average synchronization steps is linear. This technique needs less amount of 

iterations than CTHLPSCT, CDHLPSCT, DHLPSCT and KSOMSCT.   
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7.3.7 Average Synchronization Time (in cycle) for Generating 128 bit Session 

Key using variable Weight range (𝐿 = 5 to 50) with fixed Neurons                 

(2 − 4 − 2) in DHLPSCT, CDHLPSCT  

Table: 7.49 

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons 

(2 − 4 − 2) in DHLPSCT  

L value 
Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

5 209,94 233,36 241,49 

10 620,08 612,74 602,29 

15 1267,79 1058,23 1025,02 

20 2178,19 1635,79 1563,84 

25 3307,86 2322,13 2214,71 

30 4723,51 3145,35 2962,94 

35 6198,27 4126,45 3872,46 

40 7857,09 5278,97 4387,29 

45 9619,53 6594,18 6017,38 

50 12798,72 8073,05 7277,61 

In the above table 7.49 and following figure 7.36 the graph shows a trend towards increase in 

the synchronization steps as the range for weight values (𝐿) increases in all three learning 

rules. For small L values Hebbian takes less synchronization steps than other two learning 

rules in the range of 2 − 4 − 2 − 5 to 2 − 4 − 2 − 15 but as the L value increases Hebbian 

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules 

takes less time than the other two learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 −

2 − 30. Random Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital 

findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the complexity of a 

successful attack grows exponentially, but there is only a polynomial increase of the effort 

needed to generate a key. So, increasing the 𝐿 value security of the system can be increased.  
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      Figure 7.36: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) 

with fixed neurons (2 − 4 − 2) in DHLPSCT  
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Table: 7.50 

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons 

(2 − 4 − 2) in CDHLPSCT  

L value 
Synchronization time in cycle 

Hebbian Anti-Hebbian Random Walk 

5 192,06 212,58 223,86 

10 602,52 589,27 581,63 

15 1251,17 1038,50 1006,91 

20 2160,21 1612,13 1547,52 

25 3288,74 2305,84 2193,02 

30 4702,97 3121,68 2945,38 

35 6179,08 4107,34 3834,17 

40 7842,35 5257,17 4839,62 

45 9601,01 6572,03 5996,09 

50 12776,16 8051,38 7261,10 

In the above table 7.51 and following figure 7.37 the graph shows a trend towards increase in 

the synchronization steps as the range for weight values (𝐿) increases in all three learning 

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning 

rules in the range of 2 − 4 − 2 − 5 to 2 − 4 − 2 − 15 but as the 𝐿 value increases Hebbian 

rule takes more steps to synchronize than other two learning rules. Here, Anti-Hebbian rules 

takes less time than the other two learning rules in the range of 2 − 4 − 2 − 20 to 2 − 4 −

2 − 30. Random Walk outperform from 2 − 4 − 2 − 35 and beyond that. The most vital 

findings is that if the synaptic depth i.e. weight range (𝐿) is increased, the complexity of a 

successful attack grows exponentially, but there is only a polynomial increase of the effort 

needed to generate a key. So, increasing the L value security of the system can be increased. 
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Figure 7.37: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with 

fixed neurons (2 − 4 − 2) in CDHLPSCT 
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7.3.8 Average Synchronization Time (in cycle) for Generating 128 bit Session 

Key using variable Weight range (𝐿 = 5 to 50) with fixed Neurons                

(2 − 2 − 3 − 2) in CTHLPSCT, CGTHLPSCT  

 Table: 7.51  

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons 

(2 − 2 − 3 − 2) in CTHLPSCT  

L value 
Average Synchronization time in cycle 

Hebbian  Anti-Hebbian  Random Walk  

5 287,81 309,23 320,52 

10 664,59 682,25 675.47 

15 1356,06 1136,92 1104,92 

20 2271,32 1703,26 1648,13 

25 3407,18 2411,15 2302,83 

30 4836,97 3220,86 3074,10 

35 6319,72 4192,53 3959,65 

40 7987,63 5341,28 4978,72 

45 9753,02 6662,07 6147,49 

50 12980,17 8137,47 7423,34 

In the above table 7.51 and following figure 7.38 the graph shows a trend towards increase in 

the synchronization steps as the range for weight values (𝐿) increases in all three learning 

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning 

rules in the range of 2 − 2 − 3 − 2 − 5 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases 

Hebbian rule takes more steps to synchronize than other two learning rules. Here, Anti-

Hebbian rules take fewer steps than the other two learning rules in the range of 2 − 2 − 3 −

2 − 8 − 20 to 2 − 2 − 3 − 2 − 30. Random Walk outperform from 3 − 2 − 2 − 8 − 35 and 

beyond that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is 

increased, the complexity of a successful attack grows exponentially, but there is only a 

polynomial increase of the effort needed to generate a key. So, increasing the 𝐿 value 

security of the system can be increased.  



 Arindam Sarkar, University of Kalyani, India 314 

 

Figure: 7.38 Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with 

fixed neurons (2 − 2 − 3 − 2) in CTHLPSCT  
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 Table: 7.52  

Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with fixed neurons 

(2 − 2 − 3 − 2) in CGTHLPSCT  

L value 

No. of CTHLP 

Participated at Group 

Session Key 

Generation 

Average Synchronization time in cycle 

Hebbian  Anti-Hebbian            Random Walk  

5 3 259,91 279,26 289,45 

10 4 1325,61 1302,06 1289,12 

15 5 1356,06 1136,92 1104,92 

20 6 2271,32 1703,26 1648,13 

25 7 3407,18 2411,15 2302,83 

30 8 4836,97 3220,86 3074,10 

35 9 6319,72 4192,53 3959,65 

40 10 7987,63 5341,28 4978,72 

45 11 9753,02 6662,07 6147,49 

50 12 12980,17 8137,47 7423,34 

In the above table 7.52 and following figure 7.39 the graph shows a trend towards increase in 

the synchronization steps as the range for weight values (𝐿) increases in all three learning 

rules. For small 𝐿 values Hebbian takes less synchronization steps than other two learning 

rules in the range of 2 − 2 − 3 − 2 − 5 to 2 − 2 − 3 − 2 − 15 but as the 𝐿 value increases 

Hebbian rule takes more steps to synchronize than other two learning rules. Here, Anti-

Hebbian rules take fewer steps than the other two learning rules in the range of 2 − 2 − 3 −

2 − 8 − 20 to 2 − 2 − 3 − 2 − 30. Random Walk outperform from 3 − 2 − 2 − 8 − 35 and 

beyond that. The most vital findings is that if the synaptic depth i.e. weight range (𝐿) is 

increased, the complexity of a successful attack grows exponentially, but there is only a 

polynomial increase of the effort needed to generate a key. So, increasing the 𝐿 value 

security of the system can be increased.  
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Figure 7.39: Generation of 128 bit session key using variable weight range (𝐿 = 5 to 50) with 

fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT 
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7.3.9 Average Synchronization Time (in cycle) for Generating 128 bit Session 

Key using Hebbian learning rule with variable Weight range (𝐿 = 5 to 50) 

and fixed Neurons (2 − 4 − 2) in DHLPSCT, CDHLPSCT  

Table: 7.53  

Generation of 128 bit session key using Hebbian learning rule with variable weight range 

(𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT  

L value 
Synchronization time in cycle in 1000 runs 

Min Max Average 

5 176,28 243,06 209,94 

10 541,07 699,09 620,08 

15 1217,16 1318,42 1267,79 

20 2137,08 2219,30 2178,19 

25 3229,98 3385,74 3307,86 

30 4706,05 4740,97 4723,51 

35 6176,41 6220,13 6198,27 

40 7814,52 7899,66 7857,09 

45 9605,48 9633,58 9619,53 

50 12793,26 12804,18 12798,72 

Table 7.53 and figure 7.40 shows the minimum, maximum and average synchronization steps 

of 2 − 4 − 2 DHLPSCT using different weight range and Hebbian learning rule.  From the 

graph presented in the figure 7.40 it has been conclude that for the higher value of 𝐿 

synchronization steps also get increased. 
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Figure 7.40: Generation of 128 bit session key using Hebbian learning rule with variable weight 

range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in DHLPSCT 
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Table: 7.54 

Generation of 128 bit session key using Hebbian learning rule with variable weight range 

(𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT  

L value 
Synchronization time in cycle in 1000 runs 

Min Max Average 

5 158,04 226,08 192,06 

10 527,81 677,23 602,52 

15 1193,20 1309,14 1251,17 

20 2112,05 2208,37 2160,21 

25 3208,87 3368,61 3288,74 

30 4675,98 4729,96 4702,97 

35 6153,09 6205,07 6179,08 

40 7791,17 7893,53 7842,35 

45 9584,01 9618,01 9601,01 

50 12776,03 12785,29 12776,16 

Table 7.54 and figure 7.41 shows the minimum, maximum and average synchronization steps 

of 2 − 4 − 2 CDHLPSCT using different weight range and Hebbian learning rule.  From the 

graph presented in the figure 7.41 it has been conclude that for the higher value of 𝐿 

synchronization steps also get increased. 
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Figure 7.41: Generation of 128 bit session key using Hebbian learning rule with variable 

weight range (𝐿 = 5 to 50) and fixed neurons (2 − 4 − 2) in CDHLPSCT  
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7.3.10 Average Synchronization Time (in cycle) for Generating 128 bit Session 

Key using Hebbian learning rule with variable Weight range                         

(𝐿 = 5 to 50) and fixed Neurons (2 − 2 − 3 − 2) in CTHLPSCT, 

CGTHLPSCT  

Table: 7.55 

Generation of 128 bit session key using Hebbian learning rule with variable weight range 

(𝐿 = 5 to 50) and fixed neurons  2 − 2 − 3 − 2  in CTHLPSCT  
CTHLP Size 

(128 bit Key) 

Synchronization time  in cycle (1000 runs) 

Min Max Average 

2-2-3-2-5 262,87 312,75 287,81 

2-2-3-2-10 512,26 816,92 664,59 

2-2-3-2-15 1163,03 1549,09 1356,06 

2-2-3-2-20 2065,45 2477,19 2271,32 

2-2-3-2-25 3147,07 3647,29 3407,18 

2-2-3-2-30 4465,98 5207,96 4836,97 

2-2-3-2-35 6041,86 6597,58 6319,72 

2-2-3-2-40 7655,71 8319,55 7987,63 

2-2-3-2-45 8479,03 11027,01 9753,02 

2-2-3-2-50 11792,11 14168,23 12980,17 

 

Table 7.55 and figure 7.42 shows the minimum, maximum and average synchronization steps 

of 2 − 2 − 3 − 2 CTHLPSCT using different weight range and Hebbian learning rule.  From 

the graph presented in the figure 7.42 it has been conclude that for the higher value of 𝐿 

synchronization steps also get increased. 
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Figure 7.42: Generation of 128 bit session key using Hebbian learning rule with variable weight 

range (𝐿 = 5 to 50) and fixed neurons  2 − 2 − 3 − 2  in CTHLPSCT  
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Table: 7.56 

Generation of 128 bit session key using Hebbian learning rule with variable weight range 

(𝐿 = 5 to 50) , variable group size with fixed neurons (2 − 2 − 3 − 2) in CGTHLPSCT  

L value 

No. of CTHLP Participated 

at Group Session Key 

Generation 

Synchronization time  in cycle 

(1000 runs) 

Min Max Average 

5 4 237,39 282,44 259,91 

10 5 1542,05 2450,76 1996,40 

15 6 4877,53 6496,60 5856,76 

20 7 11250,63 13493,40 12372,02 

25 8 21276,66 19925,99 20601,32 

30 9 36298,64 42329,31 39313,98 

35 10 57654,00 62956,91 60305,45 

40 11 84212,81 91515,05 87863,95 

45 12 105959,98 137801,35 121880,60 

50 13 165435,76 198771,20 182103,50 

 

Table 7.56 and figure 7.43 shows the minimum, maximum and average synchronization steps 

of 2 − 2 − 3 − 2 CGTHLPSCT using different weight range and Hebbian learning rule.  

From the graph presented in the figure 7.43 it has been conclude that for the higher value of 

𝐿 synchronization steps also get increased. 
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Figure 7.43: Generation of 128 bit session key using Hebbian learning rule with variable weight 

range (𝐿 = 5 to 50) and variable group size with fixed neurons (2 − 2 − 3 − 2) in 

CGTHLPSCT  
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7.3.11 Comparison of memory heap used in both proposed and existing 

techniques for generation of 128 bit session key 

 

Figure 7.44: Comparisons of memory used to generate 128 bit session key  
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7.3.12 Comparison of relative time spent in GC to generate 128 bit session key 

using  both proposed and existing techniques 

 

 

Figure 7.45: Comparisons of relative time spent in GC to generate 128 bit session key 

From the figure 7.45 it has been shown that increasing order sequence of relative time spent 

in GC in group synchronization phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT, 

DHLPSCT, KSOMSCT, TPM and PPM.  
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7.3.13 Comparisons of thread required to generate 128 bit session key using  both 

proposed and existing techniques  

 

 

Figure 7.46: Comparisons of number of threads required generating 128 bit session key 

From the figure 7.46 it has been shown that increasing order sequence of number of thread 
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7.3.14 Analysis of dimension of KSOMSCT vs. average number of iterations  

 

 

Figure 7.47: KSOMSCT dimension vs. average number of iterations 
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7.3.15 Analysis of number of generations vs. average fitness value in Simulated 

Annealing guided fittest keystream generation in DHLPSCT  

Table 7.57 and figure 7.48 depicts the average fitness values of different number of 

generations. Table shows four set of entries where 40, 60 80, 100 numbers of generations are 

considered. It is observed from the table that increasing the number of generation also 

increased the fitness values in average.  

Table: 7.57 

Average of fitness values in SA 
Number of Generations Average of fitness values 

40 35.1486 

60 35.8713 

80 36.2581 

100 36.7316 

 

 

Figure 7.48: Number of generation vs. average of fitness values in SA guided fittest keystream 

generation technique  

34

34.5

35

35.5

36

36.5

37

No. of 
Generations 

40

No. of 
Generations 

60

No. of 
Generations 

80

No. of 
Generations 

100

A
ve

ra
g

e
 f

it
n

e
ss

 v
a
lu

e

Number of generation

Average of fitness values



 Arindam Sarkar, University of Kalyani, India 330 

Table 7.58 tabulated the best fitness values of fifty different runs of SA. The average fitness 

value of fifty runs is 34.89712. The proposed SA based encryption/decryption technique has 

been run fifty different times on a identical source file and each time the fitness value 

calculated by the SA based proposed technique is tabulated to show that each time a 

completely random SA based keystream is generated with different fitness value. These 

generated fitness values confirms the generation of random SA based keystream in each 

different run of the technique.    

Table: 7.58 

List of best fitness values in 50 different runs of SA 

 

 

Iteration Fitness Value 

1 31.4377 

2 37.5723 

3 34.4687 

4 36.3263 

5 31.8379 

6 39.5962 

7 41.6294 

8 32.6138 

9 28.5972 

10 32.2379 

. 

. 

. 

. 

. 

. 

40 37.6817 

41 36.8629 

42 38.6328 

43 36.1684 

44 38.8292 

45 32.9716 

46 35.4094 

47 29.6962 

48 42.7356 

49 34.8038 

50 37.5792 
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7.3.16 Analysis of number of generations vs. average fitness value in Genetic 

Algorithm guided fittest keystream generation in CDHLPSCT  

Table 7.59 and figure 7.49 represents the average fitness values of different number of 

generations. Table shows four set of entries where 40, 60 80, 100 numbers of generations are 

considered. It is observed from the table that increasing the number of generation also 

increased the fitness values in average.  

Table: 7.59 

Average of fitness values in GA 
Number of Generations Average of fitness values 

40 35.8350 

60 36.2346 

80 36.9535 

100 38.5472 

 

 

Figure 7.49: Number of generation vs. average of fitness values in GA guided fittest keystream 

generation technique 
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Table 7.60 tabulated the best fitness values of fifty different runs of GA. The average fitness 

value of fifty runs is 37.116146.  The proposed GA based encryption/decryption technique 

has been run fifty different times on a identical source file and each time the fitness value 

calculated by the GA based proposed technique is tabulated to show that each time a 

completely random GA based keystream is generated with different fitness value. These 

generated fitness values confirms the generation of random GA based keystream in each 

different run of the technique.    

Table: 7.60 

List of best fitness values in 50 different runs of GA 
Iteration Fitness Value 

1 34.1069 

2 39.4297 

3 32.9237 

4 38.3263 

5 29.5436 

6 44.0764 

7 43.3057 

8 32.1490 

9 31.4927 

10 37.5192 

. 

. 

. 

. 

. 

. 

40 30.2973 

41 43.0401 

42 27.5291 

43 49.6033 

44 25.0072 

45 39.3781 

46 32.6194 

47 40.2051 

48 42.6397 

49 37.1893 

50 50.2985 
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7.3.17 Comparisons of length of plain text vs. Keystream storage between 

proposed and existing techniques 

Table 7.61 and figure 7.50 shows the comparisons of length of plan text vs. keystream 

storage between proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT and existing AES, RC4, Vernam Cipher. 

Table: 7.61 

Comparisons of length of plan text vs. keystream storage between proposed and existing 

techniques 

 

 

 

 

 

 

In KSOMSCT based technique fractal triangle guided encryption/decryption technique has 

been used. In this technique encryption/decryption key gets form from the KSOMSCT 

synchronized session key and if the length of the plain text get increased then four bits 

circular left shift operation get perform on the synchronized session key to generate the 

encryption/decryption key for the rest of the portion. So, this technique does not need to store 

encryption/decryption key. 

In DHLPSCT and CDHLPSCT Simulated Annealing and Genetic Algorithm based 

encryption/decryption technique has been performed respectively. These two techniques 

generates fittest 128 bit key for encryption/decryption purpose and if the length of the plain 

text is greater than 128 then triangle edge and square edge based key expansion technique 

respectively is used to generate the key for the exceed portion. So, these two technique stores 

only 128 bit fittest keystream which is at part AES but less compare to RC4 and Vernam 

Cipher. 

Length of 

Plaintext 

Key 

Storage  

(KSOM-

SCT) 

Key 

Storage  

(DHLP-

SCT) 

Key 

Storage  

(CDHLP-

SCT) 

Key 

Storage  

(CTHLP-

SCT) 

Key 

Storage  

(CGTHLP-

SCT) 

Key 

Storage 

(AES) 

Key 

Storage  

(RC4) 

Key 

Storage  

(Vernam 

Cipher) 

64 - 128 128 15 15 128 52 60 

120 - 128 128 17 15 128 106 120 

500 - 128 128 20 15 128 437 500 

1000 - 128 128 22 20 128 913 1000 
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Figure 7.50: Comparisons of length of plain text vs. keystream storage between proposed and 

existing techniques 
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In CTHLPSCT, Ant Colony Intelligence (ACI) based technique is used for 

encryption/decryption and in this technique the number of keys to be stored is less when 

compared to AES, RC4, Vernam Cipher. In ACI keystream is generated based on the 

distribution of characters in the plain text. A Comparatively smaller number of keys has to be 

stored since the keys for the remaining portion of the text are generated using the keys in the 

keystream. In ACI only fifteen bits keystream need to be store for plain text size 

64, 120, 500 and for the plain text of length 1000 only 20 bits keystream need to be store. In 

ACI if number of bits in a plain text is grater than the keystream then the values of the 

keystream are added to a predetermined value to generate the keys for the characters in the 

plain text which is at a position grater than the length of the key stream. In Ant Colony 

Intelligence based technique, to generate the keystream for encryption/decryption based on 

the distribution of characters in the plain text has several shortcomings. The drawback of this 

method was that the pheromone deposition of the ant agent evaporates when it moves to the 

next trail and therefore the ant agent needs to update the pheromone deposition representing 

the keystream. The energy value denoting its attractiveness towards the solution is found by 

counting the number of characters in the keystream occurring in the plain text. Let suppose 

the minimum length of the keystream used by the ant agent is nine during each trail and the 

solution is obtained in three trails. Then the minimum number of total comparisons of the 

characters in the keystream with the plain text is 27, to obtain a keystream of length nine. 

Due to the evaporation of the pheromone deposition in each trail the length of the keystream 

may increase or decrease.  

In the CGTHLPSCT, Particle Swarm Intelligence (PSI) based technique is used for 

encryption/decryption. In the PSI, though the keys used for encryption looks like a series of 

random numbers, the keys cannot be cracked because a random number generator is not used 

to generate the keys. Also the keystream generation depends on the character distribution in 

the plain text overcoming the drawback of Vernam Cipher. In addition to this the PSI method 

reduces the number of keys to be stored and distributed compared to that of AES, RC4, 

Vernam Cipher when the length of the plain text is large. The characters used for comparison 

is stored and each time a velocity is given to the particle only the new characters denoting the 

velocity are compared with the plain text. Consider the case where the length of the 

keystream is nine. Since the characters in the keystream do not change until the solution is 
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obtained it is not necessary that the particle keystream length should be nine initially. Let 

suppose a particle keystream of length five is taken and a velocity whose keystream length is 

two given to the particle during the first move of the particle. During the second move of the 

particle a velocity keystream of length two is given and the solution is obtained. Then the 

minimum number of total comparisons of the characters in the keystream with the plain text 

is nine to obtain a keystream of length nine. Each time a velocity is given to the particle the 

characters in the keystream are unique. This would ensure that unlike ACI method the same 

characters are not compared with the plain text for their occurrence. So, PSI based 

encryption/decryption is better than ACI based technique. 

In RC4 the number of keys to be stored is less when compared to Vernam Cipher. This 

stream cipher method is vulnerable to analytic attacks. 1 out of every 256 keys is a weak 

key. These keys can be identified by cryptanalysis which can find whether the generated 

bytes are strongly correlated with the bytes of the key.  

In Vernam Cipher the keys are randomly generated using random stream generator. The 

drawback is that the number of keys to be stored and distributed should be equal to the length 

of the plain text. Also the keys used to encrypt the plain text can be found if the random 

number generator is cracked.  

In the PSI and ACI, though the keys used for encryption looks like a series of random 

numbers, the keys cannot be cracked because a random number generator is not used to 

generate the keys. Also the keystream generation depends on the character distribution in the 

plain text overcoming the drawback of Vernam Cipher. In addition to this the PSI and ACI 

method reduces the number of keys to be stored and distributed compared to that of Vernam 

Cipher when the length of the plain text is large.  
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7.4 Encryption/Decryption Time 

All test programs for the algorithms were equipped to display the total encryption and 

decryption time. Time taken is the difference between processor clock ticks in starting and 

end. Times are computed in milliseconds (ms). The lower the time taken, the better is for a 

typical end user. Since the CPU clock ticks taken as time, there might be a slight variation in 

actual time. This variation is insignificant and may be ignored.  

Section 7.4.1 shows the result on .dll files, section 7.4.2 shows the result on .exe files, section 

7.4.3 shows the result on .txt files, section 7.4.4 shows the result on .doc files. 

7.4.1 .dll files 

Twenty .dll files of different sizes varying from 3,216 bytes to 5,456,704 bytes have been 

taken to generate the data containing various attributes for evaluation of the proposed 

technique. Table 7.62 shows the encryption times (Enc.) and decryption times (Dec.) of .dll 

type files obtained using proposed and existing TDES, AES. Enc. varies from 16 m.sec. to 

345 m.sec. for CGTHLPSCT, from 15 m.sec. to 479 m.sec. for CTHLPSCT, from 16 m.sec. 

to 429 m.sec. for CDHLPSCT, from 15 m.sec. to 430 m.sec. for DHLPSCT, from 15 m.sec. 

to 403 m.sec. for KSOMSCT, from 12 m.sec. to 154 m.sec. for AES, from 14 m.sec. to 

1180 m.sec. for TDES. Dec. varies from 15 m.sec. to 350 m.sec. for CGTHLPSCT, from 15 

m.sec. to 538 m.sec. for CTHLPSCT, from 15 m.sec. to 460 m.sec. for CDHLPSCT, from 

15 m.sec. to 427 m.sec. for DHLPSCT, from 15 m.sec. to 670 m.sec. for KSOMSCT, from 

11 m.sec. to 269 m.sec. for AES, from 15 m.sec. to 1168 m.sec. for TDES.  

Figure 7.51 and  7.52 shows the graphical representation of the relationship between the 

encryption times against the .dll  type source files and the decryption times against the .dll 

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for 

proposed and AES are near equal but much lower than that of TDES. In both the figures, the 

gradients of the curves for TDES are higher for larger source files. 

 



 
A

ri
n
d
am

 S
ar

k
ar

, 
U

n
iv

er
si

ty
 o

f 
K

al
y
an

i,
 I

n
d
ia

 
3
3
8
 

T
ab

le
: 

7
.6

2
 

C
o
m

p
ar

is
o
n
s 

o
f 

en
cr

y
p
ti

o
n
 a

n
d
 d

ec
ry

p
ti

o
n
 t

im
es

 f
o
r 

.d
ll

 f
il

es
  

S
l.

 

n
o

. 

S
o

u
rc

e
 f

il
e 

n
a

m
e
 

S
o

u
rc

e 

fi
le

 s
iz

e
 

(i
n

 b
y

te
s)

 

C
G

T
H

L
P

S
C

T
 

( 
in

 m
.s

ec
. 

) 

C
T

H
L

P
S

C
T

 

( 
in

 m
.s

ec
. 

) 

C
D

H
L

P
S

C
T

 

( 
in

 m
.s

ec
. 

) 

D
H

L
P

S
C

T
 

( 
in

 m
.s

ec
. 

) 

K
S

O
M

S
C

T
 

( 
in

 m
.s

ec
. 

) 

A
E

S
 

( 
in

 m
.s

ec
. 

) 

T
D

E
S

 

( 
in

 m
.s

ec
. 

) 

E
n

c.
 

D
ec

. 
E

n
c.

 
D

ec
. 

E
n

c.
 

D
ec

. 
E

n
c.

 
D

ec
. 

E
n

c.
 

D
ec

. 
E

n
c.

 
D

ec
. 

E
n

c.
 

D
ec

. 

1
 

a0
1

.d
ll

 
3

,2
1

6
 

1
6
 

1
5
 

1
5
 

1
5
 

1
6
 

1
6
 

1
5
 

3
0
 

1
5
 

1
5
 

1
2
 

1
1
 

1
4
 

1
5
 

2
 

a0
2

.d
ll

 
6

,6
5

6
 

3
2
 

1
6
 

1
5
 

3
0
 

3
2
 

1
5
 

1
6
 

1
5
 

3
0
 

3
3
 

1
6
 

1
6
 

1
6
 

1
5
 

3
 

a0
3

.d
ll

 
1

2
,2

8
8
 

1
7
 

1
5
 

1
6
 

1
5
 

3
0
 

3
3
 

3
8
 

3
8
 

1
7
 

1
7
 

1
9
 

1
7
 

1
5
 

1
5
 

4
 

a0
4

.d
ll

 
2

4
,5

7
6
 

3
0
 

1
6
 

3
3
 

3
3
 

1
6
 

4
9
 

3
3
 

1
6
 

4
3
 

3
4
 

1
3
 

3
6
 

3
9
 

1
3
 

5
 

a0
5

.d
ll

 
5

8
,7

8
4
 

1
6
 

1
5
 

3
0
 

4
0
 

4
3
 

3
3
 

4
9
 

4
6
 

3
9
 

1
7
 

1
2
 

3
0
 

3
4
 

1
2
 

6
 

a0
6

.d
ll

 
8

5
,0

2
0
 

3
3
 

1
6
 

3
0
 

1
5
 

4
8
 

4
8
 

6
2
 

4
0
 

3
2
 

3
8
 

1
6
 

3
1
 

3
3
 

1
4
 

7
 

a0
7

.d
ll

 
1

6
9

,4
7

2
 

1
7
 

3
2
 

3
1
 

3
0
 

9
2
 

7
2
 

6
9
 

4
5
 

3
7
 

3
0
 

1
5
 

1
3
 

4
9
 

3
8
 

8
 

a0
8

.d
ll

 
3

5
9

,9
3

6
 

3
3
 

3
0
 

7
9
 

6
2
 

6
8
 

7
0
 

6
1
 

6
4
 

4
2
 

6
5
 

1
8
 

3
4
 

7
1
 

7
6
 

9
 

a0
9

.d
ll

 
5

9
3

,9
2

0
 

5
0
 

5
3
 

1
0

4
 

1
3

0
 

7
9
 

9
9
 

7
8
 

1
0

1
 

1
0

7
 

1
2

9
 

3
3
 

4
8
 

2
1

8
 

2
3

2
 

1
0
 

a1
0

.d
ll

 
9

0
9

,3
1

2
 

7
4
 

6
2
 

1
2

0
 

1
1

8
 

1
5

2
 

1
2

2
 

1
1

9
 

1
1

2
 

1
4

4
 

1
1

2
 

3
0
 

6
6
 

1
8

9
 

1
8

4
 

1
1
 

a1
1

.d
ll

 
1

,2
9

3
,8

2
4

 
8

1
 

9
7
 

1
7

7
 

1
5

8
 

1
5

6
 

1
4

7
 

1
7

3
 

1
7

3
 

1
8

2
 

1
5

7
 

7
4
 

1
2

0
 

2
6

0
 

4
5

9
 

1
2
 

a1
2

.d
ll

 
1

,9
2

5
,1

8
5

 
1

2
0
 

1
4

2
 

2
1

9
 

2
6

1
 

1
0

7
 

1
8

1
 

1
5

4
 

2
3

9
 

2
1

6
 

2
5

3
 

4
2
 

9
5
 

3
9

3
 

5
0

1
 

1
3
 

a1
3

.d
ll

 
2

,4
9

8
,5

6
0

 
1

7
8
 

1
6

4
 

2
0

3
 

2
9

2
 

2
1

6
 

2
1

9
 

1
5

2
 

2
3

6
 

2
0

1
 

2
9

4
 

7
9
 

1
2

9
 

5
3

2
 

5
1

8
 

1
4
 

a1
4

.d
ll

 
3

,4
8

5
,9

6
8

 
2

1
8
 

2
3

0
 

3
8

2
 

3
2

7
 

1
7

1
 

2
3

3
 

2
3

9
 

2
8

0
 

3
9

8
 

3
2

9
 

1
0

2
 

1
7

4
 

8
1

2
 

7
5

2
 

1
5
 

a1
5

.d
ll

 
3

,7
9

0
,3

3
6

 
2

4
0
 

2
5

1
 

3
6

0
 

4
2

0
 

3
6

6
 

2
6

2
 

4
3

0
 

3
2

2
 

3
4

9
 

4
2

8
 

1
0

7
 

1
7

8
 

8
9

7
 

9
2

3
 

1
6
 

a1
6

.d
ll

 
4

,2
5

3
,8

1
6

 
2

7
8
 

2
8

3
 

2
8

7
 

6
5

1
 

3
5

3
 

3
7

9
 

3
4

1
 

3
1

7
 

2
9

4
 

6
8

2
 

1
2

8
 

2
0

1
 

9
0

8
 

8
9

0
 

1
7
 

a1
7

.d
ll

 
4

,5
7

5
,2

3
2

 
2

8
2
 

2
8

8
 

3
7

9
 

4
3

9
 

4
2

9
 

3
1

2
 

4
0

5
 

2
3

3
 

3
9

2
 

4
2

4
 

1
4

9
 

2
6

9
 

9
2

3
 

9
6

4
 

1
8
 

a1
8

.d
ll

 
4

,8
8

3
,4

5
6

 
3

1
9
 

3
2

2
 

3
7

3
 

4
0

3
 

4
0

8
 

3
2

3
 

3
2

2
 

4
2

7
 

3
2

7
 

4
0

5
 

1
4

3
 

2
1

2
 

9
6

4
 

1
0

5
1
 

1
9
 

a1
9

.d
ll

 
5

,0
5

4
,4

6
4

 
3

4
5
 

3
3

7
 

4
3

2
 

3
8

6
 

3
5

5
 

2
5

7
 

2
6

4
 

4
0

1
 

4
0

3
 

2
8

7
 

1
5

4
 

2
1

3
 

1
1

8
0
 

1
1

6
2
 

2
0
 

a2
0

.d
ll

 
5

,4
5

6
,7

0
4

 
3

3
7
 

3
5

0
 

4
7

9
 

5
3

8
 

3
5

8
 

4
6

0
 

2
8

0
 

3
4

3
 

3
7

6
 

6
7

0
 

1
5

2
 

2
5

6
 

1
1

7
2
 

1
1

6
8
 



 Arindam Sarkar, University of Kalyani, India 339 

 
 

Figure 7.51: Graphical representation of encryption time against the varying size of input stream 

of .dll files  

 

 

Figure 7.52: Graphical representation of decryption time against the varying size of input stream 

of .dll files  
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7.4.2 .exe files 

Twenty .exe files of different sizes varying from 1,063 bytes to 6,735,934 bytes have been 

taken to generate the data containing various attributes for evaluation of the proposed 

technique. Table 7.63 shows the encryption times (Enc.) and decryption times (Dec.) of .exe 

type files obtained using proposed and existing TDES, AES. Enc. varies from 16 m.sec. to 

458 m.sec. for CGTHLPSCT, from 16 m.sec. to 589 m.sec. for CTHLPSCT, from 15 m.sec. 

to 562 m.sec. for CDHLPSCT, from 15 m.sec. to 402 m.sec. for DHLPSCT, from 15 m.sec. 

to 674 m.sec. for KSOMSCT, from 12 m.sec. to 374 m.sec. for AES, from 12 m.sec. to 

1379 m.sec. for TDES. Dec. varies from 15 m.sec. to 438 m.sec. for CGTHLPSCT, from 15 

m.sec. to 395 m.sec. for CTHLPSCT, from 12 m.sec. to 646 m.sec. for CDHLPSCT, from 

15 m.sec. to 433 m.sec. for DHLPSCT, from 15 m.sec. to 377 m.sec. for KSOMSCT, from 

15 m.sec. to 399 m.sec. for AES, from 15 m.sec. to 1767 m.sec. for TDES.  

Figure 7.53 and  7.54 shows the graphical representation of the relationship between the 

encryption times against the .exe  type source files and the decryption times against the .exe 

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for 

proposed and AES are near equal but much lower than that of TDES. In both the figures, the 

gradients of the curves for TDES are higher for larger source files. 
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Figure 7.53: Graphical representation of encryption time against the varying size of input 

stream of .exe files  

 

 

 

Figure 7.54: Graphical representation of decryption time against the varying size of input 

stream of .exe files  
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7.4.3 .txt files 

Twenty .txt files of different sizes varying from 1,504 bytes to 6,702,831 bytes have been 

taken to generate the data containing various attributes for evaluation of the proposed 

technique. Table 7.64 shows the encryption times (Enc.) and decryption times (Dec.) of .txt 

type files obtained using proposed and existing TDES, AES. Enc. varies from 32 m.sec. to 

421 m.sec. for CGTHLPSCT, from 16 m.sec. to 539 m.sec. for CTHLPSCT, from 31 m.sec. 

to 603 m.sec. for CDHLPSCT, from 15 m.sec. to 400 m.sec. for DHLPSCT, from 16 m.sec. 

to 542 m.sec. for KSOMSCT, from 16 m.sec. to 215 m.sec. for AES, from 16 m.sec. to 

1428 m.sec. for TDES. Dec. varies from 15 m.sec. to 421 m.sec. for CGTHLPSCT, from 16 

m.sec. to 629 m.sec. for CTHLPSCT, from 16 m.sec. to 530 m.sec. for CDHLPSCT, from 

15 m.sec. to 508 m.sec. for DHLPSCT, from 16 m.sec. to 685 m.sec. for KSOMSCT, from 

15 m.sec. to 356 m.sec. for AES, from 15 m.sec. to 1817 m.sec. for TDES.  

Figure 7.55 and  7.56 shows the graphical representation of the relationship between the 

encryption times against the .txt  type source files and the decryption times against the .txt 

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for 

proposed and AES are near equal but much lower than that of TDES. In both the figures, the 

gradients of the curves for TDES are higher for larger source files. 
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Figure 7.55: Graphical representation of encryption time against the varying size of input stream 

of .txt files  

 

 

 

Figure 7.56: Graphical representation of decryption time against the varying size of input stream 

of .txt files  
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7.4.4 .doc files 

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have been 

taken to generate the data containing various attributes for evaluation of the proposed 

technique. Table 7.65 shows the encryption times (Enc.) and decryption times (Dec.) of .doc 

type files obtained using proposed and existing TDES, AES. Enc. varies from 15 m.sec. to 

331 m.sec. for CGTHLPSCT, from 17 m.sec. to 432 m.sec. for CTHLPSCT, from 32 m.sec. 

to 519 m.sec. for CDHLPSCT, from 17 m.sec. to 430 m.sec. for DHLPSCT, from 13 m.sec. 

to 549 m.sec. for KSOMSCT, from 12 m.sec. to 265 m.sec. for AES, from 15 m.sec. to 

1043 m.sec. for TDES. Dec. varies from 15 m.sec. to 327 m.sec. for CGTHLPSCT, from 32 

m.sec. to 466 m.sec. for CTHLPSCT, from 32 m.sec. to 536 m.sec. for CDHLPSCT, from 

17 m.sec. to 483 m.sec. for DHLPSCT, from 11 m.sec. to 429 m.sec. for KSOMSCT, from 

15 m.sec. to 218 m.sec. for AES, from 15 m.sec. to 1378 m.sec. for TDES.  

Figure 7.57 and  7.58 shows the graphical representation of the relationship between the 

encryption times against the .doc  type source files and the decryption times against the .doc 

type source files respectively for proposed, AES and TDES techniques. Enc. and Dec. for 

proposed and AES are near equal but much lower than that of TDES. In both the figures, the 

gradients of the curves for TDES are higher for larger source files. 
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Figure 7.57: Graphical representation of encryption time against the varying size of input 

stream of .doc files  

 

 

 

Figure 7.58: Graphical representation of decryption time against the varying size of input 

stream of .doc files 
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7.5 Avalanche, strict Avalanche and Bit Independence 

Comparison between the source and encrypted byte has been made and changed of bits in 

encrypted bytes has been observed for a single bit change in the original message byte for 

the entire or a relative large number of bytes. The standard deviation from the expected 

values calculated. Subtract the ratio of the calculated standard deviation with expected 

value from 1.0 to get the avalanche and Strict Avalanche on a 0.0 – 1.0 scale. 

A function 𝑓 ∶  {0,1}𝑛    {0,1}𝑛  satisfies the Bit Independence criteria if ∀ 𝑖, 𝑗,𝑘 ∈

{1,2,… ,𝑛}, with 𝑗 ≠ 𝑘, inverting input bit 𝑖 cause output bits 𝑗 and 𝑘 to change 

independently. To measure the Bit Independence concept, the correlation coefficient 

between the 𝑗th
 and 𝑘th

 components of the output difference string is needed, which is 

called the Avalanche vector  𝐴𝑒ᵢ. 

The higher and closer value to 1.0, the better Avalanche and Strict Avalanche is said to be 

satisfied. In case of files contacting only text messages in plain format, there are no bytes 

in the range of byte 128 to byte 255. That is the reason for which the values of Bit 

Independence test for text files are very low. Section 7.5.1 deals with .dll files and section 

7.5.2 deals with .exe files and results of .txt and .doc files are shown in section 7.5.3 and 

7.5.4 respectively. 

7.5.1 .dll files 

Twenty .dll files of different sizes varying from 3216 bytes to 5,456,704 bytes have been 

taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.67, 7.68, 7.69 

and 7.70 shows the Avalanche, Strict Avalanche and Bit Independence test of .dll type 

files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche 

test value for each file are very close to the value 1 for all four techniques. Bit 

Independence values vary from 0.4041078 to 0.8273190 for KSOMSCT, from 

0.4329089 to 0.8439064 for DHLPSCT, from 0.4890656 to 0.8328754 for 

CDHLPSCT, from 0.4739069 to 0.8729859 for CTHLPSCT, from 0.4389025 to 

0.8673657 for CGTHLPSCT, from 0.4029032 to 0.8310369 for RSA, from 

0.3859391 to 0.8187284 for TDES and from 0.4143399 to 0.8255937 for AES 

respectively. 

Figure 7.59 and 7.60 show the graphical representation of the comparison of results of 

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average 
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values) respectively of the .dll type source files for using proposed KSOMSCT, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES and AES 

techniques. Average Avalanche values of proposed KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.9980800, 0.9926640, 0.9884830, 0.97320534, 0.97189467, 0.9999469, 

0.9999142, and 0.9998914 respectively. Average Strict Avalanche values of proposed 

KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, 

TDES, AES are 0.9967630, 0.9911350, 0.9865620, 0.9705220, 0.9687704, 

0.9996540, 0.9996324, 0.9996890 respectively. Average Bit Independence values of 

proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing 

RSA, TDES, AES are 0.7262960, 0.7330390, 0.7419000, 0.7556560, 0.7569857, 

0.7211989, 0.7147735, and 0.7190952 respectively. Proposed CGTHLPSCT has the 

highest average Bit Independence value which indicates that this technique provides 

better degree of security.  
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Table: 7.69 

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of               

.dll files  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.59:  Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .dll type bit stream  
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CGTHLPSCT 0.97189467 0.9687704 0.7569857 

CTHLPSCT 0.97320534 0.9705220 0.7556560 

CDHLPSCT 0.9884830 0.9865620 0.7419000 

DHLPSCT 0.9926640 0.9911350 0.7330390 

KSOMSCT 0.9980800 0.9967630 0.7262960 

RSA 0.9999469 0.9996540 0.7211989 

TDES 0.9999142 0.9996324 0.7147735 

AES 0.9998914 0.9996890 0.7190952 
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Figure 7.60:  Pictorial representation of the average values of Bit Independence of .dll type 

bit stream  

7.5.2 .exe files 

Twenty .exe files of different sizes varying from 1,063 bytes to 6,735,934 bytes have 

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.71, 7.72, 

7.73 and 7.74 shows the Avalanche, Strict Avalanche and Bit Independence test of .exe 

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche 

test value for each file are very close to the value 1 for all four techniques. Bit 

Independence values vary from 0.0639870 to 0.9942170 for KSOMSCT, from 

0.0464390 to 0.9956390 for DHLPSCT, from 0.0729941 to 0.9328874 for 

CDHLPSCT, from 0.5189645 to 0.9874045 for CTHLPSCT, from 0.3442897 to 

0.9999287 for CGTHLPSCT, from 0.0214885 to 0.9846006 for RSA, from 

0.2405326 to 0.9844929 for TDES and from 0.1741851 to 0.9845419 for AES 

respectively. 

Figure 7.61 and 7.62 show the graphical representation of the comparison of results of 

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average 

values) respectively of the .exe type source files for using proposed KSOMSCT, 
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DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES and AES 

techniques. Average Avalanche values of proposed KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.9988140, 0.9850070, 0.9773440, 0.9659739, 0.9651026, 0.9997574, 0.9992658, 

and 0.9996030 respectively. Average Strict Avalanche values of proposed KSOMSCT, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.9978890, 0.9839850, 0.9747220, 0.9616580, 0.9623935, 0.9992551, 0.9983186 

and 0.9987340 respectively. Average Bit Independence values of proposed KSOMSCT, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.7057480, 0.7098500, 0.7248790, 0.7568470, 0.7709169, 0.7330390, 0.7042388, 

and 0.7002145 respectively. Proposed CGTHLPSCT has the highest average Bit 

Independence value which indicates that this technique provides better degree of security. 
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Table: 7.73 

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of            

.exe files  

 

 

 

Figure 7.61:  Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .exe type bit stream  
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CDHLPSCT 0.9773440 0.9747220 0.7248790 

DHLPSCT 0.9850070 0.9839850 0.7098500 

KSOMSCT 0.9988140 0.9978890 0.703748 

RSA 0.9997574 0.9992551 0.7330390 

TDES 0.9992658 0.9983186 0.7042388 

AES 0.9996038 0.9987340 0.7002145 



 Arindam Sarkar, University of Kalyani, India 361 

 

Figure 7.62:  Pictorial representation of the average values of Bit Independence of .exe type 

bit stream  

7.5.3 .txt files 

Twenty .txt files of different sizes varying from 1,504 bytes to 6,702,831 bytes have 

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.75, 7.76, 

7.77 and 7.78 shows the Avalanche, Strict Avalanche and Bit Independence test of .txt 

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche 

test value for each file are very close to the value 1 for all four techniques. Bit 

Independence values vary from 0.0328965 to 0.5923987 for KSOMSCT, from 

0.0425987 to 0.5983409 for DHLPSCT, from 0.0873611 to 0.5983774 for 

CDHLPSCT, from 0.1209735 to 0.5920943 for CTHLPSCT, from 0.0296755 to 

0.5932186 for CGTHLPSCT, from 0.0214885 to 0.9971851 for RSA, from 

0.2405326 to 0.9981982 for TDES and from 0.1741851 to 0.9973744 for AES 

respectively. 

Figure 7.63 and 7.64 show the graphical representation of the comparison of results of 

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average 

values) respectively of the .txt type source files for proposed KSOMSCT, DHLPSCT, 
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CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES techniques. 

Average Avalanche values of proposed KSOMSCT, DHLPSCT, CDHLPSCT, 

CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 0.9980140, 0.9948260, 

0.9919460, 0.9823468, 0.9786178, 0.9998823, 0.9997381, and 0.9998726 

respectively. Average Strict Avalanche value of proposed KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.9966320, 0.9922320, 0.9866200, 0.9814860, 0.9754595, 0.9994315, 0.9992106 

and 0.9996183 respectively. Average Bit Independence values of proposed KSOMSCT, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.3304380, 0.3531750, 0.4097800, 0.4214050, 0.4426890, 0.3234268, 0.3016146, 

and 0.3112921 respectively. Proposed technique has the highest average                              

Bit Independence value which indicates that proposed technique provides better degree of 

security and comparable to other techniques. 
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Table: 7.77 

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of               

.txt files  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.63:  Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .txt type bit stream  
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Figure 7.64:  Pictorial representation of the average values of Bit Independence of .txt type 

bit stream  

7.5.4 .doc files 

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have 

been taken for Avalanche, Strict Avalanche and Bit Independence test. Table 7.79, 7.80, 

7.81 and 7.82 shows the Avalanche, Strict Avalanche and Bit Independence test of .doc 

type files obtained using proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT, 

CGTHLPSCT and existing RSA, TDES, AES respectively. Avalanches, Strict Avalanche 

test value for each file are very close to the value 1 for all four techniques. Bit 

Independence values vary from 0.2409878 to 0.9357209 for KSOMSCT, from 

0.2730959 to 0.9529072 for DHLPSCT, from 0.2890763 to 0.9345298 for 

CDHLPSCT, from 0.3178352 to 0.9424093 for CTHLPSCT, from 0.3358732 to 

0.9917649 for CGTHLPSCT, from 0.0140414 to 0.8851778 for RSA, from 

0.2257191 to 0.9180687 for TDES and from 0.518730 to 0.9019331 for AES 

respectively. 

Figure 7.65 and 7.66 show the graphical representation of the comparison of results of 

Avalanche, Strict Avalanche (average values) and Bit Independence test results (average 

values) respectively of the .doc type source files for proposed KSOMSCT, DHLPSCT, 
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CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES techniques. 

Average Avalanche values of proposed KSOMSCT, DHLPSCT, CDHLPSCT, 

CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 0.9986350, 0.9897060, 

0.9843530, 0.9739355, 0.9698779, 0.9999707, 0.9999233, and 0.9999362 

respectively. Average Strict Avalanche values of proposed KSOMSCT, DHLPSCT, 

CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.9974800, 0.9878430, 0.9816040, 0.9723390, 0.9680110, 0.9998032, 0.9997301, 

and 0.9997919 respectively. Average Bit Independence values of proposed KSOMSCT, 

DHLPSCT, CDHLPSCT, CTHLPSCT, CGTHLPSCT and existing RSA, TDES, AES are 

0.7664320, 0.7851330, 0.7883700, 0.8014841, 0.8237869, 0.7353065, 0.7611090, 

and 0.7484538 respectively. Proposed technique has the highest average Bit 

Independence value which indicates that proposed technique provides better degree of 

security and comparable to other techniques. 
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Table: 7.81 

Comparisons of average values of Avalanche, Strict Avalanche and Bit Independence of           

.doc files  

 

 

 

Figure 7.65:  Pictorial representation of the average values of Avalanche and Strict 

Avalanche of .doc type bit stream  
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Figure 7.66:  Pictorial representation of the average values of Bit Independence of .doc type 

bit stream  

7.6 Test for Non-Homogeneity 

Chi-Square value is calculated from the character frequencies using the formula devised 

by Karl Pearson which is called “Pearsonian Chi-Square”. The higher the Chi-Square 

values the more deviation from the original message. Section 7.6.1 contains the results of 

.dll files and section 7.6.2 deals with .exe files. Section 7.6.3 and 7.6.4 deal with the 

results of .txt and .doc files respectively. 

7.6.1 .dll files 

Twenty .dll files of different sizes varying from 3216 bytes to 5,456,704 bytes have been 

taken to measure the Chi-Square values for different techniques. Table 7.83 shows the 
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and 6804334 respectively. Chi-Square values increase with the increase of source file 

sizes. 

Figure 7.67 shows the comparison of the average Chi-Square values of .dll type of source 

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, 

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted 

files are very high. So, it may obtain better degree of security in proposed which is 

comparable with that of others. 

 

 

Figure 7.67:  Pictorial representation of the average values of Chi-Square of .dll type bit 

stream 
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7.5.2 .exe files 

Twenty .exe files of different sizes varying from 1063 bytes to 6,735,934 bytes have 

been taken to measure the Chi-Square values for different techniques. Table 7.84 shows 

the Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT, 

DHLPSCT, KSOMSCT, TDES, and AES of .exe type files. The average Chi-Square 

values obtained using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, 

KSOMSCT, TDES, and AES are 4104189, 4349141, 4574169, 4757447, 4834975, 

6169940, and 4096723 respectively. Chi-Square values increase with the increase of 

source file sizes. 

Figure 7.68 shows the comparison of the average Chi-Square values of .exe type of source 

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, 

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted 

files are very high. So, it may obtain better degree of security in proposed which is 

comparable with that of others. 

 

 

Figure 7.68:  Pictorial representation of the average values of Chi-Square of .exe type bit 

stream 
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7.5.3 .txt files 

Twenty .txt files of different sizes varying from 1504 bytes to 6,702,831 bytes have been 

taken to measure the Chi-Square values for different techniques. Table 7.85 shows the 

Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, 

KSOMSCT, TDES, and AES of .txt type files. The average Chi-Square values obtained 

using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, 

TDES, and AES are 476002855099, 457088752936, 41143854777, 36900009771, 

30722317122, 28557702243, and 25826336277 respectively. Chi-Square values 

increase with the increase of source file sizes. 

Figure 7.69 shows the comparison of the average Chi-Square values of .txt type of source 

files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, 

TDES, and AES. For all proposed techniques, the Chi-Square values of the encrypted 

files are very high. So, it may obtain better degree of security in proposed which is 

comparable with that of others. 

 

 
 

Figure 7.69:  Pictorial representation of the average values of Chi-Square of .txt type bit 
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7.6.4 .doc files 

Twenty .doc files of different sizes varying from 21,052 bytes to 5,472,298 bytes have 

been taken to measure the Chi-Square values for different techniques. Table 7.86 shows 

the Chi-Square values obtained using CGTHLPSCT, CTHLPSCT, CDHLPSCT, 

DHLPSCT, KSOMSCT, TDES, and AES of .doc type files. The average Chi-Square 

values obtained using proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, 

KSOMSCT, TDES, and AES are 6713314, 6858556, 6941065, 6976655, 7125858, 

11021752, and 6763362 respectively. Chi-Square values increase with the increase of 

source file sizes. 

Figure 7.70 shows the comparison of the average Chi-Square values of .doc type of 

source files for proposed CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, 

KSOMSCT, TDES, and AES. For all proposed techniques, the Chi-Square values of the 

encrypted files are very high. So, it may obtain better degree of security in proposed 

which is comparable with that of others. 

 

 
 

Figure 7.70:  Pictorial representation of the average values of Chi-Square of .doc type bit 
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7.7 Analysis of Character Frequencies, Entropy, Floating Frequencies, 

Autocorrelation 

Program access both the original and encrypted files and stores the occurrence of each 

character in an array. The final output is an excel file to facilitate generation of graph. The 

smoother or less curves in the spectrum of frequency distribution indicate that it is harder 

for a cryptanalyst to detect the original text bytes which implies better degree of security. 

Entropy near to 1 indicates the good encryption technique. Well distributed floating 

frequencies are indicate the robustness of the encryption and finally Autocorrelation 

indicates goodness of the technique.  Section 7.7.1 deals with analysis of KSOMSCT 

encrypted .dll files. Section 7.7.2 presented the analysis of DHLPSCT encrypted .com 

files. Analysis of CDHLPSCT encrypted .exe files has been presented in section 7.7.3. 

Section 7.7.4 deals with analysis of CTHLPSCT encrypted .cpp files. Finally, analysis of 

CGTHLPSCT encrypted .txt files has been presented in section 7.7.5.        

7.7.1 .dll file 

Analysis of character frequencies of twenty source files of .dll type has been performed 

using KSOMSCT. Figure 7.71 shows the spectrum of frequency distribution of characters 

for the input source stream. Figure 7.72 shows the spectrum of frequency distribution of 

encrypted characters using KSOMSCT for the same input source stream. It has been 

observed that frequencies of characters are widely distributed in KSOMSCT encrypted 

.dll file.  

Analysis of entropy of twenty source files of .dll type has been performed using 

KSOMSCT. The entropy of a source thus indicates its characteristic distribution. It 

measures the average amount of information which one can obtain through observation of 

the source or, conversely, the indeterminacy which prevails over the generated messages 

when one cannot observe the source.  The entropy for the input source stream is 4.88. 

Whereas the entropy of encrypted characters using KSOMSCT for the same input source 

stream is 7.99. From the figures it is observed that entropy of KSOMSCT encrypted 

characters is near to eight which indicate the high degree of security.  

   Analysis of floating frequencies of twenty source files of .dll type has been performed 

using KSOMSCT. The floating frequency of a document is a characteristic of its local 

information content at individual points in the document. The floating frequency specifies 
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how many different characters are to be found in any given 64-character long segment of 

the document. Figure 7.73 shows the spectrum of floating frequencies of characters for 

the input source stream. Figure 7.74 shows the spectrum of floating frequencies of 

encrypted characters using KSOMSCT for the same input source stream. From the figures 

it is observed that floating frequencies of KSOMSCT encrypted characters indicates the 

high degree of security.  

Analysis of autocorrelation of twenty source files of .dll type has been performed using 

KSOMSCT. The autocorrelation of a document is an index of the similarity of different 

sections of the document. Figure 7.75 shows the spectrum of autocorrelation of characters 

for the input source stream. Figure 7.76 shows the spectrum of autocorrelation of 

encrypted characters using KSOMSCT for the same input source stream. From the figure 

it is observed that autocorrelation of KSOMSCT encrypted characters indicate the high 

degree of security. 

 

Figure 7.71: Graphical representation of frequency distribution spectrum of characters for the 

.dll type input source stream 
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Figure 7.72: Graphical representation of frequency distribution spectrum of characters for the 

encrypted stream using KSOMSCT for .dll file 

 

Figure 7.73: Floating frequency of the input .dll source stream  

 

Figure 7.74: Floating frequency of the encrypted stream using KSOMSCT for .dll file 
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Figure 7.75: Autocorrelation of the input .dll source stream  

 

Figure 7.76:  Autocorrelation of the encrypted stream using KSOMSCT for .dll file 

7.7.2 .com file 

Analysis of character frequencies of twenty source files of .com type has been performed 

using DHLPSCT. Figure 7.77 shows the spectrum of frequency distribution of characters 

for the input source stream. Figure 7.78 shows the spectrum of frequency distribution of 

encrypted characters using DHLPSCT for the same input source stream. It has been 

observed that frequencies of characters are widely distributed in DHLPSCT encrypted 

.com file.  

Analysis of entropy of twenty source files of .com type has been performed using 

DHLPSCT. The entropy of a source thus indicates its characteristic distribution. It 

measures the average amount of information which one can obtain through observation of 

the source or, conversely, the indeterminacy which prevails over the generated messages 
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when one cannot observe the source.  The entropy for the input source stream is 4.04. 

Whereas the entropy of encrypted characters using DHLPSCT for the same input source 

stream is 7.99. From the figures it is observed that entropy of DHLPSCT encrypted 

characters is near to eight which indicate the high degree of security.  

   Analysis of floating frequencies of twenty source files of .com type has been performed 

using DHLPSCT. The floating frequency of a document is a characteristic of its local 

information content at individual points in the document. The floating frequency specifies 

how many different characters are to be found in any given 64-character long segment of 

the document. Figure 7.79 shows the spectrum of floating frequencies of characters for 

the input source stream. Figure 7.80 shows the spectrum of floating frequencies of 

encrypted characters using DHLPSCT for the same input source stream. From the figures 

it is observed that floating frequencies of DHLPSCT encrypted characters indicates the 

high degree of security.  

Analysis of autocorrelation of twenty source files of .com type has been performed using 

DHLPSCT. The autocorrelation of a document is an index of the similarity of different 

sections of the document. Figure 7.81 shows the spectrum of autocorrelation of characters 

for the input source stream. Figure 7.82 shows the spectrum of autocorrelation of 

encrypted characters using DHLPSCT for the same input source stream. From the figure 

it is observed that autocorrelation of DHLPSCT encrypted characters indicate the high 

degree of security. 

 

 

Figure 7.77: Graphical representation of frequency distribution spectrum of characters for the 

input .com source stream 
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Figure 7.78: Graphical representation of frequency distribution spectrum of characters for the 

encrypted stream using DHLPSCT for .com file 

 

Figure 7.79: Floating frequency of the input .com source stream 

 

Figure 7.80:  Floating frequency of the encrypted stream using DHLPSCT for .com file 
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Figure 7.81: Autocorrelation of the input .com source stream  

 

Figure 7.82: Autocorrelation of the encrypted stream using DHLPSCT for .com file 

7.7.3 .exe file 

Analysis of character frequencies of twenty source files of .exe type has been performed 

using CDHLPSCT. Figure 7.83 shows the spectrum of frequency distribution of 

characters for the input source stream. Figure 7.84 shows the spectrum of frequency 

distribution of encrypted characters using CDHLPSCT for the same input source stream. 

It has been observed that frequencies of characters are widely distributed in CDHLPSCT 

encrypted .exe file.  

Analysis of entropy of twenty source files of .exe type has been performed using 

CDHLPSCT. The entropy of a source thus indicates its characteristic distribution. It 

measures the average amount of information which one can obtain through observation of 

the source or, conversely, the indeterminacy which prevails over the generated messages 



 Arindam Sarkar, University of Kalyani, India 389 

when one cannot observe the source.  The entropy for the input source stream is 7.85. 

Whereas the entropy of encrypted characters using CDHLPSCT for the same input source 

stream is 7.99. From the figures it is observed that entropy of CDHLPSCT encrypted 

characters is near to eight which indicate the high degree of security.  

   Analysis of floating frequencies of twenty source files of .exe type has been performed 

using CDHLPSCT. The floating frequency of a document is a characteristic of its local 

information content at individual points in the document. The floating frequency specifies 

how many different characters are to be found in any given 64-character long segment of 

the document. Figure 7.85 shows the spectrum of floating frequencies of characters for 

the input source stream. Figure 7.86 shows the spectrum of floating frequencies of 

encrypted characters using CDHLPSCT for the same input source stream. From the 

figures it is observed that floating frequencies of CDHLPSCT encrypted characters 

indicates the high degree of security.  

Analysis of autocorrelation of twenty source files of .exe type has been performed using 

CDHLPSCT. The autocorrelation of a document is an index of the similarity of different 

sections of the document. Figure 7.87 shows the spectrum of autocorrelation of characters 

for the input source stream. Figure 7.88 shows the spectrum of autocorrelation of 

encrypted characters using CDHLPSCT for the same input source stream. From the figure 

it is observed that autocorrelation of CDHLPSCT encrypted characters indicate the high 

degree of security. 

 

 

Figure 7.83: Graphical representation of frequency distribution spectrum of characters for the 

input .exe source stream 
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Figure 7.84: Graphical representation of frequency distribution spectrum of characters for the 

encrypted stream using CDHLPSCT for .exe file 

 

Figure 7.85: Floating frequency of the input .exe source stream 

 

Figure 7.86: Floating frequency of the encrypted stream using CDHLPSCT for .exe file 
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Figure 7.87: Autocorrelation of the input .exe source stream 

 

Figure 7.88: Autocorrelation of the encrypted stream using CDHLPSCT for .exe file 

7.7.4 .cpp file 

Analysis of character frequencies of twenty source files of .cpp type has been performed 

using CTHLPSCT. Figure 7.89 shows the spectrum of frequency distribution of 

characters for the input source stream. Figure 7.90 shows the spectrum of frequency 

distribution of encrypted characters using CTHLPSCT for the same input source stream. 

It has been observed that frequencies of characters are widely distributed in DHLPSCT 

encrypted .cpp file.  

Analysis of entropy of twenty source files of .cpp type has been performed using 

CTHLPSCT. The entropy of a source thus indicates its characteristic distribution. It 

measures the average amount of information which one can obtain through observation of 
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the source or, conversely, the indeterminacy which prevails over the generated messages 

when one cannot observe the source.  The entropy for the input source stream is 4.06. 

Whereas the entropy of encrypted characters using CTHLPSCT for the same input source 

stream is 7.99. From the figures it is observed that entropy of CTHLPSCT encrypted 

characters is near to eight which indicate the high degree of security.  

   Analysis of floating frequencies of twenty source files of .cpp type has been performed 

using CTHLPSCT. The floating frequency of a document is a characteristic of its local 

information content at individual points in the document. The floating frequency specifies 

how many different characters are to be found in any given 64-character long segment of 

the document. Figure 7.91 shows the spectrum of floating frequencies of characters for 

the input source stream. Figure 7.92 shows the spectrum of floating frequencies of 

encrypted characters using CTHLPSCT for the same input source stream. From the 

figures it is observed that floating frequencies of CTHLPSCT encrypted characters 

indicates the high degree of security.  

Analysis of autocorrelation of twenty source files of .cpp type has been performed using 

CTHLPSCT. The autocorrelation of a document is an index of the similarity of different 

sections of the document. Figure 7.93 shows the spectrum of autocorrelation of characters 

for the input source stream. Figure 7.94 shows the spectrum of autocorrelation of 

encrypted characters using CTHLPSCT for the same input source stream. From the figure 

it is observed that autocorrelation of CTHLPSCT encrypted characters indicate the high 

degree of security. 

 

 

Figure 7.89: Graphical representation of frequency distribution spectrum of characters for the 

input .cpp source stream  
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Figure 7.90: Graphical representation of frequency distribution spectrum of characters for the 

encrypted stream using CTHLPSCT for .cpp file 

 

Figure 7.91: Floating frequency of the input .cpp source stream 

 

Figure 7.92: Floating frequency of the encrypted stream using CTHLPSCT for .cpp file 
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Figure 7.93: Autocorrelation of the input .cpp source stream 

 

Figure 7.94: Autocorrelation of the encrypted stream using CTHLPSCT for .cpp file 

7.7.5 .txt file 

Analysis of character frequencies of twenty source files of .txt type has been performed 

using CGTHLPSCT. Figure 7.95 shows the spectrum of frequency distribution of 

characters for the input source stream. Figure 7.96 shows the spectrum of frequency 

distribution of encrypted characters using CGTHLPSCT for the same input source stream. 

It has been observed that frequencies of characters are widely distributed in 

CGTHLPSCT encrypted .txt file.  

Analysis of entropy of twenty source files of .txt type has been performed using 

CGTHLPSCT. The entropy of a source thus indicates its characteristic distribution. It 

measures the average amount of information which one can obtain through observation of 
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the source or, conversely, the indeterminacy which prevails over the generated messages 

when one cannot observe the source.  The entropy for the input source stream is 4.20. 

Whereas the entropy of encrypted characters using CGTHLPSCT for the same input 

source stream is 7.99. From the figures it is observed that entropy of CGTHLPSCT 

encrypted characters is near to eight which indicate the high degree of security.  

   Analysis of floating frequencies of twenty source files of .txt type has been performed 

using CGTHLPSCT. The floating frequency of a document is a characteristic of its local 

information content at individual points in the document. The floating frequency specifies 

how many different characters are to be found in any given 64-character long segment of 

the document. Figure 7.97 shows the spectrum of floating frequencies of characters for 

the input source stream. Figure 7.98 shows the spectrum of floating frequencies of 

encrypted characters using CGTHLPSCT for the same input source stream. From the 

figures it is observed that floating frequencies of CGTHLPSCT encrypted characters 

indicates the high degree of security.  

Analysis of autocorrelation of twenty source files of .txt type has been performed using 

CGTHLPSCT. The autocorrelation of a document is an index of the similarity of different 

sections of the document. Figure 7.99 shows the spectrum of autocorrelation of characters 

for the input source stream. Figure 7.100 shows the spectrum of autocorrelation of 

encrypted characters using CGTHLPSCT for the same input source stream. From the 

figure it is observed that autocorrelation of CGTHLPSCT encrypted characters indicate 

the high degree of security. 

 

Figure 7.95: Graphical representation of frequency distribution spectrum of characters for the 

input .txt source stream 



 Arindam Sarkar, University of Kalyani, India 396 

 

Figure 7.96: Graphical representation of frequency distribution spectrum of characters for the 

encrypted stream using CGTHLPSCT for .txt file 

 

Figure 7.97: Floating frequency of the input .txt source stream 

 

Figure 7.98: Floating frequency of the encrypted stream using CGTHLPSCT for .txt file 
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Figure 7.99: Autocorrelation of the input .txt source stream 

 

Figure 7.100: Autocorrelation of the encrypted stream using CGTHLPSCT for .txt file 

7.7 Analysis 

Analyzing all the results given in section 7.2, 7.3, 7.4,7.5, 7.6 and 7.7 following are the 

salient features based on  comparison of proposed KSOMSCT, DHLPSCT, CDHLPSCT, 

CTHLPSCT, CGTHLPSCT, RSA, TDES, AES, TPM, PPM, RC4 and Vernam Cipher.  

a) CGTHLPSCT outperform over all other proposed techniques and existing TPM and 

PPM techniques and has passed the entire 15 statistical test. This confirms the 

robustness and randomness of the synchronized group session key.   

b) CGTHLPSCT uses Particle Swam Intelligence (PSI) based encryption/decryption 

approach. In this PSI based  technique the number of keys to be stored is less than 

AES, RC4, Vernam Cipher and other proposed techniques 
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c) In general AES takes minimum times and TDES takes the maximum times for 

encryption and decryption process compare to other techniques. For TDES the 

encryption and decryption time both are two to three times more than that of 

proposed techniques. 

d) Very little bit difference observed between the encryption and decryption times for all 

proposed techniques, which indicate that the computational complexity for all the 

process is approximately similar. 

e) The graphs show that the encryption/decryption time increase with the increase of 

source file sizes. For larger file size the slope of the curve are higher. 

f) 128/192/256 bit Session key synchronization time (in cycle) for all the proposed and 

existing techniques in the increasing sequence of CGTHLPSCT, CTHLPSCT, 

CDHLPSCT, DHLPSCT, KSOMSCT and TPM, PPM. This is quite affordable in 

terms of resources available in wireless communication 

g) It has been shown that in group synchronization phase CGTHLPSCT consumes less 

amount of memory compared to other techniques because it needs only  𝑛𝑙𝑜𝑔(𝑛 − 1) 

amount of synchronizations compared to 𝑛(𝑛 − 1) synchronizations steps in others.  

h) The increasing order sequence of relative time spent in GC in group synchronization 

phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT, DHLPSCT, KSOMSCT, TPM and 

PPM.  

i) Avalanche, Strict Avalanche and bit Independence are cryptographic test methods 

which measures the degree of security. Results indicate that the Avalanche, Strict 

Avalanche values for proposed technique are at with other techniques. Proposed 

CGTHLPSCT has the maximum average Bit Independence values for .dll, .exe, .txt 

and .doc files compare to proposed KSOMSCT, DHLPSCT, CDHLPSCT, CTHLPSCT 

and existing RSA, TDES, AES techniques. These results indicate that the degree of 

security of the proposed CGTHLPSCT is very high and is comparable with that of 

other standard technique.  

j) Proposed techniques needs less amount of threads for generating group session key 

compared to existing TPM and PPM. The increasing order sequence of thread 

required in group synchronization phase is CGTHLPSCT, CTHLPSCT, CDHLPSCT, 

DHLPSCT, KSOMSCT, TPM and PPM.  
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k) Proposed CGTHLPSCT needs only 𝑛𝑙𝑜𝑔(𝑛 − 1) compare to 𝑛(𝑛 − 1) 

synchronizations in other techniques. 

l) In source files, some characters appear with very high and very low frequencies and 

some characters appear with zero frequency. In encrypted files all characters with 

ASCII values ranging from 0 to 255 appear with certain frequencies and all these 

characters are approximately equally distributed over a certain range. Since the 

frequency spectrum is smoother, so the degree of security of proposed technique is 

good is comparable with that of standard available cryptographic technique. 

m) If the length of the session key get increased then the increased of average 

synchronization steps is linear. Linear computational complexity can be easily 

handled in wireless communication.   

n) For all proposed and existing techniques, calculated Chi-Square values are than the 

tabulated Chi-Square values. This indicates the high degree of non-homogeneity 

between source and encrypted files. In case of .dll, .exe, .txt, .doc, files proposed 

CGTHLPSCT has maximum average Chi-Square value among all other proposed 

techniques.  

o) 3𝐷 KSOMSCT takes more iteration to train the map in compared to 2𝐷 KSOMSCT. 

So, the energy consumption is more in 3𝐷 KSOMSCT than 2𝐷. For this reason 2𝐷 

KSOMSCT is the best alternative in wireless communication where resource 

constrains (in terms of energy, memory) is a vital issues for generation of session key.   
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8.1 Introduction 

In this chapter a model of cryptographic technique through cascaded implementation 

embodied with proposed techniques has been discussed. The approach of cascaded 

implementation is an attempt to integrate the independent techniques which are discussed and 

analyzed in earlier chapters. The technique proposed in this chapter introduces a new 

dimension in the endeavor of ensuring secured session key generation and exchange for 

encryption/decryption to the maximum possible level. 

Section 8.2 represents a brief description of the proposed technique. Section 8.3 deals with 

the detailed analysis of the results. Conclusions are drawn in section 8.4. Future scopes are 

described in section 8.5.    

8.2 The Model  

Five independent secured session key generation techniques proposed in various chapters, 

termed as KSOFM (say 𝑆1), DHLP (say 𝑆2), CDHLP (say 𝑆3), CTHLP (say 𝑆4), CGTHLP 

(say 𝑆5) and five independent secured encryption/decryption techniques proposed in various 

chapters, termed as Fractal Triangle based encryption/decryption (say 𝐸1), Simulated 

Annealing based encryption/decryption (say 𝐸2), Genetic Algorithm based 

encryption/decryption (say 𝐸3), ACI based encryption/decryption (say 𝐸4), PSI based 

encryption/decryption (say 𝐸5) have been integrated to generate the cascaded model. Number 

of cascaded stages, say 𝑛, is selected randomly which forms the part of the composite key of 

this model. This model is based on cascaded implementation of n number of techniques 

which are chosen randomly from among five key generation techniques and five 

encryption/decryption techniques with or without repetition of the same. Repetition of the 

same technique in consecutive cascading stage is not allowed. No technique be implemented 

more than t number of times where 𝑡 < 𝑛. It may so happen that one or more out of the five 

key generation techniques and five encryption/decryption techniques for cascading not 

implement at all. The plaintext is the input stream of the first encryption technique of the 

sequence and the output stream generated from the nth stage of cascading in the cipher text. 

Whenever a technique is selected for encryption, a session key generation technique also gets 

selected. As a result n numbers of different encryption/decryption sub keys get generated for 
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this implementation. A session key also gets generated using any of the session key 

generation techniques among five techniques. This session key helps to transmit the 

information regarding value of 𝑛 (number of cascading stages), the order of encryption/ 

decryption techniques for 𝑛 cascading stages (𝑠𝑎𝑦 𝐸i𝐸j𝐸k. . . 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 , 𝑗 ≠ 𝑘, … ) and the 

context of 𝑛 encryption/decryption keys (𝐾1, 𝑘2, 𝐾3, … , 𝐾n). During decryption, the cipher 

text is considered as binary bit stream and passes through each of n decryption techniques in 

exactly the reverse order of the sequence followed during encryption. The final output stream 

generated from nth stage of cascading reproduced the plaintext. At any intermediate stages of 

this technique, the output stream of the technique of that stage is the input stream to the next 

cascading stage. 

Section 8.2.1 describes the generation of session key of the proposed cascaded 

implementation and that of encryption and decryption process of the same described in the 

section 8.2.2 and 8.2.3 respectively. 

8.2.1 Session Key Generation   

The detailed mechanisms of session key generation for individual cryptographic techniques 

have been discussed in respective chapters. Proposed model has n number of cascading 

stages. At each stage, the input binary bit stream 𝑃i passes through the encryption/decryption 

key generator to generate the corresponding encryption/decryption key 𝐾i where 𝑖 ∈ 𝑁, the 

set of first n natural numbers. A session key 𝑆i is generated for the proposed model and this 

session key used to transmit the following information to the other party. 

i. The value of 𝑛 (number of cascading stages) 

ii. The order of encryption techniques for n cascading stages 

(𝑠𝑎𝑦 𝐸i𝐸j𝐸k. . . 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 , 𝑗 ≠ 𝑘, …, and every 𝐸i∈ {𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5}) 

iii. The information of n number of encryption/decryption keys 

(𝑠𝑎𝑦 𝐾1, 𝐾2, 𝐾3, … , 𝐾n) which are generated at the corresponding cascading 

stage of encryption using the input binary bit stream for that stage. 
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The key space of the session key 𝑆 is very large. The value of n can be represented by a 

character having ASCII value from 1 to 255. At each time a session key generation 

technique is selected for the whole process out of five different session key generation 

technique (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) randomly based on some constraints  and at each cascading stage 

a cryptographic technique is selected out of five different encryption/decryption technique 

(𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) randomly based on some constraints. For each session key generation 

technique only three bits are required to store (the three bits combinations range 000 to 111 is 

sufficient to store the session key generation technique index 1 to 5). For each encryption/ 

decryption technique only three bits are required to store (the 3 bit combinations range 000 to 

111 is sufficient to store the encryption/ decryption technique index 1 to 5). So (3 × 𝑛) 

number of bits i.e.  
3×𝑛

8
  number of characters are required to store the sequence of 

cryptographic techniques for n cascading stages. In various chapters, five different, 

independent encryption/decryption key generation techniques have been discussed in detail. 

All of these techniques generate 128/192/256 bits encryption/decryption keys. Proposed 

model has n number of cascading stages and at each stage of encryption an encryption key is 

generated for that corresponding technique. Each encryption key has a length of 128/192/

256 bits So, the length of n number of encryption/decryption keys is (128 × 𝑛) to (256 × 𝑛) 

number of bits In various chapters, five different, independent session key generation 

techniques have been discussed in detail. All of these techniques generate 128/192/256 bits 

tuned session keys. This tuned session key get Exclusive-OR with the session key produced 

by this proposed model and transmitted to the other party. The receiving party has the same 

tuned session key, using this tuned session key receiving party perform the Exclusive-OR 

operations on the receiving stream to get back the session key of the proposed model.  The 

proposed model has a session key of length [(value of number of cascading stages in bits) + 

(three bits combinations of encryption/ decryption technique index) + (length of 𝑛 number of 

encryption/decryption keys in bits) + (length of 𝑛 number of session keys in bits)] i.e. 

[ 8 +  3 × 𝑛 +   128 × 𝑛 +  128 × 𝑛  ] bits to [ 8 +   3 × 𝑛 +   256 × 𝑛 + (256 × 𝑛)] 

number of bits. So,  
[ 8+  3×𝑛 +  128×𝑛 +(128×𝑛)]

8
=  1 +

 3×𝑛 

8
+ 16𝑛 + 16𝑛 = 32𝑛 to 

[ 8+  3×𝑛 +  256×𝑛 +(256×𝑛)]

8
=  1 +

 3×𝑛 

8
+ 32𝑛 + 32𝑛 = 64𝑛 numbers of characters this 

confirms a huge variability of the key space in terms of randomness.  
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8.2.2 Encryptor Module 

The detailed discussion on encryption techniques of all schemes (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) have been 

made individually into its respective chapters. Proposed model has n number of cascaded 

stages where 𝑛 is a finite random integer. The plaintext is a binary bit stream which is the 

input for the first chosen encryption technique. The output stream of 𝑛th
 technique is the 

cipher text. At any intermediate stages of this approach, the output stream of the encryption 

technique is made input to the next cascading stage. The sequence of encryption techniques 

is selected randomly. The assumption of the model is that the consecutive repetition of same 

technique is not permitted. No technique be implemented more than 𝑡 number of times 

where 𝑡 < 𝑛. One or more out of the five available techniques for cascading 

(𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) may not be implemented at all. In maiden stage any one out of five 

techniques can be chosen in five ways and then for remaining stages (𝑛 − 1) times, at each 

cascading stage any one out of four (since consecutive repetition of same technique is not 

allowed) techniques can be chosen in four ways. So, there are as many as 5 × 4𝑛−1  
ways to 

choose a cascading sequence. Now, 5 × 4𝑛−1=
5

4
× 4𝑛 = 1.25 × 4𝑛 , which means that the 

formation of session key is order of 4𝑛  ways which is a huge one. It also indicates that the 

key space of the session key is very large. The most importantly, it is to be noted that the 

session key is used only once for each transmission. So there is a time stamp of minimum 

span which expires automatically at end of transmission. By notation, the sequence of 

encryption techniques for n cascading stages is represented as 𝐸i𝐸j𝐸k…  𝐸u𝐸v𝐸w 𝑤ℎ𝑒𝑟𝑒, 𝑖 ≠

𝑗, 𝑗 ≠ 𝑘, …  , 𝑢 ≠ 𝑣, 𝑣 ≠ 𝑤.  
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      Input      : Source stream i.e. plaintext  

      Output   : Encrypted stream i.e. cipher text 

    Method : The process takes binary stream and generates encrypted bit stream through 

cascaded encryption operations. 

Step 1. The input stream, say 𝑃0 is taken as a stream with finite number of 

binary bits 

Step 2. Obtain the number of cascaded stages, say n, randomly 

Step 3. Set 𝑖 = 0 and initialize 𝑇0= 𝐸0 (i.e. Null) 

Step 4. The encryption key 𝐾i+1 is generated using the binary bit stream 𝑃i 

Step 5. Select 𝑇i+1∈ { 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5} randomly in such a way that  𝑇i+1≠ 𝑇i 

Step 6. The bit stream 𝑃i is encrypted into 𝑃i+1 using the encryption technique 

𝑇i+1 and the key encryption 𝐾i+1 

Step 7. Set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑛 then go to step 8 else go to step 9 

Step 8. 𝑃i is the input stream for the next cascading stage and go to step 4 

Step 9. 𝑃i≅  𝑃n is the final output of the encryptor module i.e. 𝑃n is the cipher 

text. 

Figure 8.1 shows the flowchart of encryptor module for the proposed model.  
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Figure 8.1: Pictorial representation of the flow chart of encryption for the proposed cascaded 

model 

Start 

Input P0 is taken as binary stream 

 

Initialize the number of cascaded stages, n 

Set i: = 0 and T0 = E0 (Null) 

Encryption key  Ki+1 is generated using the Pi as a binary bit stream with key generator 

Select Ti+1∈ { E1, E2, E3, E4, E5} randomly in such a way that Ti+1≠ Ti 

 

The bit stream Pi is encrypted into Pi+1 using the encryption technique Ti+1 and the key 

encryption Ki+1 

 

Set i: = i + 1  

Is i < 𝑛 
? 

Yes 

No 

Stop 

Pi≅  Pn is the cipher text 
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8.2.3 Decryptor Module 

The detailed discussion on decryption techniques of all schemes (𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5) have been 

discussed individually into its respective chapters. Proposed model has 𝑛 number of cascaded 

stages where 𝑛 has selected at random during decryption. Processing the information of the 

session key 𝑆, the value of 𝑛 (number of cascading stages), the order of the encryption technique 

for 𝑛 cascading stages (𝐸i𝐸j𝐸k…  𝐸u𝐸v𝐸w 𝑤ℎ𝑒𝑟𝑒, 𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘, … , 𝑢 ≠ 𝑣, 𝑣 ≠ 𝑤) and the 

information of 𝑛 number of encryption/decryption keys (𝐾1, 𝐾2, … , 𝐾n) are fetched during 

decryption. Order of decryption is fetched from the session key 𝑆 which is exactly reverse of the 

sequence of encryption and initialized into the variables T1, T2, T3, … , Tn (i.e. T1 is the first 

decryption technique,  T2 is the second decryption technique  and so on) where Ti∈

{ D1, D2, D3, D4, D5}∀i ∈ N, the set of first n natural numbers. The order of the decryption is 

exactly the reverse of the sequence followed during encryption i.e. 𝐷w𝐷v𝐷u…  𝐷k𝐷j𝐷i and the 

decryption key which will be used during decryption in the order of 𝐾n, 𝐾n-1, … , 𝐾2, 𝐾1. The first 

decryption technique 𝐷w considers the input cipher text 𝑃n as a binary bit stream. The final 

output stream generated from the final stage of cascading using the decryption technique 𝐷i 

reproduced the plaintext. At the intermediate stages of this approach, the output stream of any 

decryption technique is the input stream to the next cascading stage.  

The decryption algorithm is described as follows: 

 

      Input      :  Encrypted stream i.e. cipher text and the session key S  

      Output   :  Source stream i.e. plaintext 

      Method : The process takes encrypted binary stream and generates decrypted bit stream 

through cascaded decryption operations. 

Step 1. The stream containing the information of the session key S obtained to 

get the information about the decryption key 

Step 2. The value of n (number of cascading stages) and the decryption keys  

𝐾1, 𝐾2, 𝐾3, … , 𝐾n are extracted from the session key S and used for 

decryption 

Step 3. The order of decryption is fetched from the session key S which is 

exactly reverse of the sequence of encryption and initialized into the 
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variables 𝑇1, 𝑇2, 𝑇3, … , 𝑇n (i.e. 𝑇1 is the first decryption technique,  𝑇2 is 

the second decryption technique  and so on) where 

𝑇i∈ { 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}∀𝑖 ∈ 𝑁, the set of first 𝑛 natural numbers 

Step 4. The input stream, say 𝑃𝑛 , is taken as a stream with finite number of 

binary bits. 

Step 5. Set 𝑖 = 𝑛 

Step 6. Input bit stream 𝑃𝑖  is decrypted into 𝑃𝑖−1 using the decryption 

technique 𝑇n-i+1 and the decryption key 𝐾𝑖  

Step 7. Set i=i-1. If i>0 then go to step 8 else go to step 9 

Step 8. 𝑃𝑖 is the input stream for the next cascading stage and goes to step 6 

Step 9. 𝑃i≅  𝑃0 is the final output of the decryptor module i.e. 𝑃0 is the 

plaintext. 

Figure 8.2 shows the flowchart of decryptor module for the proposed model.  
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Figure 8.2: Pictorial representation of the flow chart of decryption for the proposed cascaded 

model 

Stream containing the information of the session 

key S obtained 

Value of n (number of cascading stages) and the decryption 

keys  K1, K2, K3, … , Kn are extracted from the session key S 

Order of decryption is fetched from the session key S which is exactly reverse of the 

sequence of encryption.  

 

The bit stream Pi is decrypted into Pi-1 using the decryption technique Tn-i+1 and the key 

encryption Ki 

 

Set i: = i + 1  

Is i > 0 
? 
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No 

Input stream, say Pn , is taken as a stream with finite 

number of binary bits. 

Set i: = n  

Stop 

Pi≅  P0 is the plaintext 

 

Start 
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8.3 Analysis 

Extensive analysis has been made with a huge variability of the value of 𝑛, the number of 

cascading stages. Out of eighty samples files (four different types and twenty files for each 

type) only twelve files, arbitrarily chosen three from each type, taken for testability of the 

model and result are generated. 

 The encryption and decryption times taken are the differences between processor clock 

stick at the starting of execution and at the end of execution respectively. Since the CPU 

clock ticks taken as time, there might be a slight variation in actual time which is 

insignificant and may be ignored. Proposed model has n number of cascading stages. So the 

encryption and decryption time of the proposed approach are near equal to the cumulative 

sums of 𝑛 number of encryption and decryption times respectively of the individual 

cryptographic techniques. Therefore the encryption and decryption times are larger than that 

of any individual method.  

 Comparison between the source and encrypted bytes has been performed and changes of 

bits within encrypted bytes has been observed for a change of single bit in the original 

message byte for the entire or a relative large number of bytes. Detail concept of Avalanche, 

Strict avalanche and Bit independence test has been discussed in chapter 7. The values of 

three above mentioned tests are based on pure numbers and this has no units. The calculated 

Avalanche, Strict avalanche and Bit independence values are very high which may indicate 

good security of the proposed approach. There are no significant differences observed 

between the calculated avalanche, Strict avalanche and Bit independence values for the 

Proposed approach using cascaded implementation and that for any individual technique. 

 Spectrum of the frequency distribution of the encrypted characters generated using the 

proposed approach are analyzed and it is observed that characters with ASCII values ranging 

from 0 to 255 appeared all with near equal frequencies which may indicate that it is very 

hard to regenerate the original file for a cryptanalyst. Difference between high and low value 

of frequencies in the frequency distribution curves is very small. So the spectrum of 

frequency distribution generated using the proposed approach are nearly smoother which 

may indicate that the degree of security of the proposed approach is good. No remarkable 

differences in the spectrum of frequency distribution have been observed for the cascaded 

implementation. 
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Chi-Square value is calculated from the character frequencies using the formula devised by 

Karl Pearson which is called “Pearsonian Chi-Square”. The higher the Chi-Square values the 

more deviation from the original message. In chapter 7 the detail concept of the test of non-

homogeneity has been discussed. The calculated Chi-Square values for all the sample files 

using the proposed approach are very large compare to tabulated one which may indicate that 

the degree of security of the proposed approach using cascaded implementation is good. 

There is no noticeable difference has been observed from calculated Chi-Square values, 

which confirms the high degree of non-homogeneity of the encrypted stream with respect to 

the source stream.   

Cryptographic algorithms are possible to break without keys where a cryptanalyst try all 

possible keys until get the success. The security of a cryptographic scheme depends on how 

much effort along with its time stamp is required for the cryptanalyst to break it. But it is 

always very difficult to estimate the amount of effort required to decrypt the cipher text 

successfully. In other word, an encryption scheme may be defined as unconditionally secured 

if the cipher text generated by the scheme does not contain enough information to determine 

uniquely the corresponding plaintext, no matter how much cipher text is available.  

The complexity of any symmetric encryption algorithm is generally compared with the 

Brute-force attack. Brute-force approach simply involves computing every possible key until 

an intelligible translation of the cipher text into plaintext is obtained. On average, half of all 

possible keys must be tried to achieve success. Table 8.1 shows how much time is involved 

for various key spaces. The 56-bit key size is used with the DES algorithm and 168-bit key 

size is used for triple DES (i.e. TDES) algorithm. The minimum key size specified for AES 

is 128 bits. For each key size, the results are shown assuming that it takes 1µs and 106 µs to 

perform a single decryption respectively. 
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Table 8.1 

Time involved for various key spaces 

Key Size 
Number of Alternate 

Keys 
Time required at 1 decryption/ µs 

Time required at  106 decryption/ 

µs 

32 bits 232 =  4.3 × 109 231µs=  35.8 minutes 2.15  milliseconds 

56 bits 256 =  7.2 × 1016  255µs=  1142 years 10.01  hours 

128 bits 2128 =  3.4 × 1038  2127 µs=  5.4 × 1024  years 5.4 × 1018  years 

168 bits 2168 =  3.7 × 1050  2167 µs=  5.9 × 1036  years 5.9 × 1030  years 

26 characters 

(permutation) 
26! =  4 × 1026  

2 × 1026µs=  6.4 × 1012   

years 
6.4 × 106 years 

 

In section 8.2.1 of this chapter, the length of the session key of the proposed model has been 

discussed and it has approximately 64𝑛 number of characters (any character with ASCII 

value from 0 to 255). Therefore number of alternate keys = 25664𝑛 . Since on an average half 

of all possible keys must be tried to achieve success, so total time required at 1 decryption/ 

µs=0.5 × 25664𝑛  µs =  0.5 × 28×64𝑛  µs =  0.5 × 2512𝑛  µs =  2(512𝑛−1) µs. Table 8.2 shows 

how much time is involved for exhaustive search of the session key 𝑆 for the proposed model 

with various 𝑛 values. Analyzing the data of this table it may be concluded that the proposed 

model is highly secured from Brute-force attack. 

Table 8.2 

Average time required for exhaustive key search 
n values Number of Alternate Keys Time required at 1 decryption/ µs Time required at  106 decryption/ µs 

1 25664×1 =  2512   2511 µs=  2.13 × 2140  years 2.13 × 2134  years 

2 25664×2 =  21024   21023 µs= 2.85 × 2294  years 2.85 × 2288  years 

3 25664×3 =  21536   21535 µs= 3.82 × 2448  years 3.82 × 2442  years 

4 25664×4 =  22048   22047 µs= 5.12 × 2602  years 5.12 × 2596  years 

5 25664×5 =  22560   22559 µs= 6.87 × 2756  years 6.87 × 2750  years 

6 25664×6 =  23072  23071 µs= 9.21 × 2910  years 9.21 × 2904  years 

7 25664×7 =  23584  23583 µs= 1.23 × 21065  years 1.23 × 21059  years 

8 25664×8 =  24096  24095 µs= 1.66 × 21219  years 1.66 × 21213
 years 
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Let 𝑇 be the average time in years required at 106 decryptions per µs for exhaustive search of 

the session key for the proposed model. If n, number of cascading stages, is plotted along X-

axis and 𝑙𝑜𝑔10𝑇 along Y-axis then the generated curve is a straight line which is shown in 

figure 7.3. Extending this straight line along positive X-axis, it may predict the required 

average time 𝑇 in years for any large value of n. Since the slope value of that straight line is 

very high and the value of 𝑇 is plotted as 𝑙𝑜𝑔10𝑇, so the value of 𝑇 is increased sharply with 

the increase of n. 

 

Figure.8.3: Graphical representation of average time T in years (T in logarithmic scale as 

log10T) against n, number of cascading stages 

An ideal encryption procedure should be sensitive with the secret key. It indicates that the 

change of a single bit in the secret key should produce a completely different cipher stream 

and the decryption with a slightly different key fails completely. It is observed that the 

proposed model generates an entirely different cipher stream with the change of a single bit 

randomly in the key 𝐾. It is also noticed that the model totally fails to decrypt the cipher 

stream into plaintext with a slightly different secret key. From this point of view, it may be 

concluded that the proposed model is highly key sensitive. 
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8.4 Conclusions 

The approach of cascaded implementation is very simple and logical. The analysis of results 

also indicates enhanced security of this approach. The strength of this proposed approach 

through cascaded implementation is not highlighted through the metrics for evaluation. No 

universal conclusion can be drawn from that above discussion regarding this approach. The 

real strength of the proposed approach lies in the possible formation of a large key space. The 

key space increases drastically with allowing the much more cascading stages. The proposed 

model is highly secured from Brute-force attack. Other strength of this proposed model is the 

adoption of complexity based on energy and resource available in the wireless 

communication, infrastructure for computing in a node or mesh in wireless communication. 

For a wireless network having low energy, the number of cascading stages be less. So, the 

model is very much suitable for the security of the system where energy and resource is one 

of the main constraints. One of the most important features of the proposed model is that the 

model is idle to trade-off between security and performance of light weight devices having 

very low processing capabilities or limited computing power. The proposed model is 

applicable to ensure very high security for file transmission in any form in any size. 

Some of the salient features of proposed technique can be summarized as follows:  

a) Session key generation and exchange – The session key can be formed in order of 4𝑛  

ways which is a vast one and the length of session key is approximately 64𝑛 number of 

characters where 𝑛 is the number of cascading stages. It indicates that the key space of 

the session key is very large. Again identical tuned session key can be generate after the 

tuning of network in both sender and receiver side using any of the proposed key 

generation techniques. This tuned session key can be used to encrypt session key 

generated by the proposed model for transmission to the other party which provides 

another level of security. Since the session key is used only once for each transmission, so 

there is a minimum time stamp which expires automatically at the end of each 

transmission of information.  

b) Degree of security – Proposed technique does not suffers from cipher text only Attack, 

known plaintext attack, chosen plaintext attack, Chosen cipher text only attack, brute 
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force attack. The number of alternate keys for the proposed model is approximately 

25664×𝑛 . So, model is highly secured from Brute-force attack. 

c) Variable block size – Encryption algorithm can work with any block length and thus not 

require padding, which result identical size of files both in original and encrypted file. 

So, proposed technique has no space overhead. 

d) Variable size key –variable size session key with high key space can be used in different 

session. Since the session key is used only once for each transmission, so there is a 

minimum time stamp which expires automatically at the end of each transmission of 

information. Thus the cryptanalyst will not be able guess the session key for that 

particular session. 

e) Complexity – Proposed technique has the flexibility to adopt the complexity based on 

infrastructure, resource and energy available for computing in a node or mesh through 

wireless communication. So, the proposed technique is very much suitable in wireless 

communication. 

f) Non-homogeneity – Measures of central tendency, dispersion and Chi-Square value have 

been performed between the source and corresponding cipher streams generated using 

proposed technique. All the measures indicate that the degree of non-homogeneity of the 

encrypted stream with respect to the source stream is good.  

g) Floating frequency – In this proposed technique it is observed that floating frequencies of 

encrypted characters are indicates the high degree of security of proposed technique.  

h) Entropy – In this proposed technique it is observed that entropy of encrypted characters 

is near to eight which indicate the high degree of security of proposed technique.  

i) Correlation between source and encrypted stream – The cipher stream generated 

through proposed technique is negligibly correlated with the source stream. Therefore 

the proposed technique may effectively resist data correlation statistical attack. 

j) Key sensitivity – Proposed method generates an entirely different cipher stream with a 

small change in the key and technique totally fails to decrypt the cipher stream with a 

slightly different secret session key. 
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k) Trade-off between security and performance – The proposed technique may be ideal for 

trade-off between security and performance of light weight devices having very low 

processing capabilities or limited computing power in wireless communication. 

8.5 Future Scope 

The work presented in this thesis leaves further investigations in some areas. Some of the 

apparent future investigations may be: 

a) Intermixing of other popular soft computing based approach  – Some well-known and 

popular soft computing based approaches like Artificial Immune System (AIS), 

Differential evolution, Support Vector Machine (SVM), Fuzzy Logic can be intermixed 

for generation of session key by tuning in wireless communication. 
b) Effectiveness- Comparisons of the proposed model with other well-known and popular 

cryptographic algorithms like Blowfish, RC2, RC5, TEA, XTEA, IDEA, Serpent etc. can 

be performed to ensure the effectiveness further of the proposed technique. 
c) Differential Analysis - It may be possible to find out a meaningful relationship between 

the source stream and encrypted stream making a slight change such as modifying a 

single bit of the encrypted stream. If one minor change in the source stream can cause a 

significant change in the encrypted stream then this differential attack would become 

very inefficient and practically useless, To resist the differential attack differential 

analysis on the encrypted stream is necessary. 
d) Encryption Quality – A measure of encryption quality of the proposed model may be 

expressed as the deviation between the source stream and the encrypted stream. The 

encryption quality is also a function of secret key length.   
Inspite of various limitations and scope of future upgradability, there are good potential in 

each of individual proposed soft computing based cryptographic techniques and also in the 

proposed model. Incorporation of tuning of networks over public channel for generation of 

session key introduced a novel idea out of which more security may be obtained. In the 

proposed model, a huge variability of key space has been introduced which is most sensitive 

to the cipher text with the minimal change. The proposed model is highly flexible to adopt 
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the complexity of any light weight computing system and idle to trade-off between security 

and performance of light weight device in wireless communication having limited resources. 

From the study, incorporation of proposed techniques the security of wireless communication 

may be enhanced. As a result, the proposal of the thesis may be useful for the researchers and 

stakeholders. 
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