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Abstract

It is widely recognized that data security is playing a crucial role in the design of
future IT systems. Cryptography is one of the methods to achieve this goal; basic
cryptography is implemented in most aspects of the computer world, from emails to personal
file. The outmost use of computer and communication systems by industry has increased the
risk of theft of proprietary information. Thus cryptography is not only important for person in
particular but it is also very much important for industry in general. Many of these IT
applications in today’s world are realized as embedded systems such as wireless phones,
mobile phones, direct to home (DTH) pay-television, mobile internet connectivity to PC and
Laptops, audio/video consumer products, digital cinemas, Automatic Teller Machines
(ATMs), information kiosk and so on. All modern security protocols use symmetric key as
well as public key cryptography algorithms. It is now established that symmetric key
cryptography is as important in providing security to these embedded systems than that of
public key cryptography. The symmetric key algorithms are very important in providing
security for a large quantity of data with faster processing time. In this thesis eight symmetric
key techniques have been proposed all are bit level implemented techniques. This thesis work
is mainly focused in developing symmetric key cryptography having high degree of
acceptance in terms of encryption and decryption time, degree of non-homogeneity, the
avalanche effect and frequency distribution.

Now the question is where to implement or what is/are the target devise. As the work
is for embedded systems, the implementation is targeted on two most widely used devises,
Microprocessor and Field Programmable Gate Array (FPGA). It is well known that till today
most of the embedded systems are realized through microprocessors and the FPGA is the
future of embedded systems. The implementation in hardware device is mainly focused on
high throughput, low power consumptions and low computational complexity.
Implementation of security protocols in FPGA leads to the achievement of high efficiency as
well as cost effectiveness.

Therefore to achieve the above goal, this thesis is mainly divided into two parts, the
first parts proposes two novel symmetric key techniques for microprocessor-based systems.
The second part of the thesis proposes another novel set of six symmetric key techniques for
FPGA-based systems. In this thesis new models are also being proposed.

The two microprocessor based techniques are Modified Recursive Modulo-2" and
Key Rotation Techniqgue (MRMKRT) and Recursive Transposition Technique (RTT). In



MRMKRT the plaintext is considered a block of bits then each block are modulo added
replacing the second block after that the whole plaintext block is left circularly rotated. In
RTT the whole plaintext is divided into blocks and matrix is formed for each block. Then bit
wise XOR operation is performed between two adjacent matrixes, the result replacing the
second matrix. After that these matrixes are transformed into blocks and combining all the
blocks the resultant ciphertext is formed.

The six FPGA-based techniques have also been proposed and these are Two Pass
Replacement Technique (TPRT), Triangular Modulo Arithmetic Technique (TMAT),
Recursively Oriented Block Addition and Substitution Technique (ROBAST), Shuffle
Rotational Arithmetic Technique (SRAT), Triple Sagacious Vanquish (TSV) and Modified
Forward Backward Overlapped Modulo Arithmetic Technique (MFBOMAT).

In TPRT n-bit plaintext is divided into k-number of blocks and each block consists of
n/k — bits. Each adjacent block are then XORED replacing the second block, and then again
two adjacent blocks are XORED and now replacing the first block. After that combining the
blocks n-bit ciphertext is generated. In TMAT n-bit plaintext is divided into blocks, the odd
numbers of blocks are encrypted with triangular encryption techniques and even numbers of
blocks are encrypted with modulo arithmetic technique. In second phase odd numbers of
blocks are encrypted with modulo arithmetic technique and even number of blocks are
encrypted with triangular encryption technique. Finally combining all the blocks the n-bit
ciphertext is generated. In ROBAST n-bit plaintext is divided into blocks, first block is
modulo added with second block, the result replacing the second block and so on. Finally
permutation of bits is performed for all the blocks, thus combining the blocks the n-bit
ciphertext is generated. In SRAT, during encryption, a butterfly shuffle is applied to the
whole source stream, then the source stream is broken down into blocks of fixed size, then
the consecutive blocks are modulo added, the result replaces the second block keeping the
first block intact, in the next phase the whole block is left circular rotated. Now the blocks are
concatenated and again another round of butterfly shuffle is applied. TSV consist of several
rounds, first inverse function is applied then 2-bit level, 4-bit level, 8-bit level, 16-bit level,
32-bit level, 64-bit level and 128-bit levels are applied on n-bit plaintext. Finally again
inverse function is applied. In MFBOMAT, The original message is considered as a stream of
bits, which is then divided into a number of blocks, each containing n bits, where n is any one
of 2, 4, 8, 16, 32, 64, 128, 256. The first and last blocks are then added where the modulus of
addition is 2". The result replaces the last block (say Nth block), first block remaining

unchanged (Forward mode). In the next attempt the second and the Nth block (the changed

xliv



block) are added and the result replaces the second block (Backward mode).Again the second
(the changed block) and the (N-1)th block are added and the result replaces the (N-1)th block
(Forward mode). Finally combining the blocks the n-bit ciphertext is generated.
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Chapter 1

Introduction






1.1 Introduction

In the age of global connectivity and the presence of hacker’s and electronic

eavesdropping [121, 122] grows the need of security [69, 121, 122, 130] and there is an

endless scope of research in this field. There are two main reasons for the essentiality of

security of digital systems.

First, explosive growth in the need of information through computers and

networks.

Second, the disciplines of cryptography [121, 122, 130] should be adaptive to
enforce network security [38, 121, 122, 130].

Cryptography involves the study of mathematical techniques that allow the

practitioner to achieve/provide the following objectives or services [121, 122]:

Confidentiality:

Data Integrity:

Authentication:

Service that keeps the data involved in an electronic
transaction private. Meaning that the transmitted information
is accessible only by authorized parties. This service includes
both protections of all user data transmitted between two
points over a period of time as well as protection of traffic
flow from analysis.

Service that requires that computer system assets and
transmitted information be capable of modification only by
authorized users. Modification includes writing, changing,
changing the status, deleting, creating, and the delaying or
replaying of transmitted messages. It is important to point
out that integrity relates to active attacks and therefore, it is
concerned with detection rather than prevention. Moreover,
integrity can be provided with or without recovery, the first
option being the more attractive alternative.

Service that is concerned with assuring that the origin of a
message is correctly identified. That s, information

delivered over a channel should be authenticated as to the



origin, date of origin, data content, time sent, etc. For these
reasons this service is subdivided into two major classes:
entity authentication and data origin authentication. Notice
that the second class of authentication implicitly provides
data integrity.

o Non-Repudiation: This simply tells that the actions performed by the service
user in an electronic transaction are non revocable so that
they are legally binding. Therefore, neither the sender nor the

receiver of a message should be able to deny the transaction.

There are two major classes of algorithms in cryptography: Private-key or Symmetric-
key algorithms [10, 13, 22, 32, 39, 41, 42, 117, 121, 122, 130] and Public-key or
Asymmetric-key algorithms [14, 60, 64, 67, 82, 121, 122, 130]. Symmetric-key cryptography
can be divided into block ciphers [16, 17, 24, 25, 44, 45, 47, 89, 94, 121, 122, 130] and
stream ciphers [7, 52, 54, 55, 56, 57, 58, 59, 121, 122, 130, 133, 134]. Figure 1.1 depicts the
taxonomy of cryptography.

( '_ Cryptography ?}

i B Y
Symmetric Cryptography Asymmetric Cryptography
""-\-\.._\_\_\_\--
/ ~
T
Block Ciphers Stream Ciphers

Figure 1.1: Taxonomy of cryptography

The current research work has been carried out using symmetric key cryptography
implemented in 8085 microprocessor [17, 95, 101, 102, 104, 109, 111, 112, 113, 123, 124,
130] and FPGA-based system [1, 18, 19, 21, 29, 30, 63, 76, 77, 78, 79, 80, 81, 85, 86, 87, 88,
106, 107, 108, 125, 126] and has been simulated in Xilinx [127, 128] software for making of
crypto-processor [1, 41, 61, 70, 96, 104] and or crypto-hardware [41, 88, 116, 117, 118].



Private-key or Symmetric-key algorithms are based on techniques where the
encryption and decryption key [15, 27, 33, 35, 37, 46, 55, 71, 75, 121, 122, 130] is the
identical, or the decryption key can easily be calculated from the encryption key and vice
versa. The main function of these algorithms, which are also called secret-key algorithms, is
encryption of data, often at high speeds. Private-key algorithms require the sender and the
receiver to agree on the key prior to the communication. The security of private-key
algorithms rests in the key; guessing the key means that anyone can perform encryption [8, 9,
15, 20, 27, 35, 36, 37, 62, 74, 77, 90, 121, 122, 130] and decryption [8, 9, 15, 20, 27, 35, 36,
37, 62, 74, 77, 90, 121, 122, 130] of messages [121, 122, 130]. Therefore, as long as the
communication needs to remain secret, the key must remain secret. There are two types of
symmetric-key algorithms, which are commonly distinguished: Block Ciphers and Stream
Ciphers. The advantage of symmetric-key cryptography is it can encrypt bulk data very
efficiently compared to asymmetric-key cryptography. Specialized algorithms for use in
contexts were usual algorithms do not provide adequate performance, especially low-power
embedded devices/systems [40, 63, 77, 119, 126] is another advantage of symmetric
algorithms/techniques. The terminology of symmetric cryptography algorithms mainly

includes the followings:

Plaintext: Plaintext [121, 122, 130] is the ordinary
information that the sender wishes to transmit to

the receiver(s) at destination.

o Cipher Text: The encrypted text is called Ciphertext [121, 122,
130].
o Encryption and Decryption: Encryption is the process of converting plain text

into cipher text. Decryption is the reverse
process, converting from cipher text back to the
original plain text.

o Cipher: A cipher is a pair of algorithms, which ensure the
encryption and the reversing decryption. The
detailed operation of a cipher is controlled both
by the algorithm and by a specific key.

o Key: The key is a secret parameter for encrypting or

decrypting a specific message-exchange context.
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Block Ciphers.

Rounds * heration

Stregm Crphey:

Keys arc important, s ciphers without keys are
trivially hreakable and theeofom less tian useful
for st purpones

The block cipher 15 3 1ype of symmetno-key
enceyplion algonthm (hat tansiorms & lixed-
length block of plain text data into & block of
ciphee text daiz of the same length This
transibrmution akes place sider the action of o«
user-provided  secrel  key  Deoryption s
performed by  applymng  the  reverse
rransformuuon 10 the caipher e block using the
game seceot key. The fixed length s cafled the
block stze amd. for many block ciphers. the block
saze is 64 bris Inthe coming years, the block size
will inirease 10 128 bis a6 processors hecome
more sophisticated. Since messages wre slmost
alwayy longer thim o sngle hlock. some meathod
of knattmg ogether sucessseve blocks is required
The different ways of knitting togerher blocks are
known 85 the modes of operation and must be
carefdly considered when using Wack ciphess
Rounds [131, 122 136] s the number of
iteranons m 3 cipher system According 1o the
crypto analysts. the tigeer the number of rounds,
e more secure 1he Blgosithms will be The
downside s that the cxeoution time of the
slgotithing increascs enotmously

A stremn capher Is 0 symmetricey apher where
plumext bits are combmed  with » pseudo-
random cipher bit-stream {key stream), sypically
by an exclusive-or (NOR/EXOR ) opetation [ 128
130] In a stream capher the plaintexs digis are
ancrypted one 2 2 time and the wansformation
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o of successive digits varies during the encryption.
Stream ciphers typically execute at a higher
speed than block ciphers and have lower
hardware complexity. Stream ciphers that only
encrypt and decrypt data one bit at a time are not
really suitable for software implementation. This
explains why stream ciphers can be better
implemented in hardware than block ciphers.

Figure 1.2 shows the block diagram of symmetric key cryptography.

Secure Distribution

Method

Shared Secret (Key) }| Shared Secret (Key)

Ingecure Communications plain

lain
P text

text [ Encrypt

b

Channel

i
|
— — — — — — — — — ]

Figure 1.2: Taxonomy of symmetric key cryptography

Asymmetric cryptography, also called public key cryptography, invented by Diffie
and Hellman [43, 121, 122] in 1976 .The essential difference to symmetric cryptography is
that this kind of algorithm uses two different keys for encryption and corresponding
decryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys--a
public and a private key--associated with an entity that needs to authenticate its identity
electronically or to sign or encrypt data. Each public key is published, and the corresponding

private key is kept secret.

e Private Key: This key must be known only by its owner.

e Public key: This key is known to everyone (it is public).
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¢ Relation berween both keys: What one key encryvpes. the other one decrypia.
and vice versa That means that if you encrypt
something with 1y publle key (which you
would know, becanse its pubbe -1, | wonld
need my private key o decrvpl the message

Each parficipant in & sécure communication owns the pait of kevs, pubhic key 'n” and.
woret kev 's" The kevs ‘p' and *s' are mathematicallv dependent from cach other, 8
sequrirement 1o the asymmettic algorithm being that, while 'p’ can be computed easily flam
‘s’ obiwimimg 4 Fom 'p ik computatiorally uareasible  his propeny ablows miking 'p
publicly known, whilc ‘s" must be kepr secret by its owne  This asymmerry of the keys
allows nove! and very mtereshing uses of crvptography

In a s2cure communiciation using public-koy crvptowraphy. the sender encrypts. the
messajge using the recesveds public key Remember that this key 18 known 16 evervons The
ancrypted mossage is ‘oot to the rescrving and. which will decrypt the message with his
private key Only the receiver can decrypt the message becainse o ane else has the private
key Also, notice how the encryption algarithm is the same af both ends Wit is encrypied
with ane kev 15 decrypred with the ather Key using rhe same algomhm

Public-key systems have @ Clewr advantage over symmetric algorithms: there is no
necd Lo agroe on & common key for boeh the sender amdd the receiver If sameone wants 10
receive an encrypted message, the sender only noeds 1o know the receiver's public key (which
the receiver will provade  publishing the pubdic key in no way compromises the secure
transmission) As long as the receiver keeps the private key secret. nn ome hat the receiver
will be able o decrypr the messages encrypeed with the correspooding pubilic key This is due
10 the fact that, ia public-kev systems. 1t 1s relatively easy to compute the public key from the
private kev. but very haed 10 compate the peivate key from fhe public key (which is the oae
svervone knowsh In fact some algodthms nged several months (and even vears) of constant
computaticn 1o obtain the private key fram the public key:
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Figure 1.3: Taxonomy of public key cryptography

The 8085 is a conventional von Neumann design based on the Intel 8080. Unlike the
8080 it does not multiplex state signals onto the data bus, but the 8-bitdata bus was instead
multiplexed with the lower part of the 16-bit address bus to limit the number of pins to 40.
Pin No. 40 is used for the power supply (+5v) and pin No. 20 for ground. Pin No. 39 is used
as the hold pin. Pins No. 15 to No. 8 are generally used for address buses. The processor was
designed using n MOS circuitry and the later "H" versions were implemented in Intel's
enhanced nMOS process called HMOS, originally developed for fast static RAM products.
Only a 5 Volt supply is needed, like competing processors and unlike the 8080. The 8085
uses approximately 6,500 transistors. The 8085 has extensions to support new interrupts, with
three mask able interrupts (RST 7.5, RST 6.5 and RST 5.5), one non-mask able
interrupt (TRAP), and one externally serviced interrupt (INTR). The RST n.5 interrupts refer
to actual pins on the processor, a feature which permitted simple systems to avoid the cost of
a separate interrupt controller.

Like 8080, the 8085 can accommodate slower memories through externally
generated wait states (pin 35, READY), and has provisions for Direct Memory
Access (DMA) using HOLD and HLDA signals (pins 39 and 38). An improvement over the
8080 was that the 8085 can itself drive a piezoelectric crystal directly connected to it, and a
built in clock generator generates the internal high amplitude two-phase clock signals at half
the crystal frequency (a 6.14 MHz crystal would yield a 3.07 MHz clock, for instance).

The processor has seven 8-bit registers named A, B, C, D, E, H, and L, where A is the

8-bit accumulator and the other six can be used as independent byte-registers or as three 16-

-9-


http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/Address_bus
http://en.wikipedia.org/wiki/NMOS_logic
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/Wait_state
http://en.wikipedia.org/wiki/Direct_Memory_Access
http://en.wikipedia.org/wiki/Direct_Memory_Access
http://en.wikipedia.org/wiki/Piezoelectric_crystal
http://en.wikipedia.org/wiki/Two-phase_clock
http://en.wikipedia.org/wiki/Processor_register

bit regster paars, BC, DE, and FIL. depending on the particular mstruction Sonie instructions
use HI 25 a (lanned) 16-but sccummlator As i the 8030, 1he contents of the memory oddiess
pointed to by HE could be accetsed as prewdo register M. It aleo has & 16-bit stack paiatet 10
memory (ceplacing the ROO8’s bnternal stack), and a 16-bit program counter. HL par s called
the primary data poiness

As fn many other §:bit processors. ol inktuctiony are encoded 10 & magle byte
tinchuding register-numbers. bust excluding nmmedime datn), for smplicity. Some of them are
foflovend by ame or two bytes of data, which could be an immediate operand, 4 memory
address. or 2 pont number, Like larger processors, it has CALL and RET instructions for
muhi-level proceduse anlls and returns (whieh can he conditionnlly executed. ke jumps) and
instructions Lo save #nd restore wny L16-bit register-piir on the mmchine stack  There wre also
el onesbyte call Instroctions (RST) for subrostines focated ot the fixed addresses (00 GRE,
10, 38h These were intended 10 be supplied by external hardwase o order to invoke 2
coreesponding intesTupt-service routine. b are also olien employed as fast system calls. The
most sophusticated commrznd wis XTHL, which 15 used for exchanging the regaster pasr HL
with the value stored at the address indicated by the stack pointer.

Mast B-bit operatians work an the 8-fit accumulator (the A register) For two opesand
S-hil opermtions, the other operand can be an immodiate value anather 3-bif register. of 4
meminy cell addressed Iy the 16.hu regiater pair HL Diec! copymng 1 supported between
any fwo $-bi regasters and between any 8-bit register and 0 HL-addressed memory cell e
10 the regar encoding of the MOV nstruction (using & quater of svailadle op-code space)
there are redundant codes to copy & register into itsel (MOV B.B, for instance). which are of
Iittle use: except for delays. However. what would have been i copy frony the HL-addressed
cellinte sself (e, MOV MM} instead encodes the HLT instruction, halting excoution wmil
an estermi) reset or ivermupt occtsred

Althaugh the $083 |5 an 8:bit processor, i alsa has some 16-hit operations. Any of the
three |6-bit register pans (BC, DE L) or SP could be loaded wil an nnmediate 16-bi
value (using LXT), incremented o decremented (using INX aud DCX), or edded 1o HL (using
DAD) LHED logded ML fram directly-addressed memory and SHLD steeed HL likewise.
Fhe XCHG aperanan exchanges the valees of HL and DE  Adding HL 1o lsedl pesforns o
16-noit arithmetical left shift with ooe tnstrmetion. The only 16 bit (esenstion: thar affects any
Mo wiss DALY (acdeing HL 10 BC.DE, HL or SP), which upiates fhe carry flag 10 fasiliae
24-bit or larger additions und Iefy shifts (for a foarmg porm mantissa for mstance) Adding
e suck poracer 10 HIL s usetful for mdexing vanables an (recursive) stack frames. A stack
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frame can be allocated using DAD SP and SPHL, and a branch to a computed pointer can be
done with PCHL. These abilities make it feasible to compile languages such as PL/M, Pascal,
or C with 16-bit variables and produce 8085 machine code. Subtraction and bitwise logical
operations on 16 bits is done in 8-bit steps. Operations that have to be implemented by
program code (subroutine libraries) included comparisons of signed integers as well as
multiply and divide.

The 8085 supported up to 256 input/output (1/0O) ports, accessed via dedicated Input /
Output instructions—taking port addresses as operands. This Input / Output mapping scheme
was regarded as an advantage, as it freed up the processor's limited address space.

For the extensive use of 8085 in various applications, the microprocessor is provided
with an instruction set which consists of various instructions such as MOV, ADD, SUB, JMP
etc. These instructions are written in the form of a program which is used to perform various
operations such as branching, addition, subtraction, bitwise logical and bit shift operations.
More complex operations and other arithmetic operations must be implemented in software.
For example, multiplication is implemented using a multiplication algorithm.

The 8085 processor was used in a few early personal computers, for example,
the TRS-80 Model 100 lineused a OKI manufactured 80C85 (MSMB80C85ARS).
The CMOS version 80C85 of the NMOS/HMOS 8085 processor has several manufacturers.
Some manufacturers provide variants with additional functions such as additional
instructions. The red-hard version of the 8085 has been in on-board instrument data
processors for several NASA and ESA space physics missions in the 1990s and early 2000s,
including CRRES, Polar, FAST, Cluster, HESSI, the Sojourner Mars Rover, and THEMIS.
The Swiss company SAIA used the 8085 and the 8085-2 as the CPUs of their PCAL line
of programmable logic controllers during the 1980s.

In many engineering schoolsthe 8085 processor is used in introductory
microprocessor courses. Trainer Kits composed of a printed circuit board, 8085, and
supporting hardware are offered by various companies. These Kits usually include complete
documentation allowing a student to go from solder to assembly language programming in a
single course.

Figure 1.4: Intel 8085 microprocessor (courtesy Intel)
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Figure 1.5: Intel 8085 microprocessor architecture (courtesy Intel)

Digital electronics is concerned with circuits which represent information using a
finite set of output states. Most of the applications use in fact just two states, which are often
labelled ‘0’ and ‘1°. Behind this choice is the fact that the whole Boolean formalism then
becomes available for the solution of logic problems, and also that arithmetic using binary
representations of numbers is a very mature field.

A field-programmable gate array (FPGA) is an integrated circuit designed to be
configured by the customer or designer after manufacturing—hence "field-programmable”.
The FPGA configuration is generally specified using a hardware description language (HDL)
[127, 128, 130], similar to that used for an application-specific integrated circuit (ASIC) [63,
127, 128, 130] (circuit diagrams were previously used to specify the configuration, as they
were for ASICs, but this is increasingly rare). FPGAs can be used to implement any logical
function that an ASIC could perform. The ability to update the functionality after
shipping, partial re-configuration of the portion of the design and the low non-recurring
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enuineering costs relative 1o an ASIC dessgn (notwihsianding the generally higher unit cost),
offer advaniages for many applications

FPGAS contuin progeammable logic components called “logic blocks”, [125. 126) and
% higrurehy of veconfigurable interconnects thar allow the blocks to be "wired togethes"—
somewhat like many (changesble) Joge gates that cum be Iversvired Iy (many) different
configurations Lome blocks can he configured 1o perform complex combimunonal lunciions.
o merely simpie logic wates fike AND [123 124, 128, 130) and XOK. In most FPGAs 1the.
logic blocks sise include memory elements, which mav be simple fip-flops or more complete.
ock s of memory.

Iy adiligion 1o Wigital functinng, some FPGAS have analoy features. The most commt
aunlog festure iy programmmable stew ride il drive stesmaih on sech oot pin, Alliwany the
engincer to set slow rates on hahdly kaded pas that would otherwise ring unecceptably, amid
10 set Stronger, faster rates on heavily loaded pins on high-speed channels thar would
otherwise ton teo slaw  Anothes refatively comman anulog feame 18 dillérentiol compurators
an input pins designed (o bo commected to differemial signaling channels A few “mixed
signal FPGAs® have Integiated peripheral Andlog-to-Digital Canverters (ADCs) {123, 124,
130] wnd Digital-to-Aoslog  Converters (DACH) [123. 124, 130) with analoyg  signal
conditioning blocks allowimg them to operate a5 @ system-on-a-chip Such devices blur the
hing between an FPGA, which carnies digual ones and zeros on ws merma! progrmnmahle
fmetconnect fabree, and fleld-peogmmmoble kmmtog arrsy (FPAA) [125 126] which carres
analog vilues on its inmternal programmable interconnect fabric

Applicatidas  of  FPGAs  include digital  sigral  processing. soRware-defined
rucdion, nerospace und deforse systems. ASIC prototyping. inedical Hnaging. conmputes
vigon, speech  recognition  cryptography. boinformaties  computer  hasdware
smutation, radio aswonomy, metal detecton and 8 wrowing range of other aress.

FPGAs anginally began as compettors to CPLDS [123 124, 125 126, 130] and
compered in x similar space, that of glue Jogee tor PCBs {123 124, 125126, 130} Ax then
size, capabilities, and speed incréased, thev began 1o take over larger and larger funciions 1o
the state where some are now marketed as filll systems o chips (SoC) 123, 124, 125 126,
130 Parsteularty with the introdestion: of dedicated aviltipliors ino FPGA architeciures in
the late |990s, spplications which had trditonally been the soke reserve of DSPs [123, 124,
130} began 10 incorporate FPGAS instead.

Tradtionally, FPGAs have boen icserved for specific vertcal spphcations where the
wlume of production is small For these low-volume applications: the peemium that
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comparmics pay in hardware cosss per unit for & programmuble chip is mare atfordable than
the develogment resources sperd hn ereating an ASIC for a low-volume application. Today.
oew cost and performiece dynamics have braadened (he range of viahle applications

A typical modern FPGA provides the desiner with programmable logie hlochs thin
coman the pool of combinatonai blocks and flip-flops 10 he used in the dmgn In ucldition,
vendors scknowledge the fact thar logee 15 often used m comuncaon with memary, and
typically include variubie amounts of siane Random Access Memory (RAM) |123, 124, 130)
Inside their chips Clock conditioning has dlso become commonplace, and suppont in the Torm
of Delay Locked Loops (DLL3) [123. 124, 130] and Phise Locked Loops (PLLS) [ 123 124.
130] s alser provided inside the same sificon chip, Finally, an FPGA chip does not lead o
wolitary hfe ssolated from the rest of the world, leneeds to be essily imerfaced 10 othes chips
or external signals Tn order 10 make this imterfacmy eavier, FPGA vendors have mvesied »
aréat deal of effort m entancmg the Mexiitiny of the impurroupm blocks behind the chip
pads. Each pad can serve 35 an inpul, @0 outpul, o hoth The list of electneal standards
supported is extonsive, and novel techniques for maximizing bandwidih, such 22 clocking
Aata W using both edges of the clock, are widely supported  The designer facing o design
problem nuse go,tlimugh & series Of stgps Letween initial ideas and final hwrdware This
series of stops 1s commanly seferred to as the ‘desim flow' 1123 126, 127, 128, 130| First,
all 1he rexquiremients love been spelied ow & proper digimal design phase mst be Crrred our
It should be stressed (hat the 10085 sppleed by the diffecer FPGA vendors 1o target therr
chips do not help the designer in thiv phase They only enter the sceae unce the desigoes s
uudyunnmducauhcndnmynmnubdmmhmMumm

The minst commen Row sowadays used 0 the design of FPGAs fiwolves. the
followimg subsequent phases [ 125, 126, 127 325 130])

»  Design entry This step consists in wansformung the design ideas mio
some form of computenzed represemation This 13
mast  commonly  eccomplished  using  Hardware
Deseriphion Lasguages (HDLs) The rwo wose popular
HODLs are Veritog {125, 126, 127, 128, 130) and the
Very High Speed Integrted Crrcr HDL (VHDL)
1125, 126, 127, 125, 130) Ty should be noted thar an
HDL, a5 its name unphes 15 only & 1ool 10 deseabe o
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o Symhess

o Plice nod route

design (hat pre-exisied 10 the mind, notes, and skelches
of & designer. It is mot & tool 10 design elearonic
circuits. Another paine to note is that HOLs differ from
canventiona! sefiware programming languages in (he
sense thut they don's suppoet the cancept of sequential
exccution of statements m the code Ths 1s casy w0
wisterstand 1f one considers the aiternative schematic
represemanion of an HDL file whst one sees in Ihe
upper part of the schemalie cannol be said 1o lappen
befre or after what one sees 1n the lpwer part

The synthiesis tool recetves HDL and & chonee of FPGA

vendoc and model From these wwo peces of
mioremnon, 1 generates o dellist which pses the
primitives proposed by the vendor in order o saisfy
the lowic hehaviiut apecified in the HDL files: Mow
synthesia taols go through additional sepe such as
st optimization: register load thcing et ot b
fechmyues 0 edhance fimmg  performance. s the
resultmg nethy can be regarded as 4 very efficien

Amplementation of the HDL desiun,
The plicer takes the synthesized netlist el chooses

place for each of the primitives intde the ehip The
e 4 Lask (s then to interconnect all these primitives
mgether sattymg the timing condrmmgs The
obvious constramt for a design 15 the frequency. of the
syStein clock, but (hete are mare invoived canstrmis
one can Impose on = design using the sofiware
prekages spponted by the vemndors

o Bir strewm generation. FPGAS ure sypieally configured at power-up time from

some wont of exiernal  permwnemt swrage  device,
typically & Mash memory. Once the place and rowe
process is finished, the resulting: choices for (he
comfiguration of esch programmable tlement in the
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FPGA chip, be it logic or interconnect, must be stored
in a file to program the flash.

Of these four phases, only the first one is human-labour intensive. Somebody has to
type in the HDL code, which can be tedious and error-prone for complicated designs
involving, for example, lots of digital signal processing. This is the reason for the appearance,
in recent years, of alternative flows which include a preliminary phase in which the user can
draw blocks at a higher level of abstraction and rely on the software tool for the generation of
the HDL. Some of these tools also include the capability of simulating blocks which will
become HDLs with other blocks which provide stimuli and processing to make the
simulation output easier to interpret. The concept of hardware co-simulation is also becoming
widely used. In co-simulation, stimuli are sent to a running FPGA hosting the design to be
tested and the outputs of the design are sent back to a computer for display (typically through
a Joint Test Action Group (JTAG), or Ethernet connection). The advantage of co-simulation
is that one is testing the real system, therefore suppressing all possible misinterpretations
present in a pure simulator. In other cases, co-simulation may be the only way to simulate a

complex design in a reasonable amount of time.

Clocking Logic
: y 3 —
K 13 94
L o [ | ,'*—ﬁan-“
A e | I ~,7,._—:E,§ fi
LN 1
_ =42 o} _I<E
:oo:ﬂonu@oo; ao-acnno: : ;.]l e :— RE [ o
(1 - -:n AL - <
— —
IO Blocks
rl- e -l ' -
'Rog Rm lnpul

Figure 1.6: Internal structure of a generic FPGA (courtesy Xilinx)
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carry in clk

4
carry out clk

Figure 1.7: Simplified illustration of a logic cell (courtesy Xilinx)

VHDL stands for very high-speed integrated circuit hardware description language.
This is one of the programming languages used to model a digital system by dataflow,
behavioral and structural style of modeling. This language was first introduced in 1981 for
the department of Defense (DoD) under the VHSIC [125, 126, 127, 128, 130] program. In
1983 IBM, Texas instruments and Intermetrics started to develop this language. In 1985
VHDL 7.2 version was released. In 1987 IEEE standardized the language. VHDL is
commonly used to write text models that describe a logic circuit. Such a model is processed
by a synthesis program, only if it is part of the logic design. A simulation program is used to
test the logic design using simulation models to represent the logic circuits that interface to
the design. This collection of simulation models is commonly called a test bench. VHDL has
constructs to handle the parallelism inherent in hardware designs, but these constructs
(processes) differ in syntax from the parallel constructs in Ada (tasks). Like Ada, VHDL
is strongly typed and is not case sensitive. In order to directly represent operations which are
common in hardware, there are many features of VHDL which are not found in Ada, such as
an extended set of Boolean operators including nand and nor. VHDL also allows arrays to be
indexed in either ascending or descending direction; both conventions are used in hardware,
whereas in Ada and most programming languages only ascending indexing is available.
VHDL has file input and output capabilities, and can be used as a general-purpose language
for text processing, but files are more commonly used by a simulation test bench for stimulus
or verification data. There are some VHDL compilers which build executable binaries. In this
case, it might be possible to use VHDL to write a test bench to verify the functionality of the
design using files on the host computer to define stimuli, to interact with the user, and to
compare results with those expected. However, most designers leave this job to the simulator.
It is relatively easy for an inexperienced developer to produce code that simulates

successfully but that cannot be synthesized into a real device, or is too large to be practical.
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One particubsr pinfatl is the uceidental production of transparent larches rather than D-type
Mip-flops a8 storage elamens

One: can design hardware i & VDL IDE (125 126, 127, 128, 130) (for FPGA
implememanon such as Xiliox 185 Alters Quurmus. Synopsys Synplify or Mentor Graphics
DL Designer) 1o produce the RT1. schemanie of te deswed corcun. After that, the generated
schematic can be verified using ssmulation software which shows the wavelorms of inputs
and cutpurs of the cirouit aficr generating the appropsiate test-bench [125. 126, 127, 128
130 To genurate mn appropeite test-beneh for & pasticular circoit or VHDL eade, the ingurs
have 10 be defined correctly. For example, for dock inpul, & lpop process or an ierative
suntement bs required A final point 4 thie whes a VHDL moded i tansdsted [nto the *gates
and wires” that are mapped onto & programmable lowe device sich as a CPLD or FPGA, thea
i1 k8 the dctual nardware demng configured, rather than the VDL code being “executed” a5 if
o some foem of 3 processor chip

The key wdvantage of VHDL when used for systems design is that o allows the
belaviae of the requited system to be desiribed (modeled) uod verified (snmlated) betore
syitlsesia toods dramstate the desian into reat hadware (gates and wites) Aaother henefil 14
fthiat VHDL alitwws the desonprion of a conourment. system VHDL 5 & dataflo langisage.
unlike procedural computing tangnages such as BASIC, € and assembly code. which sll run
sequentially, oue mstrucnion &t o ume: VHDL project 3 multipurpose Bomg created onee,
caleulation block can be used in muny other peojects However. many fovmarional and
functional hlock parameters can be wned (capacity parameters, momory wize gloment hise
biock composition and inteeconnection struetine) VIDL, et s portable Belng wreated
for one ¢loment hise. & computing device peoject can de ported on mather elemem base, for
example VLS| wiuh vanous technologies In VHIL » design consists v o mimimm of
pientity which  geseribes Ihe omerface and  an archiecture which comains 1he actual
impleatentation, In zddition. most desiyns impon by modules Some designs also comtam
mmltigle schitectures and conligurations

A somple AND gare 1 VIIDL would loak omething ke this
~ {this |s 3 VHDL sommen).

~ import std logsc from the TEET library
Jibeary TEEE,
use [EEE std logic 1 164.all
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= ihis i% the entity
entity ANDGATT is

port |

11 insd o,

12 nad logx,

0 outstd logi),
end entity ANDGATE;
wrchiregture RTL of ANDGATE is
hegin

O« 11 wned 12,
end rrchiecasre RYL;

While the example above may seem very verbose to HDL bewinners, many paris ane
either oprional or need 16 be written only once Generally simple functions like this are pan
of o larger betawionral module. instsad of having 2 separate module for something so simple
In addinsan, use of elements such as the std lowc type mught 4t first seem to be overkill One
could casily use the bullt-m bit type and wvord the library inpor in the beginning: However,
wsing this Y-valied togre (U X0 LZW HLL-) instead of simple s (0.1) offers a: very
powerfyl simulation and debugging tool to the designer which currently does not exsst 1o any
ather HDL.

In the examples tha (ollow, 1 55 seen i VHI, code can be wruten n 8 very
comipact Rorm. However, the expenenced designers nsoaily avord these compact formm and
use a4 maore werbose coding style for the sake of readabaiity and marstainability  Anotdies
sdvantige o the verbose coding siyle i the smaller amoum Of resowrces used when
programming 10 4 Progammable Logle Device such ay a CPLD Synthesizable constnicts
and VHDL templutes

VHDL is froquently used for two different yoals. simulntion of electrosiic designs and
synthesss of suich desigan Symhests i o process where o YIIDL i complled and mapperd Into
wn smplementation teehnology such &5 un FPGA or an ASIC Many FPGA veadars have free
(or mexpensive) 10ols 10 sythesize VIIDL fov use with thewr cinps, where ASIC ool are
often very expensive Not all construcss in VHDL are suitable for synthesis For example,
okt constucts thar explicitly deal with 1iming such 88 wail foc 10 ns are nol svnthesizable
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despite being valid for simulation. While different synthesis tools have different capabilities,
there exists a common synthesizable subset of VHDL that defines what language constructs
and idioms map into common hardware for many synthesis tools. IEEE 1076.6 defines a
subset of the language that is considered the official synthesis subset. It is generally
considered a "best practice” to write very idiomatic code for synthesis as results can be

incorrect or suboptimal for non-standard constructs.
In VHDL an entity is used to describe a hardware module.
An entity can be described using,

1. Entity declaration.
2. Architecture.

3. Configuration

4. Package declaration.
5. Package body.

Let’s see what are these?
Entity declaration:
It defines the names, input output signals and modes of a hardware module.

Syntax:
entity entity_name is
Port declaration;

end entity_name;
An entity declaration should starts with ‘entity’ and ends with ‘end’ keywords.

Ports are interfaces through which an entity can communicate with its environment.
Each port must have a name, direction and a type. An entity may have no port declaration

also. The direction will be input, output or inout.
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In Port can be read

Om I"oet can be written

I Poet can be read and written

Buffer Pewt can be vead and wristen i
<nn have only nee source

Architedinee

It deccrilies the intermal dbesorption of design or it tedls what is there mside design
Fach ¢y has & deast one archnecure and an entuy can heve many architecturs
Architecture can be described umng structural, dotn NNow. behavioral or mixed style
Architecture can be used 1o describe # desiygn at different levels of sbaraction Hike gate level,
register transfer fovel (RTL) or behavior level

Syntax;
architecture arcluleciare vame of entity. name
arcliitecture declarative pan
hegin
Stuttements,
endd ctitectare nvme
Here i should specify the entny name for which wrinng the archisectire body was
done The wrchilectime statements should be inside 1he begim wikl end keyword  Architecture
declarative part may contain variables. constants. or component declaration

Configuration

I ensity comtaing muny architectures el way one of the possible archnecturs
hindmg wirth s entity s done uving coafiguranon. 1 15 used to bind 1he archueeture body 1o
iis entiey: and o component with an entity

Syntix
configiation configuration name of entity_name &
Mock configueation,
end configueation name
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Block_configuration defines the binding of components in a block. This can be

written as

for block_name
component_binding;
end for;

block_name is the name of the architecture body. Component binding binds the
components of the block to entities. This can be written as,

for component_labels:component_name
block_configuration;
end for;

Package declaration:
Package declaration is used to declare components, types, constants, functions and so
on.
Syntax:
package package _name is
Declarations;

end package_name;

Package body:

A package body is used to declare the definitions and procedures that are declared in
corresponding package. Values can be assigned to constants declared in package in package

body.

Syntax:
package body package name is
Function_procedure
definitions;

end package name;
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The internal working of an entity can be defined using different modeling styles
inside architecture body. They are
1.  Dataflow modeling.
2. Behavioral modeling.
3. Structural modeling.

Structure of an entity:
Let’s try to understand with the help of one example.
Data flow modeling:

In this style of modeling, the internal working of an entity can be implemented using

concurrent signal assignment.

Let’s take half adder example which is having one XOR gate and a AND gate.

Library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity ha_en is
port (A,B:in bit;S,C:out bit);

end ha_en;

architecture ha_ar of ha_en is
begin
S<=A xor B;
C<=Aand B;

end ha_ar;

Here STD_LOGIC_1164 is an IEEE standard which defines a nine-value logic type,
called STD_ULOGIC. use is a keyword, which imports all the declarations from this

package. The architecture body consists of concurrent signal assignments, which describes
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the functionality of the design. Whenever there is a change in RHS, the expression is

evaluated and the value is assigned to LHS.
Behavioral modeling:

In this style of modeling, the internal working of an entity can be implemented using

set of statements.
It contains:

. Process statements
. Sequential statements
. Signal assignment statements

o Wait statements

Process statement is the primary mechanism used to model the behavior of an entity.
It contains sequential statements, variable assignment (:=) statements or signal assignment
(<=) statements etc. It may or may not contain sensitivity list. If there is an event occurs on
any of the signals in the sensitivity list, the statements within the process are executed. Inside
the process the execution of statements will be sequential and if one entity is having two
processes the execution of these processes will be concurrent. At the end it waits for another

event to occur.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity ha_beha_en is
port(
A :inBIT;
B :inBIT;
S:out BIT;
C:out BIT
)i

end ha_beha_en;

architecture ha_beha_ar of ha_beha_en is
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begin
process_beh:process(A,B)
begin
S<= A xor B;
C<=Aand B;
end process process_beh;
end ha_beha_ar;

Here whenever there is a change in the value of a or b the process statements are
executed.

Structural modeling:

The implementation of an entity is done through set of interconnected components.

It contains:
o Signal declaration.
o Component instances
o Port maps.
o Wait statements.
o Component declaration:
Syntax:

component component_name [is]
List_of interface ports;

end component component_name;

Declaration is done before instantiation of the component. Component declaration
declares the name of the entity and interface of a component. Let’s try to understand this by

taking the example of full adder using two half adder and one OR gate.
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library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity fa_en is
port(A,B,Cin:in bit; SUM, CARRY::out bit);

end fa_en;

architecture fa_ar of fa_en is
component ha_en
port(A,B:in bit;S,C:out bit);
end component;
signal C1,C2,S1:bit;
begin

HA1:ha_en port map(A,B,S1,C1);
HA2:ha_en port map(S1,Cin,SUM,C2);
CARRY <=Clor C2;

end fa_ar;

The program that have written for half adder in dataflow modeling is instantiated as
shown above. ha_en is the name of the entity in dataflow modeling. C1, C2, S1 are the
signals used for internal connections of the component which are declared using the keyword
signal. Port map is used to connect different components as well as connect components to

ports of the entity.

Component instantiation is done as follows.

Component_label: component_name port map (signal_list);

Signal_list is the architecture signals which are connecting to component ports. This
can be done in different ways. What is declared here is positional binding. There is another
type of binding termed as ‘named’ binding. The situation described can be written in terms of
named binding as,

HAZ1:ha_en port map(A=>AB=>B,5S=>S1,C=>C1);

HAZ2:ha_en port map(A => S1,B => Cin, S=> SUM, C => C2);
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Test bench:
The correctness of the above program can be checked by writing the test bench.

The test bench is used for generating stimulus for the entity under test. Let’s write a

simple test bench for full adder.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity tb_en is

end th_en;

architecture tb_ar of tb_en is
signal a_i,b_i,c_i,sum_i,carry_i:bit;

begin

eut: entity work.fa_en(fa_ar)
port map(A=>a_i,B=>b_i,Cin=>c_i,SUM=>sum_i,CARRY=>carry i);

stimulus: process
begin
a_i<="1b_i<="1"c_i<="1";
wait for 10ns;
a_i<='0"b_i<="1"c_i<="1";
wait for 10ns;
a_i<="1"b_i<='0";c_i<='0";
wait for 10ns;
if now=30ns then

wait;
end if;
end process stimulus;

end th_ar;
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In the sbove example ‘now’ 13 a predefined function that retums the curren
simulisthon. Ume what it is'to saw up to this is component muantistion by positional and by
mame I this ted bench example the entity e dircctly instantimed The direct emtity
Instantintion syntax bs.

Componem_label. entity entity name
(mchiteciure_name)

pot mapdsignal_Lia,

To cvalusic the techmques’schemes some statistical test ure performed such as Clu--
Squase tesi

A ChisSquare fes [12 15172327, 3334, 35 36 37, 39, 9390 121122 129
(30, 182), alses retereed 10 as 7 dest, s any statistical hypothcsis test in which the sampling
digrnibution of the test sturste is a Chi-Square distritiution when the sult hypothests i true
or any m which this s asymprocally truc, meanmg that 1he ssmpling distribuaton (f the |
hypothesss 15 true) can be made to approximate 2 Chi-Square distnbution as closeiv as desired
by making the sample size large enough

Somg examples of Chi-Squure tess where the Clil-Square  fstnbalion 13 only
approxrtely vabid we

o Pegrant's Chu-Square test, wlso koown as the Chi-Square goodness-of-fit 1es1 or
Chi-Square tes for isdependence When mennoned: without any modifiers or
without ofher precisding conrext. this test is usually understood (For s exagl test
used in phace of y'. see Fisher's exact tes)

o Yitess conrection for cominulty, alse known as Yates C-Sguare test

o Cochran: Manted-Haeoszel Chi-Square 1ot

o Liearby-linear association Cli-Squace test,

e The ponmancan et m umesencs amalysis. aesung for the proseoce uf
mtocoreelation

o Likelthood-ratio teses in general stansticel modeling. for 1eating whether there s
evidence of the need to-move Nom & simple madel (o 1 more complicated one
fwhero the slimple model is sested within the complicated one)
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One case where the distribation of the test statistic 1 an exact Chi-Souare distribution
is the wst that the variance of a normally-disseibuied poputation has & given valie bused on &
sample vartance Such 4 1ot & uncommion in prectice becausy values of varmnces Lo test
agidinal dre seldom hoown exactly.

1f 2 sumple of sire 1 by taken from s popubation having s narow| disssibution, then
there 1 a well-known esull (see distotution of the sample vanance) which allows x rest w be
made of whethier the vanance of the populstion has a pre-determmed volue For example, »
manufacturing peocess might have beed in siable condition for & long pedod. sllowing &
value for the veriance to be determined essemally without error: Suppose that & variant of the:
process i heing tessed Biving 1ise 109 sl sample of produet items whose variation is 16 be
tested, The test satistic T in this Instance could be 52t 1o be the sum of squaces about the
sample menn, divided by the nomimad velue for the variance e the value 1o be tested o
holdmg! Then T has a Ch-Square distnibunion with n -~ | degrees of freedom For example If
the sample size 5 21, ihe aceeptance rogion for T for s sgmficance level of 5% is the merval
S0 w37

The Chi-Sguare (1) 1est is used to determine whether there is 4 significamt dilferonce
between the expested frequencies and the ohserved frequencies i ene or Mot salegorics

The (blbowings are the regairements of Chi—Suntc test

o Ouantnative dita.

*  One or Moie Categones

o Independent ohservatiom

*  Adeqate smple size (o feast 10)
* Random sample

o Dam in fréeguency form

o Al observations must be used

To find the vatue for Chi-Square, 1t 5 determmed whetber the observed froguencies

differ sigmificanly fram the expected froquencics:
The tormula of Chu-Squure value s

g =0 EF
Whete O is the Ohserved Froyoency in each categon
£ s the Fxpected Fregueny in the correspanding category
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df is the *degree of freedom™ (n+1)
¢! s Chi-Square

The steps 10 g the Che-Square 1est may be summanzed as follows

. Write the ohserved frequencies in column ()

. Figure the expected freyuencies amil wiite them i colump £,

. Lise the formula 10 find the Chi-Square value:

. Find the df (N-1)

. Find the table value (consult the Chi-Syare Tuble |

. IF the Cli-Square vilue ts equinl (0 of grester than the table valoe, reject
the aull hypothess. differonced i sonr ding are not due to dhanee alone

Tn Statisticy, the nomber of degrees of freedom |12 15, 17,23, 27,33, 33,38, 30, 37,
3963 93, 120 1220 129 130, 142) is the mumbér of values in the final calcutation of 3
stitistic thit aie free to vary. Estimates of statistical parmmieters can be-based upon different
ameants of information oo data The munbsee of indapoudeit pisces of information that 2o
o the estimmate of o parameter i salled 1ke deurees of freedom (df) In gereral, the degroes
of freedom of an essimate of & parameter 1s equal 10 the nrumber of dependent scores thit go
into the ¢stimmte mrmus e number of parsmeters used &s stermediate steps i the estrmaton
of the parameter itsell (which, in sample vanance. s one, since the sample niean is tise only
intermediate wep)

Mathematically, dogroe of freedom is (he dimensing of the dorsio of & cndom
yector, of essentinlly the mumbes of ‘free’ componeats: aw many companents need (o be
kaawn before the vector s flly doermined  The term 38 nmst oflen asisl 10 the contest
of linear models (hnear regression, analysss of verance), where certam random vectors are
constiamed 10 e 11 himear subspaces, and the mamber of degrees of freedom s the dinsensson
af the subspiaoe The degrees-of-fieedom are also commonly assockited with the squared
lengihs (or *Su of Syuares ™) of such véctors und the paruneters of Cha-Squarg and othar
distributtoms thnl arise i associatod satisiioal testing problems T this sudy degree of
froedom i the mumber of differem ASCH characters present in a file

A frequency distnbution {12, 15, 17, 25, 37, 15, 435, 38 37, %% 08 64121 125
129, 130 142] 15 @ representation, cither i & graphical or tabular format, which displays the
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number of observaiions within 4 given interval The intervals must be mutually exclusive nil
exhmistive Frequency distributions are usually used within a statistical context The size of
the smervals used in g freguency disstibution will depend on the dati betny analvzed und the
gosls of the analyst However the most imporant factoe iy that the inervals wsed st be
non-averlapping and contam all of the possible ahkervatians

A frequency disteibateon 15 one of the most common yraphical tools used o deseribe a
singlo population 1t i @ tebulation of the frequencies of each value (or range of values)
There 2zre & wide variety of wavs (o Hlbstrate frégquency distributions, including hislogiams
relttive frequency histogrmms, deasity histogrenm, wnd cumulative frequency distributions
Histograms show the freysency of slements that dceur within o certain ranige of values. while
comulntive distribusons show the frequency of clements that eccus below o cerrain value

Irequency Histogrum 15 defined as follows -

o A graphical representation of 2 single datased, tallied into classes
o Frequency defined as the nurber of values that fall mto each class
 IHistogram consists of & series of recrangles whose widihs are defined by the
limiss of the classes. and whose: herghis are defecnmned by the frequency in
cach mteoval
o Histosram depicts many anribetes of the data. including focarion. spread. and
symmesry
. No wigif st of miles hat determing the number of classes o
class jneerval
. Tietween S and 20 classes sultable for most dmascts
. Equal sized class widths are found by dividing the range by (he
mmber of asses
. Formud gulde by which <lass Intevvaly 2in be derivad iy the
formuila K = 1 +« 33 * kg n
where K s the numtber of classes and n 15 the number of
variables

A frequency distribution shows the munber of ohservations falling into cach of
severs! Tunges of vilues Frequency dimributions are portrayed as frequency  tables

twgrams. o polygons Freguency” distribotions can show eliher the aorual muniber of
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observanions falling in cach range or the percemage of observarions In the lafer instance. the
dizgtribenon w called a relahive frequency distribution

In cryprography, the avalanche ffect [12), 122, 129, 136, 136, 137, 138, |39, 140,
41 142 @5 u  desimble property of crvprographic slgorthms  typically block
eiphers and cryptographic hash finctions The avalanche effect is evident if. svhen aminput is
changed slightly (for example, Mippine a sivgle i) ike aupul chimges significantly (e g
nalf e outpur bits flip) I the case of gualiy block cphars, such & small chamge in cither
the keyor the plamtext should cause # drastic change in the ciphertext The actual erm was
first wead by Horst Feistel uithough 1ne concept dates back 1o ax least Shanioo’s diffuston. 1 a
block cipher o cryptowraphic hash function does not exhibit the wvalanche effcct 10 &
signifionnt degree. then H has poor randomizstion. snd Uhus & ¢ryptanalvsi can make
predictions abeai thy tngib, being given only the otpn This may be sulficiem o partially o
complesely hreak the algomhm Thus, the svalanche effect Is a deswable candition from the
poins of view of the designer of the cryprograpive algonthm or device. Consirucning a cipher
or hash 10 extubi 3 substantial avalanche effect 1s ane of 1he primary design obzectives This
i why most block ciphets are product ciphers. 1t is also why hish functions have larue daa
blocks Both of these features allow small clumges 1o propagate rapidly through nerations of
the algorithm, such that every bit of the output should depend on every bit of the mput before
the ilgorithm terminates Even & slight change i an g sming shoukd cusse the hash vilue
1o changs dsmcally A Hesh Fupcton s & mesdfommanon tat ghes 8 varmble feogih b
sequence (Message) and produces 3 fixed length bat sequence (Message Drgest) Evenaf 1y
is Mipped m the input stnng, ot beast haif of the bits m thic hash value wall flip as a result. This
b anlled an avalanche effect, A function has a good avalanche effect when a change in one
his of the Input resuits 1 & change of half of the cupus bits

The siriet avalanche erterion (SAC) 121 122 120, 130, 136, 137, 138, 139 140,
141, 142} 15 2 generalization of the avalanche effect It is satlsfied i€ whenever a snglé mput
bt 1s complememed, each of the vaipu bits changes with u 30% probabilny The SAC builgs
on the coneepts of compleleness and avalanche and was mrroduced by Webstor and Tavares
in [98S5. The il independence criterion (BIC) stutes that output bits i and k should change
mdependenmly when uny single nput bt | i inverted forall | | pl k

Incomguner sclence, the saalysis of algarithms is the determimation of the amount of
resoasroes (fuch ay (hme xnd storsge) hecessary to exeeure then Most algorithms are designed
o worKk with mputs of srbitary lengih LUsually the efficiency of rummng time of an slgornthm
15 stateal as & uachion relanng the mpan lemgth 1o the number of steps (lime complexity) or
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storage locations (space complexity) [12, 15, 17, 23, 27, 33, 34, 35, 36, 37, 39, 93, 94, 121,
122, 129, 130, 142].

Algorithm analysis is an important part of a broader computational complexity theory,
which provides theoretical estimates for the resources needed by any algorithm which solves
a given computational problem. These estimates provide an insight into reasonable directions
of search for efficient algorithms. In theoretical analysis of algorithms it is common to
estimate their complexity in the asymptotic sense, i.e., to estimate the complexity function for
arbitrarily large input. Big O notation, notation and theta notation are used to this end. For
instance, binary search is said to run in a number of steps proportional to the logarithm of the
length of the list being searched, or in O(log(n)), colloquially "in logarithmic time".
Usually asymptotic estimates are used because different implementations of the same
algorithm may differ in efficiency. However the efficiencies of any two “reasonable”
implementations of a given algorithm are related by a constant multiplicative factor called
a hidden constant.

Exact (not asymptotic) measures of efficiency can sometimes be computed but they
usually require certain assumptions concerning the particular implementation of the
algorithm, called model of computation. A model of computation may be defined in terms of
an abstract computer, e.g., Turing machine, and/or by postulating that certain operations are
executed in unit time. For example, if the sorted list to which to apply binary search
has n elements, and it can guarantee that each lookup of an element in the list can be done in
unit time, then at most log, n + 1 time units are needed to return an answer.

Section 1.2 gives the details literature survey, section 1.3 describes the problem
domain; section 1.4 illustrates the proposed methodology, section 1.5 states the salient

features of this thesis and section 1.6 figures out the organization of this thesis.

1.2 Literature Survey

Diffie and Hellman [43] in the year 1976 gave a new direction in cryptography. Two
kinds of contemporary in cryptography are examined. Widening applications of
teleprocessing have given rise to the need of new type of cryptographic systems, which
minimize the need for secure key distribution channels and supply the equivalent of a written
signature. This paper suggests ways to solve these currently open problems. It also discusses
how the theories of communication and computation are beginning to provide the tools to

solve cryptographic problems of long standing.
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Campbet] [101] in 1979 proposed a microprocessor bused module 1o peovide security
In ¢lectronic fund transfer Electronic Fund Transfer (EFT) is expected 1o grow i importance
snd to result in national Interchange system. The patential fov faud i EFT Ig yuite
ugnificant. and can be prevented by the use of crypographic securlty lechiigues A
micropmcessor hased secarity module hay been developed which serves us 3 CPL pervpheral
10 perform all crypographic funcuons whick an EDP faciliny reauires o secure s EFT
operabons. The cryplographic operations melude managemeni of Personnl [dentification
Numbesrs {PIN), the managenecu of eryptomaphic “keys™. dad preleciion and validation off
customer entered PINs

The uses of microprocessors We implementing sonte of the pew bl coyprographic
slgenithnivs have beea examiined by Davida wnd Wells [102) in fhe year 1970 Time aud space.
requrements for the varous encryption progrums are studied and applcalions where
microprogessor based encryption would be able 10 meer throughput requiremems are
wdentfied Bt s concluded that with cumently available microprocessors, micro-based
encryprion & useful for ofMiine encoyption/decryption. electronic mail systems. and most
terminal applications

Best 193] in the year 1980 proposed prevention of soflware pirmey will erypio-
microprocessor and s & wonderfl application of cryplogaphy  implemonted in
microprocessor based sysioms. A crypiosmicroprocessor executes & program which is siored
i cipher 10 prevent it from heing shered. disassembled, or copred for use i unsuthonsad
processors  Each insruction. Just before i is executed, is deciphered by the covpio-
micropeocessor utder control of one o mare secred encrvption kevs which are different for
each progeam. Microprocessors lackimg these keys can't executo ain enciphered progran o
prisccss encipheed dea Vakiahle proprigtary programs sod daa files can thus be distributed
in cipher wlong with dedicated erypeo-macmprocessor for use by munerous and snonymous
peopie, without risk of piracy or unsathonsed alicraton of programs.

Computer communicstion sysiems, locshares networks, jotercomected Jocal-urea
networks and electromic mall svstems are playing an inceeasingly Important role m pffice
automation elocommunications. and factory muomuing. A microprocessor based crypto-
processir s been propesel By Schloer [ 104] in 1983 A prereguisite fin extensive usage of
these services, with full or perisl replacement of conventinns! paper mall by m elecironic
medium, s security, 1t must be possible to guarsnios the secrecy of & message so that only the
sodresses 38 able 1o read o (Le I must be possible 10 provide 1he cquivalent of 8 paper

-envefope) Funbermore, the receiver of 3 message wants (o verify thal the indicated and the
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seal sender arc one and the same {1 .. there must be a provisson for clectronte signatures and
sigmitte ventication) Recene advances have made ihe technology of cryptography a viable
toal for solving these probiems The DES-Datd Encryption Standard as well a3 public-key
avsrems have also heen discussed extensively In this article en experimemal secure
commumcation system and (1s implementalion with o special module-the crypto-processon
(CP) bs desenbed by the muthor The averall system structure and vuser istertace alomg with an
averview of eryptography sod & review of the design considenuions are also presented by the
puthor Moreover, the software micrtaces 16 the mun component. the Cryplo-processor. and
les dinte structre. urdware, software, and performance are slso described.

A security and performance optimization of 3 pew DES data encryption chip is
proposed by Vorbauwhede, Hoomuent aid Vandewalle [97) Cryptography apphications
dermnd Bigh speed and security both. This paper presents (ke inplementation of @ new High-
performances Data Enceyption Standard (DES) data encryption chip These are results of ¢lose
coopecanion  berween | crypeographers and chip designers Az the systemy design level,
cryprography optimezations and equrvaience transtormatons ket 10 8 very efficicnt floor
plan with minimal routing. which otherwise would present a serious problem for daia
seramibrling algodthms These optimizations. which do not compeomise 1he DES aleorithm or
the security, Aro combined with & hhly structured desiun and kgt siratogy Novel CAD
texsls are used as diferent steps b the dosign process. The result s 2 smle chip of 25 mm® m
Sapm double-metal CMOS Funcaionuhily tests show thar # clock of 167 MMz can be applied,
which means that & 32-Mbevs data rate can be achieved for all eight byie modes. This ia the
fastest DES chip reported vet. sllowing equally fast execution of all four DES modes of
operation due to drigmal pineline architecture

Ivey et wl (115} described 1he architectuce ami design of 4 public Loy encryption
processor which implememed the RSA algorithm with key lengtlss of 512 Wits The chip,
which ts 82 by 42 millmeties, tas been designed m o8 0.7 micron CMOS, silicon on
msulnior process and has o wargee clock speed of 150MHz 1 13 & sell comaned subsystem
wineh imterfzees duectly 10 stmndard microprocessors und capobie of encrypiing at eates well
In excess of 64k baud (for contractual réasony the suthors ure uable 1t this lime. to disclose
the exact speed of dpetiond The chip contaims $0.000 guies und las been desigoed wsing &
custom muthodobopy with the CADENCE desipn torils

In recent yeurs, thore has been o tremendous wpsurge in informatson ond dats tansfers
over the {elephone md camputer metworks  Tins micemauon ranges from yery simple
electrome mmit 10 lghly complex medical magmng Inany of these datd rransfers. the secunly
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of the mformation is 3 pressing concern Currently, the solution o the security concern is o
use expensive and Inofficient private nerworks and leased lines The cunrent cvolution of the
pubbic Integrated Services Digitnl Network (ISDN) with iis complete end (o end digital
commeetivily provides an excellent platform fiv networking and retihle dity communicatinms.
The primary objective of this work is to devetop and implement methodologies for succenstul
dara encryprion schemes wluch can be embedded o 1be ISDN  Customes  Premiscs
Equipment (CPE) and requete vo software upgrades of the swiching equipnsent. This will
muke the poblic ISDN network look like & private nctwork 1o the secufity conscious user
Furthermore, secure dafa commumication ks provided over circuit switched volce o data
channels Widely ised sncrypeion and keving sehemes hised upen Dats Encryption Standied
(DES),  scerer by cryprography  and  Rivest-Shamir-Adleman (RSA),  public  Rey
cryptogeaphy, algontilims we currently being mvesugaied for their applicabiliny 1n the ISDN
environment [nitml mvestigations show thar 3 HYBRID crvprographic approach. RSA for
suthenticazion, and DES far encevprion, may be most appropeiate. Efforss ar¢ on 1o develop &
hardware @nd software Implementation for the HYBRID approach Latf Mahhookh and
Poram [61) discussed possible standarde for ISON secutity thar will allow data (sseduting
voice) trumsatitted aver the ISDN Bame Rate Interface (BRI) lne to Ye encryprod so that onty
the ymended receiver can deaipher il The dens presented here can easily be mansponed (o the
packer swiched channels. Pamary Rae lnzertice (PR1) and possidly 1o Broadband ISHDN
(BISON)

Blaze [75] haw described an efficient key management i an encrvpeimg file svstem in
the year 1994 As distributed computing sysiems grow in size complexity and vasiety of
applesation the problen af peotecting sensitive daty From unmathostzed disclosure wnd
tampering becames increasingly impofant Cryprographic techmgues can play wn emportsm
role m protecting communication hinks and file duin, snce access 10 dma can be himuied 19
Ihose who-hold the proper key T the case of filc data, however. the rounne use of encryplion
facilities olien places ihe organizational requirements of information security in opposition 1o
those of information mansgement Since strony encrypiion Lmplics (hat anly the holders of
the cryprographic key fave acvess 1o the clenr-texe data an organization may be dented the
e of fiv owh critical business reconds if the key used wo enerypl 1hese records besnmes
vavailable (cg . through the wccideimal desth of the Koy hotder) This paper describes »
system. based on cryprograpie “smaricurds,” 1or the temporary “escrow’ of file encryption
kevs for ernncal fitez in & cryprographic file systemn Unlike conventional escrow schenes.
s svatem is bilaterally aoditable in that the holder of an cscrowed key cin vertfy that, in
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fact, the key 15 kept 1o o panscular directory and the owner of the key can venty, when the
escrow period is ended; that the escrow agent has neither used the key nor canuse it  (he
fistiere

Rinze [74) in 1995 pgan deseribed o simple protocol. ihe Remotdy Keved Encrypiian
Protocel (RKEP), which enables & secure, but handwidih linted, eryprogrphic smary card 1
fuoction ax 4 gh-bundwidth secret key encrypuion and decryption emnne for an msecure, but
fast. host processor  The host processor gssumes most of the computational snd banowdih
bueden of each cryptographic opesation withot over leaming the secret key stored on the
card By varving the parameter of the protocol. arbitrary size blocks can he processed by the
Bt with anty & single smill message exchange with the card und siniml card computation
RKEP warks with any conventional block sipher aind requnes only stundard FCR mede Block
cpher opermrons on the sotcard,  pormitting s implementation witk oflste.sholl
componems [here is no sorage overhead Uompuunonal ovecherd 15 avmimal and ingludes
1he calcuianon of & eryptographic hasn funchion ss well a5 conventtonsl cipher function oo
the host processor

Kaps and Paar [85] were the first in its type of gryptography with FPGA described
fast DES miplententasion for FPGAS and its application 1o & wniversal key-semch machineg in
the year 1999 Mowt seanrity protscol and secunity applications are defined to be algonthm
mdependant, that is. they allow a chotce from.a secof cryprogriphic algonibms for the same
function  Theeetore a key-senrch machine winch i afso defined 1o e atgonthm independent
uright be mtgrestimg  Authors searched the feasibifity of w universal key-search machine using
the Data Encryption Standard (DES) s an example algomhm. Field Programmable Gate
Armays (FPGAY provides amn weal match for un glgorithe independent crackes us they can
switeh algosuhas omedbie=fls  amd un ommeh fasier thar sofiware  Authiors designell,
mmplemented and compared varings architesture opoons of DES with srong emphasis on
high-speed performance Techmigaes hike pipetining and loop unrolling were used and 1hewr
effectiveness for DES on TPGAS mvestigated. The most mteresing resulis s that it conld
achieve data rates up o 403 Mbate's using standard Xilinx FPGA. This result is by s factor 11
faster than wliware implementations while quthors are sill maintmnmg Nexibilin A DES
erackes chip based on this design could semch 629 millinn keys per second.

Burke. McDonald und Austin [42] gave the architectural suppon foy st symmeseic-
key cryprography m the yeur 2000, The emergence of ihe Intermet as a wrasied medmm for
commerce and commumcation has made cryprography an essential component of modermn
information: svstems. Cryptography provides the mechanisms necessary o implement
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nccountabiity, accurecy, and confidentiality in communication. As demands for secure
communication bandwidih grow, efficion eryptographic processing will bocome ncreasingly
vital for good system performance. In this paper, mithors explored techmiques 1o improve the
performance of symmermic key ciphor nlgorithms faght populsr sinong encryption elgondhms
are examned i Getall. Analyses reveals the algonthms are computattonatly complex. and
comtain linle parallefism Overall throughpat on & high-end mmctoprocessor is quite poor, a
600 MMz peocessor is incapable of saturating & T3 communication lne with 3DES (triple
DES) encrypted daty. Authors inteoduce new tisnictions thal inprove the etficiency of the
unalyzed algotithms The appronch adds (asrsetion set sippart for fast substiutions, yeoeral
permatations, mtates. and modular arithmeie Performance ambysis of the optimized ciphiss
shows an overall speedup of 59% over & basebne machine with rotate mstructions and T1%
speedup over & baseline without rorste. Even gher specdups are demonsirated with
optimized substiutions (SBOXes) and additional functional unil resources Auathors™ anafvses
of the anginal and optimized olgorithms suggest Bire dincctions for the design of high.
petfarmance programmable cryptographic processors

Canda, Teuny and Maglivares [45] incrodoced & new family  of symmeetric block
cipher based on wroup bases. The wmin edvantage of this spprosch  full scalahiliny It
enables 1 construce, Tor istance, & trivial §-0n Cacsar crpher as wall as strong 250-bn ¢epher
with 312-bit key. both from the smne specification Authors discussed (he practical aspects ol
the desiun espectally the ehoice of carrier groups. generation of random eroup bases and an
efficient Buiaoszuivn algorithm Authors also describod how the coyprogmphic properties of
the system are optintized and anadyze (he influence of parameters on Hs security, Finally
some. expermentil resiulty regacding the speed and security of comerete ciphers from fhe
family has atso heen presenied

Gan, Simmons amd Tavares [ S%] imroduced w new fammiy of siream ciphiers based on
cascaded small S-Boxes in vear 2000 Many stream cipher designs hased on linear feedback
shifl registers (LFSRS) with noo-lineat combming Gncllons are susceptible 1o various
versions of Lhe correlation attack 1n tils paper authors proposed o new wmodel for steeam
ciphers which does nor mmke use of LFSRS Insicad. these siroam cipbirs are based on &
eascade of small sbertution hovesis-baxes). Like the RC4 stroam cipher desigoed by Ran
Rivest, the cascade stream cipber makes use of gvolving s-boxes and poimers However,
instead of ueng one lirge s-box duthors employ & cascicle of seveérnl small s-boxes T'wo
parameters of this family of stream ciphers are the size of (he individual sboxes and the
lengrh of the cascade. 15 n-bie. s-booes is used. then each oupue of the sirgam cipher i an o
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bit block A cascade consisiing of 16 2-bit s-boxes wanlid have an effective key length which
Is adoguate for most pracsical spplications The number of s-boxes I the cascade can be
increased if desired more seourity, Authors™ studied indicated that the cascade ciphe has
good statistical propenies This cascade sream crpher Tequifres relatvely little storage and
executes elficiently m both hnrdware and software

Gy and Pawel [84] gave comparisem of the hardware performance of the AES
proposals using reconfigurabie hardware 10 1he vesr 2000 The resuls of implementations of
all fve: AES svstems using Xifiax Field Progmmmable Gate Aoavs gre peesested and
analvzed Performance of four allemative hardware urchitectuees s discussed aned compared
Tie AES propossls are divided inta three classes depetcting o their finrdware performance
characteristics. Recommendation regsrding the oprimu ¢hoice of the algorithin fur AFS 1
provided

Rugghueram andl Chakvabact [108] peoposed & programmueble processor  lor
crvplography. Cryptographic prosocols have numeroos applications in 1oday’s world, the
most provalent’ one heing tanilerring messages safelv over the network Cryptographic
sluorithms are either implememed (o software on & generalpurpose processor o in bardware
on an applicstion-specitie processor. Whils the sofiware implegentations tead (e be time
consumimg, the lardware implementanons are oo speaific and cannot even sopporn small
modifications. In this paper, a peogrammable architecture ths can handle & large number of
wlgorithing including DES, RSA, Blowfish, SAFER. et celern have been doveloped The
architecwure consists of addition. subtrsction. modular multiplication. and exponentiation #nd
XOR urrits and thus can suppont & majority of the envptographic algorithms A bigh data rate
I ashieved by applying loop untalling so the Mootgmeny algorthog thit is used for modiilar
mitlnplicanon wnd exporentiation The differences i the number of bits, key length, and
sequance of operanons are handled by the micro-programmed conrol unt. A VHDL mode
has beco developed and synthestzed using Auto-Logic |1 from Mentor Graphies: The resubis
shiw a frequency of operation of 77 Megabertr nnd an area of 23,000 "Optimization COST”
(T

Cisnmzschaed) | 116 proposed the application of Chinese remainder theorem i s high
speed RSA crypto chip in 2000 The perfvmance of RSA hardware i primanly detesmined
by an efficren jmpbememancn of the long smeger modular anthimetic and the abiiity (o wilize
the Clnnese Remamnder Theorem (CRY) for the private key operatons. This pape) presems
the multiplier archilecture of {the RSA crypto chip, & high-speed hardware accelerator tor long
rieger modubar arthmetic The RSA multiplier dai path is reconfourabls 10 éxécute either
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one 1024 bit modular xpooentianon or two 512 hil modular exponentntions in paralic)
Annther significant characteristic of the multiplier core is its high degree of parallelism Tie
actugl RSA prototype eantains o 1056 14 bit wordserial multiplier which Is opfimized for
podsslar meeliiplizations necording (o Rarret's modulis reduction method The multiphict core
s dimenssoned for & clock frequency of 200 MHz and requiees 227 ¢lock eveles for & single
1024 bt modular multiphication Mpelimng m the laghly paraliel long meoger umit allows
achieving 8 deeryprion mie of 560 kbitssee for & 1024 bit exponent In CRT-mode, the
multiplict executes two $12 bil modular exponentiations i paraliel, which mereases 1he
decryptian rate by » factor of 3.8 to almast 2 Mbits/sec

Software efficient stecam ciphess bave heet proposed by Halevl Coppersmith ind
lutin [£9) m year 2002 The design of Seream, a pew softwase-cffiveent secam eipher. which
was designed 1 be more secured seal” The desgn of Scresm resembles in muny wavs s
iock-ciphier design  The vew cipher 15 as fast as SEALL but n offors n sigmficantly higher
sacurity Jevel In ihe process of deswmnyg this cipher, withors re-vist the SEAL design
paradigm. exhibiting seme tradeodTs and limaations,

Chay and Siu |65] proposed an Internet secamy svstem for E-Commerce Network
securily 06 nereasing in bmpartance & rewlt i the enprmous use of electionic
communication in busivess activities. RSA 5 the most widely used public-key eryprogeaghy
slgortim 1 the c-commerce In this paper. & new system s proposed 10 provide secure
commumcations through the otermel  The proposed spproach focuses on Two mmn
technologies First, 5 session key appronch 15 used 10 eohance the securmy performance of
RSA Sceand IDBC 100! Is used 1o perform chient/server datn necess efficiently and
eMectively The system was iimplemented provided o retiublo and secure Internet emdronment
wiccesstllly for Business sutlvities arounil (be warld

A tiadeoils analysis of FRGA based elliptic curve eryprography ‘has been proposed by
Bednara ot al [76] i the year 2002 FPGAs are sn ansctive phitfonme for elliptic: carve
cryprouraphy hardware Since fickd muttpiicalion 1 the most crincal operation e ellipne
curve aryptography  authors leve siudied how efficient several field muiliphiers can be
mapped 1o lookuy table based FPGAS Farhermoe sutlors have compared various curve
conrdinates representations with respect 10 the sumber of reguired feld opesations. und show
how am elfiptic curve coprocessor Based on the Mowmgomery slgorithm for curve
mufiphicanon can be implemenied using this genenc coprocassor archimecture

Paquel [44] has described  Sinople’. n shored-key isymmenc) block  cipher
supponting 128.bir dara blocks and 128-bit key size 10 the year 2003, Simople is designed 10
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take advantage of the 32-bit operations supponed m today s computers and iis onginal design
bries o dmyprove security sgaiing differential and Nncor stiacks.

Hillet and Gifbers [47] proposed & new symmetric Mock aphes with the follawtig
parudoxical maccability propertes o s commanbomlly easy 0 deqive meny equivadent
secrel keys providing distinet descriptions of 1he same inance of the block capher Biug i s
computationally complex. given one or even up 10 K 2guivalent kKeys 10 recover the so called
meta-key from which they were derived. or to find any additronal equivalent Key. ¢ more
generally to forge gy new untraceabile descrigrion of the sune stance of the block eipher
Theretore, i€ @ach legitimate user of 3 digital contens distribation system besed on encrypred
information hroadcast (&g scrambled pay TV, Mstrbution over the Intemes of miktimedin
coment; €30 ) is provided with one of the equivatent keys. one can use this persomal key o
decevpe the contend But 11 15 mofessible tor coalitioms of up 1o k eramors 10 mmx then fegiimate
personal keys imo umraceshie kevs they might redistribute anonymously to picate docoders.
[hus. the proposed block cipher inherently provides an etficient tranor iacing scheme his
algorithin an he described as an iterative Mock ipher belonging 10 the elass of multiveriae
schemes |1 has sdvantages in terms of pecforamnce over existing itor wacing schemes ind
furthermure. 1 allows restricting overhends 1o one smgle block fLe. typcally 30 to 160 bite)
per encrvpied comen payload  Irs strength relies spon (he difficulty of 1the “fsomorphism of
Podynamials™ prablem, which has been extensively investigated ovér the pasi yems An intial
security analvsis is supplied

Kim wnd Seamivasin [72] progesed simple sapport for TPsec tmel model  Many
compecite employess (thnse commonly known as road warmors) ofles sccess the zesaurces in
protectod corpotie intriners, while working remately, theaogh 1Psec ummels betwveen teir
corpornte. VPN 1 Vinual Privare Network) gmeway and thes remote bosis Wah the
profiferation of Wireless LANS 3G wireless netwarks  and mobile workers 11 becomes
highly desirable for remote hosts to be able to move amang multipic networks (TP subnets)
froely, even neresy different wirnrerface tochnotogies Curremtly. IPsce does not support this
mvement withaut Breaking sl re-stablishing of iPses wimels. Re-coablishing TPeec
wnnedy could caase dismuptions 0. spplicutions eurmntly munning scross the timnels, in
aldition 1o mcurrmg the overhoed of 0 3 10 6 roundiop handshake for @ new el
establishmem. One solution could be 1o nun IPsee tannels over MobilelP 1o enabie mobalny
Hosvever, that b= ineflicient due 1o (he double tumeliiog. which is especially an ssue Jor
resource-tmited wireless networks Authors explored modifiving an IPsec implemeniation to
gnable mobility withou! compromising security wid withour ncuering tunngl-re-estahlishment
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it handolf Authors do pot infended to address the general issue of secure mobility suppor
for the Internet. Tustead. it i5 10 focis on & single scenario of VPN remole access via IPsec
ESP-anly wnnel mode in w4, which has a large commercial upplication of the secure
temate access of corpoente Intranets Authors” approsch s to shange the wmel endpoim 1P
addresy of the mohile host at the [Pee VPN gateway via a secure signalllng which s
possible with mnor modificanions 10 how Psec operates Tor thos end. authors modified
FreeS'WAN v 8. an open-source implementation of [P'sec. The dependence of idemifymg a
Security Association on the ower hesder destination sddress has shso removed so that (he
samg security puramseters can be used even in the new network Two new privite messages
are added to ISAKMP (Internet Security Association ind Key Mamagement Protocol) 10
enable the required sigsalling 00 updale new tinnel endpoint addreses  Althors Approsch
peither compromses the securny of [Psec nor requires changes 1o the exasting 1Psec
standard. prescrving interoperabiliny with mobiiry-unawire hosts and zateways, Authors
describe w working smplementation of these modilieatons, discuss the performance of 1his
opproach. and compare with (he ssandard IPsec and 1Psec over MobulelP

Rouvroy ¢1 al [77)] proposed & compact and efficient encrvption/decryption module
for FPGA implemenaation of the AES Rijndae! which is very well siited for simall embhedded
apphcation n the yenr 2005 Hardware jmplementations . of the Advanced Encryprion
Standard (AFS; Rajodact algorntom have recently been the obgect of wn mtemsive evahinton
Severnl papers described efficrent archstectures for ASICs nnd FPGAs In vius context, Hse
bighest effort has been devoted 1o high throughput (up 0 20 Ghps) socoyption 1 designs
fewer works studied bow area encryption In architectures and omly a few papers have
(nvestigated low ares encryptive/decryption swucturés Howevet, in peactice. oaly o fow
applications  mesd  throughpt op W 20 Ghps  while  DNecible dnd  low  con
ancryprion/decryption solutions are needed 10 protect sensible datn. especinily for emhedided
hardware applicanons  This paper proposed an efficient solunon 10 combine Rijudacl
encrypeion and gecryption 10 one FPGA design, wilh & strong focus on low ares consieemis.
The proposed design (s into the smallest Xilink FPGAs. deals with date streams of 208
Mbps: ses 163 slices and 3 RAM blocky und improves by 68% the best known similar
designs in terms of ratle Throughpot/Area, Authoos also praposed inplementations in othes
FPGA Families (Xalinx Virtes-11) and compansons with simiier DES, triple-DES and AES
mplementanons has also been done

Chodowiee and Gaj [87] presented o compact FPGA nrchiteciuze for the AES
algorithm with |2B:bil key targeted for low-cost cmbedded applications. Encryption
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decryption aedd key schedule are all implemented using small resources of only 222 Siices
ang 3 Block RAMs. This implementanon easily fits i a low-cost Xilwx Spartan 11 XC2530
FPGA. This implementation can encrypi/decrypt data streams of 150 Mbps, which satisfies.
the needs of woy embedded applicatons, including wireless commupication. Specific
features of Spartan 11 FRGAs enabling compaet logic implomentation are explored, and » now
way of implemeantmg MixColumns and lnvMixCabunas tranaformations using shared logie
resOUTCes is presented.

Network data rs, carrently, oflen encrypted at a low level In addition, e magorty of
future networks will use low-layer (IP Jevel) encryption Cutrend trends imply thal future
netwoeks are likely 1o be dominated by mobile rerminals, thus, the power conssmption and
clectromagrutie emissions spects of encryption devices will be entical Sotirioy and
Papacstathion |100] presents several realisations of the DES algorithien, both i software and
w hardwire. Authars present software nplementations of the alganthm nmning on the siste-
o« thesan Inted IXP network processor and seven hardware readisarions based o & sandard-
cell ibrary The software umplememanons are based on the fotel MI* Network plattorny, tor
which authors wrote gssembly core implementing the DES algorishm utifising 15 various
featwes 'he hardware implementetions consist of seven different hardware inplementaions,
theee Slocked implementations and low umclocked (asynchronous) implomemations The
efficrent reslisation of the DES algorithm i o hutdware realisstions throogh convestiong|
clocked designs, wivch 15 an asynchronoos ooe comparcd to other four designs  Authors
dempnstrated thiat the most efficien realisation of the algormhn 13 & hardware implementanon
which is un ssyncheonous one

Cryptography it the suudy of mathemoncal techmques related 1 aspecis of
Information security such a8 confidemiality, data tntogrity. entity authentication aml data
ongin sithientation Rabman, Talkhan and Shatleen |129] inroduced & new sysiem (hal
would help crypio designer i thein work jowards implementing anbreakable encrypoon
algorithm n casy way. The sysiem consests of 0 fanguage catled "Cryprogsaphy Langeage” or
Cl. CL compiler und CI conyerter Any designes cant use this kit casily, (o record any
algorithim and implement i ether software ot hardware prodoet. Using CL. designes can
write many slponthms and give their code 10 CL. compiler thar will compile the code 20d
extract all the algorithm infrmation L'smg CL converters. the algorithm can be generated in
any software of hardware Smguages depending on their tse

Duna and Manda! | 12) proposed & bli-level scores-key block cipher which folkows the
prnciple of substitubion m 2008 Thie deeimal eguivalent of the block unde) consdernhon 3
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evaluated and the modulo-2 operation is petformed to check i the inteerz] value is even or
odd. Then the position of that integral value in the sesies of natural sven or odd mumbers ix
evnluated. The same process |s repeared spain with this positionnl value This process is
camied oun rocursively for finite mumber of times, equal o the lemgth of the sanece block,
Algr each modids-2 operation, 0. or | & pushed 1o the ourput stream i MSE o LSH
direcion depending on wheiher the jmegral value 1 even or add, respecrtively. During
decryption, Inis i the targel block wre 1o be consdered alonig LSB 10 MSB direcnon sfier
which an imegral value is got, the binsry equivalent of which it the source block

Sinha and Maodal [17) proposed & bovel block cipher based on & microprocessor
sysens wheee the encryption i dose through Overtapped Modolo Aritlmetic Teahmique
(OMAT) The ariginal messige i considered as 4 sieam of hits, which is then divided into &
mumber of blocks, cach contaming “u' hity, whese ‘0 woncof 2.4 %, 16 32 64, 128, and
256 The wwo sdjecent blocks are then added where 1he modulus of addition i 27 The resul
replaces the second plock. first Dlock remaming unchanged The modulo addition has been
implemented in n very simphe manner where carry out of the MSB is discarded to get the
resull. The techugue is applied lv & cascaded munner by virving the Blogk size from 2
256, The whede lechmigue has buen implemented theongh a microprocessar-based system by
ustieg & moduly sobtractzan for decryption

Ihuz-Prerez. Saqib and Rodrpncz-Henrigquez 1411 wdemified the basic characienstics of
cryprographe wlgovitbms especially symmetre block cphers foc then nnplementalion on
hardware platforms The basio primitives in symmetcic ciphers ure discusses and some
implementation  lechmigues are snggested  for  them Ay un wpplication. an FPGA
tnplementation of DES 14 prosented which achieves 3 throughput o 274 Mblia‘s occupy just
165 €11 slices for a single raund The same guidelines well holid fir other biock ciphers like
Advanced Encryption Standard (AES)

Lincar eryptanalysss has been proven 10 be a powerful uriack which can be spphied 10
g namber of symmetnie block ciphers Howeyer, conventionn] imear cryplunalysis is
ineffective i attacking ciphers that use key<dependem operations. such as ICE Lucifer und
SAFER. Dejen and Coffey [46] showed conditional fincs crypiamalysis which used
characeristics th depended on some key-hit vailues This technique has bewts described in
dcxdluhpplinthn 10 symimeteic eiphery dre also snulysed. The conequences of wsimg key-
dopendemt  churastensiics we explamed and o formal poumon of condisons  linear
crypranalyses 53 presented As & case stidy, conditionnt Tipear crypianalyss s applied to the
[CE cipher, which uses key-dependant operations to improve resistance seaingl cryplanalysis
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A successfil attack on ThinlCE using the technigue & presented. Further, experimental work
supponting the effectivensss of conditrannl lincar crypranalysis alse detalled n the armicle.

Kim | 70) preseated the design i implimensation of a erypo procéssar, & special-
purpose nucroprosessor optmized for the executron of erypiography algorithma. Tius ceypro
processor Can be used f0r vanous security appltcations such as storage devices, embodded
systems. nawork rolters. sacurity pateways using [PSac amd SSL. protocol. et The ceypro
processor consists of o 32-bit RISC processor block anil coprocessar hlocks dedicated 10 the
AES, KASUMI, SEED, iniple-DES private bey crypto algoelthis and ECC and RSA public
key crypto slgorithm The dedicated coprocessor hloek permits fast execution of envryption,
decryption. and key scheduling operamons. The 32-bn RISU processin blotk can be used 10
execnte vanans crypto algonthms such as Hash and other application programs such as usse
authentication and IC catd imerface The crvpto processn Has heen  designed  and
meplemented using a0 FPGA and some pans of erypro algorithnis have been fabricated as a
single VLS chip using 0 Spm CMOS rechnology  To test sl demonstrate the capabilities of
this chip, 4 costom boned providing real-time data security for a data storage device bas been
developed

The natiomal mstitare of slandards and echuology (NIST) v LS. has imiriated &
process 1o develop an Advanced Encrypuon Standard (AES) specrfymy o provate-key
algorithm based om i 128-bit bock size as a replacement of the Dia Encryption Standard
(DES) Rine and Hegs |78] investigated the efficiency of two AES candidates. RCO and
CAST-24, from the hardware implementation perspective whil Freld Programunalile Gate
Aray (FPGAY o the target technology. Authors” amalysis ind synthesss of the ciphers
saggest thur 1t would be desiable for FPGA inplemerntation 10 fave s simples cipher dessgn
that makes use of simpéer operation which not <nly possc s good crypiosgaphic properiics.
but also make the overall cipher desien efficient fiom the hardware mplementation
perspective

Goota et al (98] propased i s DOP bused ciphes in the year 2004 Daa-dependent
(D) permutiions (DDP) that are very suitable 1o cheap Kardware implementation hve heen
miroduced ux n cryprographie praminive for the design of Tast firmware and soffware
encryption systems DDP can: b performed with 5o catled controlled permusauon boxes
(CPB) which are fast while implemented m cheap hardware The laster defined the efficiency
of the embedding of CPR in microconteollers and microprocessoes whien adding # new fast
irsttuction thar ellows one 1o perform DDP. Software and firmware encrypiion algonthms
sombining DDP with (ast arithmenc operations are dewnbed
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Tha, Mandal and Shakya [36] descnibed & bit level symmetne encrvption technigue:
theoweh  Recussive  Transposition Operation (RTO) in 2005 10 enhance security oF
iransmission  The technique considers & messape as binary string on which a RTO is applied
A black of 1 bits b5 taken ax i inpint sreant, where 1 viies from 8 10 256, fom 4 continuos
stream of bits and the techmaue operates on il 1o genseale the intermediale encrypred stream
The same operstion is performed repeatedly far different block sizes ay per the specificatinn
of & sespon key of & session 10 generate the final encrypted stream h s @ kmdd of block
cighier mixl symnterric i natore heace, decodmg s done following the same procedure A
comparison of {he proposed technigue with existing and industrially sccented RSA has also
been done int teenis of frequency distribution and bomogeneity of source and encrypled file

A Test sseen cipher, MAJE2 Nay been designed and developed with & variable k_cs"
yize of |28bi or 285.b1t The randomness property o the stream cipher s analysed by using
the staustical tests The parformance evalusiim of the siream cpher i dose ) comparisen
with ancthier fast stream cipher calied JEROBOAM. The focus 15 10 generwe o long
umprediciable key stream with better performance, which can be used for eovplograpie
spplications Thix srenttt cipher has been propased by Mathew and Jacob [$7] in the vear
2005

The system PACS (Pictie Archiving and Comnamication System) which hamlies
medical mmage saves patient’s medical image informaton anid trmspors them Thes seeds
security processor for wses’s authentication and encrypied informanion based on PRI ('ublic
Key Infrasiruciure) The DICOM (Dngaal Imagmy Commumcutions i Medicme) which 1 &
standard of PACS's transmission has adopted wsng RSA (Rivea Shamir Adleman) in the
authentication and transmisstion which s public key wlgorithm However i embedded
medizal image systom using low powes and restiiceed lardware resource. Us looy Key %1z 14
o magor problém on the hardware implementation und processing rime Moreover, e public
koy algonthm, ECC (Elipic Curve Cryprogrsphy) provided lngher secarity than those of
RSA in the same key size Park. Hwang and Kim |63] inplemented (e DICOM secumy
sizndard RSA substituted for ECC ECC is implemented on (GF(2) using polynomial bass
Finlie field used Monteomery algorithm and Brunner Extended Euchdian sigorithm ECC
point multiplication eperating vsed Radie—3 scalie multiplication wnd suthars vetified it an
ISF 62 soflware using she Xillax Vertes 1000E FPGA. Fimally. authors designed am)
venified il by seni-custom ASIC design

RSA calentunon urchiuectuce s proposed for FIMGAs which addressed 1he ssuex of
scaixbility, flexable performance. end sifwon efficiency for 1he hardware sccelerstion of
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Public Key crypto systems in the year 2005 by Fry and Laoglummer [81] sing techmigues
based on Montgomery math for exponenitation, the proposed RSA calenlation architecture is
compared with existing FPGA-bived solstions for speed, FPGA alilisathon. uod scalahility.
The paper covered the RSA emsypion algocithim  Montgomery math basic FPGA
technology, and the rmplementation derails of the proposed RSA ealewlation archirectre

Fan anit Mandal proposed & symmerric block cipher [ 13] i the year 2006 The
technique conssdered n imessape a5 binary stimg on which 8 Cascaded Recursve Carry
Addition and Key Rotation (CRCAKR) b applied. This techmgue used binary addition
meihndology 1t is 2 kind of block cipher and symmetne in matuwry honee. decoding is done
folluwing the ssme procedire A companson of the techaigue with existing REA and Triple
DES has also been dane in serms of frequency dismburion snd non-horogeneity of source
mnd eacrypied files

An efficient identity-based: cryptasystem for end-to-end mobile security has beun
proposed [66] in the vear 2006 by Hau and Chen In (he next generation inobile
tedecommuntcattons  any third pany thar provides wireless data seevices (e g mobile
banking) must have e own solution for eodao-end securfy  Existing moblle secusity
imechanisms wre hased on publickey cryprosystem . The min cancern in o public-key sysiem
is the wuthennicity of the public key This fsssie cam bt resolved by idenniry-hased (1D-basel )
cryprography where (he public key of 2 user can he dentved from public saformation winch
uninuely dentities the user. Tiis paper proposed an etficiom |Dbased encryption algorniun
Authors  sctually  implenented the  [1D-based encrymion wehemes and  compared 1he
performance o show the advantage of the approach Swdy wdicates that this salution
gutper Ry & preveously peaposed algoritlug by (20 - 38)%

Fermnte |08] proposed b new model for maimaiming secunity and privacy for psten
mformanon sysem w2000 As ihe global (oiemer evolved o eday’s wabile and
broadband service. i i anucipated that the  spplcations of the services o support
telemedicine and o-flenith opermtions using these techoiques wAll 1esull in increasing
healthcare henefits for all using o fowes cosl based solution Precantions owmst be tiken while
making these changes 10 enawre that. security tochnology keeps pace with the changes and
provides the nreany hy which satsfaction of HIPAA'S privacy regulations can be assured.
Consider the gpphication of Wireless Commumications 1 connectmg mcdical professiomty
and: patents through the ubiquitous web access armngements New products offéred 1o
patients and physicians ahke are capable of tranemitting vitul signs, Key Mood test results for
dushetics. blood pressure dita as well a3 the higher datn 1eguirements of X-Ravs MRIs
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ulttasounds, CAT scans- and more. But pow things gre changing Ceil phones. hotspots
(802 11 nccess artangements) offer opponumities for others 1o inlercept private information of
mil peotected adequinely  Toaday's secutity offoring for wireless hotspots such as the Wired
Equivalens Privacy (WEP) offers some secanty and privacy bt it Is knowit to be broken wad
usefl only wempoily and pol for peotection of vral medical informarion protecoion.
Curremly, chips are bemng developed wihnch will offer o mach stronger protection for personad
witeless petworks This recommended stundard, referred 10 a8 302 110 s WA is alrendy
supported within the Microsoft XP Operasing Systent. and it will be enhanced and upproved
shortly by the latey recontmended version of the stendard offering WIPA2 - for enterprse
applications The final version of 802 | 11 (WP A2) nddresses praciically all the vulmersbilities
of WEP amd moce However, now things are changing ance mace A wideboand wireless
capubiiny m all likelthood will supersede WIFEH within the next five years will allow up 10 73
Mbps data transfor rates and sUPPON COMMECHons 10 systems i the rnge of 30 miles or more
under the sight condittons In adelition, speeding ambulances and caszs travelling a1 speeds in
excess of 70 MPH will he more readily capuble of Inerfacing ol the higher data rates
WIMAY, the much-awaited techinlogy thi is expected to provide wircless broadhand
services on s Mettopaliten Ares Network (MAN) scile i going 10 Ne the nexd wave of
evolution ($92 16) 2x was the case for WIFL the securmy 6 concerned here  Will the WIFi
secunity offeniogs support that needed at these higher rates” All of this 55 ver 1o be assured,
Thus privacy is onge again of concern i the standacds are nol adequate 1t is undersiood that
the WPA2 wiil support both WiFi und \WIMaY security needs. As lechnology evolved,
seeurily s he enbanced and if the munufacturess of produces can settle on pon-proprietnry
representative devices 1o suppint the needs of the medizal fedd. thesf it will by fine

Yami, Dat and Yo |92) described the RURA architecture, a specmlized reconligorable
archiectuwre for block cipher thar bridges the cost and performsnce gap between general
putpose and  application  specific  arohtecture for  block opher  Aulhors  presem
implementations for representative mlgornithms of block cipher such &5 DES. Rijndael und
RCO on RCBA srchiteetine Svstem porformance has been unalvzed. and from this unalysis i
has been demanstrated that the RCBA srchitecture can achieve both high security and speed

Fslami e al [114) propesed wn sren efficlent universal cryptoemplly peocessar fog
s cards m 2006 Cryptogmphic coreonits for sman cards und ponashle elecwome devces
provide user suthentrcation and secure data commumeation These crreunts should, ingeneral,
occupy small chip area consume fow power, handle several coypiegraphy algorithins. and
provide accemable performance This paper presented. for the first time o bardware

-48 -



implementation of throe: samtard cryprography algortoms vo w umyversal architocoure. The
micro-coded cryplography processor largets smart card apphications and implements both
private key and public key slgorithing and meets the power and performance specificsnons
and i3 a5 dmall as 228 e 2 b 0 18- m LM . CMOS An slgocithm bs implememed by
changing the eomtents of the memory blocks that are implemented i fermelectric RAM
(FERAM} FERAM allows mom-volintile Morage of the configuration bits, whch are changed
valy when an alganthm jnstantiation i< done:

A testing scheme has been proposed by Yang, Wi and Karrd |1 18] for eeypro-chips m
the yens 2006 Scan-based design for test (OFT) 15 8 powerfld 1esting scheme, but 1t can be
used to Totrieve (he secrets stored g crvpto chip, tns compromising 18 security. On one
huisd sacnficing U security for testability by using a teadiboon! scan-based DFT restriots its
use In privacy sensiiive appiications. O the aeher laod. sacrificing the testability for secynty
by abandoning the sean-based DFT huns the prodoct quality 'he seeurity of & eryptp chip
comes from the small sceret key ssored 1 o few regsters, aml the tesiabilily of 4 crypto chip
comes from the date path and coptrol path implementing the crypio algoritam. Bassd on thns
kev observation. the authors prapased a novel scan DFT architecture called “secure scan”™ that
mumtding the bigh redt quality of madidiond] scan DFET without compromising the secarity
They used & hardware implementation of the advanced encryption standard (AES) o show
thas the trndibonsl scan DET schenwe can compeamise the seoret kew I i seea thi by using
secure-scan DI, peither the secrer Ley nof “& westability of the AES rmplanmmim' 15
compromised

Sategunrdmy intetiectus) property on FPGAs 5 o major coallenge for 13
mmufactures It becames ditficull 10 add more FPGA s2cunty [ahues for sconontical
temsons 1 i diMeull 10 sav whether entiry usees are ready to pay for these added feares
Rut there tai be mo (uestion thal secarity features are alwohilely essential lr FPGA seeurity
Dutes snd Dutts | 18] addressed soane seeurny scenarnin in FRGAS sod dries 16 find oul why
currently exisung secunty feaures are madeamate. Fally » compwanve amalyss for
mardware implementations of the asthentication slgorithm has been provided for FPGA 85
well as ASIC implementution This paper hes been proposed in the vear 2007

Reddy er al |21] explored the sdea of proteating one of more michines on & server -
from other systems by fiitering the 1P packers In addition, the 1P puckets are checked
whether they are reaching their proper destmbtion or not s whether 1he messuge i cormy
o ok by caltilating the P checksam hoth ot the seader and receiver side. All packet
processing operapons were implemented on 4 recontigirable hardware glatform 1o Freld
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Prow amimable Gale Armay (FPGAL The FPGA resource reguirements are reposted und (he
methodolegy employed for the syslem design, verificatioo and implementation s described

Das e ol |27] presented an evoluionary apprsach (6 develop software ensuring
mformation scerny i 2007, The system used two ciphering techaigues. Recursive positional
cubstituiion based on prime-nonprime of chuster and Trangular encryption rechnigue The
evohitionary approach incrementally develops dificrent versions of the sysiem szoadily
progressing lowards making final version deliverabie fo the customer. Allowsg cascaded
iplemertation of lwa techrigues which teguired o longer kev space ensuring the kev 10 be
practically impossible 1o be hroken Both technigues used ure bluck ciphers and of bit-level
implementanon The observanan on the used evolutwnary approach Is als presemed. stating
the possible scope of having an impraved pestormance.

Paul. Dutia and Bhattscharva | 24] preseated & 49 1-bit wbstmumnon based block gipher
which considered a file 10 be encrypiéd as 2 stream of bt I'he Gipber implenients 2 storage
effichent aleotithm through which alony a teduction in size has also heen achioved.

Pantl, Diitta and Phattackarys |25] presented & suhsotutionshased block cipher which
considered i file 10 he encrypted s o wresm of hits Tho cipher implements o stomge
efficient Algoranm using nos-Boolean operations thmugh which s reduction in size is #lse
schieved 1 addwion (o encryption:

Cryptographic cireuits for sman cards uod portable electromic devices provide user
suthcutication und seoure data communication  These circuits should, in gencral occupy
sl chip ares. consume low power, bandle several cryprographic algorifims und provide
weeeptable performunee. Rubimunniss and Lincy [26] prescnied & bardware tplemeation
of three siandumd cryptogrsphn algorithars on a weversal architecture. The nicco aded
cryptoaraphy processor targets sna cards applicaion and mploments both private key and
puttfic key algonthms and seeis the pawer and performance specification

Iha and Marcdal [27) proposed m symenetric block cipher lechmgue i year 2007 The
technique consldered @ mressage us hinary dring on which & cascaded recursive key rofaton
of i sesston key and sddizion of hlocks (CRKRAR) is applied. A block of 'n' hits a8 taken as
mpui siream, where ' vanes from 4 16 256, from o comitoens steam of bits aud the
technigue operates on it in 1we phisses, m first phase plun text & encrypted by using recarsive
key ratation of & session key and then encrypt the outpur in the second phase (v generte the
intermediate enceypted stream using addition of blecks. The same operation i performed
repentedly for differcm hlock sizes a3 per the specification of & session key of a session fo
generate the final encrypred stream W 2 kind OF hlock cipher gnd symmetric in batire
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bence, decoding 13 done followmny the sume peocedure. A comparison of the proposed
technigue with the exasting and industriaily secepted RSA and TDES has also been done.n
terms of frequency distribution and homogeoeily of source anrl encrypted files

Iha ol Mandal [35] proposed a symmetric block cipher technique in vear 2007 The
technique cansidered & message 2¢ binary string an which & recursive key motation (RKR) i
applied. A block of *n" bits b tken as fnpul stream, where *n’ vares from § 16 256, from a
cantinuons stream of hits andd the technique operatos on it 1w generate e intermediaty
encrypmied stream. The basic charactensuic of this RKR techmique 15 the wsz of & key value
This techmique dizectly imvolves ull the bis of blocks m a Booican eperavon. The same
operstion is performed repearedly for different block sizes as per the gpecification of o
sexsion key of a session 1o genetate the final encrypred sieam 1t is & king of block cipher and
symmeteic in nature heoce. decoding i dane followirg the seme procedure A compatison of
the propossd technique with exisiing and industrially socepted RSA hat ulso been done in
teyms of frequency disseution and homngeneity of source amd encrypted files

Anz and Tkeam [88] proposed an FPGA-hased AES.CCM crypro core e 1EER
80211 urehitecture. The widespread adoption of TEEE 802 11 wircless networks has brougne
ite secnrity puradigm under active research. One of the nmportant research areas in 1his ficld i3
the realization of fast and secure implenentations of cryptogmphic algorthms Under (his
wark, implemensation his been done for Advanced Tmcovption Standard (AES) efficient and
fow power Feld Progmmable Grate Areays (FPGAL) whereby computinionil sinenae
cryptographic processes ace offloaded from the mamn processor thus resulis m welieving hughe
speed secure wirekess commecnvity, The dedicated resosrces of Spartan=3 FPGAs have been
effectively wilizod 10 develop wider logic funciion wihich nummizes the comical paths by
confining hagie Lo single Configurable Logic Block (CLBY, thus improving the performance.
denshy mnd powes comsumption of the design The resultiun desien consumes anly 4 Block
RAMs and 487 Slices 10 fit both AES cores el fee ey schediding,

Chen @ al [103] analyzed the reconfigurable design principles of public-key
crypography and The charactenistics of modiriar anthmeng iterason process According 1o the
analysis of resulis, 2 stuctured-adaptive ieconfigurable modular nthmetie umt tor Pubhe-
key crvptography has been implemented. where architeciure is able to support secutity
parameters of both RSA and ECC (Fp) algorithms Based on 0 18 micrometer standard cell,
library, (he stex of the clip I8 only 42000 j® Siemulaiion results of pos-synthiesis indicate
thut the mxomum operating ook frequency s 1038 MH2 the (02480 RSA metslar
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exponental operanon penod w about 43my, and the 182-ha ECC (Fp) posm smaltsplicanon
permd 13 1 Tms on average

Tom and Phiflios | 113] presesed o new residue mumber system implementation of the
RSA eryprosvsten The system runt on a low-area. low-power microprocessor where i has
heen eaended with hardware support for tesidue erithmetic When compared waingd 4
buseline implementation  whisch uses  non-RNS nubiiprecisinn methods,  the RNS
mmpleymentatron executes 67 T fewer chock cycles The hrdware suppor requares 42 T
more gates than the base pmcessor core

Rebenio and Mukhopadhaya [ 1] proposed an efficient hngh speed implememation of
an clliptic curve ¢rvpto processar (ECCP) forun FPGA platfocm in (he year 2008 The mnain
aptimizanian woul for thy ECCI* ix cfficient implementatium of the imponant undedying finite
figh} primivivos mamsely owliplication and vecse The sechulie proposes maximm
wilizatinn of FPGA resources Additionslly smproves sehieduling of etlipiie corve poim
srithmenc resulis i lowes number of regrger files reducory the kred requined and the oritice!
delay of the civeut. Theough several comparisons with exsiny work it demonsirate that the
combination of the sbove techniques helps realizatton of one of the Fistest and compact
elliptic eusve crvplo processor

Onling ciphers are those ciphers whose plainteéx: can be computed i real tme by
psmg bength preservative enorypion slgantbn. HCBCT aad HOBC2 are two known example
nf hash haved chammg of onfine hlock ciphers The fire commmuct s secure ayamss chosen
plamtex) anack whercas the lmer 15 secuse against chosen cipher 1exr anack Mr Nandi -lﬁl
provuded yrmple secarny anulysis of these onfine Gphers  Authors 3130 (roposed two new
more efficient choser cipher-texts secure online ciphiers madified-HCBC (MHCBC) and
wodified-CBC (MCBC)

The tiny encryption alzonthm (TEA) hus bBeen developed 24 simple camputer
progeam for enceyption Kaps |3] gave the first design space cxploration for hardwsre
moplementation. of the extended finy encrypiion  algorithm | peesems  efficient
mpiementation of XTEA on FPGAs and ASICs 10 ulira low power implemenzanion

Danied wnd Peter [4] presemed speed records for AES software 1aking advantage of
wrehnecture-depended reduction of instructions used to compute AES and micro-archiecture
dependent reduction ol eyeles used Tor these Instructinns. A wide verities of common CPL
wehitectires - amidod, pped2 sparovt and 230 - Are discussed in detalls, along with several
specific micro-architectures
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Ciorski and Luks (6] presented In the vear 2008 the two pew anacks on round ceduced
version of AES  Authors presentod first application of the related key boomerany siack oo 7
and 9 reunds oF AES-192 The 7-round attauk requires anly 2 chosen ploinext snd eiphes-
tees andd moeds 27" cneryprion. Authors extend (e atiuck tn mime rommd of AES: (92 Ths
lewves dats complexity of 27 shosen planiexts and cipher-texts using aboot 2°* " ancrypuion
to bresk 2 rounds of AES<192

Recemly the concept of proxy re-encryption has boers shown very ysefil in a numbes
of applications. especially enforcing accest contrel policies 1o existing proxy re-gneryptan
schumes. the delegates con decrype all cipher-texts for the delegmor alter ro-encryption by the
peocy. Comexguently, in order 10 implesient fine-graimned aocess comrol policies, the delegator
feedi 10 eithier pse midiple key pairs or must the proxy 16 behave honesity.  Tang (8]
extended this concepr and proposedhiype hased proxy resencryption. wihich cnables 1he
deleuator to selectively deleiates Ms decrypion nght to the delegate which only needs oo
key pair As & resudl wype-hased proxy re-encryption enables the delegator 10 nmplenent fine-
grained poficies with one key par without any additional ezse on the proxy A security mode)
for this concept 15 provided aml oemal definition for semamtic security Is also provded,
Alithor propused’ e type-based proxy re-sncryption schemes one (» CPA seoure with
apherstex privacy while the other 35 €3 A secure without cipher-tex privacy.

Jha and Mandal |31 proposed a symmetnc Mock cpher techmigue m yexr 2008 The
technigue considers & inessage 8s bingry steing on which a CRKRKA is perfoumed A block
of “n' bits is 1akeat as mpul stream. where ‘o' varies from 8 to 256 from u contimums stregm
of bits and the sechmigue operates on I o generate the intrmediaie gnerymed stream. This
technique dirsetly involves all the bits of blocks b & Boolean aperstion and 4 session key.
Thae s operarion (5 perfimmed repeatedly for different hlock sizes us per the specification
of a session key of a session 1o generme e final escrypred stream. It s & kind of block
caipher and symmetne ioniute heoce, gecoding 15 done tollowing the same procedure A
comparison of the proposed techaigue with existing and Industriaily accepted RSA and TDES
tms alsn hoen done in terms of fregueacy dstehution wed noo-homoyeneiry of source and
encrypied file

Iie el Minddal 137] peoposed & symmentie block <ipher techmgoe in year 2008 The
rechuigue considers s message ua bisary sinng on winch Cascaded Recussive Buwise
Opcraton and Carmy Addinon on Blocks (CRBOC AB) 15 apphed. A block of ' bty 15 tuken
as i ingar siremn, wheie "o viries from 4 10 256, from & contimious siream of bits ind (he
technique operates an It o generate the inermediale encrypted steeam The  hasic
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churncterisie of CRBOCAB tochnique 15 the wse of & cary i socond stage The technique
directly mvolves all the bits of blocks i » hioary additon. The same operation is performed
repestedly for differemt bock sizes 24 per the specification of 4 session kev of a session o
generate the find encrypredd siromm 1t bs 2 kind of Mock cxpher and symmeerie i mature
hence, decading i< done following the same procedure A comparisen af the proposed
technigue with exiting und iisdustrially sccepted RSA xod Trple-DES his also been done m
ierms of frequency dismribation and lumogeneity of source and encrypred filey

A highly secure symmerne stream ciphering technigue based on hopping of chaotic
maps and orbits is nttoduced by Nasir and Zein | 52] The chaotic logistic and guadeatic maps
used to generate the cipher. while the temt mup s wsad generme map hoppiniz sequence The
key detormines the Initial conditions. otbits. und othit hopping patterss There are gluht
dipher-genersting maps. Each has sixteen arbits The streuny ipher s prodoced by hoppisg
between) both mups and arbits. Denailed exumples are provided. The resuhis show dian thiy
techmaue 15 myghly proomsing

A novel appeoach for dessign of stream ciphers based oo » combination of pseudo-
randomness and randompess is proposed by Milwiicvic and Tmal 531 ln 2008 The core
clement of the approach ls u pseudnnndom embodding of the eandom bits tnlo the eigher-
jext. This embedding plave 2 role of 4 lomophonie encoding and implies an additional
communiuiation averhead. Refore i aupur to the public cammumecation chymel the cpher
text wirh the embedded random bits o slso mtenmonally dowraded via 55 exposure 10 n
modernie notsy symmerno channel The proposed design has potential of providing that
complexnty o recoverng e secret Kev 10 the known plaintext sstacking sceaatio is close 10
the complexity. of recovering the secret kov vid the exhaustive search Accordingly, the
proposel approach cas be considernsd ax 4 trade-off between the ereased secarity and
decreased conmmumicatsn effciency

Paul. Duna and Bhmachirys [§9) presented a substimnon-hased hlock cipher thar
considers & file 10 bo oncrypted as a bie-stream. The cipher implemens & somage efficten
wigorthim through winch along with encrvption = reduction m #12¢ 18 wis0 achieved. As
sncryphon s done ut bit label. this algorithar can be implemented on any kind of files A
teridency of tncrease in exacution time is-observed The proposed techmque is compared with
the cxasting International Data Eacryption Algorithm (IDEA) with rospest to exacation tme
aiil degree of nosbamoyeneity A generaiized expression for the key space by foemularized

A novel programmable secormy processar for eryprography algorithms presemed by
Haw et ol [91) The 16-bir lengah RISC-like inssruction sar and Jastage pipeline provide fow
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code denity, ot bardware cost and low power constption Parallel on-chip lookup tables
are imtegrmed ta obtan satisfustory perfrmance of aryptogeaphic processing  Chiness
wirehess bocal area nerwork block ciphir sandart-SMS4 und NIST encrypoon standird-AES
are unplemented w this processor, and i is the first implememuton of SMS4 hssed an o
domain specific programmable processor To ressst external atiack on memones, 8 method
fur secure storage of round key is also proposed

Sarany and Khondram |Z8) in 2000 presented an inodepth juxtaposition of RSA and
Flliptic Curve Cryptosysiem (ECC) and provided an overview of the dilferent iade-off
mvolving in chovsmg bettveen cryposysterns based on them Athins offer ECC a4 & sitable
nhternanve 10 RSA Authors also presented expenimuental resulis quantifying the berefits of
psmy ECC for public-key cryprosssiom

The security of Xwindows |5 usoully divided to suthenticahon/anthonzalion OF
comnections, and authorization of Xclient iincractions The firsi issue hay been well.addressed
by vesearch irough mechamsm such o chost and suith Lippalacd ot ol [31) discussed the
spproaohes to (he Ly isue ooe of auhorization  Authon peessted taxonomy of differen
upproach amt discuss the effecoveness af i light-weight mechidsm

Dimen and Mandal [34] presented & §23-bir privaie key hayedl hlock cpler m 1he yenr
2000, RSBP, which 15 capable of enoryptmg files up 1o 11 MB {1 s formaiated on the basis
ol hase- 10 value corresponding 1o a hlock of hits, which i3 to be checked If it s pranie or 001,
It pesults i an aliezation of size for file beny encrypred Wi executable performance is
analyeed o the basis of execution e graphical layout of frequency disetibuthon of
characters and (Hi-Syuare salues for varyme degrees of fieedon RSAP is found 10 be highly
comparable with existimy cryplosystenm.

Lanf Mafibooh and Tkeam |61 proposed o pmametenzed desgn of modulu
exponentiation on -reconfigurable plallocms for RSA cryptographic processor Modulas
Expoacntintion is st the heart of vanous anthmetic srchitectutes used inmost Public Key
cryprogaphy tigarithing. Modular Bxpocentiotion of large numbers fequies excessive
prw@ing An efficie tmplementation of Modular Exposemtiation may help overcome the
spoed sssuns of Pubbc Key Crymogmphy In thiy work the ot promising techmgue of
Montgomery. wodular exponentiston wwl its opnmizabions have been deeply explored
Authors have been able to achieve performances whioh are bester than eurficr pubhished
resulis Full bit length modular exponentiations with different word soes and vadices are
implemented and there resulis are shown.
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Provgg et ul |71 ] proposed a Key management scheme [ ad-hoo networks in (he vem
2009 With Initial trust in the system moedel = new idemity-based distnbutcd  key
magemen scheme bas been proposeld. Verifiahle secret sharihg techiology und blind shor
signntires wre appliell it this acheme The scheme | composed of system initialization
update of 2 node’s private key, share refreshing of system private key, discover of malicious
nodo and key revocauon The maodel with imitial rust makes the scheme more scoure. The
overticad of storsle, commumieation mxl comgunation are reduced snce e dentity-based
public key system |s used The venfable secrer share techaology effectively peevems the
node from behaving dishonestly  The update scheme of 4 node's private ey provides mutual
suthertication. The Blind sheet signatine ensures the share of private key can be trsisminted
10 the unsecured chammé! The key revosation is ssmpple and comvenient simee the vilid thne ¢
added 10 1he key The smalyws shows thie the schimae putlined not only providey. greste
seeurny, bul aiso impeoves the cificiency than previous schome for ad hoc networks:

Ghosh and Paul [90] presented o process by which one can secure say kmd of fike
(e newly developed encrypiion elgorithm is presented in this paper With iwlp of generated
dintinct blocks Nelevel agniv some distinet blocks ste regengrued fir (N 4 ) jdevel Thus
source streamy or plain test targee stremm o encrypeed tose will be generaled antd decrypio
text will be gotten om the spplying the revesse process Fhe algonthim can be mmplemented on
any kind file as o s ymplememed m bu-level The strength: of the techmique bas been
anaivzed in this paper

Pal aad Mandal [93] proposed = four stage character/®it Jevel encodiog Iechnique
(RRCMEPCC) where the first three steps take inpat blotk of fengadl 128 bt 192hit and 256
i, vospectively, aod yenerate imermediate Bocks of the same lengthy wsing identied lengths
of keys im exch step The fourth stuge penerates final cipher Wocks baged on tatidom sssion
keys Before axecoton of the fourth sage, all 256 bit blocks ars passed through the chaming
process 1o ensure the gencratton of pon-tdentical imenmediate stenm: A ywo dimensiony)
mstox hased subssitunon and folding aperanon 15 pertformed i the Hest stage ol eacryprion,
whereas a three dimensionsl marrix based permutation and substtution operation is done in
the nex) sege Agsin. & four dimensional matrie ottented substilulion snd transposicton
operation iy applicd i the shird wage Finally, wragpioue opesation is dens (o produce (he
cipher text To expod the effectiveness of the slgovithm, (ke obtained results are compared
with BAM, TDES. €TSCOT and RS A algorihms.

Lamba [54] proposed o dessan ond snslysss of strexm ciphors for pelwork seouriy o
the year 2010 Tius papet mainly avalvsis and describe the design issue of stegam cipliers in
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Nework securny # Ihe sreams are widely used: to protecung the privacy of dignal
lnformation A variety of attacks suginst strean cipher exist, (algebruic and 0 ob) These
attacks have been verv successful against a variety of sirdam ciphers So in this paper efforts
bast heer done tor dessgn and andlyze stream ciphers The main contribution is 10 design new
sirenm ciphers through analysts of the algebraic immurity oF Roolean fmetions and S-Boxes
In this papor, the crypwoersphic properies of arm-tmear seanstormation bave been wsed fie
destgning of sream ciphers Many LFSKR (Linew: feedback Shifi Regster) based sttenm
ciphers use non-Tisear Bookean funchion 1o destroy 1ha Iimearity of the LFSRis) oupae. Many
ol these designs have been beoken by aluebraic aacks, Tiere authors analyzed @ popular it
cryplographically significan olass of nontimear Boolean finerons for their resistance 10
alpehraic anuoks

Chen and Gio [56] proposell » tovel stresm cigther i the year 2010 Pesformanse and
key randomness sre two key 1ssues for |hs aream cipher systems. In this paper, o hightwelgh
stream crphicr with good randommness of key stream has been praposed. It unilizes a novel
moide! named 1ree parity iachine to generate sitcams. The most supenonly of this scheme is
thad 128 hite conlil be genersted based on one vme of sivte jotation. and i passes the fall
ENT raadonmess test The, implementation of the propased schome for wineless sensoc
networks, TisyStrcam. his been presented, TinyStecam Is based oo ThrySec protooals. and
consists of 65024 hytes ROM and 1659184 bytes RAM Due to simphe stmcture wul sl
compistaton TinyStream s canmdered 10 be good Tor sesure commumenimm apphicalions n
the resource consteaing based WSNs

Sntart card is usell incroasingly and widely, secwrity becomes # primary issue for
mformaton tramsaussion. Public key oryptographiy is the main dircetions of rescarch In smart
et eneryption Amalysii of the peinciples of public bey crypography, (ihusiates two typical
cryprographiss. RSA and ECC by Peng and Farg |00) Moreover. comparisens anl
discussions sbour public key sizes amd the sccurny cequied of thess fwo crypogphic
frotocols. 1n1he case of ECC s with smulter keys to proyide hgh secumy and high speed m &
b Bandwidtle thix panes selected FCC aypropraphic protocol to nnplemen| the smar cant
enrypion

A fist public key atgorithmn of Kapaack type has boew proposed in the year 2010 hy
Zhamg and Nialin [64) Public ey eryplogriphy system i no aaby suocessiiil in protecting
the - confidemimbiny of miormmiion mm'm. bt also & good saluinn fo the key
managemenl issues However, almoss gl knapsack-type public Key cryprogmphy has been
proven unsafe This paper umalyzed und improved an easy solution of kanpesck probiem
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based on the s publickey cryprographic slgotthm  An impeoved slgonithm i proposed
due 1 high dénsity backpack. so that it can resist the low-desisity subsct und prtocks. Analysis
o that in the premise of Almost same efficiency of eacryation and decryption. the
snprored) wgorithm i bettec than the original algorithm in security

An entunced FPGA splementation of the srmminghied eryprogeaphis aloriihm is
progoged m 2010 by San and Nuray [80] Hummingbmd 55 & sovel alive-lightweight
cryptographic algonthm aiming Wi resoures-constramed devices In s woek, mr enlanced
hardware implemeneatinn of the Hummingbird coyptograpiie afgonthm for lowrcost Spastan-
3 FPGA famlly The enhancement is due 1o the introduction of the coprocessar approach 1 is
seen that ) Vines and Spartan FPGAx comsist of many embedded memory blocks and s
wirk exploced the use of these flanesional blocks The intrinali sriallie of the algnnthe ix
explowed 50 thar each swep performs jpe ong openimon on the date. Authors comgurd the
petformance results ‘with other reponed FPGA mplomemmions of he  Hghiwvendd
ceyprographic alyotithms This work preseols the smiliest ang the mos efficrom FPGA
implementztion of the Hummingbitd crvprographic algorithi.

The wancept of binsry Beld scithmenc is useéd 10 generate block cipher propoacd by
Pal el Mandal 193] 10 2010 The sechisgus cantises of five dnges. where i each of first four
wizges ey field arhmensc brsed substitution techmque abong with key ussoctation mincess
1 used The lengths of npur and ourput blocks i rhese fouy siayes sre idennical and fhey are
256 hit, 128 hit. 04ba and 12 Bk, respecuvely. The last siage consssts of a naslinear S-box
operation which may gonerte cipher block of lergth difforent from 115 mput §n most of the
cases the proposed alyntithm generates space efficient ciplier. At the time of docryplion, # wt
ufmugsng_nud i conmmmetiom with the usar mput ke

A ﬁmwwmhqmm«lwuhmhmummebedtmhcm
2011 by Manda) and PulChoudtairy [39] Thére are age mimbers ot algosithan svailable in
symmetry key block cipher Al these slgorhms have been wsed aither complicarcd keys w
produce cipher loxt from plain text or u complicated algoninms for it The fevel of secuny of
Al alporithms ix dependent an efther sumber of iteraiions or length of kevs T this paper. 2
symmtry key block cipher wgorithm has boen proposad 1 enervpt plaim texe fow cipher texs
Of Wice versa ysing 4 frame sl A compacative study have beenmaibe with RSA, DES IDEA,
BAM wird otber atwornhms with Chi-squure vahite. fregueney distribution, b ratia (0 cleck
the security bevel of peoposed algorahm: Finally, # compurson fas hoon mde for time
complexity for eocrypion of plian text and decryption fiom cipher 1exs with 1he well-knowa
exisiing ulgotithms
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A linear cryptanalysis of block ciphers has been proposed in the year 2011 by
Bogdanov and Rijmen [48]. Linear cryptanalysis, along with differential cryptanalysis, is an
important tool to evaluate the security of block ciphers. This work introduced a novel
extension of linear cryptanalysis — zero-correlation linear cryptanalysis — a technique
applicable to many block cipher constructions. It is based on linear approximations with a
correlation value of exactly zero. For a permutation on n bits, an algorithm of complexity
O(2n—1) is proposed for the exact evaluation of correlation. Non-trivial zero-correlation
linear approximations are demonstrated for various block cipher structures including AES,
balanced Feistel networks, Skipjack, CLEFIA, and CAST256. Using the zero-correlation
linear cryptanalysis, a key-recovery attack is shown on 6 rounds of AES-192 and AES-256 as
well as 13 rounds of CLEFIA-256.

A differential cryptanalysis of block ciphers has been proposed in the year 2011 by
Blondeau and Gerard [50]. Differential cryptanalysis is a well-known statistical attack on
block ciphers. Authors presented a generalisation of attack called multiple differential
cryptanalysis. Authors also study the data complexity, the time complexity and the success
probability of such an attack and it is experimentally validate the formulas on a reduced
version. Finally, authors proposed a multiple differential cryptanalysis on 18-round
PRESENT for both 80-bit and 128-bit master keys.

1.3 Problem Domain

Campbell [101] proposed a microprocessor based module to provide security in
electronic fund transfer. Electronic Fund Transfer (EFT) is expected to grow in importance
and to result in national interchange system. The potential for fraud in EFT is quite
significant, and can be prevented by the use of cryptographic security techniques. A
microprocessor based security module has been developed which serves as a CPU peripheral
to perform all cryptographic functions which an EDP facility requires to secure its EFT
operations.

Computer communication systems, local-area networks, interconnected local-area
networks, and electronic mail systems are playing an increasingly important role in office
automation, telecommunications, and factory automation. A microprocessor based crypto-
processor has been proposed by Schloer [104]. Recent advances have made the technology of
cryptography a viable tool for providing security. The DES-Data Encryption Standard as well

as public-key systems have also been used extensively. The overall system structure and user
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merface nlong with wn overview of cryprography und a review of the design conssderstions
wre also presented by 1he author, The performance parameters ke non-homogeneny 1ese,
freguency distribution graph are not evaluated in this papet

Dutta anct Mandal {12] proposed & bit-level secret-key block cipher which follows the
principle of substitution in 2004 Avalinche ratio st 1« pol calewlated in this paper Sinhs
and Munda! [17] proposed 4 novel block cipher based on & microprocessor system where the
encrypsson is dore through Overlapped Madido Arithmetic Techmqus (OMAT) in 2004 The
non-homogeneny test calcalated i tus paper is not good Jha, Mandal and Shakya |36)
descobed & Mt Jevel symmetne encrypnon techmygue throngh Recutsive  Trunsposition
Operation (RTO) in 2005 1o enkance security of transmission. Agsin avalsnche ratio est is
nod caleulated m this paper Jha und Mandal proposed » swmmetric block cipher [13] it the
year 2006 The techowque consideted A message a8 binary swing ol which a Cascaded
Recursive Carry Addirion and Key Rotstion (CRCAKR) (s spplied The key lengih ealculated
i thes paper 15 not 128-bils which now considered & secure key length Jha and Mandal [27)
proposed a symmetne block cipher techmaue 1 year 2007 The rechmagie conswlered &
messeee as binary string on which & cascaded recursive key 10lulion o i sess0n Key and
adifinion of blocks (CRKRAB) is applied. Jha and Mandal |35} proposed & symmetric block
cipher techmgue in year 2007 The hatdware performance parkmeter like HDL synthesis is
ool done in this paper. The techiigue considercd & message a8 inary siring on which »
recursive key rotavon (RKR) s appiied Joa wnd Mandal |33] propossd & symmete block
cipher techmgue it year 2008, Toe wechnique considers a message as binary siring on which'a
CRKRKA s performed. The lechmigue  here » not been implemented v ether in
microprocessor based systems or FPGA hased systems. Jha and Mandal [37] proposed »
symmescic block cipher tochmique in vear 2008 The tochnigoe conviders a messuge #s hinary
armg on which Cawaded Recurswe Bitwise Opesation and Carry Addition on Blogks
{CRBOCAR) is applied. Time complexity like encryption time and deceyprion nme by found
10 be ron sausfactory i this papes

These ten references given here speaity the problem dommn as follows

o Microprocessor ¢an be used to develop erypto bardware or crypmo

peocessan S seenre eleetionme fund tanstor o 8¢ an embedded system
10 be used for security purpose.
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FPGA can be used to develop crypto hardware or crypto processor for
secure electronic fund transfer or as an embedded system to be used for
security purpose.

Develop such techniques which are faster, and this can be achieved by
using microprocessor based techniques and FPGA based techniques.
Develop such techniques which are simpler which means techniques
with low computational complexity.

Development of Non-Fiestel block cipher [150] but still with good
cryptographic parameters.

Development of symmetric block ciphers that is the source stream
repeats after some number of iterations.

The cryptographic parameters like non-homogeneity test using Chi-
Square test, frequency distribution, avalanche ratio test and key length
have been achieved to satisfactory level in this thesis with respect to
RSA.

The algorithmic parameters like encryption time and decryption time has
been achieved to satisfactory level in this thesis with respect to RSA.
The hardware parameter like HDL synthesis report (both timing and
component) has also been achieved to satisfactory level in this thesis
with respect to RSA.

Therefore, the problem domain is to develop efficient microprocessor based

techniques and FPGA-based techniques to be used in embedded system.

1.4 Proposed Methodology

Any mechanical or electrical system that is controlled by a computer working as part

of an overall system is called embedded system. A general-purpose computer is made to

perform a variety of functions. An embedded system, which may contain a high performance

CPU than in general purpose computers one, has a set of specific tasks for which the system

Embedded systems have grown tremendously in recent years. There are three

important reasons of this.
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First, integrated circuit (IC) capacities have increased to the point that both soflware
processors and custom Jardware processars now commonly coexist it u sinple 1C

Secand, quality compilers snd program size increases have led 4o the common use
processor independem €, C+= and Iava compilers and mtegruted design platforms
embedded system design

Third. svnthesis (echnology has advanced 1o the pomt that synthesis {ools have
bocome communplace m the desien of diginal herdware

Synthesis tools achieve nesely the same for hardware design 28 compilers achieve (n
sultware design They allow the designer to describe desired fancunnalily In high-level
programming Temmage, md they the anomatically geneate tn efficient custom-hardware
processor implementation

Firstly, the performance of the slgonthms is often crucind Oue needs encryplicd
plgorithms 10 run at the transmission raes of the communication links Slow ruming
cryplogtaphic plenrithms sranslate unto consumer dissatisfaction and meonvenience Ou the
other hand, [ast ranting encryption mighv mean high product costs since trditionally; higher
speeds were achieved through custont hardware devices.

Sccondly In addinos o performunce requirements, gearanering secorny is A
lcermdabie challenge An encryption algorhm runmnyg on & general-purpose compuiey has
only limited phvsical secutity, us the sccuee storage of kevs i memory 15 difficult on mos|
operating svatems On the other hand hardware encryption devices can be securely
encapsulated 10 provent attackers from tampering with the system. Thus, custons hardware ts
e platfearm of chotce for seeurity protocol designers Hindwaee solathons, however, come
with the wellknown drawbuck of reduced Hexibifny and potentially figh costs  These
draswbacks sre especially pronument i secaeny applicaiions. which =re dessgned using new
secunty protocol paradigms.

Many of the new security protocols decouphe the choice of cryprographic algorithm
fram the design of the protocol Users of the prstocal negotidte on the choice of algaritlm 10
use for a particula secome session The new devices 1o support these spplicatians, thea. mest
not anly suppors 1 single coyptographic algonthin und pratocol, bt gl st be “egorithm
agtle” that 1, able 1o select from » vanety of tigonithms For example. [PSce (1he seunriy
sandard for e Imemer) allows to choosing out of a hst of differess symmeteic as well
asymmetric ciphers. Some of the symmetric-key algovithms are DES. 3DES, Blowfish.
CAST, IDEA_RCS RCE and wo on Thus, softwire-based svatams would seem 1o be a bottet
fit because of their flexibifity However the secunty engineer 1 facad with o difficult chowce
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Formunately, many embedded processors combie the flexibility of software on
pencrad-porpose computers with the near-hardware speed and better physical securny than
Yeneral-puipose compuiers

Embedded processors are afready an integral pant of many communications devices
and thew importance will contimee 10 incréase Combine this with their flexibility 0. be
pmmmmd anel Aty whiitity 10 pesform anthmetic operations a1 moderste speeds, U iy easy
10 5ce thin they are » very pramisimg platform ro implement coyprographic algonthms

Mere. 1ne focus 18 on the bawes of cryprography snd she implementation of
eryptowraphic ipplications on embedded systems i Secton 2. i1 introdoces she gencral
theory and concepts of symmetric-kev amd puiblic-key cryptography as well as the operstions.
which are most commanly performed. [t will be shown thit public-key operansons are very
computationadly Heasive amd therefore requbre plaiforms, which have stong arthmetic
capabilines. Tn Secrion 3, & survey of previous eryprographic implementalions on embedded
systems 15 presented, as well as some of the charactenstics of the proposed sigonthms. An
avervitwy of implementations of symmetnic-key and pubfic-key algorithms 15 goven Fally, o
ervds up with same conclusions

The fielld of efficent algorithms for the implementation of cryprographic schemes is
yery active ane However, essontially sl eryptogesphic resessell is being  conducted
independett of hurdware plutloems, and lintle ceseirch focuses an algoritbim optinnzatan fr
specific processons

Crypio sigorithm can be implemented i either hardware or software I as Garly sasy
(o implement crypto wigonthms w soltware, but such approach is typically too slow for teaks
(e applications sich as sorige devices, embedded svstom, cte. Hence, for these Kinds of
applcations, hardware Always sppears to be the ultimte chbwe of implementation As
coprocessory, (hey zan oiflosd lineconsuning algorithms and reduce the conypuation
bonleneck (Lela e al. 200)) For amy swme opetstion and function, hardware
implementanon will always owpediorm nuplemematon m oming performance - Cryplo
hardwure wceelerstors e oot only faster n general, but 21so offes ot the same tme more.
[mrinsic security Unlike software implementanons, crymo hardware is resistant to physical
iampering This is ooe of the most linportant features of the ervplo hardware [n addition.
crypro hardware also cammet be cloned easily, hacked, modify, ere Therefore, it is suitable 1
be used i muny of the critical real-time applications
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1.5 Salient Features of the Thesis

The detailed study in literature survey reveals to me the following facts:

e Most of the algorithms/techniques implemented are software based; my
intention is for hardware implementation for high speed, low area and much
lesser power consumption.

e It is also learnt that still today most of the low end embedded system uses
microprocessor as a driving device, so the candidate has also opted for
microprocessor-based implementation.

e FPGA is the future of embedded systems and a lot of research is still awaited
in this domain, so the work is a step towards the same.

e Most of the algorithms/techniques devised are based on Friestel block cipher
[121, 122]; the proposed work is to design non-Friestel ciphers with better
cryptographic and algorithmic parameters. These designs are suitable for
embedded systems.

e Since symmetric ciphers are much faster and simpler design than asymmetric
ciphers having the same properties so my design is based on symmetric

ciphers. Symmetric ciphers are also suitable for embedded systems.

An embedded system is a special-purpose computer system designed to perform one
or a few dedicated functions, often with real-time computing constraints. It is usually
embedded as a part of a complete device including hardware and embedded software.
Embedded systems many of the common devices in use today. Embedded systems are
commonly used in today’s world ranges from portable MP4 player to most common mobile
phones; others are iPod, DTH and many more. An embedded system is a combination of
hardware and software that may have some mechanical components to perform some specific
task. Embedded systems consist of small computerized parts within a large device that serves
more general purpose. The programs and instruction written for embedded systems are called
firmware and are stored in read-only memory or flash memory. In today’s world the use of
embedded system is common in everybody’s life. Hence, the security concern in embedded

systems is growing in exponential terms. Cryptography is one of the ways to provide security
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in these embedded systems. So, the realization of this goal can achieved through
microprocessor based solution and also fast growing FPGA based solutions.

Any work is to be accepted widely requires some betterment than the existing
systems. In this research work the devised techniques are compared with existing and
industrially accepted asymmetric block cipher RSA (Rivest-Shamir-Adleman). Finally a
security model is proposed in the end of the thesis. Thus the proposed work can be

summarized as follows:

e To devise symmetric key cryptographic technique. As symmetric key
cryptography is faster than that of asymmetric key cryptography which can be
used for embedded systems. Symmetric key cryptography is also suitable for
encryption of large data or files.

e Then these techniques are compared with existing algorithms such as RSA.
The parameters are Chi-Square value, Frequency distribution, Encryption
time, Decryption time, and Avalanche ratio.

e After satisfying the above parameters a set of techniques are then implemented
in 8085 Microprocessor based systems.

e Again satisfying the same another set of techniques are then implemented in
FPGA based system, both for the use of these techniques in embedded systems

and also in general purpose computers.

1.6 Organization of the Thesis

This thesis consist of three parts, the first part is from Chapter two to Chapter three
which contains two proposed microprocessor based solutions, in the second part from
Chapter four to Chapter nine which contains a different set of six proposed FPGA based
solutions and in the last part from Chapter ten and Chapter eleven models are proposed and
conclusions are drawn.

In this thesis following eight new techniques are proposed:-

e Modified Recursive Modulo-2" And Key Rotation Technique (MRMKRT)
¢ Recursive Transposition Technique (RTT)

e Two Pass Replacement Technique (TPRT)
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o Triangular Module Arithmetic Technique (TMAT)

o Recursively Oriented Block Addirion and Substitusion Technique (ROBAST)
o ShuMe-RAT (SRAT)

* Triple Segacious Vanguish (TSV)

o  Forwerd Backward Overlapped Magdulo Arithmetic Technigue (MFBOMAT)

Amony them MRMERT and RTT are foy misroprocessor based mmplementutions and
TPRT TMAT, ROBAST. SRAT TSV and MFBOMAT arc for FPGA  besed
implementations

Chagpter (wo contains 3 proposs! of micropeocessor based solutions. In this chapeer, &
novel block cipher based on & micropiocessor system has heen proposed where the
encryption b& dene theough Modified Recursive Modulo-2° snd Koy Rotation Technigue
(MRMEKRT) [143] The originsl message i consitlered &5 4 stream of hits, which s then
divided into u mumher of hiocks each containing 1 hits where a bs any onc of 2, 4, 4. 16, 52
64 128, 256 The 1wo adjacem blocks are hen added waery the modalis of gddinon s 2
The resull replaces the second block, first block remamng nrchanged. After that the whole
strcam of bits is circular lef rotated The modulo addition: has been implemented n 4 very
simmle manner whre the carry vart of the MSB is discorded 10 got the vesult. The technique ix
applied in 4 cascaded manner by varving the Bock size from2 1o 258 The whole tertmigue
has boen implerpented through o mricroprocessor-hused system by usmg a modulo sabiraction
techmque for decryption

Chapier three 55 the final chapter based on migcroprocessor based eryprosysteny. 1is
chapter contains 3 generalized approach towards e-Socurity throagh » nove] variable lenath
block cipher bised wlyorithm termed us Recrsive Tramsposition Techmgue (RT1) [135] The
plaln text & comsidered a8 3 stream of bits, which is then divided into o wmimber of hlocks,
ench ponsaming & (vatkable unmber of bitd) hits. A<l is & geessalizad spproach 40, k=2 % n
ot k= (2*n+1) thit s even ar odd numbers of bits per Blogk, where e {set of positive
megers§, A mamx is consitused taking 1wo sdjscem blocks then the 1wo adjacen blocks are
XORED and the result 15 replaced with second block. the firss block remans unchanged The
same process i repeated for whole plain text The lechnique s implemetted in both
micropeocessor-based system and in high lovel programming languave This technigue is
simple and 4 conparable resnt bas been found  This proposed technique thows e
fnprovernent fn letecopensous poit of view than MRMKRT
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This Chapter four deals with FPGA-based soluticn It's 2 generalized approach
iowards digital comtent peotection through a mwel block cipher based algonthm called Two
Pass Replacement Technique (TPRT) [132] The digital messape or plain tex) is considered
45 2 steeaim of bits, which is then divided imp 2 number ofblocks, esch containing ¥ bits. As
1l a8 & genemlized appronch so. k=2 * nar k= {2%a-1) that 1z even o odd mumbers of hits per
block, where o |set of posiive micgers]. The two adhacem blocks are NORED and the
esull replaces 1he second block, 1he irst block remains uochanged 1he same process is
repeated In whole message The same round is again done in reversible manner thas s the
resilly of XORED opesation betweet the last block and 2* last block replaces the second tast
hlock  The techamque is dmplemened In Both FPGA-hased system and In high level
pengramming fanguage

Chapeer five descnbes & block cipher based new cryprosysiem has been proposed.
where the encryption 15 doae through Thangolar Modulo Anthmetse Teohmque (TMAT)
1 144], which consists of three phases The origingl inessage is considered #s & stream of bits
In Phase | bit stream Is divided mto 2 number of equal iz blocks Then the Trianguls
algorithie is performed on odd Wocks [148, 149), where even blocks are remaining
unchanged and fogether form & hob Steemmy In Phase 2 modulo anibimeths operallon s
performed on thut bir stream, which is divided mto 4 muniber of hiocks, each contaning o
g nis 25 kas 12 3 and sp on Then modulo addition s performed beyween: first and
second hock aond 1the content of the secand block ts replaced by 1he result. where the lirsl
block is remain unchanged This is continuimy 1l the Iast block is changed and also tor block
dize wis 2 4.8 and soon In case of modulo addition the camry out of the MSH  discarded
In Phase L the Troeguds alaocthm is perfosmed. on even bocks bur odid blocks are
remmimimg dnchangsd and together form onppun Meeam  In case of decryption, reverye
wigorithm 15 used, whete modulo subtracuon 1echmigue 15 performed insicad of performing
modulo anthmetie technigque

Chapter six proposed FPGA hased 1echninue where g message is considered ns 2
binary atnng on which the techmgue lermed as Recursively Oriented Block Addition and
Substitution. Technigpee (ROBAST) | 138] 5 appliod A Block of n-bits |5 taken as an nput
stream, wheee W ranges from 8 10 256 - bit then ROBAST s applict i each Wogk 1o
genergte (ntermedinte avenm thwough llemtive process, sy oo infermediste smesm s
consadered ws 8 capher jext. The same operaton 18 performed repeatedly on vanous bleck
sizes It s u kind of block cipbier and symmetric 10 natoee hence decoding e done 1 simil
maanet  This chapter also peesets an efficient hardware realizalion of (he proposed
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wechmague nsing state-of-thean Freld Programmuoble Gate Ammay (FPGA). The technigue is
also coded in € programmnng [129] language and Very High Speed lmegrated Circun
Hardware Description Longuage (VHINL) Varous results and compansons have been
performed agains induserially accepted RSA. A yood result in terms of encryplicn time and
decryption time has been found lor this proposed technigue, ROBAST than TPRT and
TMAT

In Chapter seven, an iterative block cipher bused o rotational sddition lechmgue and
bunerfly-shuffle for confison and diffuseon respecively has been proposed  The cesign is 2n
mprovement over an exasting design based on just rotational sddition techmgue, and o
achiseves deamatic improvemests in terma of diffusion and nmtime efficency over the
existing onc. 1his techiique is cilled a3 ShuMe-RAT (SRAT) [139] Efficient hardware
architecture 10 lmplament the proposed design on FPGA, and perfirm VIIDL-based
simulation vsing XiTinx ISE has heen consteucted bere Using & © mplomemation m
softwise. (s 1echmgue has 2lso been compared with populsr oiphers like RSA to prove its
competence  This proposed techmigue shows tmprovements i Chi-Square value aod m
diffugion than ROBAST. TMAT sl TPRT

Chapter cight also deals with FPGA-based solutions In this chapter, 8 new block
gipher. TRIPLE SV (ASV / ISV) [140), with 236-bit block size and | 12-bit kev length has
been devised, Guenerally. gream giphers produce higher avalanche effect it Triple SV shows
& subistuntial pove in avalanche etffect with a block cpher implementation The CRC mode hay
been used 10 anain higher avalanche effect The techmgue 1 unplemented an C 20d VHDL
and has been tested Tor Teassinly  This techmque shows 8 mgh value i avalanche oo
compared 1o SRAT, ROBAST. TMAT und TPRT

Chapter nine is the final FPGAbused solution, a new Cryprosystem based on block
cipher has been proposed i this chapter where the encryplion & done theough Modified
Forward Backward Overlipped Module Arithmetic Technique (MFBOMAT) [145] The
ongmal message is considersd s 4 wream of bits, which s then divided into a number of
blocks. each contanving 1 dis. where n is any one of 2, 4, 8, 10, 32 o4, |28, 256 The first
and Jast Mocks are then sdded where the modulus of addition 1 2" The resull replaces ihe
fast block (say Nth block) ferst block remaining unchanged (Forward mode) In the next
atempt the second and the Nth block (the changed block) are added and the result replaces
the seoand block (Backward model Again the second (the changed block) and the (N1 jth
hlock wre added and the result replices the N-Inh hlock (Forward mode) The modulo
sddition has been smplemented i @ very sumple manner where the. camy out of the MSB is
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discarded to get the result. The technique is applied in a cascaded manner by varying the
block size from 2 to 256. The whole technique has been implemented by using a modulo
subtraction technique for decryption. MFBOMAT is giving much better result in all respect
than previously proposed technique.

Chapter ten gives cryptographic models for microprocessor based systems and FPGA
based systems and conclusions are drawn in Chapter eleven.

- 69 -






Section |

Microprocessor Based Solutions






Chapter 2
Modified Recursive Modulo-2" and Key Rotation Techniqgue (MRMKRT)






2.1 Introduction

In this chapter, a novel block cipher based on a microprocessor system has been
proposed where the encryption and decryption is done through Modified Recursive Modulo-
2" and Key Rotation Technique (MRMKRT). The original message is considered as a stream
of bits, which is then divided into a number of blocks, each containing n bits, where n is any
one of 2, 4, 8, 16, 32, 64, 128, 256. The two adjacent blocks are then added where the
modulus of addition is 2". The result replaces the second block, first block remaining
unchanged. The modulo addition has been implemented in a very simple manner where the
carry out of the MSB is discarded to get the result. After addition one bit left circular rotation
is applied. The technique is applied in a cascaded manner by varying the block size from 2 to
256. The whole technique has been implemented through a microprocessor-based system by
using a modulo subtraction technique for decryption.

For this implementation the stream size of 512 bits has been taken but the scheme
may be implemented for larger stream sizes also. The input stream, S, is first broken into a
number of blocks, each containing n bits (n=2%, k=1,2,3,......,8) so that S = B1B,Bs....... Bm,
where m=512/n. Starting from the MSB, the blocks are paired as (B1,B>), (B2,Bs), (B3,B4) and
so on. The MRMKRT operation with modulo addition is applied to each pair of blocks, the
result replaces the second block keeping first block intact. After addition one bit left circular
rotation is applied. The process is repeated, each time increasing the block size till n=256. So,
encryption is a process of converting intelligent message into stupid form. Therefore,
decryption is the process of getting back the intelligent message from the stupid one. The
proposed scheme has been implemented by using the reverse technique, i.e. modulo
subtraction technique, for decryption. The flow of the work is to first implement all the
proposed algorithms in C programming, the test for feasibility using frequency distribution
test, test for non-homogeneity, time complexity analysis and avalanche ratio test. Then the
proposed algorithms are implemented for microprocessor and FPGA.

Section 2.2 described the algorithm of MRMKRT in detail using block diagram,
section 2.3 illustrates an example, section 2.4 shows how modulo addition is being done,
section 2.5 deals with key generation issues, section 2.6 gives the algorithmic analysis of the
scheme, section 2.7 gives generalized routine as a microprocessor based implementation,
section 2.8 illustrates various results and its comparisons with existing RSA algorithm and

section 2.9 gives a brief discussions.



2.2 The Algorithm of MRMKRT

The algorithm of MRMKRT is based on bit level encryption technique. A plaintext is
taken for encryption in the sender side and ciphertext is taken for decryption in the receiver
side. It is a bit level cipher so, during encryption plaintext is first broken down into a blocks
of bits, let B1 = {a0,al,a2,....,an-1}, B2 = {b0,b1,b2,......bn-1}, .... Bm={.....}, so here each
block is n-bits in size and number of blocks are ‘m’ then MRMKRT encryption is performed
which is again combined, C1||C2|....][Cm, here block Bl is converted to block CI1 after
MRMKRT encryption, block B2 is converted to block C2 after MRMKRT encryption and so
on to block Bm is converted to Cm after MRMKRT encryption, hereto form ciphertext.
During decryption ciphertext is broken down into blocks of bits, let C1 = {a0,al,a2,....,an-1),
C2 = {b0,bl,b2,......bn-1), .... Cm={.....}, so here each block is n-bits in size and number of
blocks are ‘m’ then MRMKRT decryption is performed which is again combined,
B1||B2||....]|Bm, block BI is regenerated from block C1 after MRMKRT decryption, block
B2 is regenerated from block C2 after MRMKRT decryption and so on to block Bm is

regenerated from block Cm, to form plaintext. A generalized approach is taken for explaining

the algorithm of MRMKRT.
MRMKRT MRMKRT
Encryption Decryption
| n -bit plain text | n-bit Plaintext

!

k- number of

bits

blocks. each n'k

y

Each Adjacent
blocks are
modulo added.
replacing second
! block

}

Now whole n-
bit plain text is
circular left
shifted one bit
position

different bloc
sizes and

“different block

sizes and ’
rounds given bv
user

Each Adjacent
blocks are
modulo Subtracted
replacing second

block

k- number of
blocks. each n'k

bits

Now whole n-
bit iciphertext is
circular right

rounds given by I:'—}_s] Rad o i
S position
| n-bit Ciphertext | ——— [=n-bit Ciphertext |

Figure 2.1: Modified recursive modulo-2" and key rotation technique (MRMKRT)
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Figure 2.1 gives the block diagram of MRMKRT. The MRMKRT is defined with n-
bit plaintext which is to be encrypted, ‘k’ blocks with ‘n/k’ bits per block. It has three main
rounds/steps which are explained below:-

e Round 1: At first n-bit plaintext has been broken into k number of blocks and
each block has n/k bits as given in figure 2.1 of the block diagram of
MRMKRT, let the blocks are B1, B2, B3, .... Bk, the following
operations are performed starting from the most significant bit
towards least significant bits.

e Round 2: In each pair of blocks, the first member of the pair, say block B1, is
added to the second member, say block B2, where the modulus of
addition is 2™ for block size m. Therefore for 2-bit blocks, the
modulus of addition will be 4.

e Round 3: Now the whole n-bit text is left circular shifted/rotation by 1-bit

position.

This round is repeated for a finite number of times and the number of iterations will
form a part of the session key as discussed in section 2.5, which is given by the user.

So, in general the whole plaintext is broken down into two-bits block size, then
modulo addition are performed and at last a one-bit left circular shift is performed. After that
the same three operations are performed for 4-bit block size, i.e. the whole n-bit stream is
now broken down into block of sizes 4-bits. In this fashion several rounds are completed till
it reaches a round where the block size is 256 and the encrypted bit-stream is obtained. Since
the original content of block B; changes due the addition with block B;.;, a new content of B;
is added to block Bi:;. This is due to the overlapping nature of the block-pairs, which
increases the complexity of the algorithm resulting in the enhancement of security.

During decryption, the reverse operation, i.e. modulo subtraction, is performed
instead of modulo addition, starting from the LSB and decreasing the block size from 256 to
2. At first whole n-bit ciphertext in right circular shifted/rotation by one-bit position, as
shown in figure 2.1. Then the n-bit ciphertext is first broken into blocks of sizes 256-bits,
then the two adjacent blocks, say B1, and B2, are modulo subtracted instead of addition,
these three stems are repeated for a number of iterations and various block sizes given by the

user, actually this forms the key.
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2.3 Example

As discussed in section 2.2 MRMKRT encrypts n-bits of plaintext with ‘k’ blocks
with ‘n/k’-bits per blocks. In this section 32-bit plaintext is considered as an example of
MRMKRT, the whole encryption and decryption process is performed by the following four

rounds:-

e Round 1: In first round, 16-blocks are taken for encryption and decryption,
therefore block size is ‘32/16 = 2 bits’ per block.

e Round 2: In second round, 8-blocks are taken for encryption and decryption,
therefore block size is ‘32/8 = 4 bits’ per block.

e Round 3: In third round, 4-blocks are taken for encryption and decryption,
therefore block size is ‘32/4 = 8 bits’ per block.

e Round 4: In fourth and final round, 2-blocks are taken for encryption and

decryption, therefore block size is ‘32/2 = 16 bits’ per block.

Consider a stream of 32 bits, say S = 11010011000110111010011101000101. The
whole process of MRMKRT is described in four rounds in figure 2.2 to 2.5.

Round 1: Block size = 2 bits, number of blocks = 16

Input:
B; |B2 |Bs |Bs |Bs |Bs | Br | Bs
11 |01 |00 |11 |00 |01 |10 |11
By |[Bio |Bi1 |Biz | Bis | Bis | Bis | Bis
10 10 01 (11 |01 |00 |01 |00
Output:

B: |B, |Bs [Bs |Bs|Bs |B7 |Bs
11 |00 |00 {11 (00 01 |10 |01

Bo |Bio |Bi1 | B2z | Bz |Bua | Bis | Bis
10 00 01 |00 01 |01 01 01

Figure 2.2: First round of MRMKRT
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Figure 2.2 shows the first round of MRMKRT, the 32-bit plaintext is broken down
into 16 numbers of blocks and each block is of size 2-bits. So, first block B1 has ‘11’°, next
block B2 has ‘01’ and so on until last block B16 has ‘00’ as value was got, these are reflected
in input blocks. Then the two adjacent blocks B1 and B2 are modulo-2 added, so, ‘11” + 01’
mod 2 = ‘00°, which is replacing the second block B2, the first block B1 is unaltered, this is
reflected in Output block. The whole operation is performed for all the sixteen blocks. As a
result the sub-stream as, X = 11000011000110011000010001010101. Now a one-bit left
circular shift is performed. Which generates, X’ = 10000110001100110000100010101011.
This sub-stream will be now input to the round 2.

Round 2: Block size = 4 hits, number of blocks = 8

Input:
B B> Bs Bs Bs Bs B Bs
1000 | 0110 | 0011 | 0011 | 0000 |1000 |1010 |1011
Output:
B1 B> Bs Ba Bs Bs B Bs

1000 | 1110 |O0O11 |O0110 0000 1000 | 1010 | 0101

Figure 2.3: Second round of MRMKRT

Figure 2.3 shows the second round of MRMKRT, where, the input blocks from round
1, X, this 32-bit stream is broken down into 8 numbers of blocks and each block is of size 4-
bits. So, first block B1 has ‘1000°, next block B2 has ‘0110’ and so on until to get last block
B8 has ‘1011 as value, these are reflected in input blocks. Then the two adjacent blocks B1
and B2 are then added as modulo-2*, so, ‘1000° + ‘0110’ mod 2* = ‘1110°, which is replacing
the second block B2, the first block B1 is unaltered, this is reflected in output block. This
modulo addition is very clear when adding block B7 and Block BS, here ‘1010° + 1011’
modulo 2* = “0101°. The whole operation is performed for all the eight blocks. After this to
get the sub-stream as, Y =10001110001101100000100010100101. Now a one-bit left circular
shift is performed. Y’ = 00011100011011000001000101001011 was obtained. This sub-

stream will be now input to the round 3.
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Round 3: Block size = 8 bits, number of blocks = 4

Input:

B1 B> Bs B.
00011100 | 01101100 | 00010001 | 01001011

Output:

B1 B> Bs B.
00011100 | 01010010 | 00010001 | 01011100

Figure 2.4: Third round of MRMKRT

Figure 2.4 shows the third round of MRMKRT, the input blocks from round 2, Y’,
this 32-bit stream is broken down into 4 numbers of blocks and each block is of size 8-bits.
So, first block B1 has ‘00011100°, next block B2 has ‘01101100’ and so on until to get last
block B4 whose value ‘01001011° is generated. These are reflected in input blocks. Two
adjacent blocks B1 and B2 are then modulo-2° added, so, 00011100’ + ‘01101100° mod 2°
=‘01010010’, which is replacing the second block B2, the first block B1 is unaltered, this is
reflected in Output block. The whole operation is performed for all the four blocks. After this
to get the sub-stream as, Z =00011100010100100001000101011100. Now a one-bit left
circular shift is performed. Z’ =00111000101001000010001010111000 is obtained. This sub-

stream will be now input to the round 4.

Round 4: Block size = 16 bits, number of blocks = 2
Input:

Bl BZ
0011100010100100 | 0010001010111000

Output:

Bl BZ
0011100010100100 | 0101101101011100

Figure 2.5: Fourth round of MRMKRT
Figure 2.5 shows the fourth round of MRMKRT, taking Z’ as an input from the round

3, the whole 32-bit stream is now divided into two blocks each of size 16-bits. After modulo-
2'° addition to get the 32-bit stream as C’ = 00111000101001000101101101011100. Now
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performing a circular left shift of one bit, to get the final ciphertext as,
C=01110001010010001011011010111000.

2.4 The Modulo Addition

An alternative method for modulo addition is proposed here to make the calculations
simple. The need for computation of decimal equivalents of the blocks is avoided here since
it will get large decimal integer values for large binary blocks. The method proposed here is
just to discard the carry out of the MSB after the addition to get the result. For example, if to
add 1101 and 1001 the result will be 10110. In terms of decimal values, 13+9=22. Since the
modulus of addition is 16 (2*) in this case, the result of addition should be 6 (22-16=6).
Discarding the carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So
the result will be 0110, which is equivalent to 6 in decimal. The same is applicable to any

block size.
2.5 Key Generation

In the proposed scheme, eight rounds have been considered, each for 2, 4, 8, 16, 32,
64, 128, and 256 block size. Each round is repeated for a finite number of times and the
number of iterations will form a part of the encryption-key. Although the key may be formed
in many ways, for the sake of brevity it is proposed to represent the number of iterations in
each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-
bit key for a particular key. Example in section 2.5.1 illustrates the key generation process.

Table 2.1: Representation of number of iterations in each round by bits

Round Block Number of Iterations
Size Decimal Binary
1. 256 50021 1100001101100101
2. 128 49870 1100001011001110
3. 64 48950 1011111100110110
4. 32 44443 1010110110011011
5. 16 46250 1011010010101010
6. 8 4321 0001000011100001
7. 4 690 0000001010110010
8. 2 72 0000000001001000
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Figure 2.6: Round v/s iteration in MRMKRT

2.5.1 Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for
block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 2.1 shows the
corresponding binary value for the number of iterations in each round. Figure 2.6 shows the
graph for the round v/s iteration. When the block size is 2-bit then the process of MRMKRT
is applied 72 times, for 4-bit block size the process of MRMKRT is applied 690 times,
similarly when the block size is 256-bit then the process of MRMKRT is applied 50021
times. The number of times of iteration is solely decided by the user or sender of the secret
message.

These numeric values are converted to equivalent binary strings and these binary

strings are concatenated together to form the 128-bit binary string:
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110000110110010111000010110011101011111100110110101011011001101110110100101
01010000100001110000100000010101100100000000001001000.

This 128-bit binary string will be the key for encryption for a particular session.
During decryption, the same key is taken to iterate each round of modulo-subtraction
for the specified number of times.

2.6 Analysis

MRMKRT described here is symmetric in nature, that is same key is required for
encryption and decryption. Symmetric ciphers are also those where the number of
iterations/steps involved is the same in the decryption that is if ‘i’ is the number of iterations
performed during encryption then the number of iteration required during decryption is also
‘", but this is not the case for MRMKRT encryption and decryption if modulo addition is
considered in both cases. MRMKRT is off-course symmetric key/private-key cryptography

where same key is used for both encryption and decryption.

Table 2.2: Plaintext and ciphertext pair in hex for single iteration of MRMKRT

Block Size | Input Plaintext | Output Ciphertext | Number of Iteration to Get Back the
Original Plaintext
2-bits D31BA745 863308AB 16
4-bits 863308AB 476844363 256
8-bits 476844363 38A422B8 4096
16-bits 38A422B8 7148B6B8 65536

Table 2.2 gives the plaintext and the corresponding ciphertext obtained based on
executing single iteration of MRMKRT and also the number of iteration required to get back
the original plaintext when modulo addition is performed. When block size is 2-bits, the
plaintext is ‘D31BA745” and the corresponding ciphertext is ‘863308AB’. The number of
iteration required to get back the original plaintext with modulo addition is 16. In the next
round, when block size is 4-bits, the plaintext is ‘863308AB’ and the corresponding
ciphertext is ‘476844363°. The number of iteration required to get back the original plaintext
with modulo addition is 256. In the next round, when block size is 8-bits, the plaintext is

‘476844363 and the corresponding ciphertext is ‘38A422B8’. The number of iteration
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required to get back the original plaintext with modulo addition is 4096. In the next round,
when block size is 16-bits, the plaintext is ‘38 A422B8’ and the corresponding ciphertext is
“7148B6B8’. The number of iteration required to get back the original plaintext with modulo
addition is 65536. Thus by observing the table the order of time complexity of MRMKRT is
O(n*). Therefore to minimize this time complexity the modulo-subtraction is proposed for
decryption.

After the first rotation by one bit, msb has taken the Isb position and all other bits are
shifted left by one bit. So eight such rotations are required to regenerate the original string
for an 8 bit string and one of the seven intermediate strings can be used as encoded string. If
the string generated after 2™ rotation is used as encoded string, then ( 8 —2 ) = 6 more
rotations are to applied on the encoded string to get back the original string.

The principle can be extended to n byte string. The number of rotation required to get
back the original string for n byte string ( m) = n x 8, where n is the number of bytes in the
string.

The total number of intermediately generated string, (k) =(nx8 -1)

Forn=1,k=7.

Considering that after i-th rotation, the generated string is used as encoded string.
Then the number of rotations to be applied on the encoded string at the time of decoding, | =
nx8—i.

Forn=1andi=2,thenl=6.

When a large number of bytes are taken into consideration in the string, the rotational
encoding will not be very effective. On 8" rotation, the MS byte will go to the LS byte
position and all other bytes will be moved to the right. The characters in the string will appear
again in the shifted condition and MS byte character will come to the LS byte position. On
16" rotation the same thing will happen. So after 8 and its multiple rotations the part of the
message will reappear with cut and paste condition. This is the disadvantage with the
rotational encoding.

On rotational encoding a modification is suggested here with a view to eliminate the
disadvantage with the rotational encoding. Before applying the rotational encoding, a
particular bit ( say, Isb ) of each byte of the string under consideration is complemented. This
additional feature is very effective and will eliminate the disadvantage of re-appearing the
bytes after 8 and its multiple rotations. This will also be very effective for any number of
bytes. The encoding with large number of bytes with a particular bit inverted will be more

effective. The complexity will be high with large number of bits in the string.
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2.7 Implementation

The 8085 microprocessor has been used for realizing the Modified Recursive
Modulo-2" and Key Rotation Technique (MRMKRT). MRMKRT is first implemented with
8-bits block size, then with 16-bits block size, then with 24-bits block size continuing up-to
256-block size. In this section generalized routine with block size 8-bit or more has been
discussed. The HL-pair is loaded with memory location where the bytes will be stored,
register C is stored with the value of number of iterations to be performed, and register D is
stored with the value of block size. To realize the encoder, following four routines are
written. The following four routines are called from the main routine during execution of the

algorithm.

o Routine ‘addblocks’ — This routine will add the two adjacent blocks in
general.

o Routine ‘rot’ — This routine will rotate the string of n bytes by one bit in
left circular shift.

o Routine ‘store’ — This routine will store the string as well as the
intermediate strings generated.

o Routine ‘subblocks’ — This routine will subtract the second block from the

first block in general.

Four routines are discussed followed by diagram. These subprograms are illustrated

from section 2.7.1 to 2.7.4 and main program is illustrated in section 2.7.5.

2.7.1 Algorithm of ‘addblocks’ routine

This routine has used HL pair as memory pointer, it will add two consecutive memory
locations pointed by HL-pair, and C register as counter, representing the number of times the
addition of blocks will be performed. The register D is stored with the value of the block size,
this value can be set to 08h means the block size is 8-bit or with any higher value, say 10h

means the block size is 16-bit and so on.
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Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:
Step 14:
Step 15:
Step 16:
Step 17:
Step 18:

Clear register C and CARRY flag.

Load C with counter value, say O5H.

Load D and E with block size, say 10H.

Load HL pair to point to memory location FOO0H.

Move the content of memory to A register.

Increment HL pair as many a times the value stored in D.

Move the content of memory to B register.

Add A and B registers without CARRY.

Move the result stored in A to memory location pointed to by HL pair.
Decrement D.

If D =0, then go to Step 16.

Load again HL pair with FOO0H.

Decrement C register.

Add the content of C to HL pair and store the result in HL pair.
Repeat from Step 5.

Increment HL pair by 10H.

If C is zero then go to Step 18 else go to Step 6.

Return.

By changing the value in register D the block size can be changed, register C here

store the number of iteration this modulo addition can be done, the result is stored in the

consecutive memory locations pointed by the HL-pair. After each addition the register C is

decremented by 1H and the HL-pair is incremented by block size, in this routine HL-pair is

incremented by 10H. The whole operation is repeated until register C becomes zero.

2.7.2 Algorithm of ‘rot’ routine

This routine rotates the string anticlockwise by one bit, containing n bytes. It is
assumed that the string is stored from FO0OH onwards, LSB in FO00H. The Is bit of the string

stored in FO00H is checked for O or 1 and set the carry accordingly. Then, the memory

pointer is set to the last location, containing the MSB, and rotates the byte left by one bit

through carry. The process is continued till the first location, containing the LSB, is reached.
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Step 1: Register C is initialized as counter

Step 2: HL pair, used as memory pointer, is set to F900h
Step 3: The memory content is moved to A.

Step 4: 01h is ANDed with A.

Step 5: If the zero flag is set, register B is loaded with 00h, otherwise with 01h.
Step 6: The memory pointer is set to the last location.
Step 7: The Is bit in B is shifted to carry bit.

Step 8: The memory content is rotated through carry.
Step 9: The pointer is decremented.

Step 10: The byte counter, C is decremented.

Step 11: Till the counter is exhausted, go to step 8.

Step 12: Returned.

By changing the count value in C, the bit length in string can be changed, that is the

number of bits to be left circular rotated.

2.7.3 Algorithm of ‘store’ routine

This routine is used for storing the string as well as the intermediate string generated
from F900h onwards during encoding or decoding. Here the HL pair is used the pointer of the
memory from where the bytes will stored. The initialization of the HL pair is made through

the main program and will be used as parameter to the routine ‘store’.

Step 1: The BC and DE pair is saved in the stack.

Step 2: The D is initialized with byte counter.

Step 3: The BC pair is initialized with FOO0H.

Step 4: The content of memory pointed by BC pair is moved to A.
Step 5: The content of A is moved to the memory pointed by HL pair.
Step 6: The HL and BC pairs are incremented.

Step 7: The D, byte counter is decremented.

Step 8: Till it is zero, go to step 4.

Step 9: BC and DE pairs are incremented.

Step 10: Returned.
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By changing the counter value in D, the byte length can be changed. Thus this routine

stores the intermediate

results on memory location FO900H onwards.

2.7.4 Algorithm of ‘subblocks’ routine

This routine has used HL pair as memory pointer, it will subtract second block from

the first block of two

consecutive memory locations pointed by HL-pair, and C register as

counter, representing the number of times the subtraction of blocks will be performed. The

register D is stored with the value of the block size, this value can be set to 08h means the

block size is 8-bit or with any higher value, say 10h means the block size is 16-bit and so on.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10

Step 11:
Step 12:
Step 13:
Step 14:
Step 15:
Step 16:
Step 17:
Step 18:

Clear register C and CARRY flag.

Load C with counter value, say 05H.

Load D and E with block size, say 10H.

Load HL pair to point to memory location FO00H.

Move the content of memory to A register.

Increment HL pair as many a times the value stored in D.

Move the content of memory to B register.

Subtract A from B registers.

Move the result stored in A to memory location pointed to by HL pair.
: Decrement D.

If D =0, then go to Step 16.

Load again HL pair with F900H.

Decrement C register.

Add the content of C to HL pair and store the result in HL pair.
Repeat from Step 5.

Increment HL pair by 10H.

If C is zero then go to Step 18 else go to Step 6.

Return.

By changing the value in register D the block size can be changed, register C here

store the number of iteration this modulo subtraction can be done, the result is stored in the

consecutive memory locations pointed by the HL-pair. After each subtraction the register C is
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decremented by 1H and the HL-pair is incremented by block size, in this routine HL-pair is
incremented by 10H. The whole operation is repeated until register C becomes zero.

2.7.5 Main Program of MRMKRT

The generalized implementation is discussed here; MRMKRT is first implemented
with 8-bits block size, then with 16-bits block size followed by with 24-bits block size
continuing up-to 256-block size.

Main Program

1. Store A with OH or 1H
2. If A= 0 Call ‘Encoding’ else Call ‘Decoding’

]

Encoding Decoding
1: Store register C with number of iteration 1: Store register C with number of iteration
2: Store register D with the block size 2: Store register D and E with the block size
3: Call routine ‘addblocks’ 3: Call routine ‘subblocks’
4: Call routine ‘store’ 4: Call routine ‘store’
5: Decrement D by 01H 5: Decrement D by 01H
6: If D=0 go to step(7) else go to step(3) 6: If D=0 go to step(7) else go to step(3)
7: Call routine ‘rot’ 7: Calculate B=E-C
8: Decrement C by 01H 8: Call routine ‘rot’
9: If C=0 go to step (10) else go to step (7) 9: Decrement B by 01H
10: Return 10: 1f B=0 go to step(11) else go to step(8)
11: Return

Figure 2.7: MRMKRT encryption and decryption algorithm

Figure 2.7 gives the generalized routine for MRMKRT encryption and decryption.

Initially Accumulator (or any other register) is stored with the value OH or 1H, OH value for
encryption and 1H value for decryption.
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In encryption routine, register C is stored with the number of iteration to be performed
and register D is stored with the block size. Then routine ‘addblocks’ is called to add
consecutive blocks given by HL-pair and after that routine ‘store’ is called to store the
intermediate results in stack. These processes will continue for given number of block sizes
as given by register D, thereafter routine ‘rot’ is called to rotate the blocks by circular left
rotation and the number of rotation is given by the value stored in register C.

In decryption routine, register C is stored with the number of iteration to be performed
and register D is stored with the block size. Then routine ‘subblocks’ is called to subtract the
second block from the first block of consecutive blocks given by HL-pair and after that
routine ‘store’ is called to store the intermediate results in stack. These processes will
continue for given number of block sizes as given by register D, thereafter routine ‘rot’ is
called to rotate the blocks by circular left rotation and the number of rotation is given by the
value stored in register B which is equal to E (block size) — C (number of iterations

performed during encryption).

2.8 Results and Comparisons

MRMKRT is also implemented in high-level C-programming language and some of
the results are extracted after encrypting some plaintext files then these are compared with
existing algorithms, RSA, to prove the feasibility of MRMKRT. Finally it is encoded for
microprocessor based system using 8085-assembly language programming. The acceptance
of any solution must satisfy some test parameters, here MRMKRT is tested for feasibility in
five dimensions, these are implementation based results, frequency distribution graph
analysis, Chi-Square test for non-homogeneity, time complexity analysis taking encryption
and decryption time and finally the avalanche ratio test. Section 2.8.1 discuss the
implementation based results, section 2.8.2 illustrates the frequency distribution analysis,
section 2.8.3 test for non-homogeneity, section 2.8.4 gives the time complexity analysis and

section 2.8.5 illustrates the avalanche ratio test.

2.8.1 Implementation Based Results

MRMKRT is encoded in 8085-assembly language program, MRMKRT is encoded
for 4-bit block size, then 8-bit block size continuing up-to 256-bit block size and finally a
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generalized coding has been done. This section explains some of the implementation based

results.

Table 2.3: Implementation based results of MRMKRT
Characteristics | ’ Proposed Techniques - MRMKRT
Block Cipher
Fixed Length Block Cipher
Variable Length Block Cipher
Implementation in Bit-Level
Implementation other than Bit-Stream
Private/Symmetric Key System
Substitution Technique
Transposition Technique
Boolean as Basic Operation
Non-Boolean as Basic Operation
No Alteration in Size
Formation of Cycle
Non-formation of Cycle
Number of sub-programs used
Number of 10/M operations per block of encryption/decryption
Number of Boolean operations used per block of encryption/decryption
Number of Non Boolean operations used per block of encryption/decryption
Calculated T-states per block of encryption/decryption

\‘
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MRMKRT is fixed length block cipher techniques and these are encoded with fixed
length block size say 8-bit, 16-bit, 24-bit continuing up-to 256-bit block size and finally a
generalized coding has been done. Technique is implemented in bit-level with
private/symmetric key cryptography. MRMKRT is substitution cipher, MRMKRT uses both
modulo addition (non Boolean) and Boolean as a basic operation. The plaintext size and
ciphertext size remains same for MRMKRT. MRMKRT forms cycle where the plaintext
regenerates after some finite number of iteration depends on block size and number of
iteration used during encryption. MRMKRT used 4 sub-programs and MRMKRT used 9
IO/M operations per block encryption/decryption. MRMKRT used one Boolean operation per
block of encryption/decryption but MRMKRT also used 5 non Boolean operations per block
of encryption/decryption. So, T-states calculated for MRMKRT is 760. Thus it can be said
that in microprocessor based implementation perspective MRMKRT is successfully realized.

Table 2.3 summarizes these discussions.
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2.8.2 Frequency Distribution Analysis

The variation of frequencies of all the 256 ASCII characters between the source file
and the encrypted file are given in this section. The evenly distribution of character
frequencies over the 0-255 region of the encrypted file against the source file ensures better
security provided by the  proposed algorithm, MRMKRT, and it also shows the

heterogeneity between the two files.

Frequency

J_J_. | ‘ II 1 B ! ll

Characters of the Encrypted File

Figure 2.8: Frequency distribution of ASCII characters in the RSA encrypted file

The frequency distribution graph of RSA encrypted file is drawn in figure 2.8.
According to the percentage of occurrence of a particular character, not the total number of
occurrence. In the frequency distribution graph of RSA encrypted file it can be clearly seen
that the frequencies are scattered in some regions and not well distributed throughout the
region.

Although ten different files were encrypted and decrypted using both RSA and
MRMKRT, only one such file is considered here for analyzing the results. Figure 2.9
illustrates the frequencies of occurrence of all the 256 ASCII characters in the source file and
encrypted file with MRMKRT. A close observation will reveal that the characters in source
file are distributed in a particular region where as in the encrypted file using MRMKRT the
characters are fairly well distributed throughout the character space. Thus if comparing the
same with RSA, shown in figure 2.8 and MRMKRT, shown in figure 2.9, to find that the
characters of the MRMKRT encrypted file is well distributed than that of RSA encrypted file.
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Figure 2.9: Frequency distribution of source file and MRMKRT encrypted files

Hence the MRMKRT scheme may be comparable with RSA in terms of frequency
distribution graph.

2.8.3 Non-Homogeneity Test

Non-homogeneity test illustrates how far the plaintext differs from ciphertext. This
test is carried out with the help of Chi-Square test. It’s basically a statistical test where
obtained frequency is compared with the expected frequency and thus giving the extent of
non-homogeneity between obtained frequency and expected frequency. In this section the

non-homogeneity between plaintext/source file and ciphertext/encrypted files is given.
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Table 2.4: Chi-Square values of RSA and MRMKRT

Source File | File Size| Chi-Square Value Degree of
(Bytes) Freedom
MRMKRT| RSA |MRMKRT| RSA
license.txt 17,632 221484 | 40159 255 64
cs405(ei).doc | 25,422 | 295480 | 199354 255 66
acread9.txt | 35,121 | 420836 | 179524 255 73
deutsch.txt 47,829 555127 | 344470 255 77
genesis.txt | 49,600 | 657591 | 416029 255 75
pod.exe 69,981 | 886397 | 751753 255 76
mspaint.exe |136,463 | 1213869 | 1204193 255 88
cmd.exe 152,028 | 1792759 | 585857 255 73
d3dim.dll  |193,189 | 4351663 | 328677 255 10
clbcatg.dll  |403,901 | 3823423 | 328511 255 11
5000000
4500000
4000000
ﬁ 3500000
P 3000000
f 2500000 i} Chi-Squgre Value of MRMKRT
g‘ 2000000 & Chi-Squ'are Value of RSA
g 1500000
1000000
500000 ——
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Figure 2.10: Chi-Square values for MRMKRT and RSA encrypted files

Table 2.4 and figure 2.10 show the file size and the corresponding Chi-Square values

for ten different files. The Chi-Square values of the proposed algorithm, MRMKRT, are

coming to be in the range of twenty thousand, thirty thousand, forty thousand, fifty thousand

and so on, which are very good results indeed. It is observed that the Chi-Square values for
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MRMKRT are larger compared to RSA. Further, the high values prove that Chi-Square is
highly significant at 1% level of significance. Hence the source and the corresponding
encrypted files are considered to be heterogeneous. Also it has been noted that the time taken
to encrypt a file using MRMKRT is very small compared to that using RSA. One can decide
from this observation that MRMKRT is comparable to RSA from the heterogeneity point of
view.

Table 2.4 also gives values of degree of freedom; in this context the degree of
freedom means the different type of characters present in the encrypted file. If observing this
table the degree of freedom of MRMKRT encrypted files are coming to be 255 and that of
RSA encrypted file is quite less. It means that all the ASCII characters are present in
MRMKRT encrypted file and this result is at par with the frequency distribution graph, where
it is also seen that frequency of MRMKRT encrypted file is well distributed.

2.8.4 Time Complexity Analysis

Time complexity analysis is another vital algorithmic parameter, time complexity is
basically is the amount of time required for an algorithm to complete. The time complexity
analysis is basically done by two ways, first one is a priory estimates and second one is a
posteriori estimates. Second one is taken for tome complexity analysis of MRMKRT. This
section shows the time complexity analysis by taking encryption time and decryption time.

Table 2.5: The time complexity analysis of MRMKRT and RSA

Source File | File Size | Encryption time Decryption time
(Bytes) (in Seconds) (in seconds)

MRMKRT | RSA | MRMKRT | RSA

license.txt 17,632 0.01 0.01 0.12 0.28
cs405(ei).doc | 25,422 0.01 0.03 0.13 0.30
acread9.txt | 35,121 0.15 0.21 0.15 1.67
deutsch.txt | 47,829 0.18 0.35 0.18 3.51
genesis.txt | 49,600 0.23 0.40 0.20 5.06
pod.exe 69,981 0.39 0.39 0.33 4.34
mspaint.exe | 136,463 0.40 0.65 0.43 8.37
cmd.exe 152,028 0.44 0.61 0.51 6.59
d3dim.dll 193,189 0.57 0.75 0.52 10.15
clbcatg.dll | 403,901 0.60 0.95 0.55 11.70
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Figure 2.11: Encryption and decryption time of MRMKRT and RSA

Table 2.5 shows the encryption time and decryption time of the proposed technique
and that of RSA. Figure 2.11 represent the same graphically. The time complexity analysis is
one of the important factors in algorithm design. Here both encryption time and decryption

time is tabulated and shown in the figure. The green line shows the time complexity of RSA
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and pink line gives the time complexity of this proposed techniqgue, MRMKRT. If observing
the encryption time, MRMKRT time of encryption is marginally lower than that of RSA, and
observing the decryption time than it is seen that MRMKRT time of decryption is quite less
than that of RSA. The cumulative encryption time of MRMKRT is 2.98 seconds and RSA is
4.35 seconds. The cumulative decryption time of MRMKRT is 3.12 seconds and RSA is
51.97 seconds. Hence it can be concluded that the time complexity of the proposed technique,
MRMKRT, is quite less than that of RSA.

2.8.5 The Avalanche Test

The Avalanche ratio is another important parameter for the cryptographic security.
The Avalanche is the ratio of difference between the simple encrypted file and one bit
modified source/key file. The avalanche ratio is the degree of measure for cryptanalysis. In
general terms it is the measure that in what extent the characters/bits in the encrypted file will

differ if to modify some characters/bits in the source file or in the session key.

Table 2.6: Avalanche ratio values of MRMKRT and RSA

Source File File Size Avalanche Ratio
(Bytes) (in Percentage)
RSA | MRMKRT

license.txt 17,632 58.0 77.7
cs405(ei).doc 25,422 60.0 80.0
acread9.txt 35,121 75.0 88.8
deutsch.txt 47,829 78.9 89.0
genesis.txt 49,600 80.9 87.0
pod.exe 69,981 58.0 77.0
mspaint.exe 136,463 58.9 76.0
cmd.exe 152,028 67.0 77.0
d3dim.dll 193,189 67.9 82.9
clbcatg.dll 403,901 68.0 88.5

Table 2.6 illustrates the result of avalanche ratio of the proposed technique,
MRMKRT. During this test some characters/bits in the source file are modified and then

again these modified source files are encrypted. Then the percentage of the difference
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between the original encrypted files and the modified encrypted files are taken. It is observed
from table 2.5 that the avalanche ratio of the proposed technique is nearly 80% and that of
RSA is 65%, hence in terms of avalanche ratio analysis MRMKRT is quite comparable with
RSA.

2.9 Discussions

The technique proposed takes little time to encode and decode though the block
length is high. The encoded string will not generate any overhead bits. The block length may
further increased beyond 256 bits, which may enhance the security. Selecting the block pairs
in random order, rather than taking in consecutive order may enhance security. The proposed
scheme may be applicable to embedded systems. Since it is giving very good results for text
files so this proposed technique can be applicable in text based messaging, to encrypt and
decrypt the text messages. The main advantages of this proposed technique are its
heterogeneity and even frequency distribution. The main disadvantage is since it substitutes
the second block and the first block remains unaltered, so this leads to the weakness of these

techniques which are going to overcome in the next proposed technique.
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Chapter 3

Recursive Transposition Technique (RTT)






3.1 Introduction

This is another method of Encoding as described in earlier chapters. It is also a
symmetric and block cipher type in connection with the encryption. MRMKRT described in
the previous chapter is a substitution type cipher where the modulo addition of two
consecutive blocks replaces the second block, RTT described in this chapter is a permutation
and substitution type cipher where permutation of plaintext bits are performed first and then
XOR operation is performed between two consecutive matrices and the result replaces the
second matrix. In MRMKRT modulo addition is the main component of this technique
whereas in RTT XOR is the main component of this technique. Considering that a k-bit string
is passed through the RTT encoder, which encodes a string of same length at its output as

shown in figure 3.1.

Plaintext RTT Encoder Cipherte

k-hit k-hit

Figure 3.1: RTT encoder

Let X be the string of k-bit. It is supplied as an input to the RTT Encoder. The
encoder will generate a string X’ of k-bit at the output. This is the first cycle of encoding. If
the generated string is allowed to pass to the input of the encoder again, then the encoder will
again generate a string X**. This is called the 2" cycle and so on.

The process is repeated and checked each time at the output, whether the output is
identical with the string supplied initially (i.e. X ) or not. It is assumed that the original string
is generated after i cycles. Then the intermediately generated one of (i-1) strings can be used
as encoded string.

Let consider that after m ( m<i ) cycles the generated string is used as encoded string.
The original string X can be decoded by applying (i-m) cycles on the encoded string.

This encoder has been tested and verified with the help of a microprocessor based
system, the specification of which is given the previous chapter, with a string of 256 bit
maximum. The length of string, as recommended presently, is sufficiently high for

decryption.



Section 3.2 describe the algorithm of RTT, section 3.3 explain key generation process,
section 3.4 performs an analysis, section 3.5 give the implementation details, section 3.6
illustrates results and comparisons and section 3.7 gives a short discussions and chalk out the
future work (the next part of this thesis with FPGA-based solutions).

3.2 The Algorithm of RTT

The plaintext is first broken down into blocks of bits then RTT encryption is
performed, same is done during RTT decryption. The number of iterations in encryption and
decryption is also same. A generalized approach has been consider to describe RTT.

RTT is proposed here which shows comparable result in terms of Non-Homogeneity
test, time complexity analysis and avalanche ratio test than that of RSA, and MRMKRT. RTT
is also a bit level symmetric key cryptography.

RTT Encryption RTT Decryption

n - bit plaintext | Step 1 Step 7 | n - bit plaintext

! it

5 Repeat Step 2 to Step 6 for

G otte Step 2 different block sizes and

@ iterations given by session key
Formation of Matrix | Step 3 Step 6 | Formation of output block
Perform matrix wise Step 5 Formation of output matrix
XOR operation Step4 G
Formation of output matrix| Step 5 Step 4 | Perform matrix wise

{} XOR operation
Formation of output block | Step 6 Step 3 | Formation of Matrix
Repeat Step 2 to Step 6 for Step 2 | Formation of blocks
different block sizes and

iterations given by session key

{} Step 7 Step 1 —
ln-birt ciphertext i ——— | n-bit ciphertext

T—

Figure 3.2: Block diagram of Recursive Transposition Technique (RTT)
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Encryption and decryption is broadly divided into seven steps, firstly n-bit source
stream is formed into blocks, then these blocks are formed into matrix, XOR operation is
performed into two consecutive matrices, result in formation of output matrix, then these
matrix are again formed into blocks, these steps are repeated for various block sizes and
iteration given by session key, finally blocks are merged to form output stream.

Figure 3.2 shows the block diagram of RTT. Section 3.2.1 describes the encryption
process in details, section 3.2.2 describes the decryption process in details, and section 3.2.3

illustrates an example.
3.2.1 The Encryption Process

The block diagram of RTT is shown in figure 3.2. The input stream is rounded into
blocks of n- bits each the n may be even or it may be odd and pairing the blocks as explained
in section 3.1, the following operations are performed starting from the most significant side.
This is a recursive type algorithm/technique.

Initially, the whole plain text is considered as a stream of bits and it is broken down
into a finite number of k blocks. As it is generalized approach so block size of k =2 * n or
(2*n +1) where n = {1,2,3,...... } is a set of positive integer. The block size varies between
even and or odd numbers of bits. As shown in figure 3.2, let n-bit plaintext form two blocks
be [al,a2,a3, ...... a9] and [al10,all,al2, .....al8], here it can be seen that the block size is 9-
bit which odd number of bits is. The block length may be odd or even bits which is the
strength of this technique.

Now, the blocks are formed into a matrix of n * m size where ‘n’ is the number of
rows and ‘m’ is the number of columns respectively of the matrix. As shown in the figure the
two nine bit blocks forms two 3 X 3 matrices.

Then, two matrices are XORED, bl = al XOR al0, b2 = a2 XOR all, b3 = a3 XOR
al2, ....... b9 = a9 XOR als8.

Next, the resultant matrix replaces the second matrix remaining the first matrix as it
is. So, as shown in the block diagram of RTT, now get the two matrices [al,a2,a3, .....a9] and
[b1,b2,b3, ........ b9]. The two matrices are noted down in row major order to get the cipher
text. Here to get the n-bit ciphertext as [al,a2,a3, ...... a9,b1,b2,b3,...... b9].

After that, the whole operation is performed on k numbers of blocks that is 0™ block
to (k-1) the block.
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Lastly, the whole operation is performed for various block sizes, matrix sizes and
number of iteration. The block sizes, matrix sizes and iterations will form a part of the session
key as discussed in section 3.3. The different values of block size, matrix size and iteration
number will give total different ciphertext output for same plaintext. This is another strength
of this technique, which is the flexibility described in section 3.4.

3.2.2 The Decryption Process

The technique is symmetric in nature so the decryption is done in similar manner. The
decryption is nothing but the iteration of the same encryption process until the source stream
is got. The number of iteration requires for the decryption depends upon the block size,
matrix size and the number of iterations performed during encryption.

Firstly, n-bit ciphertext is again broken down into two blocks, [al,a2,a3, ....... a9] and
[al0,all,a12, ...... alg].

Now, this two block is now formed into two 3 X 3 matrices and XOR operation is
performed. So, get bl = al XOR al0, b2 = a2 XOR all, b3 = a3 XOR al2, ....... b9 = a9
XOR al8.

Then the result replaces second matrices, last get the n-bit plaintext as [al,a2,a3,
...... a9,b1,b2,b3, .......b9].

3.2.3 Example

RTT is also a variable length block-cipher, that is block size is not restricted to 2",
where n = {Set of positive integers}. Here block sizes are of odd number of bits. This
property gives the programmer the flexibility to encode RTT technique in many different

ways/solutions. This is explained elaborately in section 3.4.

1P1 1P2 OP1 OP2
101 100 = 101 001
010 000 010 010
111 101 111 010

Figure 3.3: Algorithmic flow in RTT
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As shown in figure 3.3 let consider a source stream of S=101010111100000101. This
source stream is formed into two 3 x 3 matrix. In the figure IP1 and IP2 are the two input
matrices. Now, bit wise XOR is performed between matrix IP1 and matrix IP2. Here
considering only the first row of the two input matrices, al =1,a2 =0,a3 =1 in IP1 and al0
=1,al1=0,al2 =0 in IP2. The exclusive operation will result in, b1 =1 XOR1=0,b2 =0
XOR0=0,b3=1XOR 0= 1. So, the output bits are 0, 0, 1 which is the first row of the
output matrix OP2, OP1 is same as IP1. Similar operation will be performed for the second
and third input matrices. As given in figure 3.3 after the encryption process the resultant
cipher text is obtained as S’ = 101010111001010010. Following the same steps during
decryption then plaintext is regenerated.s

3.3 Key Generation Process

In the proposed RTT, the key generation process is given for both fixed block size and
also for variable block size. The fixed block size are those where the plaintext and ciphertext
are grouped into 2" block sizes, where ‘n’ is the set of positive integers and the variable block
size are those where the plaintext and ciphertext are grouped into odd number of bits block

sizes.

Table 3.1: Number of iteration against block sizes

Round | Block Number of Iterations

Size Decimal Binary
8. 256 50021 1100001101100101
7. 128 49870 1100001011001110
6. 64 48950 1011111100110110
5. 32 44443 1010110110011011
4. 16 46250 1011010010101010
3. 8 4321 0001000011100001
2. 4 690 0000001010110010
1. 2 72 0000000001001000

Tag field 0

In the key generation process of fixed block size eight rounds have been considered,
each for 2, 4, 8, 16, 32, 64, 128, and 256-block sizes. As given in table 3.1, each round is
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repeated for a finite number of times, for example, for block size of 8-bits (round 3) the
iteration is for 4321 times, so, the number of iterations will form a part of the encryption-key.
Although the key may be formed in many ways, for the sake of brevity it is proposed to
represent the number of iterations in each round by a 16-bit binary string. Since there are
eight rounds so, the binary strings are then concatenated to form a 16 X 8 = 128-bit key for a
particular session. The tag field is also a part of key as given in table 3.1, tag value 0 means
RTT encryption and 1 means RTT decryption, so, the tag field is concatenated at LSB to get
the key of 129 —bit length.

Table 3.2 gives the key generation process for variable block size operation. Here, if
to see the round 4, so, the block size here is of 61-bits and the number of iteration for this
block size is 38 times. Hence, the block size here is also a part of session key since its value
is variable.

In this process the block size is taken as 8-bit value and iteration is also an 8-bit value
per round. Therefore for each round total bits is 8 + 8 = 16 bits. There are eight rounds so
total size is 16 X 8 = 128-bits.

Table 3.2: Key generation for variable block length technique, RTT

Round Block Size Number of Iterations

Decimal Binary Decimal Binary
8. 253 11111101 203 11001011
7. 103 01100111 101 01100101
6. 99 01100011 83 01010011
5. 70 01000110 55 00110111
4. 61 00111101 38 00100110
3. 33 00100001 20 00010100
2. 17 00010001 10 00001010
1. 3 00000011 2 00000010

Tag field 1

Adding the tag field get total session key length as 129-bits. So, in either or both cases
the key bit length is 128 bits + 1 tag bit = 129 bits.
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3.4 Analysis

This technique is very much flexible and has a generalized approach. As this
technique uses the concept of matrix so a little alteration in the algorithm produces a larger
avalanche. The alteration comes up with the following specifications:-

e The block sizes can be changed to get a different solution. In the example
given in section 3.2.3, the block size is 9-bits, if to change the block size to 16-
bits then there will be different solution for the same plaintext.

e Matrix size can also be altered to get a different solution, for example the 16-
bit block size can get 4 X 4 matrix and 8 X 2 matrix sizes.

e The 1% matrix and or 2" matrix can be transposed to get a different
cryptographic solution.

e The orientation among the rows and or columns of the either and or both
matrix also leads to another cryptographic solution. Such as after formation of
two input matrices, the first row or column of the first input matrix is swapped
with third row or column. This will result another cryptographic solution for

the same plaintext.

So, there are many ways of alteration possible to generate new ciphers.

Considering a k-bit string is passed through the Recursive Transposition Technique
(RTT) encoder, which encodes a string of same length at its output. Let X is the string of k-
bit. It is supplied as an input to the RTT Encoder. The encoder will generate a string X * of k-
bit at the output. This is the first cycle of encoding. If the generated string is allowed to pass
to the input of the encoder again, then the encoder will generate a string X 2. This is called
the 2™ cycle and so on. The process is repeated and checked each time at the output, whether
the output is same as the string supplied initially ( i.e. X ) or not. It is assumed that the
original string is generated after i cycles. Then the intermediately generated one of ( i-1)
strings can be used as encoded string. Consider that after m (m<i) cycles the generated string
is used as encoded string. The original string X can be decoded by applying ( i-m) cycles on
the encoded string.

In microprocessor based implementation MRMKRT used three routines which are

then called by main program of MRMKRT. Whereas RTT uses eight subroutine which is
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then called by main program (as it will be seen shortly in section 3.5), so, the space and time
complexity of microprocessor implementation of RTT is quite more than MRMKRT.
MRMKRT there is replacement of only one block, that is, only second block was replaced
keeping the first block intact. The RTT can also be implemented for the replacement of two
blocks; it is one of the flexibility of RTT. In this technique the number of iteration needed for
decryption is same as the number of iteration needed for encryption. The first routine will
clear the memory locations for storing the counter needed for regeneration of stream, so if to
consider three iterations for encryption then there will be three more iteration for decryption;
hence the total value of this counter is six. Therefore, in microprocessor implementation
perspective the RTT is more complex in terms of time and space than MRMKRT.

RTT consist of matrix operation for both encryption and decryption so the algorithmic
complexity found to be O(n?) which is much less than MRMKRT where the algorithmic
complexity is O(n%).

3.5 Implementation

RTT is a variable length block size so it is first implemented in 9-bits, then 17-bits,
then 35-bits and continuing up-to 255-bits block size, in this section the generalized
implantation has been discussed.

The routines are developed for realizing the RTT Encoder. The routines are
generalized in nature. With proper change in parameter in the routines, these may be used for
any bit stream. The algorithms are written for 255 bit string. The registers described in
algorithms below are A (Accumulator), B, C, D, E, H, L, SP (Stack Pointer) and PC
(Program Counter). The BC, DE and HL are used as a pair of registers.

The routines are:

e Save: This routine saves the final result.

e B: This routine saves the intermediate results.
e A: This routine form the block size.

e C: This routine form the matrix.

e Prg: This routine performs XOR operation.

e Qutp: This routine forms the output matrix.

e Supply: This routine regenerates the blocks.
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The subroutines are described from section 3.5.1 to section 3.5.7 and the main

program routine is given in section 3.5.8.

3.5.1 Routine ‘save’

This routine saves the final result. This routine saves the string stored from FAOOh
onwards to the save area which starts from F9BOh onwards. Here ‘D’ register is used as
counter, HL and BC pair is the memory pointer, loop is used to store the final data byte by
byte. Since it is a generalized approach, RTT has been implemented for 256 bits, so the loop
will iterate for 32-times as there are 32 bytes. All the subroutines are called in main program

described in section 3.5.8.

Step 1: The D register is used as counter, loaded with 20h.

Step 2: The HL pair is used as pointer pointed to FOBOh, the destination

Step 3: The BC pair is used as pointer pointed to FOBOh, the source.

Step 4: The memory content pointed by BC pointer is moved to A.

Step 5: The content of A is moved to destination.

Step 6: The HL and BC pairs are incremented

Step 7: The counter register, D is decremented, till the counter is exhausted, go
to step 4

Step 8: Return

3.5.2 Routine ‘b’

This routine saves the intermediate results. This routine clears the temporary result
area starts from FA20h onwards for 20h bytes. HL pair is used sa a memory pointer, routine
firs clears the temporary result area then stores the intermediate results. The register C is the
counted which is loaded with 32 byte.

Step 1: The HL pair is used as memory pointer pointed to FA20h
Step 2: The register A is cleared.
Step 3: The register C, used as counter is loaded with 20h.

Step 4: The content of A is moved to memory.
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Step 5: The memory pointer, HL pair is incremented.
Step 6: The counter is decremented.

Step 7: Till the counter is exhausted, go to step 4
Step 8: Return

3.5.3 Routine ‘a’

This routine forms the blocks with given block size, register A is the counter, HL and
BC pairs are used as memory pointer, register D is used for loop, register E is the block size.

Step 1: The register A is loaded with count value, 20h and saved in FEOOh

Step 2: The HL pair used as pointer is pointed to memory location FEQOh.

Step 3: The BC pair is pointed to memory location FAQOh.

Step 4: The register D is cleared.

Step 5: The register E is loaded with 08h.

Step 6: The content of the memory pointed by the BC pair is moved to the
register A.

Step 7: The content of A is rotated right through carry.

Step 8: Jump on no-carry to step 11.

Step 9: On carry, the content of D will move to the memory pointed by the HL
pair.

Step 10: The HL pair is incremented.

Step 11: The D register is incremented.

Step 12: The E register is decremented.

Step 13: Till the register E is exhausted, go to step 7.

Step 14: Else the BC pair is incremented.

Step 15: The count value is retrieved and decremented and pushes back to the
stack.

Step 16: Till the count value is exhausted, go to step 5.

Step 17: The content of L is moved to the memory location FDFFh.

Step 18: Return
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3.5.4 Routine ‘¢’

This routine form the matrices of the input stream, HL pair is used as memory pointer,
register C is the matrix size, MSB 4-bits is the row size of the matrix and the LSB 4-bits are

the column size. This routine also calls routine ‘prg’ to perform matrix wise XOR operation.

Step 1: The HL pair used as pointer is set to the memory location FDFFh.
Step 2: The content of the memory location FDFFh is moved to C register.
Step 3: Is the memory content zero?

Step 4: If yes, return.

Step 5: Else, the HL pointer is incremented to FEQOh.

Step 6: The routine ‘prg’ is called.

Step 7: The register C is decremented.

Step 8: Till the content of register C is exhausted, go to step 5.

Step 9: Return.

3.5.5 Routine ‘prg’

This routine performs the XOR operation of the two consecutive matrices. The
register H is loaded with FBh which is the matrix location, XOR operation is performed bit
by bit of the two consecutive memory locations. The row and column information is obtained

from register A and C. Thus this routine performs the main function of RTT Encoding.

Step 1: The content of the memory is moved to the register L.

Step 2: The register H is loaded with FBh.

Step 3: The memory content is moved to register A and C register. This 8 bit
data gives the row and column information of the position of the target.
The 5 most significant bits give the row and the 3 least significant bits
the column information.

Step 4: The row information is derived from the data, stored in register E and
in memory FAFFh.

Step 5: The column information is derived from the data and stored in FAFFh.

Step 6: The BC pair is set to FAFEh.

Step 7: The HL pair is set to FA20h, the base address of the result area.
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Step 8: The content of the memory, pointed by BC pair is moved to register A.

Step 9: If the content of A is zero, go to step 11.

Step 10:

content of A is zero.
Step 11:
Step 12:
Step 13:
Step 14:
Step 15:
Step 16:
Step 17:
Step 18:
Step 19:
Step 20:

in A.
Step 21:

3.5.6 Routine ‘outp’

The HL pair is incremented and the A register is decremented till the

The BC pair is pointed to the memory location FAFFh.

The content of FAFFh is moved to the register A.

The register D is loaded with 00000001b.

If the content of A is zero, go to step 20.

Else, the content of A is moved to the register C.

The content of register D is moved to the register A.

The content of A is rotated left and the register C is decremented.

Till the content of C is exhausted, go to step 17.

The content of A is moved to D register.

The content of A is XORed with that of the memory and the result is

Return.

This routine compares the data from location FO9BOh onwards with that of FA20h

onwards for 20h bytes. This routine regenerates the output matrix, HL and BC pair is used for

memory pointer, register D is counter, as it is a generalized implementation of 256-bits

source stream so there are 32 bytes which is 20h and loaded into register D.

Step 1:

The HL pair and BC pair are pointed to FO9BOh and FA20h

respectively.

Step 2: The register D used as counter is loaded with 20h.

Step 3: The content of memory pointed by BC pair is moved to A.

Step 4: The content of A is compared with that of the memory, pointed by the

HL.

Step 5: If not zero, go to step 9.

Step 6: Else, the HL pair and BC pair are incremented.

Step 7: The register D is decremented.

Step 8: If not zero, go to step 3.
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Step 9: Return.

3.5.7 Routine ‘supply’

This routine is used to supply the generated string at FA20h onwards to FAQOh
onwards for 20h bytes. This routine regenerates the output blocks. HL and BC pair is used as
memory pointer. Register D is loaded with 20h (32 bytes) to regenerates the output blocks.

Step 1: The HL and BC pair are pointed to FAOOh and FA20h respectively.
Step 2: The register D used as counter is loaded with 20h.

Step 3: The content of the memory pointed by BC pair is moved to A.

Step 4: The content of A is moved to the memory pointed by the HL pair.
Step 5: Both the BC and HL pairs are incremented.

Step 6: The content of D register is decremented.

Step 7: Till the content of D is exhausted, go to step 3.

Step 8: Return.

3.5.8 Algorithm of the Main Program for RTT Encoder

The main program for RTT Encoding calls the routines described above for the
transformation. When the routines are called, the registers used for it are properly saved in

the stack and at the time of leaving the routine the previous condition is restored by popping.

Step 1: The stack pointer SP is initialized at the highest address of the usable
RAM.

Step 2: A register pair HL is used as pointer for iteration / cycle is initialized.

Step 3: Another pointer used for storing the result (the transformed block) is
saved in memory.

Step 4: The routine ‘save’ is called to save the string from FAOOh onwards to
FI9BOh onwards.

Step 5: The routine ‘b’ is called the temporary result area.

Step 6: The routine ‘a’ is called to find the positions of 1s in the string and

store from FEOOh onwards.
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Step 7: The routine ‘C’ is called to check for presence of 1s in the string and
calls ‘prg’ for the transformation consulting the table stored FBOOh
onwards.

Step 8: The content of the memory pointed by the pointer is incremented.

Step 9: The routine ‘outp’ is called to compare the generated string with the
saved string.

Step 10: The transformed block is equal to the original block, the result is
displayed and go to step 12.

Step 11: Else, the generated result is supplied to the location from where the
transformation will begin, by calling the routine ‘supply’ and go to
step 5.

Step 12: Stop and end.

The above algorithm is implemented in assembly level for 15 bit initially in order to
verify the transformation. The same algorithm is extended to 255 bit block with the presently
available microprocessor based kit in the laboratory. It is worth pointing that there is no
limitation in increasing the length of the block, if the microprocessor based system supports
with large memory. For the bit-length higher than 255 bit, the destination of the target has to
be coded for more than 9 bits. The developed assembly level programs are available.

Therefore the theoretically computed iterations / cycles conforms the experimental value.

3.6 Results and Comparisons

RTT is also implemented in C-programming language and some of the results are
taken to compares with RSA and MRMKRT, to prove the feasibility of RTT and then finally
implemented for microprocessor based solutions. Section 3.6.1 discuss implementation based
issues, section 3.6.2 illustrates the frequency distribution graph, section 3.6.3 test for non-
homogeneity, section 3.6.4 gives the time complexity analysis and section 3.6.5 illustrates the

avalanche ratio test.

3.6.1 Implementation Based Results

MRMKRT and RTT are encoded in 8085-assembly language program, MRMKRT is

encoded for 4-bit block size, then 8-bit block size continuing upto 256-bit block size and
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finally a generalized coding has been done. RTT is variable length techniques and these are
encoded with variable length block size say 9-bit, 15-bit, 25-bit continuing upto 255-bit block
size and finally a generalized coding has been done. Techniques are implemented in bit-level
with private/symmetric key cryptography. MRMKRT is substitution cipher where as RTT is
substitution and transposition technique, RTT uses Boolean as basic operation and
MRMKRT uses both modulo addition (non Boolean) and Boolean as a basic operation.

Table 3.3: Comparisons of MRMKRT and RTT
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Figure 3.4: Graphical representation of comparisons of MRMKRT and RTT
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The plaintext size and ciphertext size remains same for both proposed techniques.
MRMKRT and RTT forms cycle where the plaintext regenerates after some finite number of
iteration depends on block size and number of iteration used during encryption. MRMKRT
and RTT used 4 and 7 sub-programs respectively. MRMKRT used 9 10/M operations, and
RTT used 5 10/M operations per block encryption/decryption. MRMKRT and RTT used one
Boolean operation per block of encryption/decryption but MRMKRT also used 5 non
Boolean operations. So, T-states calculated for MRMKRT and RTT are 760 and 544
respectively. Thus it can be said that in microprocessor based implementation perspective
RTT is the faster than MRMKRT in terms of execution speed per block of

encryption/decryption. Table 3.3 and figure 3.4 summarize these discussions.

3.6.2 Frequency Distribution Graph

This section illustrates frequency distribution graph obtained after encrypting source
file/plaintext file with RSA, MRMKRT and RTT. The frequency distribution graph shows the
percentage of occurrences of 256-ASCII characters in both plaintext/source file and
ciphertext/encrypted file. Though there are ten files encrypted with all four
algorithms/techniques but here one source file and the corresponding encrypted file is taken
for analysis as other nine files shows the same result. This analysis is one of the important

statistical analyses for any cryptographic solutions.

Frequency

Il H!I Al

Characters of the Encrypted File

Figure 3.5: The frequency distribution graph of RSA encrypted file
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Figure 3.6: The frequency distribution graph of source file and MRMKRT encrypted file
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Figure 3.7: Frequency distribution graph of RTT encrypted file
The variation of frequencies of all the 256 ASCII characters between the source file
and the encrypted file are given in above figures. Over the 0-255 region of the encrypted file

against the source file ensures better security provided by the proposed algorithm and it also

shows the heterogeneity between the two files. These variation frequencies ensure against
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brute force attack. Figure 3.5 shows the frequency distribution of RSA encrypted file. Figure
3.6 shows the frequency distribution of source file and frequency distribution of MRMKRT
encrypted file. The upper half is the frequencies of source file and lower half is the
frequencies of MRMKRT encrypted file. Figure 3.7 shows the frequency distribution of RTT
encrypted file. The frequency distribution of this proposed technique, RTT, is well
distributed. It is also observed that the frequency of MRMKRT is also well distributed. But it
is evident that the frequency distribution of RSA is not well distributed. So it can be say that
the proposed technique, RTT, shows a marginal improvement over RSA but this result is
same for MRMKRT. Thus it can be said that RTT is well comparable with RSA and
MRMKRT in terms of frequency distribution analysis.

3.6.3 Non-Homogeneity Test

Chi-Square test is carried out to perform non-homogeneity test, the observed
frequency is here the plaintext file and the expected frequency is here the ciphertext file. Chi-
Square test basically gives the non-homogeneity between observed frequency and expected

frequency, therefore giving the non-homogeneity between plaintext and ciphertext.

Table 3.4: Chi-Square values of RSA, MRMKRT and RTT

Source File | File Size Chi-Square Value Degree of Freedom
(Bytes) RTT MRMKRT RSA RTT | MRMKRT | RSA

license.txt 17,632 240550 221484 40159 255 255 64
cs405(ei).doc | 25,422 270080 295480 199354 | 255 255 66
acread9.txt 35,121 449011 420836 179524 | 255 255 73
deutsch.txt 47,829 582499 555127 344470 | 255 255 77
genesis.txt 49,600 688115 657591 416029 | 255 255 75
pod.exe 69,981 916577 886397 751753 | 255 255 76
mspaint.exe | 136,463 | 1340770 | 1213869 | 1204193 | 255 255 88
cmd.exe 152,028 | 1990000 | 1792759 585857 | 255 255 73
d3dim.dll 193,189 | 4350880 | 4351663 328677 | 255 255 10
clbcatg.dll 403,901 | 4425780 | 3823423 328511 | 255 255 11

The Chi-Square values are used to analyze the scheme to test the non-homogeneity of

the source and the encrypted file. Table 3.4 gives the file size and the corresponding Chi-
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Square values for ten different types of files. It is evident that Chi-Square values for RTT are
greater compared to RSA and MRMKRT. The average Chi-Square values of RTT,
MRMKRT and RSA are 1525426, 1421863 and 437853 respectively. Hence the source and
the corresponding encrypted files of RTT are considered to be more heterogeneous than rest
of the techniques/algorithm, RSA and MRMKRT.
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Figure 3.8: Graphical comparisons of Chi-Square values of RTT, MRMKRT and RSA

Figure 3.8 shows the Chi-Square value graph of RTT, MRMKRT and RSA encrypted
files of the corresponding files. Ten files are encrypted with RTT, MRMKRT and RSA and
their values are tabulated and shown in figure. It is obvious that Chi-Square value of RTT is
greater than that of MRMKRT and RSA. Therefore it can be said that RTT shows more
heterogeneous result than MRMKRT and RSA.

3.6.4 Time Complexity Analysis
Time complexity analysis is another important algorithmic parameter. A posteriori

estimate method of time complexity analysis has been done, in this method an algorithm is

encoded first and then the time of executing is noted down with test data. In this section
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encryption time and decryption time is taken as parameters for performing time complexity
analysis.
Table 3.5: Comparisons of time complexity analysis of RTT, MRMKRT and RSA

Source File | File Size Encryption time (in Decryption time (in
(Bytes) Seconds) seconds)
RTT | MRMKRT | RSA | RTT | MRMKRT | RSA

license.txt 17,632 0.01 0.01 0.01 | 0.00 0.12 0.28
cs405(ei).doc | 25,422 0.01 0.01 0.03 | 0.01 0.13 0.30
acread9.txt 35,121 0.05 0.15 0.21 | 0.05 0.15 1.67
deutsch.txt | 47,829 0.12 0.18 0.35 | 0.10 0.18 3.51
genesis.txt | 49,600 0.20 0.23 0.40 | 0.20 0.20 5.06
pod.exe 69,981 0.37 0.39 0.39 | 0.35 0.33 4.34
mspaint.exe | 136,463 | 0.40 0.40 0.65 | 0.38 0.43 8.37
cmd.exe 152,028 0.42 0.44 0.61 | 0.42 0.51 6.59
d3dim.dll 193,189 0.45 0.57 0.75 | 0.45 0.52 10.15
clbcatg.dll 403,901 0.55 0.60 0.95 | 0.55 0.55 11.70

Table 3.5 illustrates time complexity data taking encryption time and decryption time.
It is observed that the cumulative time of encrypting all the ten files of RTT is 2.58 seconds,
MRMKRT is 2.98 seconds and RSA is 4.35 seconds. It is also observed that cumulative time
of decrypting all the ten files of RTT is 2.51 seconds, MRMKRT is 3.12 seconds and RSA is
51.97 seconds. Thus in terms of time complexity analysis RTT is far better that MRMKRT
and RSA.
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Figure 3.9: Pictorial representation of time graph of RTT, MRMKRT and RSA encryption
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Figure 3.9 shows the encryption time of RTT, MRMKRT and RSA. It has been seen
that encryption time complexity of RTT is quite comparable with MRMKRT and RSA.
Figure 3.10 shows the decryption time of RTT, MRMKRT and RSA. The decryption time of
RSA is so large that rest of the techniques almost falls in same line. But still it can be said
that time complexity of RTT is quite comparable with MRMKRT and RSA.

3.6.5 The Avalanche Ratio Test

The extent of dependency between many bits of plaintext, ciphertext and key is shown
with the help of Avalanche ratio test. If a single bit in plaintext or key is modified then it will
alter many bits of the ciphertext. Thus avalanche ratio test is another important cryptographic
parameter, this section performs this test.

Table 3.6 shows the avalanche ratio test results of RTT, MRMKRT and RSA. This
test doesn’t show any significant result of RTT. MRMKRT involves left circular rotation
after modulo addition so avalanche ratio test is greater in MRMKRT than RTT where only
one block (second block) is replaced during encryption. The avalanche ratio test of RTT is

comparable with RSA.
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Table 3.6: Comparisons avalanche ratio of RTT, MRMKRT and RSA

Source File | File Size (Bytes) | Avalanche Ratio(in Percentage)
RSA | MRMKRT RTT
license.txt 17,632 58.0 77.7 60.0
cs405(ei).doc 25,422 60.0 80.0 65.0
acread9.txt 35,121 75.0 88.8 68.5
deutsch.txt 47,829 78.9 89.0 73.0
genesis.txt 49,600 80.9 87.0 75.5
pod.exe 69,981 58.0 77.0 80.0
mspaint.exe 136,463 58.9 76.0 81.5
cmd.exe 152,028 67.0 77.0 70.0
d3dim.dll 193,189 67.9 82.9 73.5
clbcatq.dll 403,901 68.0 88.5 65.0

3.7 Discussions

The technique proposed giving satisfactory result in heterogeneous point of view. The
average Chi-Square values of RTT, MRMKRT and RSA are 1525426, 1421863 and 437853
respectively. So, it can be concluded that this proposed RTT, has the highest average Chi-
Square value and is most heterogeneous. The block length may further increased beyond 256
bits, which may enhance the security. The future scope of this work is to incorporate the
algorithm / Technique in embedded systems. The satisfactory results have been found after
implementation and testing. So, this technique is can be used in future for achieving security
in electronic devices.

The future scope of work is to propose various cryptographic solutions/techniques in
FPGA based systems. As FPGA based system is a hot research topic now a day so the
candidate developed some FPGA based systems. Six set of algorithms/techniques has been

proposed for FPGA-Based solutions. These are given in next sections of this thesis.
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Chapter 4
Two Pass Replacement Technique (TPRT)






4.1 Introduction

Corporate objectives, such as increasing profits and sales revenue while utilizing
research and development efficiently, are putting severe pressure on today’s research and
design engineering teams. The resulting system level challenges—creating new products and
lowering the cost of existing “successful” products with fewer people and resources in less
time—can be addressed by using a design philosophy based on FPGAs. A system
architecture using FPGAs as a key component not only reduces new product-development
research and development costs but also the total cost of the organization of a product’s entire
life cycle. It is the new low cost, power devices, the FPGA family, can reduce total system
costs in addition to improving the quality of the products.

Global competition and economic factors are squeezing profits and sales of high-tech
products, putting tremendous pressure on design engineer to bring to market products with
lower cost. Investing in research and development in new product development presents two
different system challenges: creating completely new products that take advantage of the
latest technologies, features, or solutions available in the market, and developing the same for
low cost. For high-tech companies in today’s cost-conscious and power-sensitive “green”
environment, the first challenge translates into creating a completely new product with some
specific functionality not offered by anyone else, while having a lower priced entry point
and/or lower power footprint. The cost reduction of existing successful products is typically
handled by driving down the cost of the components from the product’s bill of materials is
another challenge. Another option is for design teams to redesign the product, not for new
functionalities, but also to achieve more significant reduction of costs.

These goals can be achieved now with a new technological solution namely “FPGA-
based system design”. Keeping views with all these section II of thesis deals with
cryptographic solutions based on FPGA.

In previous section, chapter two and chapter three MRMKRT and RTT were designed
and proposed respectively for microprocessor based systems. As FPGA has revolutionised
the hardware design so the next six techniques are proposed based on FPGA systems.

Section 4.2 discussed the algorithm of TPRT with a block level diagram, section 4.3
gives a detailed example of encryption and decryption process, section 4.4 discussed the
implementation issues with key generation, section 4.5 gives a brief analysis, section 4.6
discussed the results obtained based on implementation and discussions are given in section
4.7.



4.2 The Algorithm of TPRT

The proposed technique is a type of replacement technique or substitution technique.
A substitution cipher is one in which each symbol of the plaintext is exchanged for another
symbol. If this is done uniformly this is called a mono-alphabetic cipher or simple
substitution cipher. If different substitutions are made depending on where in the plaintext the
symbol occurs, this is called a poly-alphabetic substitution. This proposed technique is a
poly-alphabetic cipher.

The original message is considered as a stream of bits, which is then divided into a
number of blocks, each containing k (variable number of bits) bits. As it is a generalized
approach so, k =2 * n or k = (2*n+1) that is even or odd numbers of bits per block, where n =
{set of positive integers}. The technique is implemented in both FPGA-based system and in
high level programming language. The two adjacent blocks of a given size are XORed, the
result replaces the second block, and the first block remains unchanged. In next iteration the
two adjacent blocks are again XORed, now result replaces the first block, and the second
block remains unchanged. Then writing the adjacent two blocks gives the target stream. The
same process is repeated in whole message using a variable size of stream. The round is
repeated for a finite number of times and the intermediate stream is considered as an
encrypted stream.

The technique is symmetric in nature so the decryption is done in similar manner.
After decomposing the encrypted stream into number of blocks, the two adjacent blocks are
XORed, the result replaces the first block, and the second block remains unchanged. In next
iteration the two adjacent blocks are again XORed, now result replaces the second block, and
the first block remains unchanged. The decryption is nothing but the iteration until the source
stream is got. The number of iteration requires for the decryption depends upon the block size
and the number of iterations performed during encryption. The flow is during encryption in
first iteration second block is changed with the XORed result and in the second iteration first
block is changed with the XORed result. During decryption in first iteration first block is
changed with the XORed result and in the second iteration second block is changed with the
XORed result.

TPRT is a bit-level symmetric key block cipher. The number of iterations required for
TPRT decryption is same as the number of iterations used in TPRT encryption. A generalized

approach is taken for explaining the algorithm of TPRT.
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Figure 4.1: Block diagram of Two Pass Replacement Technique (TPRT)

4.2.1 The Encryption Process

The whole message is considered as a stream of n-bits and it is broken down into a
finite number of k blocks, so the size of each block, m = n/k bits. As it is generalized
approach so block size of m =2 * 1 or (2*i +1) where 1 = {1,2,3,...... } is a set of positive
integer. The block size varies between even and or odd numbers of bits. The block diagram of
the encryption and decryption process of TPRT is given in figure 4.1.

Two successive blocks of a given length are XORED to get the result. The result

replaces the second block remaining the first block intact. The whole operation is performed
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on ‘m’ numbers of blocks that is 0™ block to (m-1) the block. As discussed above is repeated
in reversible manner that is the result of the XORED operation between the first block and
second block is replaces the first block, keeping the second block intact.

Varying the block sizes performs the whole operation again, let the initial TPRT
operation is for block size of 2-bits, then the next TPRT operation could be for block size of
4-bits. The number of blocks must be even, to obtain this successive zeroes are added in LSB
position. This round is repeated for a finite number of times and the number of iterations will

form a part of the session key as discussed in section 4.4.
4.2.2 The Decryption Process

The technique is symmetric in nature so the decryption is done in similar manner. At
the receiver end the n-bit ciphertext stream is broken into k-number of blocks each having,
m=n/k number of bits. As it is generalized approach so block size of m =2 * i or (2*i +1)
where 1= {1,2,3,...... } 1s a set of positive integer. So, the block size varies between even and
or odd numbers of bits. The flow diagram of the encryption and decryption process of TPRT
is given in figure 4.1. Now, the first block is XORED with second block and the result
replaces the first block keeping second block intact, in this way the XOR operation is
performed for the all k-blocks. In the next iteration the first block and second block are
XORED and now replacing the second block keeping first block intact. The number of
iteration requires for the decryption depends upon the block size and the number of iterations

performed during encryption.
4.3 Example

Two Pass Replacement Technique (TPRT) is an approach towards e-security through
a variable length block cipher based symmetric encryption technique implemented in FPGA
based systems. The term ‘variable length’ block cipher means that TPRT is not restricted to
2" block sizes, where n= {0,1,2,...... }, TRRT can also have odd number bits block sizes and

with this TPRT encryption and TPRT decryption can be carried out successfully.
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Table 4.1: Encryption process of TPRT

Encryption | Source Stream 10101100

Phase

Passl 10 10 11 | 00

Pass2 Source Stream after Pass2
10 00 11 | 11

Pass3 Source Stream after Pass3
10 00 00 | 11

Encrypted stream 10000011

The encryption process of TPRT is illustrated in table 4.1. Let the source stream be,
S=10101100, now in the encryption passl this stream is broken down into four blocks each of
having 2-bits size. So, there are four blocks, ‘10°, 10°, ‘11’ and ‘00’ which is illustrated row
one of table. Then in encryption process, first block is XORED with second block and the
result is replacing the second block keeping the first block intact, similarly the third block and
fourth blocks are XORed and the replacing the fourth block keeping third block intact. Now
to get the blocks, ‘10°, ‘00°, ‘11° and ‘11°, which is depicted in row two of table. In the
encryption pass3 the same operation is performed but here the result of XOR between first
block and second block replaces the first block keeping second block intact, similarly the
result of XOR between the third block and fourth block replaces the third block keeping
fourth block intact. Now the blocks, ‘10°, ‘00°, ‘00’ and ‘11’ are generated, which is given in
row three of table. Concatenating blocks gives the target stream, finally depicted in row four
of table. Here, the encrypted stream is generated, S’=10000011. In this section only 8-bit
source stream is considered for understanding the technique, but during actual

implementation the block size taken as 256-bits.
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Table 4.2: Decryption process of TPRT

Decryption | Encrypted Stream 10000011
Phase
Passl 10 00 00| 11
Pass2 Source Stream after Pass2
10 00 11 | 11
Pass3 Source Stream after Pass3
10 10 11 | 00
Decrypted Stream 10101100

The decryption process of TPRT is illustrated in table 4.2. The ciphertext is,
S°’=10000011, now in the decryption passl this stream is broken down into four blocks each
of having 2-bits size. So, there are four blocks, ‘10, ‘00°, ‘00’ and ‘11°, which is depicted in
row one of table. Then in decryption process, first block of a given length is XORED with
second block and the result is replacing the first block keeping the second block intact,
similarly the third block and fourth blocks are XORED and the replacing the third block
keeping fourth block intact. Now to get the blocks, ‘10°, <00°, ‘11° and ‘11°, which is
illustrated in row two of table. In the decryption pass3 the same operation is performed but
here the result of XOR between first block and second block replaces the second block
keeping first block intact, similarly the result of XOR between the third block and fourth
block replaces the fourth block keeping third block intact. Now got the blocks, ‘10°, ‘10°,
‘11°, and ‘00°, which is depicted in row three of table. Then writing the adjacent blocks gives
the target stream. Here, the decrypted stream is generated, S’’=10101100, which is finally
given in row four of table. Therefore, if compare S = S, that is, the source stream is again

regenerated.
4.4 Implementation and Key Generation

To analyze the performance, TPRT has been implemented both in FPGA and C
programming language. This has been implemented in VHDL for RTL design to be

embedded in the FPGA based systems. A good synthesis and simulation been generated in

Xilinx ISE 8.1i software. Section 4.4.1 discusses key generation process.
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library IEEE, STD;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;
use IEEE.numeric_std.all;

use work.rajdeep.all;

use std.textio.all;

use std.standard.all;

use IEEE.std_logic_textio.all;

entity TPRT_Final_VHDL is
Port (IN_DATA : in BIT_VECTOR (255 downto 0);
OUT_DATA : out BIT_VECTOR (255 downto 0);
EN_DN : inout BIT;
ITERATION: in BIT_VECTOR(7 downto 0);
BLOCK_SIZE : in BIT_VECTOR(7 downto 0));
end TPRT_Final VHDL;

Figure 4.2: Top-level design of TPRT

This proposed technique has been implemented in IEEE VHDL using 256-bit block
size. The block-size can be altered just by altering the size of bit_vector type variables,
signals and ports from 255 downto 0 to n-1 downto to 0 where ‘n’ is the block size. The
modular design approach is taken while coding this cipher.

Figure 4.2 shows the top-level design of TPRT. The main features of the

implementation are as follows:-

o TPRT Encryption and Decryption using same RTL design.

o Coded using Behavioural model.

o This program is implemented for text file input and output and also for RTL
design for FPGA-chip.

o Encryption and decryption available for all the block size.

o This top-level module has five ports, in_data, out_data, block_size, iteration
and EN_DN.
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EN_DN = 0, means encryption is being done, EN_DN = 1, means decryption
is being done.

The chip entity, in_data is the input bit stream; out_data is the output bit
stream.

block_size selects block size upon which encryption to be performed or
decryption to be performed.

Iteration selects the number of iterations to be performed during encryption
and decryption for particular block size.

EN_DN will tell the receiver side that encryption or decryption is being done.
As this program will also work for text data files so there are three types of
TEXT files used in this implementation, “in.txt” for Source block (SB),
“out.txt” for Target Block (TB) and “block size.txt” for selecting block size
for encryption/decryption operation.

The rest of the coding is done by defining the package which contains functions and

procedures.

IN_DATA

TPRT OUT DATA
BLOCK_SIZE FINAIL
ENTITY EN_DN

ITERATION

Figure 4.3: Top-level RTL design of TPRT

Figure 4.3 shows the top level RTL design of TPRT. TPRT mainly consist of three
functions namely TPRT_ENDN, TPRT_Encryption ALL, TPRT_Decryption_ ALL. TPRT

also consist of one procedure namely TPRT_Formation. The function in IEEE VHDL has

many input parameters but only one output parameter and procedure in IEEE VHDL has

many input and or output parameters. The functions and procedures which are used to realize

TPRT are as follows:-

Function TPRT_ENDN:- This is the main function which performs
encryption/decryption using given block size

and iteration options.
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e Function

TPRT_Encryption_ALL:-

e Function

TPRT_Decryption_ALL:-

e Procedure

TPRT_Formation:-

Therefore, by using the modular design approach and behavioral approach this

This is

the function which performs

encryption using given block size and

iteration options.

This is

the function which performs

decryption using given block size and

iteration options.

This is the common VHDL procedure which

forms the cone according to the Source Block

(SB),

before performing

encryption/decryption.

proposed cipher has been successfully realized in IEEE VHDL.

4.4.1 Key Generation

In the proposed TPRT, the key generation process is given for both fixed block size

and also for variable block size.

Table 4.3 illustrates the key generation process for fixed block size or in other words

blocks sizes of 2", where ‘n’ is any integer.

Table 4.3: Representation of number of iterations in each round by bits for 2"

Round | Block Size Number of Iterations

Decimal Binary
8. 256 50021 1100001101100101
7. 128 49870 1100001011001110
6. 64 48950 1011111100110110
5. 32 44443 1010110110011011
4. 16 46250 1011010010101010
3. 8 4321 0001000011100001
2. 4 690 0000001010110010
1. 2 72 0000000001001000

Tag field 0
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In the fixed block size key generation process eight rounds have been considered,
each for 2, 4, 8, 16, 32, 64, 128, and 256-block sizes. As given in table 4.3, each round is
repeated for a finite number of times, for example, for block size of 2-bits (round 1) the
iteration is for 72 times, for block size of 4-bits (round 2) the iteration is for 690 times, for
block size of 8-bits (round 3) the iteration is for 4321 times, for block size of 16-bits (round
4) the iteration is for 46250 times, for block size of 32-bits (round 5) the iteration is for 44443
times, for block size of 64-bits (round 6) the iteration is for 48950 times, for block size of
128-bits (round 7) the iteration is for 49870 times, and for block size of 256-bits (round 8) the
iteration is for 50021 times, so, the number of iterations will form a part of the encryption-
key. Although the key may be formed in many ways, for the sake of brevity it is proposed to
represent the number of iterations in each round by a 16-bit binary string. Since there are
eight rounds so, the binary strings are then concatenated to form a 16 X 8 = 128-bit key for a
particular session. The tag field is also a part of key as given in table 4.3, tag value 0 means
TPRT encryption and 1 means TPRT decryption, so, the tag field is concatenated at LSB to
get the key of 129 —bit length. So, got the key as,
K=110000110110010111000010110011101011111100110110101011011001101110110001
010101000010000111000010000001010110010000000000100100000.

Block_Size
TPRT KEY
. FIXED SIZE : A
Iterati e 12
eration ENTITY Key 129 bit
Encryption_
Decryption

Figure 4.4: Top-level RTL design of TPRT fixed size key generation

Figure 4.4 illustrates the top level RTL design for the TPRT fixed size key generation,
here it can be seen that there are four ports, the three input ports are Block_Size, Iteration,
Encryption/Decryption option. The output port is the generated session key of 129-bits in

size.
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Table 4.4: Key generation for variable block length technique for TPRT

Round Block Size Number of Iterations

Decimal Binary Decimal Binary
8. 253 11111101 203 11001011
7. 103 01100111 101 01100101
6. 99 01100011 83 01010011
5. 70 01000110 55 00110111
4, 61 00111101 38 00100110
3. 33 00100001 20 00010100
2. 17 00010001 10 00001010
1. 3 00000011 2 00000010

Tag field 0

Table 4.4 gives the key generation process for variable block size operation. Here if to
see the round 1, so, the block size here is of 3-bits and the number of iteration for this block
size is 2 times, for round 2 the block size is 17-bits and the number of iteration is 10 times,
for round 3 the block size is 33-bits and the number of iteration is 20 times, for round 4 the
block size is 61-bits and the number of iteration is 38 times, for round 5 the block size is 70-
bits and the number of iteration is 55 times, for round 6 the block size is 99-bits and the
number of iteration is 83 times, for round 7 the block size is 103-bits and the number of
iteration is 101 times, and for round 8 the block size is 253-bits and the number of iteration is
203 times. Hence, the block size here is also a part of session key since its value is variable.
In this scheme the block sizes are taken as 8-bit value and iteration is also an 8-bit value per
round. Therefore for each round total bits is 8 + 8 = 16 bits. There are eight rounds so total
size is 16 X 8 = 128-bits. Adding the tag field got total session key length as 129-bits. Tag
value 0 means TPRT encryption and 1 means TPRT decryption So, in either or both cases
the key bit length is 128 bits + 1 tag bit = 129 bits. So, got the key as,
K=111111011100101101100111011001010110001101010011010001100011011100111101
001001100010000100010100000100010000101000000011000000100.

- 137 -



Block_Size
TPRT KEY
; VARIABLE _ ;
Iteration SIZE_ Key 129 bit
ENTITY
Encryption
Decryption

Figure 4.5: Top-level RTL design of TPRT variable size key generation

Figure 4.5 illustrates the top level RTL design for the TPRT variable size key
generation, here it be can seen that there are four ports, the three input ports are Block_Size,
Iteration, Encryption/Decryption option. The output port is the generated session key of 129-

bits in size.

4.5 Analysis

Block ciphers are cryptographic primitives that operate on fixed size texts (blocks).
Most designs aim towards secure and fast encryption of large amounts of data. The number of
iterations of TPRT encryption and TPRT decryption is same so, the order of complexity of
TPRT is O(nz) where ‘n’ is the block size, this means the encryption time and decryption
time varies linearly with the block size, this is illustrated in result and comparison section.
Block ciphers also serve as the building block of a number of hash functions and message
authentication codes (MAC). The TPRT is a simple block cipher to implement so, it can be
used to generate encryption based Message Authentication Codes (MAC). The task of
cryptanalysis is to ensure that no attack violates the security bounds specified by generic
attack namely exhaustive key search and table lookup attacks. The non-homogeneity using
Chi-Square value is also illustrated in result and comparison section. Since, the key length is
129-bits so; brute force attack is somehow difficult. Most general types of block cipher
cryptanalysis has been discussed concentrating on the algebraic attacks. While the algebraic
techniques have been successful on certain stream cipher the application to block ciphers has

not shown any significant results so far.
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Table 4.5: Plaintext and equivalent Hex code

Plaintext Hex Plaintext Hex Plaintext Hex Plaintext Hex
code code code code
A 41 @) 4F <space> 20 T 54
T 54 S 53 U 55 0] 4F
T 54 T 54 N 4E M 4D
A 41 P 50 T 54 0] 4F
C 43 @) 4F | 49 R 52
K 4B N 4E L 4C R 52
<space> 20 E 45 L 4C @) 4F
P 50 D 44 <space> 20 W 57

Let it encrypt P = “ATTACK POSTPONED UNTILL TOMORROW?”. This plaintext

has been encrypted using the key obtained in section 4.4.1. During encryption the letters are

converted into ASCIlI which is then the equivalent hex code is fed into FPGA-based

implemented routine described in section 4.4. Then to get the encrypted hex value which is

again converted to equivalent ASCII letters. Table 4.5 shows the plaintext letters and the

corresponding hex codes, the plaintext letters are taken in column-major order.

Table 4.6: Hex code and equivalent ciphertext

Hex | Ciphertext Hex Ciphertext Hex Ciphertext | Hex | Ciphertext
Code Code Code Code

10 > 5C \ 75 U SE A

06 s C3 F 73 S DC —_

10 > FC H 96 U 8B |

5D ] 58 X C3 F 20 <space>
1A — 68 H F3 < 2D -

06 L A8 ¢ 66 F 5C

07 . 82 E OF Tt CF +

06 L 33 F3 < 22 “

Table 4.6 shows the hex codes obtained after encryption and the corresponding
ciphertext letters. Thus got the Ciphertext as, C = “P> 4P |—aea\ |-nXh(;é3 ust |—§f¢%§A—I -

\éun
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4.6 Results and Simulations

This section gives the results obtained based on various parameters. The main results
that are described here, RTL based result, frequency distribution graph, Chi-Square test for
non-homogeneity, time complexity analysis and the avalanche ratio test. These are described
in respective sub sections.

Section 4.6.1 gives the RTL based results got after implementation in FPGA-based
systems, section 4.6.2 discuss the frequency distribution graph, section 4.6.3 gives the test for
non-homogeneity with Chi-Square values, section 4.6.4 analyze the time complexity of the
proposed technique and finally section 4.6.5 discuss the avalanche ratio test.

4.6.1 RTL Simulation Based Results

In this section some of the results obtained on implementing the proposed technique
in VHDL. This code has been simulated and synthesized in Xilinx ISE 8.1i. The main
objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.

— A (127:0) E(127:0) [mm—

B (127:0)

— 1] [127:0])
E_Valid ———

— |

—reset_|

READY —
start

Figure 4.6: RTL diagram of RSA
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Figure 4.7: RTL diagram for Spartan 3E of the proposed TPRT

Table 4.7: HDL synthesis report (netlist generation of RSA and TPRT)

SrNo. | Netlist Components Number
RSA TPRT
1 ROMs/RAMs 430 10
2 Adders/Subtractions 3 0
3 Registers 420 20
4 Latches 80 0
5 Multiplexers 120 0

Table 4.8: HDL Synthesis Report (Timing Summary of RSA and TPRT)

Sr No. Timing Constraint Values
RSA TPRT
1 Speed Grade -5 -5
2 Minimum period (ns) 9.895 5.66
3 Maximum Frequency 101.06 101.06
(MHZ2)
4 Minimum input arrival time 6.697 4.33
before clock (ns)
5 Maximum output required 4.31 3.33
time after clock (ns)
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Figure 4.6 gives the RTL schematic of RSA and figure 4.7 gives the RTL schematic
for Spartan 3E of TPRT. If closely observing figure 4.6, it can be seen that there are many
look-up tables used in the RSA. Figure 4.7 reveals that six look-up tables are used for TPRT
which is quite less than that of RSA.

Table 4.7 gives the HDL synthesis report for netlist generation of TPRT and RSA.
Number of ROMs used in RSA is 430 and that of TPRT is 10, number of adder/subtractor
used in RSA is 3 and NIL that of TPRT, number of registers used in RSA is 420 and that of
TPRT is 20, number of latches in RSA is 80 and that of TPRT is NIL and number of
multiplexers used in RSA is 120 and that of TPRT is NIL. So, it inferred that TPRT uses least
number of resources than that of RSA in view of FPGA implementation.

Table 4.8 gives the HDL synthesis report for timing summary of RSA and TPRT. The
minimum period of RSA is 9.86ns and TPRT is 5.66ns. Minimum input arrival time before
clock of RSA is 6.66ns where for TPRT is 4.33ns. Maximum output required time after clock
of RSA is 4.31ns and that of TPRT is 3.33ns. So, it is also seen here that TPRT uses much
less timing summary than that of RSA.

So this implantation is synthesizable and can be burn into the Spartan 3 FPGA-chip.
After synthesis of the design, the design translation, design mapping, placement of 1/0Os and
routing has also been done successfully. The conclusions has been described in the next

section.
4.6.2 Frequency Distribution Graph

This section illustrates the frequency distribution graph of RSA and TPRT. The
frequency graph is the collection of different ASCII characters present in plaintext as well as

in ciphertext. Although ten different files are encrypted but here the frequency distribution

graph of only one such file is given, the rest gives the similar result.
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Frequency -->
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Frequency -->

Characters of TPRT Encrypted File -->

Figure 4.8: The frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

Figure 4.8 gives the frequency distribution graphs of source file, RSA encrypted file
and TPRT encrypted file. This frequency distribution illustrates the percentage of each
characters present in the file, source and encrypted. Since, ASCII character coding is used
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here so, the X-axis region is 0 to 255, ASCII got 8-bit character coding. The Y-axis is the
percentage of occurrences of each character. Although ten different files, with different file
types, are encrypted with RSA as well as TPRT, and only frequency distribution of a single
file is illustrated here. The file “GENESIS.TXT” is taken here for analysis. Observe from
figure 4.8 that the frequency distribution of source file is in the region 0-127. The frequency
distribution of RSA encrypted file is also not well distributed, where as the frequency
distribution of TPRT encrypted file is well distributed in the region 0-255. This result
illustrates the frequency of the proposed technique is well distributed than that of RSA.
Hence, in terms of frequency distribution analysis this proposed technique, TPRT, is well

comparable with RSA.

4.6.3 The Non-Homogeneity Test

This section computed the extent of non-homogeneity between source file and

encrypted file. The parameter taken for this test is Pearsonian Chi-Square test.

Table 4.9: Chi-Square values of RSA and TPRT

Source File | File Size | Chi-Square Value Degree of
(Bytes) Freedom
TPRT RSA TPRT | RSA

license.txt 17,632 191382 30148 255 64
cs405(ei).doc | 25,422 253470 | 185351 255 66
acread9.txt 35,121 410735 | 169424 255 73
deutsch.txt 47,829 505121 | 334371 255 77
genesis.txt 49,600 638592 | 396128 255 75
pod.exe 69,981 896405 | 761842 255 76
mspaint.exe | 136,463 | 1203665 | 1053183 255 88
cmd.exe 152,028 | 1692655 | 545752 255 73
d3dim.dll 193,189 | 4250652 | 307565 255 10
clbcatq.dll | 403,901 | 3922143 | 327510 255 11

Table 4.9 gives the Chi-Square values of the proposed technique (TPRT) and that of
RSA. Figure 4.9 illustrates the same graphically. The Chi-Square value gives the extent of

non-homogeneity between source file and encrypted file.
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Figure 4.9: Graphical representation of Chi-Square values of RSA and TPRT

The Pearsonian Chi-Square value has been computed which is already described in
Chapter 1. If looking at the table, the Chi-Square value of, first source file of TPRT comes
1,91,382 and RSA comes 30,148, for second source file TPRT comes 2,53,470 and RSA
comes 1,85,351 and so on. So observing the above table and figure it has been seen that Chi-
Square values of the proposed technique is quite higher than RSA and also the degree of
freedom comes to be at a value of 255 in TPRT which says a well distribution of characters
present in the TPRT encrypted files than that of source file. The degree of freedom of RSA
comes under 100 in all the source files. Hence, from the study of the degree of freedom it is
seen that the character distribution of TPRT encrypted file is well distributed than that of
RSA which is at par with the result of frequency distribution already discussed in section
5.2.1. Hence, in terms of Chi-Square value analysis this proposed technique, TPRT, is well

comparable with RSA.

4.6.4 The Time Complexity Analysis

This section illustrates the time complexity analysis and for the purpose encryption

time and decryption time is taken into account.
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Table 4.10: Comparisons of time complexity analysis of TPRT and RSA

Source File | File Size | Encryption Decryption
(Bytes) time (in time (in
Seconds) seconds)
TPRT | RSA | TPRT | RSA
license.txt | 17,632 0.02 | 0.01| 0.10 | 0.28
cs405(ei).doc | 25,422 0.00 | 0.03 | 0.00 | 0.30
acread9.txt | 35,121 0.10 | 0.21 | 0.10 | 1.67
deutsch.txt | 47,829 0.20 | 035| 0.11 | 351
genesis.txt | 49,600 0.25 | 040 | 0.20 | 5.06
pod.exe 69,981 035 | 039 | 035 | 4.34
mspaint.exe | 136,463 | 0.40 | 0.65 | 0.40 | 8.37
cmd.exe 152,028 0.50 | 0.61 | 0.42 | 6.59
d3dim.dll | 193,189 0.52 | 0.75| 0.50 |10.15
clbcatg.dll | 403,901 0.60 | 0.95| 0.55 |11.70
- 07
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S 02 / /
205 Pt
ugJ 0 f</ . . . . .
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Figure 4.10: Graphical comparisons of encryption and decryption time of TPRT and RSA

From table 4.10 it is seen that the encryption time and decryption time of the proposed
technique and that of RSA within same frame graphically in figure 4.10. The time complexity
analysis is one of the important factors in algorithm design. Here both encryption time and
decryption time is tabulated and shown in the figure. The pink line shows the time
complexity of RSA and blue line gives the time complexity of this proposed technique,
TPRT. If observing the encryption time, TPRT time of encryption is marginally lower than
that of RSA, and observing the decryption time than it is seen that TPRT time of decryption
is quite less than that of RSA. Hence it may be concluded that the time complexity of the

proposed technique, TPRT, is quite less than that of RSA.

4.6.5 The Avalanche Ratio

The Avalanche ratio is another important parameter for the cryptographic security.
Ten files have been taken for this analysis. Some bits of plaintext files have been modified
and these ten files again encrypted. The difference between original encrypted files and

modified encrypted files has been recorded as avalanche ratio in percentage.
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Table 4.11: Comparisons of avalanche ratio of TPRT and RSA

Source File File Size Avalanche Ratio (in Percentage)
(Bytes) RSA TPRT
license.txt 17,632 58.0 77.7
cs405(ei).doc 25,422 60.0 80.0
acread9.txt 35,121 75.0 88.8
deutsch.txt 47,829 78.9 89.0
genesis.txt 49,600 80.9 87.0
pod.exe 69,981 58.0 77.0
mspaint.exe 136,463 58.9 76.0
cmd.exe 152,028 67.0 77.0
d3dim.dli 193,189 67.9 82.9
clbcatq.dll 403,901 68.0 88.5

Table 4.11 illustrates the result of avalanche ratio of the proposed TPRT. During this
test some characters/bits in the source file have been modified and then again these modified
source files are encrypted. Then the percentage of the difference between the original
encrypted files and the modified encrypted files are taken. It is observed from table 4.11 that
the avalanche ratio of the proposed technique is nearly 80% and that of RSA is 65%, hence in

terms of avalanche ratio analysis TPRT is quite comparable with RSA.

4.7 Discussions

The technique given here is easily implemented in high level language and also in
VHDL. This technique is very easy and it’s implemented in FPGA-based systems, the goal of
fast execution and strong cryptanalysis requirements are also obtained here. Moreover this
technique can be fabricated in chip to be used in embedded systems. The main goal of the
author is to develop an efficient FPGA-based crypto hardware and this proposed technique is

the first step towards this.
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Chapter 5
Triangular Modulo Arithmetic Technique (TMAT)






5.1 Introduction

Unlike the TPRT, Triangular Modulo Arithmetic Technique (TMAT) is designed in
such a manner that neither any cycle is formed nor the process of decryption is the same as
that of the encryption. There is no positional orientation of bits. In TMAT a generating
function is used to covert plaintext to ciphertext, thus C = fx(P), where ‘P’ is plaintext block,
‘C’ 1s the ciphertext, fx is the generating function and ‘k’ is the secret. The generating
function of TMAT is directly related with the different bits present in the plaintext. The
source block is considered as a stream of bits, it is then divided into blocks of bits of same
size and then generating function is applied to each of the blocks to get the ciphertext. The
generating function of TMAT has two parts; first one is the modulo-2" addition operation and
second one is triangular operation.

In contrast to TPRT technique discussed in chapter 4 and the TMAT technique there
is application of Boolean algebra as well as non Boolean operation during encryption as well
as decryption. During encryption, the decimal equivalent of the block of bits under
consideration is one integral value from which the recursive modulo-2" operation starts; this
operation is sandwiched between two triangular operations. The modulo-2" operation is
performed between successive two blocks, before and after modulo operation the triangular
operation is performed. These three processes is operated in whole plaintext considering
different block sizes and iterations therefore recursively these processes is carried out to a
finite number of times, which is exactly the length of the source block. During encryption the
flow of these three processes is from MSB-to-LSB direction. To generate the source code
during decryption, bits in the target block are to be considered along LSB-to-MSB direction.
In second iteration one triangular operation is sandwiched between two modulo-2" addition
operations.

Section 5.2 discussed the algorithm of TMAT with a block level diagram, section 5.3
gives a detailed example of encryption and decryption process, section 5.4 discussed the
implementation issues with key generation, section 5.5 gives a brief analysis, section 5.6
discussed the results obtained based on implementation and a brief discussions are given in

section 5.7.



5.2 The Algorithm of TMAT

The proposed scheme has been developed in conjunction with two algorithm, MAT
[17] and Triangular algorithm [148, 149]. The source file is taken as binary streams. The
input stream size and input key size have been considered 512 bits and 128 bits for the
implementation, though the scheme can be implemented for larger input stream sizes as well

as any input size also. Section 5.2.1 briefly discuss the modulo addition.

Input First Second Phase Third Output
Stream Phase Phase Stream
(Bits) (Bits)

511 Triangle
to (Block 1) Modulo

488 Arithmetic

=>

487 Triangle

(Block 2)

Technique
(MAT) for

block size ||

Y

384

383
to
320

Triangle
(Block 3) 2,4, 8, 16,

32, 64,

319 128, 256.

to
256

Triangle
(Block 4)

—
—

255
to
192

Triangle
(Block 5)

191
to |
128

Triangle
(Block 6)

127 Triangle

to |:“: (Block 7)
64

63
to |
0

Triangle
(Block 8)

LN LN LN L
R

INIRINIIN.

V

Figure 5.1: Block diagram of TMAT

The proposed algorithm is consisted of three phase where the Triangular algorithm is

performed in Phase 1 and Phase 3 and that of MAT is performed in Phase 2. The key
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generation and low level implementation will be discussed in section 5.4. Figure 5.1 shows
the block diagram of TMAT.

In Phase 1, 512 bits input stream, S, is broken into 8 numbers of equal size blocks,
each containing 64 bits and the Triangular algorithm is implemented on block number 1, 3, 5,
7 (i.e. odd blocks) where the rest of the blocks are (even blocks) remain unchanged. Consider
that the source block size t (here 64). In the Triangular Encryption technique an intermediate
block of size (t-1) is generated from the source block, by applying the exclusive NOR
(XNOR) operation between each two consecutive bits. In the next step a new block of size (t-
2) is generated from previous block of size (t-1) and this process goes on until the generation
of block size 1. All these blocks under consideration is taken together to form an equilateral
triangle-like shape. After the formation of such a triangular shape, putting together either the
MBSs or the LSBs of all the blocks under consideration in either sequence, the target block is
formed. The key takes a vital role because only by knowing this key the receiver can
understand how the target block is formed from the triangular shape. The encrypted stream of
bits is generated by putting together all the target blocks. Then the both changed and
unchanged blocks are concatenated and formed bit stream of 512 bits, say S*. The Triangular
technique is shown in figure 5.2. There are four ways to encrypt in triangular operation, ‘00’
is taking MSB from top to bottom, ‘01’ is taking MSB from bottom to top, ‘10’ is taking LSB
from top to bottom and ‘11 is taking LSB from bottom to top.

s% s S%
Slo Sll 812 ................................. Slt-3
s% S

s%

Figure 5.2: Triangle formation

In phase 2 of the technique, Modulo Arithmetic Technique (MAT) is performed on
that stream of 512 bits. This is done in 8 rounds. The input stream, S*, is broken into a
number of blocks, each containing n bits where n=2%, k=1,2,3,......,8, k denotes the round
number. So, S! = B;B;Bs.......By, where m=512/n. Starting from the MSB, the blocks are
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paired as (Bi, By),(Bs, B4),(Bs, Bs), ...,(Bm1, Bm). The addition is performed between two
blocks of each pair and the content of the second block of each pair is replaced by the result.
This will be going on until the content of the last block By, is replaced by the result. The
process is repeated and each time the block size increases till n=256. So a new encrypted
stream, S? is generated after MAT is performed with block size 256.

* Round 1: In this round of encryption, block size is taken as 2, it means k=1
and addition is performed between each pair of blocks and second
block of each pair is replaced by the result. This round is repeated
for a finite number of times and the number of iterations will form a
part of the session key as discussed in Section I1.

o Round 2: Identical operation is performed as in Round 1 with block size 4 (i.e.
k=2).

Eight rounds are performed repeatedly with increasing block size to encrypt the
stream with varying block size up to 256. So after the completion of Round 8 another
encrypted bit stream is generated, say, S°.

In phase 3, the intermediate binary stream, S* is divided into 8 equal size of blocks
and Triangular algorithm is imposed on block no 2, 4, 6, 8 (i.e. even blocks) and rest of the
blocks are (odd blocks) remain unchanged. After which all blocks are concatenated together
to produce final output stream, S*".

During decryption, the reverse operation is performed. In phase 1, triangular
algorithm is performed on block no 2, 4, 6, 8 (i.e even blocks) and odd blocks are remain
unchanged and then in the phase 2, modulo subtraction, is performed instead of
performing modulo addition where block size starts from 256 and end with 2 (n=2%, k=8, 7, 6
S 3, 2, 1). In phase 3, Triangular algorithm is performed on block no 1, 3, 5, 7 (i.e. odd
blocks) and even blocks are remain unchanged. Formation of result is quite different than that
of encryption technique. If selection is 00 or 11 during encryption, it is same for decryption

technique but if it is 01 or 10, interchange is done between them.
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5.2.1 The Modulo Addition

An alternative method for modulo addition has been proposed here to make the
calculations more simple. The need for computation of decimal equivalents of the blocks is
avoided here since it will be got large decimal integer values for large binary blocks. In the
proposed method the carry out of the MSB has been discarded after the addition of two
blocks of each pair. For example, if add 1101 and 1000 got 10101. In terms of decimal
values, 13+8=21. Since the modulus of addition is 16 (2%) in this case, the result of addition
should be 5 (21-16=5). Discarding the carry from 10101 is equivalent to subtracting 10000
(i.e. 16 in decimal). So the result will be 0101, which is equivalent to 5 in decimal. The same
is applicable for any block size.

5.3 Example

Although the proposed scheme is applicable for a 512-bit input stream but here 16 bit
input stream has been considered for the convenience, to make the process simple for
understanding. Section 5.3.1 discuss the encryption scheme and section 5.3.2 discuss the

decryption scheme

5.3.1 The Encryption Process

Consider a stream of 16 bits stream, say S = 1101001100011011 .

In first phase, the input stream is divided into four blocks consisting of 4 bits each.
The Triangular technique is performed on odd blocks (i.e. Block 1 and Block 3) and even
blocks (i.e. Block 2 and Block 4) are remaining unchanged.

Consider that the selection of key for block 1 is 00 and Block 3 is 11. Then output
from block 1 is 1100 and from block 3 is 0101. Block 2 and block 4 are remaining
unchanged. So after Phase 1 output, S* = 1100110001010010. This output is the input for

phase 2. Figure 5.3 shows the example of phase 1.
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Input

Block 1 Block 2 Block 3 Block 4
1 1 |0 1 1 |0 0 |1 1 10 1 |0 0O |1 |O

Triangular implementation on Block 1 and Block 3.
Block 1 Block 3

1101 1 10 1
1 00 100
01 01

0 0
Output
Block 1 Block 2 Block 3 Block 4
1 1 |0 1 1 |0 0 |0 1 |0 1 |0 0 |1 |0

Figure 5.3: Encryption example of phase 1 in TMAT

In phase 2, MAT is performed for block size 2, 4 and 8 (as input is taken 16 bits, so

maximum block size is to be 8). So total number of rounds is 3. Each round is performed

only once to make the process simple for understanding. Figure 5.4 shows the details of

this phase.

Round 1 : Block size = 2, number of blocks = 8.

Input
B B, Bs B Bs Bs B7 Bs
11 00 11 00 01 01 00 10
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(B1, B2) Modulo Addition, B2 is replaced by result. Same operation is performed for (B3,
B4), (B5, B6) and (B7, BS).

Output
B B, Bs; B, Bs Bs B, Bs
11 11 11 11 01 10 00 10

Round 2 : Block size = 4, number of blocks = 4.

Input
B: B> Bs B4
1111 1111 0110 0010
Output
B: B> Bs B,
1111 1110 0110 1000

Round 3 : Block size = 8, number of blocks = 2.

Input

Bl BZ

11111110 01101000
Output

B B>

11111110 01100110

Figure 5.4: Encryption example of phase 2 in TMAT
So, on applying phase 2, generated output, S = 1111111001100110, which is input

for phase 3.

In phase 3 the triangular technique is again performed on even blocks, i.e. block 2 and

block 4 where odd blocks (blocks 1 and blocks 2) are remain unchanged.
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Input

Block 1

Block 2

Block 3

Block 4

1 [1]1]1

1 ]1]1]o0

0 J1[]1]o0

o l1]1]0

Triangular implementation on Block 2 and Block 4.

| Block2 | [ Block4 |
1110 0110
1 1 0 010
10 00
0 1

Figure 5.5: Encryption example of phase 3 in TMAT

Consider that the selection key for block 2 is 01 and block 4 is 10. Then output from
block 2 is 1101 and from block 4 is 0010. Block 1 and block 3 are remaining unchanged. So
after on completion of phase 3 output, S*" = 1111011101100001. This is the final encrypted
output. Figure 5.5 elaborate the example.

5.3.2 The Decryption Process

The output stream, which was generated during encryption technique, has been

considered as input bit stream for decryption process.

Input
Block 1 Block 2 Block 3 Block 4
1 1 [1 J1 Jo J1 |1 |1 Jo [12 1 Jo Jo Jo Jo |1
Triangular implementation on block 2 and block 4.
[ Block 2 | [Block 4 |
0111 0 001
01 1 110
01 10
0 0
Output
Block 1 Block 2 Block 3 Block 4
1 J1 1 |1 J1 J1 |1 Jo Jo [1 |1 Jo [o J1 |1 Jo

Figure 5.6: Decryption example of phase 1 in TMAT

- 158 -




In first phase, the input stream is divided into four blocks with 4 bits each. The
Triangular technique is performed on even blocks (i.e. block 2 and block 4) and odd blocks
(i.e. block 1 and block 3) are remaining unchanged.

As the selection keys were considered during encryption technique, 01 for block 2 and
10 for block 4. Then output from block 2 is 1010 and from block 4 is 0011. Block 1 and
block 3 remain unchanged. So after phase 1 output, Si* = 1111111001100110, which is the
input of phase 2. Figure 5.6 shows the example.

In second phase, MAT is performed but instead of using modulo addition, modulo
subtraction is used. Block size is used in reverse order (ie. 8, 7, 6, ..., 1). Figure 5.7 shows

this phase.

Round 1 : Block size = 8, number of blocks = 2

Input
B B,
11111110 01100110
Output
B: B
11111110 01101000

Round 2 : Block size = 4, number of blocks = 4

Input
B B, Bs B,
1111 1110 0110 1000
Output
B B, Bs B4
1111 1111 0110 0010

Round 3 : Block size = 2, number of blocks = 8

Input
B B, Bs B Bs Bs B; Bs
11 11 11 11 01 10 00 10
Output
B B, Bs B, Bs Bs B; Bs
11 00 11 00 01 01 00 10

Figure 5.7: Decryption example of phase 2 in TMAT

So on completion of phase 2 output, S;° = 1100110001010010, which is the input of
phase 3.
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In this phase 3, the Triangular technique is applied on odd blocks (i.e. block 1 and
block 3) and even blocks (i.e. block 2 and block 4) are remaining unchanged. Figure 5.8
shows this example.

Input

Block 1 Block 2 Block 3 Block 4

1 ]1]J]oJo]1]1]Jo]Jo]o|1]of]1]o0]o]1]oO

| Blockl | [ Block3d |
1100 01 0 1
1 0 1 0 0O
00 11
1 1 Output
Block 1 Block 2 Block 3 Block 4

1 1ol 1 ]1]J1]ofJo]1]1]oJ1]o]Jo]1]o0

Figure 5.8: Decryption example of phase 3 in TMAT

As the keys were considered during encryption technique, 00 for block 1 and 11 for
block 3. Then output from block 1 is 1101 and from block 3 is 1101. Block 2 and block 4
remain unchanged. So on completion of phase 3 output, S;* = 1101110011010010. The
decrypted bit stream: $;% = 1101110011010010.S0 S;%*=S*".

5.4 Implementation and Key Generation

The proposed technique has been implemented in IEEE VHDL using 8-bit block size.
The block-size can be increased just by increasing the size of bit_vector type variables,
signals and ports from 7 downto 0 to n-1 downto to 0 where ‘n’ is the block size. The
modular design approach is taken while coding this cipher. Figure 5.9 shows the top-level
design of TMAT and figure 5.10 gives the top level RTL design. Section 5.4.1 gives the key

generation process.
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library IEEE, STD;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;
use IEEE.numeric_std.all;

use work.rajdeep.all;

use std.textio.all;

use std.standard.all;

use IEEE.std_logic_textio.all;

entity TMAT_Final_VHDL is
Port (IN_DATA : in BIT_VECTOR (7 downto 0);
OUT_DATA : out BIT_VECTOR (7 downto 0);
EN_DN : inout BIT;
OPTION_DATA : in BIT_VECTOR(2 downto 0));
end TMAT _Final VHDL,;

Figure 5.9: Top level design of TMAT

IN_DATA
TMAT OUT DATA
BLOCK_SIZE| FINAL

ENTITY | gx DN

ITERATION

Figure 5.10: Top level RTL design of TMAT

The main features of the implementation are given below:-

e Triangular Encryption and Decryption using all options.

e Coded using behavioural model.

e This program is implemented for text file input and output and also for RTL
design for FPGA-chip.
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e All the four options are available for encryption/decryption, 00> 1st option,
01->2nd option, 10->3rd option and 11->4th option.

e This top-level module have four ports, in_data, out _data, option_data and
EN_DN.

e EN_DN =0, means encryption is being done, EN_DN = 1, means decryption
is being done.

e The chip entity, in_data is the input bit stream; out_data is the output bit
stream.

e option_data selects encryption to be performed or decryption to be performed.

e option_data also selects which of the four types of encryption/decryption is to
be performed.

e option_data is of 3-bit, The LSB selects the encryption or decryption is to be
performed.

e First two bit of option_data selects the encryption/decryption type from the
four alternatives.

e EN_DN will tell the receiver side that encryption or decryption is being done.

e There three types of TEXT files used in this implementation, “in.txt” for
Source block (SB), “out.txt” for Target Block (TB) and “option.txt” for dual

purpose of selecting option and encryption/decryption choice.

The rest of the coding is done by defining the package which contains functions and

procedures. The functions and procedures which are used to realize TMAT are noted below:-

e Function TMAT_ENDN:- This is the main function which performs
encryption/decryption using all options.

e Function TMAT _Encryption_ALL:- This is the function which performs
encryption using all options.

e Function TMAT Decryption ALL:- This is the function which performs
decryption using all options.

e Function TMAT_Encryption_00, Function TMAT_Encryption 01, Function
TMAT _Encryption_10, and Function TMAT_Encryption_11:- These are the

four encryption functions according to each of the options.
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e Function TMAT_Decryption_00, Function TMAT _Decryption_01, Function
TMAT _Decryption_10, and Function TMAT_Decryption_11:- These are the
decryption function according to each of the options.

e TMAT_ADD:- This function performs the modulo addition of two successive
blocks and store the result in second block.

e Procedure TMAT_Formation:- This is the common VHDL procedure which
forms the triangle according to the Source Block (SB), before performing
encryption/decryption.

e The function in IEEE VHDL has many input parameters but only one output
parameter and procedure in IEEE VHDL has many input and or output

parameters.

Therefore, by using the modular design approach and behavioral approach this
proposed cipher has been successfully realized in IEEE VHDL.

5.4.1 Key Generation

In the proposed technique, eight blocks (block 1, block 2, block 3, block 4, block 5,
block 6, block 7 and block 8) have been considered for Triangular and eight rounds (for block
size 2, 4, 8, 16, 32, 64, 128 and 256) have been considered for MAT. In case of the
Triangular technique as 2 bits are required for selection from each block, so for eight blocks,
16 bits are required from 128 bits key. So 16 bits are selected from LSB of 128 bits key for
eight rounds of the Triangular technique. Then 16 bits are equally divided into eight blocks (2
bits in each). From MSB of that 8 blocks are used for block 1 to block 8. Each round of MAT
is repeated for a finite number of times and the number of iterations is a part of the 112 bits
from MSB of 128 bits key. Then those 112 bits are equally divided and formed 8 blocks (14
bits in each). Each block of those 8 blocks are used as number of iterations of a round (from
Round 1 to Round 8). In case of decryption technique, same key is used in the same way.

Example in section 5.4.1.1 illustrates the key generation process.
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5.4.1.1 Example of Key Generation

The key generation procedure has been illustrated in this section. As proposed scheme
consists of three phase and same procedure is used for phase 1 and phase 3, the example will
be shown in two steps. Table 5.1 shows target block selection using selection key and table
5.2 shows target block selection for the example. Consider a particular session, where 128
bits input key stream is:
000000000100101000000010101010000001000010110110101011011000110010101101100
1101110111110111011101100001011001110 1100001101100100.

So, 16 bits from LSB are used for the Triangular algorithm and remaining 112 bits are
used for MAT. Section 5.4.1.1.1 illustrates the key generation for phase 1 (Triangle) and
phase 3 (Triangle), section 5.4.1.1.2 illustrates key generation for phase 2 (MAT).

Table 5.1: Target block selection using selection key

Sl Selection Target Block Selection
No. | Key (2 bits)
1. 00 Taking all the MSBs starting from the source block till the last

block generated

2. 01 Taking all the MSBs starting from the last block generated till the

source block

3. 10 Taking all the LSBs starting from the source block till the last

block generated

4. 11 Taking all the LSBs starting from the last block generated till the

source block

5.4.1.1.1 Key Generation for Phase 1 and Phase 3

16 bits key string is: 1100100101111000.
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Table 5.2: Key distribution for the Triangular Technique.

Block | Phase Target Block Selection
No. Selection key (2 | Used for Encryption Used for Decryption
bits)
1 1 11 11 11
2 3 00 00 00
3 1 10 10 01
4 3 01 01 10
5 1 01 01 10
6 3 11 11 11
7 1 10 10 01
8 3 00 00 00

5.4.1.1.2 Key Generation for Phase 2

In this phase of key generation, 112 bits key is used in MAT for block sizes 2, 4, 8,
16, 32, 64, 128, and 256 bits, respectively.

Table 5.3: Key generation for MAT

Round | Block Size No. of Iteration
No. Binary Decimal

1 2 00000000010010 18

2 4 10000000101010 8234
3 8 10000001000010 8258
4 16 11011010101101 13997
5 32 10001100101011 9003
6 64 01100110111011 6587
7 128 11101110111011 15291
8 256 00001011001110 718

Table 5.3 shows the key distribution of phase 2. 112 bits key is:
000000000100101000000010101010000001000010110110101011011000110010101101100
1101110111110111011101100001011001110.
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ROUND RKP13
SK KEY -
— | GENERATION
FOR RKP2
TMAT —

Figure 5.11: Top level RTL for round key generation for TMAT

Figure 5.11 shows the top level RTL for round key generation for TMAT, in this
entity there are three ports as follows:-

o SK:- It’s the input port where user gives 128 bit session key.

e RKP13:- It’s the output port where LSB 16-bits are taken as round key
for phase 1 and phase 2 of TMAT.

e RKP2:- It’s the output port which is the rest 112-bits round key for
phase 2 of TMAT.

Therefore it have been successfully implemented TMAT and key generation through
VHDL implementation for FPGA.

5.5 Analysis

TMAT gives four different ways to encrypt, as TMAT consist of two techniques, the
triangular and modulo addition. Figure 5.2 shows the formation of triangle and following are

the four ways by which encryption can be done:-

e Option 00: Taking all the MSBs starting from the source block till the last
block is generated.

e Option 01: Taking all the MSBs starting from the last block generated till the
source block.

e Option 10: Taking all the LSBs starting from the source block till the last

block generated.
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e Option 11: Taking all the LSBs starting from the last block generated till the
source block.

TMAT has four ways of decryption also given in the following points:-

e Option 00: Taking all the MSBs starting from the source block till the last
block is generated.

e Option 01: Taking all the LSBs starting from the source block till the last
block generated.

e Option 10: Taking all the MSBs starting from the last block generated till the
source block.

e Option 11: Taking all the LSBs starting from the last block generated till the
source block.

Therefore in single implementation, have four ways of encryption and decryption.
Since the formation of triangle consist of matrix implementation so the algorithmic
complexity of TMAT is O(n?).

5.6 Results and Simulations

This section gives the results found on various parameters. The main results that are
described here are RTL based results, frequency distribution graph, Chi-Square test for non-
homogeneity, time complexity analysis and the avalanche ratio. These are all described in
respective sub sections. Section 5.6.1 discuss results of RTL/Hardware implementation,
section 5.6.2 discuss the results of frequency distribution graph, section 5.6.3 discuss the
results of Chi-Square test for non-homogeneity of source files and encrypted files, section
5.6.4 discuss the results of time complexity and section 5.6.5 discuss the results of avalanche

ratio test.

5.6.1 RTL Simulation Based Result

In this section results obtained on after implementing the proposed technique in

VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main objective is to
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find an efficient FPGA-based cryptographic technique for implementation in embedded

systems.

— A (127:0) E(127:0) [m—

e B (127:0)

N (127:0)  Vaid
_Valid ——

—: |

————reset_|

READY —
start

Figure 5.12: RTL diagram of RSA

—F‘ .‘ —| 1

Figure 5.13: Spartan 3E RTL diagram of TPRT
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Figure 5.14: Spartan 3E RTL diagram of TMAT

Figure 5.12 gives the RTL diagram of RSA, figure 5.13 shows the Spartan 3E RTL
diagram of previous technique TPRT and figure 5.14 shows the Spartan 3E RTL diagram of
proposed technique TMAT. If closely observing figure 5.14, it can be seen that six Look-Up-
Tables (LUTSs) are used here. So this implantation is synthesizable and can be burn into the
Spartan 3E FPGA-chip. On synthesis of the design, the design translation, design mapping,
placement of 1/Os and routing has also been done successfully. RTL diagram is created after
successfully implementation of the technique in VHDL. Since there is not much difference in
the encryption step and decryption step so the two RTL diagrams comes to be almost same

and which is at par with the theoretical description of techniques, TPRT and TMAT.

Table 5.4: HDL synthesis report (Netlist generation of RSA, TPRT and TMAT)

SrNo. | Netlist Components Number
RSA TPRT TMAT
1 ROMs/RAMs 430 10 14
2 Adders/Subtractions 3 0 2
3 Registers 420 20 30
4 Latches 80 0 0
5 Multiplexers 120 0 0
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Table 5.5: HDL synthesis report (Timing summary of RSA, TPRT and TMAT)

Sr No. Timing Constraint Values
RSA TPRT TMAT
1 Speed Grade -5 -5 -5
2 Minimum period (ns) 9.895 5.66 7.95
3 Maximum Frequency | 101.06 101.06 101.06
(MHZ)
4 Minimum input 6.697 4.33 5.55
arrival time before
clock (ns)
5 Maximum output 4.31 3.33 4.25
required time after
clock (ns)

Table 5.4 gives the netlist generation of RSA, TPRT and TMAT. The number of
ROMs/RAMSs has increased in this proposed technique, TMAT, adder/sub tractors are also
there for TMAT but it was nil for TPRT, number of registers used has also increased in
TMAT where as number of latches and multiplexers are still nil in TMAT. So it can be said
here that the number of resources used has increased for this proposed technique, TMAT,
than TPRT but keeping the technique, TMAT, cryptographically strong than TPRT. It can be
also said that comparing with RSA, TMAT uses few less resources but in the same time it is
giving comparable results.

Table 5.5 gives the timing constraint of TMAT. It can be seen that the timing
parameters have subsequently increased in this proposed technique, TMAT than TPRT. This
result is also at par with the theoretical foundation of the technique and same result also got
in previous time-complexity analysis. It can be also said here that comparing with RSA,

TMAT is much faster in timing summary but in the same time it is giving comparable results.

5.6.2 The Frequency Distribution Graph

This section compares the frequencies of ASCII characters found in plaintext/source

file and ciphertext/encrypted file through frequency distribution graph.
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Frequency -->

all

Characters of Source File -->»

Frequency -->

,”hu L L

Characters of RSA Encrypted File -->

Frequency -->

1 X il

Characters of TPR Encrypted File -- 7
Figure 5.15: The frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

Figure 5.15 gives the frequency distribution graphs of source file, RSA encrypted file
and TPRT encrypted file and figure 5.16 shows the frequency distribution graph of the
proposed technique, TMAT. Frequency distribution graph is one of the important
cryptographic properties, the more uniform distribution of the characters in the encrypted file
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the harder for cryptanalysis. Although ten different types of source files are encrypted but for
analysis one such source file is considered and shown in figure 5.15. The source file
considered is of text file type, in text file type the characters are present in the range of 0-127
ASCII value. As already seen in figure 5.15 the characters in the source file is concentrated in
a particular region, immediate below the frequency distribution graph of RSA encrypted file
is given, and finally the frequency distribution graph of TPRT encrypted file is given. Figure
5.16 gives the frequency distribution graph of TMAT encrypted file.

Frequency

" 3 4

Characters of TMAT Encrypted File

Figure 5.16: Frequency distribution graph of TMAT encrypted file

This result illustrates the frequency of the proposed technique is well distributed than
that of RSA,; this infers the statistical cryptanalysis may be difficult. It is also seen that the
frequency distribution graph is well comparable with that of the previous technique, TPRT.
Thus it can be inferred that TMAT showing a good and comparable result in terms of
frequency distribution. The frequency distribution of TPRT and TMAT encrypted files are
almost same, though got good and comparable result but there is not any subsequent
improvement in frequency distribution graph of the proposed technique, TMAT than that of
previous technique, TPRT.

5.6.3 The Non-Homogeneity Test

This section compares the extent of non-homogeneity between plaintext/source file

and ciphertext/encrypted file through Pearsonian Chi-Square test.
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Table 5.6: Chi-Square values and degree of freedom of TMAT, RSA and TPRT

Source File File Size Chi-Square Value Degree of Freedom
(Bytes) TMAT RSA TPRT TMAT | RSA | TPRT
license.txt 17,632 201530 30148 191382 255 64 255
cs405(ei).doc | 25,422 286025 185351 253470 255 66 255
acread9.txt 35,121 440184 169424 410735 255 73 255
deutsch.txt 47,829 555220 334371 505121 255 77 255
genesis.txt 49,600 659045 396128 638592 255 75 255
pod.exe 69,981 905416 761842 896405 255 76 255
mspaint.exe | 136,463 1297256 | 1053183 | 1203665 255 88 255
cmd.exe 152,028 1759014 | 545752 1692655 255 73 255
d3dim.dll 193,189 | 4630652 | 307565 | 4250652 255 10 255
clbcatg.dil | 403,901 | 4167801 | 327510 | 3922143 255 11 255
5000000
4500000
4000000
. 3500000
g RHRROCE M Chi Square Value TMAT
E ki 1 Chi Square Value RSA
& | 2000000 ;
0 M Chi Square Value TPRT
© | 1500000
1000000 I-I_I‘
500000 IRIRIE
1 2 3 4 5 6 7 8 9 10

Files -->

Figure 5.17: Graphical representation Chi-Square value of TMAT, RSA and TPRT

Table 5.6 gives the Chi-Square values of the proposed technique (TMAT), TPRT and
that of RSA. Figure 5.17 illustrates the same graphically. The Chi-Square test is another

cryptographic parameter in which get the measure of non-homogeneity/heterogeneity

between the source file/plaintext and the encrypted file/ciphertext. The Pearsonian Chi-
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Square value is considered here. If observing table 5.6, the minimum Chi-Square value of
TMAT is 201530, RSA is 30148 and TPRT is 191382. The maximum Chi-Square value of
TMAT is 4167801, RSA is 327510 and TPRT is 3922143. Here ten different types of files
are encrypted and Chi-Square values are tabulated, text file (TXT), Microsoft word
documents (DOC), executable files (EXE) and DLL files are used here for results and
analysis.

So observing the above table and figure it has been seen that Chi-Square values of the
proposed technique is quite higher than RSA and also the degree of freedom comes to be at a
value of 255 in TMAT which says a well distribution of characters present in the TMAT
encrypted files than that of source file. It is also been observed that the Chi-Square value of
TMAT is quite higher than that of TPRT. Thus it can be seen that this proposed technique,
TMAT, produces more heterogeneous files than that of the previous technique, TPRT and
RSA. Therefore the Chi-Square values are at par with that of frequency distribution graph
result illustrated in section 5.6.2. So, this is the one improvement that got in this chapter.

5.6.4 The Time Complexity Analysis

The main purpose of this chapter is to develop an efficient and fast RTL design so;

time complexity analysis is one of the major factors in developing the technique.

1
0.9
0.8
0.7 .
A Encryptiontime (in
g 0.6 Seconds) TMAT
=
§ 0.5 Encryption time (in
Lg-_ 0.4 Seconds) RSA
0.3 Encryptiontime (in
B Seconds) TPRT
0.2
0.1
0

-174 -



14
12
10 —+
Decryption Time (in
A 8 - Sec) TMAT
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Sec) TPRT
2 _/
0 +—== — v < ! 1
1 2 3 4 5 6 7 8 9 10

“Files -->

Figure 5.18: Pictorial representation of time complexity analysis of TMAT, RSA and TPRT

Table 5.7: The time complexity analysis of TMAT, RSA and TPRT

Source File | File Size Encryption time (in Decryption time (in
(Bytes) Seconds) seconds)
TMAT | RSA | TPRT | TMAT | RSA | TPRT

license.txt 17,632 0.03 0.01 | 0.02 011 | 0.28 | 0.10
cs405(ei).doc | 25,422 0.00 | 0.03 | 0.00 0.00 | 0.30 | 0.00
acread9.txt | 35,121 0.13 0.21 | 0.10 0.13 | 1.67 | 0.10
deutsch.txt | 47,829 025 |035]| 0.20 015 | 351 | 011
genesis.txt | 49,600 0.28 0.40 | 0.25 025 | 5.06 | 0.20
pod.exe 69,981 0.39 0.39 | 0.35 039 | 434 | 0.35
mspaint.exe | 136,463 044 |0.65| 0.40 048 | 837 | 0.40
cmd.exe 152,028 055 | 0.61| 0.50 052 | 6.59 | 0.42
d3dim.dll | 193,189 055 | 0.75| 0.52 0.60 |10.15| 0.50
clbcatg.dll | 403,901 0.67 0.95 | 0.60 0.65 |11.70| 0.55

Table 5.7 shows the encryption time and decryption time of the proposed technique,
TMAT, previous technique, TPRT, and that of RSA. Figure 5.18 represents the same
graphically. The time complexity analysis here given in the unit of file size (in KB) v/s time
(in Seconds). If observing the encryption time then it is seen that average encryption time of
TMAT is 0.329 seconds, TPRT is 0.294 seconds and RSA is 0.435 seconds. The average
decryption time of TMAT is 0.328 seconds, TPRT is 0.273 seconds and RSA is 5.197
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seconds. Considering the above results it can be seen that the time complexity of this
proposed technique, TMAT is quite better than RSA. The average encryption time of TMAT
is less than that of RSA and the average decryption time of TMAT is quite less than that of
RSA. So it can be said that the time complexity of the proposed technique is quite less than
that of RSA. But it is obvious from the table and graphs that the time complexity of the
proposed technique, TMAT is quite higher than that of the previous technique, TPRT. This
fact is true because this technique involves extra steps of generating key from the system time
and another extra step is there to XOR this time stamp key to the plain text. But, in overall
this technique is quite comparable. Therefore it can be concluded that in time complexity
analysis though it is better than RSA but there is no significant improvement over TPRT due

to algorithmic complexity.

5.6.5 The Avalanche Ratio Test

More the avalanche ratio more difficult to analyses for known plain text — known
cipher text pair. The avalanche ratio here obtained by encrypting few bits of source file and
then obtaining the percentage of difference between encrypted files of actual source file and

modified source files.

Table 5.8: The avalanche ratio of RSA, TPRT and TMAT

Source File File Size Avalanche Ratio (in Percentage)

(Bytes) RSA TPRT TMAT
license.txt 17,632 58.0 71.7 80.8
cs405(ei).doc 25,422 60.0 80.0 85.5
acread9.txt 35,121 75.0 88.8 90.0
deutsch.txt 47,829 78.9 89.0 91.5
genesis.txt 49,600 80.9 87.0 94.7
pod.exe 69,981 58.0 77.0 80.0
mspaint.exe 136,463 58.9 76.0 80.0
cmd.exe 152,028 67.0 77.0 80.0
d3dim.dll 193,189 67.9 82.9 85.0
clbcatq.dll 403,901 68.0 88.5 90.5
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Table 5.8 clearly illustrates the result of avalanche ratio, which is found a satisfactory
result for the proposed technique, TMAT. If observing clearly then the minimum avalanche
ratio of TMAT is 80.0%, TPRT is 77.0% and RSA is 58.0%. The maximum avalanche ratio
of TMAT is 94.7%, TPRT is 89.0% and RSA is 80.9%. Here it can be said that at least 80.0%
of ciphertext alters and almost 94.7% of ciphertext alters when alter one-bit/byte of source
file and apply TMAT. The same analysis can be drawn for TPRT and RSA. Thus TMAT
gives far better result that TPRT and RSA. This is another achievement of this chapter.

5.7 Discussions

The technique given here is easily implemented in high-level language and in VHDL.
This technique is very easy and it’s implemented in FPGA-based systems, the goal of fast
execution and strong cryptanalysis requirements are also obtained here. In Chi-Square value
analysis that got a much better result, that means this technique, TMAT produces more
heterogeneous ciphertext than that of RSA and TPRT. Also in the avalanche ratio analysis
this technique, TMAT, giving better result than that of RSA and TPRT. This means that
plaintext and keys of this technique is much more related with ciphertext.

So, it can be inferred that improvement impressing of the proposed technique is there
in two factors, Chi-Square test and Avalanche ratio test. In hardware implementation and
results also got satisfactory results. It uses much less resources than that of RSA but same
time giving cryptographically strong results. So, get low power and low area objective with
this technique, TMAT. It also giving much faster execution result than that of RSA when
comparing the timing simulation results. Moreover this technique can be fabricated in chip to
be used in embedded systems. The main goal of the author(s) is to develop an efficient

FPGA-based crypto hardware and this chapter is another milestone towards this.

- 177 -






Chapter 6
Recursively Oriented Block Addition and Substitution Technique (ROBAST)






6.1 Introduction

The proposed technique in this chapter termed as, Recursively Oriented Block
Addition and Substitution Technique or ROBAST, is a secret-key cryptosystem. In this
technique, after decomposing the source stream of bits into a finite number of blocks of finite
length, the positions of the bits of each of the blocks is re-oriented using a generating
function. For a particular length of block, the block itself is regenerated after a finite number
of such iterations. Any of the intermediate blocks during this cycle is considered to be the
encrypted block. To decrypt the encrypted block from the ciphertext, the same process is to
be followed but the generating function may have to be applied different number of times.

To achieve the security of a satisfactory level, it is proposed that different blocks or
blocks should be of different sizes. Accordingly, for different blocks, number of iterations
during the encryption and the number of iterations during the decryption also not necessarily
should be fixed. This information in a proposed fixed format, described later in this chapter,
constitutes the secret key for the system, which is to be transmitted by the sender to the
receiver, either with the message or in an isolated manner. The technique does not cause any
storage overhead. It provides a large key space, so that the chance of breaking the ciphertext
is almost nullified by any technique of cryptanalysis. The implementation on practical
scenario is well proven with positive outcome.

TMAT described in Chapter 5 is capable of producing encrypted stream more
heterogeneous than TPRT described in Chapter 4. ROBAST described in this chapter is also
generator stream which is more heterogeneous than TPRT and TMAT. The HDL synthesis of
ROBAST in both netlist and timing summary giving much better result than TPRT and
TMAT. Time complexity analysis taking encryption time and decryption time of ROBAST is
also giving much better result than TPRT and TMAT. Avalanche test of ROBAST is also
better than TPRT and TMAT, that means altering a single/few bits in plaintext/source file or
in session key, ROBAST alters many bits in ciphertext/destination file than that of TPRT and
TMAT.

Section 6.2 discussed the algorithm of TMAT with a block level diagram, section 6.3
gives a detailed example of encryption and decryption process, section 6.4 discussed the
implementation issues with key generation, section 6.5 gives a brief analysis, section 6.6
discussed the results obtained based on implementation and a brief discussions are given in

section 6.7.



6.2 The Algorithm of ROBAST

ROBAST is a bit level cipher, the source stream is broken into some finite number of
blocks with a fixed block size and then the scheme is applied into these blocks.

The total message can be considered as blocks of bits with different block size like 8,
16, 32, 64, 128 and 256 bits. Figure 6.1 gives the block/flow diagram of the proposed
technique, ROBAST. This is a symmetric block cipher so a block of n-bits is considered for

encryption. The rules to be followed for generating a cycle are as follows:

e Consider any source stream of a finite number (where N=2", n =3 to 8) and
divide it into two equal parts.

e Make the source stream into paired form so that a pair can be used for the
operation.

e Make the modulo-2" addition between the first and second pair, second and
third pair, third and fourth pair of the source stream, to get the first
intermediate block.

e The same process is repeated recursively between second and first, third and
second, fourth and third of the source stream, to get the next intermediate
block.

e The above points are mainly substitute technique and then permutation
technique has been performed by orientation of bits based on the session key.

Therefore, these resultant blocks of stream can be considered as cipher text.

This process is repeated until the source stream is generated. After a finite number of
iterations source stream is regenerated. So, decryption is basically the iteration of the same
process. Thus any of the intermediate blocks can be considered as a cipher text, since it is a
symmetric block cipher so the same number of iterations that are used during encryption
process is required for decryption. This technique gives much better result in terms of Chi-

Square value and hardware implementations.
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Figure 6.1: Block diagram of ROBAST
In this technique the modulo addition with substitution and permutation is given but

to enhance the security further other arithmetic operations can also implemented in this
technique. Figure 6.1 gives the block diagram of ROBAST.
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6.3 Example

Consider the block S = 10010011 of size 8 bits. The Flow diagram to show how
positions of the bits of s and the different intermediate blocks can be reoriented with the key
values to complete the cycle is shown in figure 6.1 gives the flow/block diagram of ROBAST
and table 6.1 illustrates this example in details. In this diagram, each arrow indicates

positional orientation of a bit during iteration. Therefore the final cipher text is S’=01001001.

Table 6.1: An encryption example of ROBAST

Source Stream(S) = 10010011
Blocks of 2-bits 10 01 00 11
Forward 2-bit 10 11 11 10
Modulo 2% addition
Backward 2-bit 10 00 01 10
Modulo 22 addition
Orientation of Bits 01 00 10 01
Final Ciphertext (S”) 01001001

Table 6.1 illustrates an encryption example of ROBAST. Let consider the above
source stream, S, is divided into blocks of 2-bits each. So, get four blocks, B1=10, B2=01,
B3=00 and B4=11. Then forward modulo-4 addition is performed, B2=B1+B2, B3=B2+B3
and B4=B3+B4. Now, get the result as B1=10, B2=11, B3=11 and B4=10, which is shown in
the third row of table 6.1. After that backward modulo-4 addition is performed, B3=B3+B4,
B2=B2+B3 and B1=B1+B2. Now, get the result as B1=10, B2=00, B3=01 and B4=10, which
is shown in the fourth row of table 6.1. Then orientation of the bits are performed that is 1%
bit is oriented with 2" bit of every 2-bit blocks and the result is shown in the fifth row of
table 6.1. Finally all the bits are concatenated to get the ciphertext S’.

Table 6.2 illustrates a decryption example of ROBAST. In this decryption example
the modulo-2" subtraction is performed instead of addition and the steps used in encryption
are just reversed for the decryption. Since it is a symmetric cipher so decryption will be the
just reverse of encryption.

Let consider the above ciphertext, S, is divided into blocks of 2-bits each. So, get
four blocks, B1=01, B2=00, B3=10 and B4=01. First, orientation of bits is performed, that is
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1% bit is oriented with 2" bit of every 2-bit blocks. The result is given in third row of table
6.2.

Table 6.2: Example of decryption in ROBAST

Source Stream(S’)—> 01001001
Blocks of 2-bits 01 00 10 01
Orientation of Bits 10 00 01 10
Backward 2-bit 10 11 11 10
Modulo 27 subtraction
Forward 2-bit Modulo 10 01 00 11
2% subtraction
Final Plaintext (S’’) 10010011

During decoding the backward modulo-4 subtraction is performed, B3=B4-B3,
B2=B3-B2 and B1=B2-B1. Now, get the result as B1=10, B2=11, B3=11 and B4=10, which
is shown in the fourth row of table 6.2. After that forward modulo-4 subtraction is performed,
B2=B2-B1, B3=B3-B2 and B4=B4-B3. The result obtained as B1=10, B2=01, B3=00 and
B4=11, which is shown in the fifth row of table 6.2. Finally all the bits are concatenated to

get the final plaintext S’°, which is the same as the original plaintext S.

6.4 Implementation and Key Generation

The technique executes modulo addition between two blocks, the first iteration
performs in forward basis and then backward operation is performed. Next, final permutation
is done to get the final cipher text.

This technique has been implemented in C and then feasibility study has been
performed. Finally, FPGA based implementation has been done in VHDL. In both
implementation, the technique takes input from file as a source stream and encryption is
performed. The cipher text generated is finally written in another file. The data blocks (8, 16,
32, 64, 128 and 256-bits) from the input file have been stored in array. Then encryption is
performed and also stored in array. The reading and writing of data from and in file is based
on 8-bit ASCII codes. XilinX ISE 8.1i software has been used for writing codes in VHDL.
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library std;

library ieee;

use ieee.std_logic_arith.all;

use work.pack.all;

use std.textio.all;

use ieee.std_logic_ TEXTIO.all;

entity ROBAST_VHDL is

Port (input_bits : in BIT_VECTOR (16 downto 1);
output_bits : out

BIT_VECTOR (16 downto 1); key bits : in

BIT_VECTOR (8 downto 1);

EN_DN:in BIT);

end ROBAST _VHDL,;

architecture Behavioral of ROBAST_VHDL is

begin

process(EN_DN)

variable varin_bits,varout_bits: bit_vector(16 downto

1);

begin

if (EN_DN="1")then varin_bits:=input_bits;

AA:

ROBAST _Encryption(varin_bits,key_bits,varout_bits)
output_bits<=varout_bits;

else

BB:

ROBAST _Decryption(varin_bits,key_bits,varout_bits)
output_bits<=varout_bits;

end if;

end process;

end Behavioral;

Figure 6.2: ROBAST entity and its function
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Figure 6.3: Top level RTL design of ROBAST

Figure 6.2 gives the implementation of ROBAST entity and its function. The
encryption/decryption entity input bit vector (16-bit), output bit vector (16-bit), key bit vector
(8-bit) and EN_DN signal. If EN_DN = 1 then encryption is performed else decryption is
performed. During encryption the input bit vector of 16-bits is the plaintext and output 16-bit
vector is the ciphertext where as EN_DN value is ‘1’. During decryption the input bit vector
of 16-bits is the ciphertext and the output 16-bit vector is the plaintext where as EN_DN
value is ‘0’. Figure 6.3 shows the top RTL diagram of ROBAST.

When EN DN = 1, the ‘ROBAST Encryption’ function is called with the parameters,
‘varin_bits’ which is the plaintext, ‘varout bits’ which is the ciphertext, both of these are of
16-bits and third parameter is the ‘key bits’ which is the session key of the encryption of 8-
bits. When EN_DN = 0, the ‘ROBAST Decryption’ function is called with the parameters,
‘varin_bits’ which is the ciphertext, ‘varout bits’ which is the plaintext, both of these are of
16-bits and third parameter is the ‘key bits’ which is the session key of the decryption of 8-
bits. This code is written in VHDL using behavioral model of coding. The
‘ROBAST VHDL’ entity in this coding has three ports, ‘input_bits’ of IN type of bit vector
of 16-bits, ‘output bits” of OUT type of bit vector of 16-bits, ‘key bits’ of IN type of bit
vector of 16-bits and ‘EN_DN” bit of IN type. ‘Behavioral’ is the architecture of the entity
‘ROBAST VHDL’, this architecture contains a process which is called on the signal
‘EN_DN’ that is whenever there is a signal in ‘EN_DN” this process is called. This process
contains two functions, ‘ROBAST Encryption’ and ‘ROBAST Decryption’. These two
functions are called according to the value of signal bit ‘EN_DN’ which is already discussed.
The implementation here is both functional and files type. These means that the code can be
implemented in Xilinix FPGA and the simulation takes the input from a text file and the
output is written into another text file. There are various libraries are used, library ‘std’ and

library ‘ieee’, it is important to note that library ‘ieee.std logic TEXTIO.all’ is used for the
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implementation of text file reading and writing. Figure 6.2 gives the main ROBAST entity
coded in VHDL.

Section 6.4.1 deals with the key generation process, section 6.4.2 illustrates an
example and section 6.4.3 gives the concept of modulo addition.

6.4.1 The Key Generation Process of ROBAST

In this section key generation process has been illustrated, the session key is 128-bits

for generalized ROBAST implementation.

Table 6.3: Representation of number of iterations in each round by bits, the key generation

for ROBAST
Round Block Size Number of lterations
Decimal Binary
8. 256 50021 1100001101100101
7. 128 49870 1100001011001110
6. 64 48950 1011111100110110
5. 32 44443 1010110110011011
4, 16 46250 1011010010101010
3. 8 4321 0001000011100001
2. 4 690 0000001010110010
1. 2 72 0000000001001000
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Figure 6.4: Graphical representation of key generation of ROBAST
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The key generation process depends on block size, iteration of each block and final
permutation performed. Thus, in the proposed scheme, eight rounds have been considered,
each for 2, 4, 8, 16, 32, 64, 128, and 256 block size. As mentioned in each round is repeated
for a finite number of times and the number of iterations will form a part of the encryption-
key. Although the key may be formed in many ways, for the sake of brevity it is proposed to
represent the number of iterations in each round by a 16-bit binary string. The binary strings
are then concatenated to form a 128-bit key for a particular key. Table 6.3 gives the key
generation process and the same is shown graphically in figure 6.4. For the block size of 2-
bits are considering 72 rounds, for block size of 4-bits are considering 690 rounds and so on
and finally for block size of 256-bits 50021rounds have been considered for encryption. Since
the technique is symmetric block cipher so for decryption same number of rounds will be
required. These numbers of rounds have been considered in binary value, for each block size
the number of rounds is considered in 16-bits of binary value. So there is eight block sizes
and their corresponding eight 16-bits rounds, the key is formed by concatenating all the 16-
bits binary values. Therefore, the size of the session key proposed here is 16 X 8 = 128-bits,
which is now a day’s considered the secure key length.

An example of key generation is illustrated in section 6.4.2. Section 6.4.3 describes
the modulo addition used in ROBAST, which is an important operation in the technique and

should be taken into account while forming the session key.

6.4.2 An Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for
block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 6.3 shows the
corresponding binary value for the number of iterations in each round. If considering the
block size of 256-bits then the binary value of round is ‘1100001101100101°, for block size
of 128-bit the binary value of round is ‘1100001011001110” and so on finally for block size
of 2-bits the binary value of round is ‘0000000001001000°’. These eight 16-bits binary strings

are concatenated together to form the 128-bit binary string, which is given below.

e 110000110110010111000010110011101011111100110110101011011001101110110
10010101010000100001110000100000010101100100000000001001000
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Figure 6.5: Session key generation of ROBAST

This 128-bit binary string will be the encryption-key for this particular session.
During decryption, the same key is taken to iterate each round of modulo-subtraction for the
specified number of times and reverse permutation. Figure 6.5 shows the top level RTL
diagram of session key generation of ROBAST.

6.4.3 Modulo Addition Used in ROBAST

An alternative method for modulo addition is proposed here to make the calculations
simple. The need for computation of decimal equivalents of the blocks is avoided here since
it will get large decimal integer values for large binary blocks. The method proposed here is
just to discard the carry out of the MSB after the addition to get the result. For example, if
add 1101 and 1001 it get 10110. In terms of decimal values, 13+9=22. Since the modulus of
addition is 16 (2*) in this case, the result of addition should be 6 (22-16=6). Discarding the
carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So the result will be

0110, which is equivalent to 6 in decimal. The same is applicable to any block size.

6.5 Analysis

Analyzing all the results presented in section 6.6, following are the points obtained on
the proposed technique, ROBAST:

e The algorithmic complexity of ROBAST is O(n?).

e ROBAST encrypts block of fixed sizes of 2", where n= { 3, 4, 5, .....}, that is
8, 16, 32, 64, 128 and 256.

e ROBAST is a substitution cipher, where the modulo addition between two

consecutive blocks replaces the second block.
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e ROBAST is a recursive cipher, the encryption block size starts with 256-bits
and goes up-to 8-bit block size.
e Decryption is same as encryption where round keys are given in reverse

manner in decryption than that of encryption.

6.6 Results and Simulations

Any cryptographic technique is to be accepted, a satisfactory results are very much
required. This technique has been tested for feasibility both in terms of algorithmic
parameters and cryptographic parameters. These are all described in respective sub sections.
Section 6.6.1 discuss results of RTL/Hardware implementation, section 6.6.2 discuss the
results of frequency distribution graph, section 6.6.3 discuss the results of Chi-Square test for
non-homogeneity of source files and encrypted files, section 6.6.4 discuss the results of time

complexity and section 6.6.5 discuss the results of avalanche ratio test.

6.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed
technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main
objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.
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Figure 6.6: RTL diagram of RSA
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Figure 6.7: Spartan 3E RTL diagram of TPRT
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Figure 6.9: Spartan 3E schematic of ROBAST
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Figure 6.6 shows the RTL schematic of RSA, figure 6.7 shows the RTL schematic of
TPRT, figure 6.8 shows the RTL schematic of TMAT and figure 6.9 shows the RTL
schematic of ROBAST. If observe the figures given above that it can be seen that a lot of
Look-Up-Tables are required, almost thirty, to realize this proposed technique, ROBAST, in
Spartan 3E FPGA. Similarly by seeing RTL schematic it can be said that a lot of registers are
required, almost fifty, to realize this proposed technique, ROBAST. So, this technique uses
the resources efficiently, the netlist study and speed grade study is discussed in later
paragraphs.

Table 6.4 gives the netlist generation of proposed technique, ROBAST, previous
techniques, TPRT, TMAT and RSA. RAMs/ROMs used in ROBAST is quite more than that
of TPRT and TMAT but still less than RSA. Since modulo addition is the backbone of
ROBAST, so, ROBAST uses quite large number of adder/subtraction than that of TPRT,
TMAT and RSA. Registers used here, ROBAST, is also larger than that of TPRT and TMAT
but it is still less than that of RSA. This technique, ROBAST, also uses a quite number of
latches and multiplexers than TPRT and TMAT. So, in overall it can be said that ROBAST

uses the resources available in FPGA chip.

Table 6.4: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT and ROBAST)

SrNo. | Netlist Components Number
RSA TPRT TMAT | ROBAST
1 ROMs/RAMs 430 10 14 25
2 Adders/Subtractions 3 0 2 20
3 Registers 420 20 30 50
4 Latches 80 0 0 10
5 Multiplexers 120 0 0 10

Table 6.5 gives the timing summary of proposed technique, ROBAST, previous
techniques, TPRT and TMAT and RSA. The minimum period for ROBAST is less than
TPRT, TMAT and RSA. The maximum frequency is same for all the implementation because
all the implementation is based of Spartan 3E FPGA with a speed grade of -5. Minimum
input arrival time of ROBAST is of medium value than TPRT, TMAT and RSA.
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Table 6.5: HDL synthesis report (Timing summary of RSA, TPRT, TMAT and ROBAST)

Sr No. Timing Constraint Values
RSA TPRT TMAT | ROBAST
1 Speed Grade -5 -5 -5 -5
2 Minimum period (ns) 9.895 5.66 7.95 5.55
3 Maximum Frequency | 101.06 101.06 101.06 101.06
(MHZ)
4 Minimum input 6.697 4.33 5.55 5.55
arrival time before
clock (ns)
5 Maximum output 4.31 3.33 4.25 4.44
required time after
clock (ns)

The maximum output required time is higher for proposed technique, ROBAST, than
that of TPRT, TMAT and RSA. So, in overall it can be said that ROBAST is giving

satisfactory result in hardware implementation.

6.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters in the
respective files. This is also a cryptographic parameter which measures the degree of
cryptanalysis. Figure 6.10 illustrates the source file, RSA encrypted file and TPRT encrypted
file frequency distribution results found after implementation of respective
algorithms/techniques. Figure 6.11 illustrates the frequency distribution of TMAT and
ROBAST encrypted file. The frequency distribution graph of all the proposed techniques,
ROBAST, TPRT and TMAT are giving the optimal result. All the frequencies are evenly
distributed over 256 region for all the technique except that of RSA where the frequency
distribution is not evenly distributed and somewhat resembles frequency distribution of a text
file. Though ten files have been encrypted but for this result the file ‘genesis.txt’ of size 48.44

KB is considered.
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Figure 6.11: Frequency distribution graph of TMAT and ROBAST encrypted files

6.6.3 The Non-Homogeneity Test

Test for non homogeneity has been done using Chi-Square value and degree of
freedom; this is one of the important cryptographic parameters. Chi-Square value is the
statistical value between source file and encrypted files, which gives the difference. Degree
of freedom in the character distribution of the above said files. Table 6.6 gives the Chi-

Square value and figure 6.12 illustrates the same graphically.
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Figure 6.12: Pictorial representation of Chi-Square values of ROBAST, RSA, TPRT and
TMAT

Table 6.6: Chi-Square values of ROBAST, RSA, TPRT and TMAT

Source File File Size Chi-Square Values
(Bytes)
ROBAST RSA TMAT TPRT
license.txt 17,632 6472 5668 201530 191382
cs405(ei).doc | 25,422 4407 2654 286025 253470

acread9.txt 35,121 560357 447984 440184 410735
deutsch.txt 47,829 3307374 685963 555220 505121
genesis.txt 49,600 2679799 | 3318506 659045 638592
pod.exe 69,981 8495675 694410 905416 896405
mspaint.exe | 136,463 3131296 | 2667664 | 1297256 | 1203665
cmd.exe 152,028 9559993 | 2216429 | 1759014 | 1692655
d3dim.dll 193,189 3102369 906300 4630652 | 4250652
clbcatq.dll 403,901 2590855 | 3896171 | 4167801 | 3922143
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Table 6.7: Degree of freedom of ROBAST, RSA, TPRT and TMAT

Source File File Size Degree of Freedom
(BYeS)  "ROBAST | RSA | TMAT | TPRT

license.txt 17,632 253 253 255 255
cs405(ei).doc | 25,422 253 253 255 255
acread9.txt 35,121 253 253 255 255
deutsch.txt 47,829 253 253 255 255
genesis.txt 49,600 253 253 255 255
pod.exe 69,981 253 253 255 255
mspaint.exe | 136,463 254 254 255 255
cmd.exe 152,028 253 253 255 255
d3dim.dll 193,189 253 253 255 255
clbcatq.dll 403,901 253 253 255 255

From the table it is seen that the average Chi-Square value of ROBAST is 33,43,860,
RSA is 14,84,175, TMAT is 14,90,214 and TPRT is 13,96,482. Therefore it can be said that
ROBAST is giving the optimal solution for non-homogeneity test but in degree of freedom
TMAT and TPRT are giving better result than ROBAST. Figure 6.12 giving the Chi-Square
values graphically, X-axis is the ten files and Y-axis is the corresponding Chi-Square values,

here bar graph is selected for this result.

6.6.4 The Time Complexity Analysis

Time complexity is based on encryption time and decryption time. Encryption time is
the time required to encrypt a source file and decryption time is the time to decrypt the cipher
text file to get the original file. Table 6.8 gives the encryption time complexities and figure
6.13 illustrates the same. Table 6.9 gives the decryption time complexities and figure 6.14

illustrates the same. This test is in terms of efficient algorithmic parameter.
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Table 6.8: Comparison of encryption time of ROBAST, RSA, TMAT and TPRT

Source File File Size Encryption Time
(BYeS)  "ROBAST | RSA | TMAT | TPRT

license.txt 17,632 0.00 0.01 0.03 0.02
cs405(ei).doc | 25,422 0.01 0.06 0.00 0.00
acread9.txt 35,121 0.02 0.07 0.13 0.10
deutsch.txt 47,829 0.03 0.11 0.25 0.20
genesis.txt 49,600 0.04 0.12 0.28 0.25
pod.exe 69,981 0.04 0.12 0.39 0.35
mspaint.exe | 136,463 0.06 0.20 0.44 0.40
cmd.exe 152,028 0.07 0.25 0.55 0.50
d3dim.dll 193,189 0.08 0.28 0.55 0.52
clbcatq.dll 403,901 0.08 0.32 0.67 0.60

Table 6.9: Comparison of decryption time of ROBAST, RSA, TMAT and TPRT

Source File File Size Decryption Time
(BYI®S) | "ROBAST | RSA | TMAT | TPRT

license.txt 17,632 0.01 0.15 0.11 0.10
cs405(ei).doc | 25,422 0.02 0.71 0.00 0.00
acread9.txt 35,121 0.03 1.15 0.13 0.10
deutsch.txt 47,829 0.03 1.36 0.15 0.11
genesis.txt 49,600 0.04 1.61 0.25 0.20
pod.exe 69,981 0.04 1.86 0.39 0.35
mspaint.exe 136,463 0.05 2.71 0.48 0.40
cmd.exe 152,028 0.06 3.34 0.52 0.42
d3dim.dll 193,189 0.07 3.73 0.60 0.50
clbcatg.dll 403,901 0.08 4.25 0.65 0.55
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Figure 6.14: Pictorial representation of decryption time of ROBAST, RSA, TMAT and TPRT

Encryption time in table 6.8, the encryption time is given against file size in KB, and
considering all the ten files then a total 2.36 MB of file is encrypted. The total time of
encryption by ROBAST is 0.43 seconds, RSA is 1.54 seconds, TMAT is 3.29 seconds and
TPRT is 2.94 seconds. So, ROBAST is giving the optimal result for encryption time
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complexity analysis. Figure 6.13 giving these results graphically, X-axis is the ten files and
Y-axis is the corresponding encryption time, here line graph is selected for the result.
Decryption time in table 6.9, the decryption time is given against file size in KB, and
considering all the ten files then a total 2.36 MB of file is decrypted. The total time of
decryption by ROBAST is 0.43 seconds, RSA is 20.87 seconds, TMAT is 3.28 seconds and
TPRT is 2.73 seconds. So, ROBAST is giving the optimal result for decryption time
complexity analysis and far better than that of RSA. Figure 6.14 giving these results
graphically, X-axis is the ten files and Y-axis is the corresponding decryption time, here line

graph is selected for the result.
6.6.5 The Avalanche Ratio Test

The avalanche ratio has been obtained by modifying 2-3 bits/bytes in the encryption
key as well as in source files. It’s a strong cryptographic parameter and this may be
conceptualize with the avalanche occurs in hill area. Table 6.10 gives the avalanche ratio

values of ROBAST, RSA, TPRT and TMAT.

Table 6.10: Comparison of avalanche ratio of ROBAST, RSA, TPRT and TMAT encrypted

files
Source File File Size | Avalanche | Avalanche | Avalanche | Avalanche
(Bytes) Ratio of Ratio of Ratio of ratio of
ROBAST RSA TPRT TMAT
encrypted | encrypted | encrypted | encrypted
files (in %) | files (in %) | file (in %) | file (in %)
license.txt 17,632 71.90 58.0 71.7 80.8
cs405(ei).doc | 25,422 99.69 60.0 80.0 85.5
acread9.txt 35,121 99.93 75.0 88.8 90.0
deutsch.txt 47,829 99.96 78.9 89.0 915
genesis.txt 49,600 97.72 80.9 87.0 94.7
pod.exe 69,981 77.00 58.0 77.0 80.0
mspaint.exe | 136,463 98.22 58.9 76.0 80.0
cmd.exe 152,028 99.97 67.0 77.0 80.0
d3dim.dll 193,189 99.98 67.9 82.9 85.0
clbcatg.dll 403,901 75.55 68.0 88.5 90.5
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The average avalanche ratio of ROBAST is 91.99%, RSA is 67.26%, TPRT is
82.39% and TMAT is 85.8%. So ROBAST is again giving optimal solution for avalanche
ratio analysis that means modifying of plaintext/key will greatly affect ciphertext than other
techniques/algorithm, RSA, TPRT and TMAT.

6.7 Discussions

The technique given here is easily implemented in high-level language and in VHDL.
This technique is very easy and it’s implemented in FPGA-based systems, the goal of fast
execution and strong cryptanalysis requirements are also obtained here. Moreover this
technique can be fabricated in chip to be used in embedded systems. The main goal is to
develop an efficient FPGA-based crypto hardware and this proposed technique is another step
towards this. Now in the next two chapters are develop technique which will give much better
result in terms of confusion and diffusion. It is also be seen that the avalanche ratio analysis

will be boosted in the subsequent chapters.
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Chapter 7
Shuffle — Rotational Addition Technique (SRAT)






7.1 Introduction

In this chapter, another secret-key cryptographic system is proposed. The proposed
system is a bit-level implementation. It is a block cipher and it follows the principle of
substitution and permutation. The techniques of the encryption and the decryption are not the
same but one can easily be derived from the other. During encryption modulo addition and
butterfly shuffle has been done and during decryption modulo subtraction and butterfly
shuffle has been done. The encryption key and decryption keys are same.

During encryption, a butterfly shuffle is applied to the whole source stream, then the
source stream is broken down into blocks of fixed size, then the consecutive blocks are
modulo added, the result replaces the second block keeping the first block intact, in the next
phase the whole block is left circular rotated. Now the blocks are concatenated and again
another round of butterfly shuffle is applied. The block size and number of modulo addition
to be performed depends on round key K1 and the butterfly shuffle depends upon round key
K2, thus the RAT operation is sandwiched between two butterfly shuffles.

During decryption, at first butterfly shuffle is done on source stream, then the source
stream is broken down into number of fixed size blocks, the consecutive blocks are modulo
subtracted the result replacing the second block keeping the first block intact, then here right
circular rotation is performed. Then the blocks are merged and another round of butterfly
shuffle is applied.

The system does not cause any storage overhead, the execution time changes almost
linearly with the size of the file being encrypted. The result of the Chi-Square test establishes
the fact that the source file and the encrypted file are non-homogeneous. The frequency
distribution test between the source and the encrypted files shows how the encrypted
characters are well distributed. The comparison of this proposed technique with the RSA
system on the basis of the Chi-Square values establishes the success of the technique in
ensuring the security of highly satisfactory level. Encryption and decryption time analysis has
also been done and this technique is giving satisfactory result. Another important
cryptographic parameter is avalanche test and this technique is giving much better result.
These entire tests have been performed by implementing the techniques in C-programming
language. Moreover, this technique has also been implemented in VHDL for FPGA-based
systems and the results found there after is also better than previous techniques.

Section 7.2 discussed the algorithm of SRAT with a block level diagram, section 7.3

gives a detailed example of encryption and decryption process, section 7.4 discussed the



implementation issues with key generation, section 7.5 gives a brief analysis, section 7.6
discussed the results obtained based on implementation and a brief discussions are given in
section 7.7.

7.2 The Algorithm of SRAT

This section describes the algorithm of SRAT with a block level diagram. The
plaintext for Shuffle-RAT is considered as a stream of 512 bit blocks. Figure 7.1 shows the
block diagram of Shuffle-RAT. The basic round function is Rotational Addition Technique
(RAT), applied on the 512-bit plaintext over 8 rounds where RAT is sandwiched between
two Butterfly-Shuffles.

Shuffle-RAT Encryption Shuffle-RAT Decryption
512-bit Plaintext 512-bit Plaintext
o
7S
{} Kev K2 for
Butterﬂj_.-'-Shufﬂe{ﬂ:I Buuterfly- [ {Butterfly-Shuffle

4 } Shuffle ﬁ

Simple RAT| _,  |KevKlfor | [ Simple RAT

J |7 & Decryption ﬁj‘

7
- - : Butterfly-Shuffle
Butterfly-Shuffle Key K2 for —— 3

Butterfly- :
{ !7 Shuffle {P
512-bit Ciphertext :rL:::__::_le-bft Ciphertext

Figure 7.1: Block diagram of Shuffle-RAT

The plaintext is subdivided into smaller blocks in each round of Shuffle-RAT, where
the block sizes vary with the powers of 2 in the rounds, i.e., 2"-bit blocks are considered for
round ‘n’, where ‘n=1, 2, 3 ... 8. In the ‘n-th’ round of Shuffle-RAT, the rotational addition
adds each block to the adjacent block modulo ‘2", and stores the result in the second block,
iteratively over the length of the plaintext, the operation of RAT is in between two Butterfly-

Shuffle. In mathematical terms, the round function of Shuffle-RAT is as follows.

- 206 -



One Round of Butterfly-Shuffle 1)
Bi+1 = (Bi+ Bij+1) mod 2" (2
Another Round of Butterfly-Shuffle (3)

In equation (2), the index ‘i’ cover all the blocks in each round. Each round of
Shuffle-RAT is iterated for some number of times defined by ‘keys’, where the round-keys
are of size 16 bits each. Thus, the total key-size of Shuffle-RAT is 8 x 16 = 128 bits.
Decryption for Shuffle-RAT is just the opposite of encryption, where one has to use modular
subtraction instead of addition and the round-keys are considered in the reverse order.

A close study of Shuffle-RAT reveals a few areas for improving the design even
further. The degree of randomness may be increased for better non-homogeneity and security
than the previous scheme. In terms of improving the algorithm, it was observe that RAT, the
previous proposed technique, has a strong property of ‘confusion’, like all good block
ciphers, but lacks good ‘diffusion’. Thus, I propose the diffusion of Shuffle-RAT with the
technique of butterfly shuffle to produce a new cipher — Shuffle-RAT, with high confusion
and diffusion. This Butterfly-Shuffle produces high ‘diffusion” which is performed twice in
this technique, before and after each round of RAT, and RAT here provides good
‘confusion’. Therefore this proposed cipher, Shuffle-RAT (SRAT), provides high confusion
and diffusion properties.

The algorithm of the Shuffle-RAT technique is based on RAT [131], and can be

summarized as follows:

Step1: The 512 bit message is divided into a number of blocks; each
containing N = 2" bits, where N is any one of 2, 4, 8, 16, 32, 64,
128, 256.

Step2: Each round key of 16 bits, produced similar to that in RAT, is

divided into two parts each of 8 bits. Suppose that they are named

as keyl and key?2.

Step 3:  First, Butterfly-Shuffle of bits/blocks is performed, which is based
on key2.

Step4: Two adjacent blocks are added and result is stored in the 2™ block
where the modulus of addition is 2" as in the case of RAT. This

RAT operation is performed and which is based on Keyl. Thus,
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original RAT is performed on the blocks of size N for (keyl) times
of iterations.

e Step5: The blocks are shuffled within the message to create proper
diffusion. This is done by a simple butterfly shuffle, shuffling pairs
of adjacent blocks, and the shuffling is done just once. Thus
another round of Butterfly-Shuffle is performed and which is based
on key?2.

e Step6: Finally, all the blocks are concatenated to form 512-bit ciphertext.

Thus, Shuffle-RAT incorporate diffusion in the structure of RAT using the butterfly
shuffle, sandwiched between two regular rounds of RAT, which already provides sufficient
amount of confusion as in the original design. The decryption is same as the above step, but
in the middle phase, that is, in RAT, operation the modulo subtraction is performed instead of
modulo addition. Since it is a symmetric block so repeated modulo addition would form the
original bit stream, but this number of iterations would increase in exponential term with the

increase of block size. Thus, for decryption modulo subtraction is proposed.

Table 7.1: Number of iteration to regenerate source stream using modulo-addition

Block size | No. of iterations
2 4
4 16
8 256
16 65536

Table 7.1 gives number of iterations against block sizes in SRAT. If observe table 7.1,
four numbers of iterations is required for 2-bit block size, 16 numbers of iterations is required
for 4-bit block size and 65536 numbers of iterations are required to get back the original
source stream for 16-bit block size using modulo-addition. Thus for 512-bit block size the
number of iterations will be huge (in millions) to get back the original source stream using

modulo-addition. Figure 7.2 illustrates the same graphically.
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Figure 7.2: Graphical representation of number of iterations to obtain source stream using
modulo-addition

It is seen from figure 7.2 that the number of iteration to get back the original source
stream varies exponentially with the block size, therefore modulo-subtraction is proposed for
decryption.

7.3 Example

An example of SRAT has been given. Consider the plaintext as 1011110111000111.

Table 7.2 gives the encryption process, here plaintext of 16-bit is considered. At first the 16-

bit plaintext is divided into eight 2-bit block size, and then a butterfly shuffle is performed.

Table 7.2: Encryption process of SRAT

Plaintext 1011110111000111
Round 1 (Block size = 2 bits) Butterfly- 1111011011110001
Shuffle
RAT 1110110100111100
Butterfly- 101101110000 1111
Shuffle
Next Input 1011011100001111
Round 2 (Block size = 4 bits) Butterfly- 0111 1011 1111 0000
Shuffle
RAT 0111 001011111111
00100111 11111112
Butterfly-
Shuffle
Final Ciphertext 0010011111111111
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Table 7.2 gives the encryption process, here plaintext of 16-bit is considered. At first
the 16-bit plaintext is divided into eight 2-bit block size, and then a butterfly shuffle is
performed.

Let consider the plaintext as P = “1011110111000111°. The eight blocks will be,
B1=10, B2=11, B3=11, B4=01, B5=11, B6=00, B7=01 and B8=11. In Butterfly-Shuffle in
the left part (B1, B2, B3 and B4) is, B3 will be replaced by B4, B2 will be replaced by B3,
B1 will replace by B2 and B4 will replace by B1. The Butterfly-Shuffle for right part (B5,
B6, B7 and B8) is, B6 will be replaced by B5, B7 will be replaced by B6, B8 will be replaced
by B7 and B5 will be replaced by B8. This type of replacing is known as Butterfly-shuffle.

Table 7.3: Decryption process of SRAT
Ciphertext 0010011111111111
Round 1 (Block size = 4 bits) | Butterfly- 0111 0010111111112

Shuffle
RAT 0111 1011 1111 0000
Butterfly- 1011 0111 0000 1111
Shuffle
Next Input 1011011100001111
Round 2 (Block size = 2 bits) | Butterfly- | 1101 1110110000 11
Shuffle
RAT 1110110100111100
Butterfly- 1011110111000111
Shuffle
Final Plaintext 1011110111000111

Then one round of RAT is performed but here 2-bit modulo addition is done, again
another round of Butterfly-Shuffle is done. All the eight blocks will be input to the next
round of Shuffle-RAT encryption, in this round, 16-bit sub-stream is divided into four blocks
of 4-bits each, and then Butterfly-Shuffle is performed.

Let consider the sub-stream, S = ‘1011011100001111°. The four blocks would be,
B1=1011, B2=0111, B3=0000, B4=1111. In Butterfly-Shuffle in the left part just B1 and B2
are swapped. In right part of Butterfly-Shuffle just B3 and B4 are swapped. This type of
replacing is known as Butterfly-shuffle.

Then one round of RAT operation is performed where 4-bit modulo addition is done.
Again another round of Butterfly-Shuffle is performed. Finally Concatenation of all four

blocks will result in 16-bit ciphertext.
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Table 7.3 gives the decryption process of the same ciphertext generated in table 7.3.
The process of decryption is same as that of encryption, but with two differences, at first 4-
block size is considered then 2-bit block size is considered. Second, in RAT operation

7.4 Implementation and Key Generation

The implementation of SRAT is done in IEEE VHDL and synthesized in Xilinx 8.1i.
These contains various modules and sub modules. Before laying out the architectural plan for
this proposed cipher, SRAT, let take note of all components that it will be required to use in
this context:

e Storage: The plaintext is stored in a 512 bit, which is a 64-byte register array
denoted by ‘regbox’. The key is stored in a 128 bit, which is a 16-
byte register array denoted by ‘keymod’. The masks for two rounds
are stored in a 10-byte register array denoted by ‘mskbox’.

e Logic This consists of the main controller module denoted by ‘srat_main’,

blocks: the individual circuits for 8 rounds of Shuffle-RAT (SRAT2 to
SRAT?256), and the access logic and multiplexing circuit to read and
write from the storage.

e SRATn: Means Shuffle-RAT algorithm with n-bit of plaintext, SRAT2 means
Shuffle-RAT with 2-bit plaintext block, SRAT256 means Shuffle-
RAT with 256-bit plaintext block.

r ™
Mask Registers Register Box Key Registers
(mskbox) (regbox) (keymod)

N2 ‘ U

Port Sharing Logic between Rounds

T
SR Y S T S S

|
SRAT SRAT SRAT SRAT SRAT SRAT SRAT SRAT
2 4 8 16 32 64 128 256
A
| | G | 1 T 1
ok ——— ; operation
v PI—— Main Controller Module ~ 7 complete

Figure 7.3: Top-level hardware architecture for Shuffle-RAT
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Figure 7.3 shows the design of Shuffle-RAT for FPGA simulation. The plaintext, keys
are taken from storage registers named ‘regbox’ and ‘keymod’. The complete Shuffle-RAT
operations are done in SRAT2 to SRAT256, as described in the algorithm. Clock and reset
inputs are fed to the main controller module, which instructs the SRAT modules to operate in
a particular sequence, and indicates when all operations are completed successfully.

The registers are byte array (8 bit) for the storage ‘regbox’, whereas SRAT2 and
SRAT4 require the access of 2-bit and 4-bit blocks respectively. This is why the masks are
stored in ‘mskbox’ to access the required 2-bit or 4-bit blocks from the bytes. Another main
point in terms of an efficient design is that the blocks SRAT2 to SRAT256 operate
sequentially, and do not overlap in time. Thus, the access ports to the storage modules, that
are ‘regbox’, ‘keymod’ and ‘mskbox’, can be shared among the SRAT operations. So, the
port sharing logic between rounds of Shuffle-RAT is incorporated.

The main storage for the Shuffle-RAT hardware is the ‘regbox’ array and the
‘keymod’ array. The ‘regbox’ comprises of 8 bit registers made of edge-triggered master-
slave flip-flops, with a total of 64 such registers to hold the 512-bit plaintext. To
accommodate the read and write accesses to the ‘regbox’, use write-access decoders and
read-access decoders, which in turn control 64-to-1 multiplexer units associated to each
location of the array. The ‘keymod’ that holds the 128-bit Shuffle-RAT key is also designed
in a similar fashion, but with the exception that no intermediate write accesses are required
for the registers.

Modulo adder is another important component in this proposed technique, SRAT and
also for ROBAST. Carry Look-ahead Adder is designed for this purpose. The carry Look-
ahead Adder (CLA) solves the carry delay problem by calculating the carry signals in
advance, based on the input signals. It is based on the fact that a carry signal will be
generated in two cases: (4) when both bits a; and b; are 1 or (5) when one of the two bits is 1

and the carry-in is 1. Thus, one can write,

Ci+1 =4 . bi + (ai XOR bl) . G (4)
Si = (ai XOR b.) XOR ¢; (5)

The above two equations can be written in terms of two new signals P; and G;, which

are shown in figure 7.4.

-212 -



— Gi Cot
C: _/
1
Figure 7.4: Full adder at stage i with P; and G;
e Cit1=Gj+Pi.c (6)
e 5, =P; XOR; (7)
Where
e Gi=2a.b (8)
e Pj=3 XOR bi (9)

Gi and Pi are called the carry generate and carry propagate terms, respectively. Notice
that the generate and propagate terms only depend on the input bits and thus will be valid
after one and two gate delay, respectively. If one uses the above expression to calculate the
carry signals, one does not need to wait for the carry to ripple through all the previous stages
to find its proper value.

Let’s apply this to a 4-bit adder to make it clear. Putting i = 0, 1, 2, 3 in equation (6)
got

e C1=Gg+Pg.co

(10)
e C=G1+P;.Gog+P;.Py.co
(11)
o C3=Gy+Py,.Gy+Py.P;.Gg+Py.P1.Pg.cCo
(12)
o C4=G3+P3.Gy+P3.Py.Gy+P3.Ps.P;1.Gg+P3.Py.P1.Pg.Co
(13)
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Figure 7.5 shows that a 4-bit CLA is built using gates to generate the Pi and Gi signals
and a logic block to generate the carry out signals according to Equations 10- 13. For
modulo-4 CLA only have to discard c4. CLAS are usually implemented as 4-bit modules and
are used in a hierarchical structure to realize adders that have multiples of 4-bits. It is a
simple matter to develop a more versatile 2’s complement adder/subtractor based on the
adder in figure 7.5.

as b‘_g s b‘z a I)‘ 1 ag by
Gy P3 G, P G P Go Py
(’4 CO
- —
c3 ) | €

pgﬂ Pﬂ Pﬂ POJl
by b

Figure 7.5: 4-bit modulo carry look-ahead adder implementation details

Section 7.4.1 describes the key generation process and section 7.4.2 gives an example

of key generation.
7.4.1 Key Generation

In the proposed technique, eight rounds have been considered, each for 2, 4, 8, 16, 32,
64, 128, and 256 block size. Each round is repeated for a finite number of times and the

number of iterations will form a part of the encryption-key. Although the key may be formed

in many ways, for the sake of brevity it is proposed to represent the number of iterations in

- 214 -



each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-
bit key for a particular key.

In the proposed technique, eight rounds have been considered, each for 2, 4, 8, 16, 32,
64, 128, and 256 block size. Each round is repeated for a finite number of times and the
number of iterations will form a part of the encryption-key. Although the key may be formed
in many ways, for the sake of brevity it is proposed to represent the number of iterations in
each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-

bit key for a particular key.

Table 7.4: Representation of number of iterations in each round in SRAT

Round Block Number of Iterations
Size Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

60000
. 50000
2
g 40000
_%tg 30000
% = 20000
10000
o+ A B B N =2 N _
1 2 3 4 5 6 7 8
Rounds

Figure 7.6: Graphical representation of round v/s iteration
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Figure 7.7: Session key generation for SRAT

Figure 7.7 shows the top level RTL diagram of session key generation, here two
session keys are generated, session key 1 (SK1_RAT) is used for RAT operation that is
modulo addition operation, session key 2 (SK2_SHUFFLE) is used for two rounds of
butterfly shuffle. The total size of key is 128-bits.

7.4.2 Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for
block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 7.4 shows the
corresponding binary value for the number of iterations in each round. Figure 7.6 shows the
graph for the round v/s iteration. The binary strings are concatenated together to form the

128-bit binary string:

110000110110010111000010110011101011111100110110101011011001101110110
10010101010000100001110000100000010101100100000000001001000

This 128-bit binary string will be the key for encryption for a particular session.
During decryption, the same key is taken to iterate each round of modulo-subtraction for the

specified number of times.

7.5 Analysis

This technique is derived from Rotational Addition Technique (RAT), the advantages
of RAT are:-

e The technique can take little time to encode and decode though the block

length is large.
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e The encoding string will not generate any overhead bits.
e Selecting the block pairs randomly (rather than consecutive pairs) may

increase the security.
RAT also has severe limitations which are listed below: -

e The first 2-bits of the message never get encrypted. So, the first two bits are
always in the hand of cryptanalyst.

e The first 4-bits of the message never gets encrypted from round two onwards.
The first 8-bits of the message never gets encrypted from round three onwards
and so froths from all the rounds.

e In general first 2% bits never gets encrypted in round ‘k’ onwards.

o Key size of RAT encryption and RAT decryption is 16-bits per round. Thus
the runtime of RAT (with 16-bits of keys at each level) is approximately in
order of 8*2'°=29 RAT cycles. Where one cycle is equivalent to on complete

RAT operation over the whole 512-bits. This number makes RAT a bit slower.
The basic ideas of the design of SRAT are as follows:-

e The degree of randomness has also increased here by introducing two butterfly
shuffles in between one round of RAT.
e RAT does the job of confusion well but butterfly shuffle introduce the job of

diffusion as well.

Thus got much better technique, the algorithmic complexity of SRAT is found to be
o(nd).

7.6 Results and Simulations

In this section, the various results obtained on implementation of the proposed
technique, Shuffle-RAT, has been compared with the previous techniques, TPRT, TMAT and
ROBAST. This technique is also compared with popular and industrially accepted cipher,

RSA. The comparisons are done in two categories, first one is the comparisons based on
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FPGA-Based hardware implementation and second one is the comparisons based on software
implementation through C-programming language. The software implementation includes
Chi-Square values, encryption time and decryption time, avalanche test and frequency
distribution. The hardware implementation will mainly deal with the Register Transfer Logic
(RTL) parameters and diagrams. Section 7.6.1 discuss results of RTL/Hardware
implementation, section 7.6.2 discuss the results of frequency distribution graph, section
7.6.3 discuss the results of Chi-Square test for non-homogeneity of source files and encrypted
files, section 7.6.4 discuss the results of time complexity and section 7.6.5 discuss the results

of avalanche ratio test.

7.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed
technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main
objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.
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Figure 7.8: RTL diagram of RSA

| PR N

Figure 7.9: Spartan 3E RTL diagram of TPRT
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Figure 7.11: Spartan 3E schematic of ROBAST

Figure 7.12: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT

Figure 7.8 shows the RTL schematic of RSA, figure 7.9 shows the RTL schematic of
TPRT, figure 7.10 shows the RTL schematic of TMAT, figure 7.11 shows the RTL schematic
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of ROBAST and figure 7.12 shows RTL schematic of SRAT. If the figures are analyzed
given above it can be seen that a few Look-Up-Tables are required. Nine lookup tables are
required to realize this proposed technique, SRAT, in Spartan 3E FPGA. So, this technique
uses the resources efficiently, the netlist study and speed grade study is discussed in
subsequent paragraphs.

Table 7.5: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST and

SRAT)
SrNo. | Netlist Components Number
RSA TPRT TMAT | ROBAST | SRAT
1 ROMSs/RAMs 430 10 14 25 28
2 Adders/Subtractions 3 0 2 20 28
3 Registers 420 20 30 50 641
4 Latches 80 0 0 10 80
5 Multiplexers 120 0 0 10 136

Table 7.5 gives the HDL synthesis of netlist generation, the number of ROMs/RAMs
and adder/subtraction used in SRAT in 28 which is the highest than other techniques, number
of register of SRAT is 641 which is also highest, the number of latches is 80 and multiplexers
is 136, these results are also highest. So, in terms of netlist generation SRAT consuming the
maximum resources efficiently.

Table 7.6: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST and

SRAT)
Sr No. Timing Constraint Values

RSA TPRT TMAT | ROBAST | SRAT
1 Speed Grade -5 -5 -5 -5 -5
2 Minimum period (ns) | 9.895 5.66 7.95 5.55 5.50
3 Maximum Frequency | 101.06 | 101.06 101.06 101.06 101.06

(MHZ2)
4 Minimum input arrival | 6.697 4.33 5.55 5.55 4.25
time before clock (ns)
5 Maximum output 431 3.33 4.25 4.44 3.33
required time after
clock (ns)
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Table 7.6 gives the timing synthesis of the techniques, RAT giving the minimum
period of 5.50ns, minimum input arrival time before clock of SRAT is 4.25ns, and Maximum
output required time after clock of SRAT is 3.33ns, these shows the optimal result of SRAT
than TPRT, TMAT, ROBAST and RSA. Thus SRAT is the best implemented in FPGA-based

systems.
7.6.2 The Frequency Distribution Graph
The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.
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Figure 7.13: Frequency distribution graph of source, RSA encrypted and TPRT encrypted
files
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Figure 7.14: Frequency distribution graph of TMAT and ROBAST encrypted files
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Figure 7.15: Frequency distribution graph of SRAT encrypted files

Figure 7.13 illustrates the source file, RSA encrypted file and TPRT encrypted file
frequency  distribution  results  found after implementation of  respective
algorithms/techniques. Figure 7.14 illustrates the frequency distribution of TMAT and
ROBAST encrypted file. Figure 7.15 illustrates the frequency distribution graph of SRAT
encrypted file. The frequency distribution graph of all the proposed techniques, SRAT,
ROBAST, TPRT and TMAT are giving the optimal result. All the frequencies are evenly
distributed over 256 region for all the technique except that of RSA where the frequency
distribution is not evenly distributed and somewhat resembles frequency distribution of a text
file. Though ten files have been encrypted but for this result the file ‘genesis.txt’ of size 48.44

KB is considered. Therefore there is no substantial improvement in this result for SRAT.

7.6.3 The Non-Homogeneity Test

This section shows the extent of non-homogeneity between source file and encrypted
file. To test this Chi-Square is taken as a parameter. Here the observed frequency is source
file that is plaintext and the expected frequency is the ciphertext that is encrypted file. Ten
files has been taken for this test in increasing order of file size, the size starts from 17,632
bytes (17.22 KB) and goes to 403,901 bytes (394.43 KB). Among these ten files, four text
files has been taken, one Microsoft word file has been taken, three executable file has been
taken and two dll files has been taken.

These files are then repeatedly encrypted by RSA, TPRT, TMAT, ROBAST and
SRAT, then with software tools the Chi-Square value between the source files and encrypted

files are noted down in tabular format.
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Table 7.7: Comparison of Chi-Square values of ROBAST, RSA, TPRT, TMAT and SRAT

Source File File Size Chi-Square Values
(Bytes)
ROBAST RSA TMAT TPRT SRAT
license.txt 17,632 6472 5668 201530 191382 201960
cs405(ei).doc | 25,422 4407 2654 286025 253470 | 305590

acread9.txt 35,121 560357 447984 440184 410735 | 451125
deutsch.txt 47,829 3307374 | 685963 555220 505121 | 558330
genesis.txt 49,600 2679799 | 3318506 | 659045 638592 | 683128
pod.exe 69,981 8495675 | 694410 905416 896405 | 937565
mspaint.exe | 136,463 3131296 | 2667664 | 1297256 | 1203665 | 1308890
cmd.exe 152,028 9559993 | 2216429 | 1759014 | 1692655 | 2009956
d3dim.dll 193,189 3102369 | 906300 | 4630652 | 4250652 | 9900630
clbcatq.dll 403,901 2590855 | 3896171 | 4167801 | 3922143 | 4525650

Table 7.8: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT and SRAT

Source File File Size Degree of Freedom
(BYeS) "ROBAST | RSA | TMAT | TPRT | SRAT

license.txt | 17,632 253 253 255 255 253
cs405(ei).doc | 25,422 253 253 255 255 254
acread9.txt | 35,121 253 253 255 255 255
deutsch.txt | 47,829 253 253 255 255 240
genesis.txt | 49,600 253 253 255 255 255
pod.exe 69,981 253 253 255 255 255
mspaint.exe | 136,463 254 254 255 255 255
cmdexe | 152,028 253 253 255 255 255
d3dimdil | 193,189 253 253 255 255 255
clbcatq.dil | 403,901 253 253 255 255 255
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Figure 7.16: Comparison Chi-Square values for ROBAST, RSA, TMAT, TPRT and SRAT

It is seen from the table the average Chi-Square value of SRAT is 2088282, ROBAST
is 33,43,860, RSA is 14,84,175, TMAT is 14,90,214 and TPRT is 13,96,482. Therefore it can
be said that SRAT is giving the optimal solution for non-homogeneity test but in degree of
freedom TMAT and TPRT are giving better result than SRAT. Table 7.7 giving the Chi-
Square values, table 7.8 giving the degree of freedom values and figure 7.16 giving the Chi-
Square values graphically, X-axis is the ten files and Y-axis is the corresponding Chi-Square
values, here bar graph is selected for this result. The degree of freedom result of SRAT is

nearly 255. Thus SRAT is giving heterogeneous result than other techniques including RSA.
7.6.4 The Time Complexity Analysis

Time complexity is based on encryption time and decryption time. Encryption time is
the time required to encrypt a source file and decryption time is the time to decrypt the cipher

text file to get the original file. Ten source files are encrypted and the encryption times are

noted, then these encrypted files are decrypted and the decryption time is noted.
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Table 7.9: Comparison encryption time of ROBAST, RSA, TMAT, TPRT and SRAT

Source File File Size Encryption Time
(BYeS) "ROBAST | RSA | TMAT | TPRT | SRAT

license.txt 17,632 0.00 0.01 0.03 0.02 0.00
cs405(ei).doc | 25,422 0.01 0.06 0.00 0.00 0.01
acread9.txt 35,121 0.02 0.07 0.13 0.10 0.01
deutsch.txt 47,829 0.03 0.11 0.25 0.20 0.01
genesis.txt 49,600 0.04 0.12 0.28 0.25 0.02
pod.exe 69,981 0.04 0.12 0.39 0.35 0.02
mspaint.exe | 136,463 0.06 0.20 0.44 0.40 0.03
cmd.exe 152,028 0.07 0.25 0.55 0.50 0.05
d3dim.dll 193,189 0.08 0.28 0.55 0.52 0.05
clbcatq.dll 403,901 0.08 0.32 0.67 0.60 0.05

Table 7.10: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT and SRAT

Source File File Size Decryption Time
(BYeS) "ROBAST | RSA | TMAT | TPRT | SRAT

license.txt | 17,632 0.01 0.15 0.11 0.10 0.00
cs405(ei).doc | 25,422 0.02 0.71 0.00 0.00 0.01
acread9.txt | 35,121 0.03 1.15 0.13 0.10 0.01
deutsch.txt | 47,829 0.03 1.36 0.15 0.11 0.01
genesis.txt | 49,600 0.04 1.61 0.25 0.20 0.02
pod.exe 69,981 0.04 1.86 0.39 0.35 0.02
mspaint.exe | 136,463 0.05 2.71 0.48 0.40 0.02
cmdexe | 152,028 0.06 3.34 0.52 0.42 0.05
d3dimdil | 193,189 0.07 3.73 0.60 0.50 0.05
clbcatq.dil | 403,901 0.08 4.25 0.65 0.55 0.05

Table 7.9 gives the encryption times of all the technigues including RSA, table 7.10
gives the decryption times of all the techniques including RSA. Figure 7.17 shows the
encryption time graphically and figure 7.18 shows the decryption time graphically.
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The cumulative encryption time of ROBAST is 0.43 seconds, RSA is 3.54 seconds,
TMAT is 3.29 seconds, TPRT 2.94 seconds and SRAT is 0.25 seconds. The cumulative
decryption time of ROBAST is 0.43 seconds, RSA 20.87 seconds, TMAT is 3.28 seconds,
TPRT is 2.63 seconds and SRAT is 0.24 seconds. Therefore SRAT is giving the best result in
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Figure 7.17: Pictorial representation of encryption time against file size
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7.6.5 The Avalanche Ratio Test

The avalanche ratio is the ratio between the modified results to the original result. The
avalanche ratio is obtained by modifying 2-3 bits/bytes in the encryption key as well as in

source files.

Table 7.11: Comparison of avalanche ratio of ROBAST, RSA, TPRT, TMAT and SRAT
encrypted files

Source File File Size | Avalanche | Avalanche | Avalanche | Avalanche | Avalanche
(Bytes) Ratio of Ratio of Ratio of ratio of ratio of
ROBAST RSA TPRT TMAT SRAT
encrypted | encrypted | encrypted | encrypted | encrypted
files (in %) | files (in %) | file (in %) | file (in %) | file (in %)
license.txt 17,632 71.90 58.0 77.7 80.8 915
cs405(ei).doc | 25,422 99.69 60.0 80.0 85.5 90.5
acread9.txt 35,121 99.93 75.0 88.8 90.0 98.0
deutsch.txt 47,829 99.96 78.9 89.0 91.5 99.5
genesis.txt 49,600 97.72 80.9 87.0 94.7 99.9
pod.exe 69,981 77.00 58.0 77.0 80.0 99.9
mspaint.exe | 136,463 98.22 58.9 76.0 80.0 98.0
cmd.exe 152,028 99.97 67.0 77.0 80.0 97.0
d3dim.dll 193,189 99.98 67.9 82.9 85.0 97.5
clbcatg.dll | 403,901 75.55 68.0 88.5 90.5 99.0

Table 7.11 gives the avalanche ratio of all the techniques, thus it can be seen that
SRAT is giving the best result in terms of avalanche ratio test. So, it can be said that
modifying few bits or bytes in source file of session key will effect most bits or bytes of
encrypted file through SRAT.

7.7 Discussions

In this chapter, efficient iterated block cipher Shuffle-RAT has been proposed based
on an existing design of Rotational Addition Technique (RAT) with a novel inclusion of
butterfly-shuffle in the process. Detailed analysis of the new cipher based on relevant

cryptographic properties have been studied, and comparison with existing well-known
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designs, including the original RAT has also been done. Efficient hardware architecture for
Shuffle-RAT implementation has also been done on FPGA, and tested for the feasibility of
the design using VHDL description, simulated using Xilinx ISE. The natural step for future
work would be to exploit the advantages of Shuffle-RAT through its practical implementation
and synthesis on FPGA or ASIC platforms. Shuffle-RAT is also compared to all the other
proposed techniques in the next chapter.
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Chapter 8
Triple Sagacious Vanquish (TSV)






8.1 Introduction

The Triple SV is a block cipher that uses secret key encryption. This algorithm takes a
fixed-length string of plaintext bits and transforms it through a series of complicated
operations into another cipher-text bit string of the same length. The proposed block size is
256 bits. The key comprises 112 bits. Figure 8.1 summarizes the overall structure of Triple
SV.

256-bit plaintext 256-bit plaintext
Z 3sv EAIR 3sv z
£ | Encryption Cipher ' e " Decryption Cipher e
c o
256-bit ciphertext 256-bit ciphertext

Figure 8.1: Overview of the TSV

The TSV consist of complex operation of encryption and decryption and the key
generation produce a key of 112 bits. This proposed technique is also symmetric in nature
because the operation required for encryption is same required for decryption with the same
key for encryption and decryption. Modes of operation for this proposed technique is Cipher
Block Chaining (CBC), which is used for encryption and decryption. This technique is
successfully implemented in software module using C programming and also in hardware
module using VHDL. Apart from other parameters this proposed technique exhibits a good
avalanche effect. The CBC modes of operation converts a block cipher to a stream cipher and
stream cipher has a good avalanche effect that is why this proposed technique shows a good
avalanche effect. So, through this proposed technique got a stream cipher design using block
cipher through CBC. Figure 8.1 shows the block diagram of Triple SV (TSV).

Section 8.2 discussed the algorithm of TSV with a block level diagram, section 8.3
gives a detailed example of encryption and decryption process, section 8.4 discussed the
implementation issues with key generation, section 8.5 gives a brief analysis, section 8.6
discussed the results obtained based on implementation and a brief discussions are given in

section 8.7.



8.2 The Algorithm of TSV

TSV takes 256-bits plaintext as input and then inverse function is applied. The inverse
function is a function which takes a block of bits as input then gives out the complement of
these bits. Then seven rounds of encryption is performed, 2-bits block encryption, 4-bits
block encryption, 8-bits block encryption, 16-bits block encryption, 32-bits block encryption,
64-bits block encryption and 128-bits block encryption. The details have been discussed in
later sub-section. Again inverse function is applied so that it cancels out the first round of
inverse function and finally 256-bits of ciphertext obtained. The proposed mode of operation
is CBC which gives a high avalanche as well as better non-homogeneity is obtained.

Section 8.2.1 gives a brief discussions on modes of operation, section 8.2.2 gives the

encryption process and section 8.2.3 gives the decryption process.

Plaintext Plaintext Plaintext
I O LT [TTTTTI
Initialization Vector (IV)
I 1 - a I o
v ' v
Block Cipher Block Cipher Block Cipher
Key > Encryption Key > Encryption Key > Encryption
] ] Y
[TTTTTT [TTTTT] [TTTTTT
Ciphertext Ciphertext Ciphertext

Figure 8.2: The Cipher Block Chaining (CBC) mode for encryption in TSV
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Figure 8.3: The Cipher Block Chaining (CBC) mode for decryption in TSV

8.2.1 Modes of Operation

Like other block ciphers, TSV must be used in one of the several modes of operation,

like Electronic codebook (ECB), Cipher-block chaining (CBC), Propagating cipher-block
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chaining (PCBC), Cipher feedback (CFB), and Output feedback (OFB). TSV has been
designed in CBC mode.

In the CBC mode, each block of plaintext is XORed with the previous cipher-text
block before being encrypted. This way, each cipher-text block is dependent on all plaintext
blocks processed up to that point. Also, to make each message unique, an initialization
vector must be used in the first block. A one-bit change in a plaintext affects all following
cipher-text blocks. A plaintext can be recovered from just two adjacent blocks of cipher-text.
As a consequence, decryption can be parallelized, and a one-bit change to the cipher-text
causes complete corruption of the corresponding block of plaintext, and inverts the
corresponding bit in the following block of plaintext. Figure 8.2 and figure 8.3 represent the
encryption and the decryption process of CBC mode. CBC mode of operation also converts a
block cipher to a stream cipher with high avalanche effect and which is found in the result

after implementation of TSV in CBC.
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Figure 8.4: TSV encryption overview
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Figure 8.5: n-BIT level structure (encryption) for TSV
8.2.2 Encryption

There are basically seven similar levels of processing. In addition there is also an
initial and final inversion operation. The seven similar levels of processing have identical
structure but differ in the number of consecutive n bits out of the input 256 bit to each level,
which are coupled together and treated as a single entity while being processed inside each
level. The values that n take in the 7 distinct levels are 2, 4, 8, 16, 32, 64, 128, (that is 2 "
numben) - respectively. Hence the seven levels of processing are named as 2-bit level, 4-bit
level, 8-bit level, 16-bit level, 32-bit level, 64-bit level, and 128-bit level, respectively. This

technique’s overall structure (for encryption) is shown in figure 8.4.
e n-Bit Level Structure

Figure 8.5 shows the entire construct of the n-bit level. Each level basically comprises
three major functions, namely, Far Swapping, Near Swapping and Expansion Function, and a
XOR Function. The 256-bit input to the level first undergoes an n-bit far swap. The 256-bit
output of the n-bit far swap is then introduced to an n-bit near swap, which again generates a
256-bit output. In the far swap the 0" block is swapped with (k-1)" block, 1% block is
swapped with the (k-2)™ block and so on for k-blocks of input bits and n-bit far swap means

the block size is of n-bits. In the near swap the 0™ block is swapped with 1% block, 2" block
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is swapped with 3" block and so on for k-blocks of input bits and n-bit near swap means the
block size is of n-bits.

After far swap and near swap of n-bit blocks, all the blocks are combined to get 256-
bit stream which is then XORed with the output of the expansion function and the resultant is
passed to the next n-bit round structure. Figure 8.6 shows the n-bit far swap where as figure
8.7 show the n-bit near swap.

4 n-bits -» 4 n-bits » 4 n-bits » oo 4= n-bits  » 4 n-bits - 4 n-bits
A A

Figure 8.6: n-bit far swap function for TSV

' ' v '

& nhits P4 nbits » 4« nbits » & nhits b € nebits 4 nbits

t |t t

Figure 8.7: n-bit near swap function for TSV

ke [0t [2[3 a5 6789 [10]11]12]13]14]15]

Fora™ iteration,
a left-shifts (a+1) left-shifts (a+15) left-shifts
......................... s G s e s i
i t : | ’-
| ': ' : 1 :
1 K, q-- K " 3 e i "1 Jd
L ‘ Py 1

ST Do BUB, 01 2. NuB, VI T 7% )

01 20 s BB ATIN G oo o o DO I IENIN i o o DRI i o, e ' B 206

Figure 8.8: Expansion function for encryption of TSV
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Figure 8.10: n-bit level structure (decryption) of TSV
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Figure 8.11: Expansion function for decryption of TSV

Meanwhile, the 16-bits string, K, enters the level and get expanded into a 256-bit

string with which the 256-bit output of the near swap gets XORed to produce a 256-bit

intermediate. This intermediate is again fed into the same level to carry out the procedure all

over again. This iterative operation of the level continues for d time, where d is a positive

integer, the value of which is determined by the decimal equivalent of the string K.

After complete iterations of ‘d’ times, the 256-bit output is the output of that level and

is carried to the next n-bit level for similar series of operations.

n-Bit Far Swap Function: The n-bit far swap function has been
diagrammatically depicted in figure 8.6. The n-bit far swap function is a
simple function. Firstly, the 256-bit of the incoming string are grouped into
distinct n-bit groups, where n is 2, 4, 8, 16, 32, 64, or 128, depending on the
level at which are operating. The groups are formed by starting from the first
bit and grouping together the first n consecutive bits, then the next n
consecutive bit, and so on. These distinct n-bit groups behave as individual
entities at that particular level.

For n-bit far swapping, the first n-bit group gets swapped (interchanged) the
last (farthest) n-bit group. The second n-bit group gets swapped with the
penultimate n-bit group, and so on.

n-Bit Near Swap Function: The n-bit near swap function is quite similar to n-

bit far swapping function, with a subtle change in swapping pattern, as
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demonstrated in figure 8.7. For n-bit near swapping, the first n-bit group gets
swapped (interchanged) the second (nearest) n-bit group. The third n-bit group
gets swapped with the fourth n-bit group, and likewise the penultimate n-bit
group is swapped with the ultimate n-bit group.

e Expansion Function (for encryption): The Expansion Function, in comparison
to the earlier functions is a little more complex. For a certain n-bit level, the
Expansion Function transforms the 16-bits string, K, into a 256-bit string
which is used as an input to the XOR Function. Figure 8.8 summarizes the
expansion function for encryption.

e Inverse function: Inverse function is the random permutation of the 256-bit
plaintext and it is completely defined by the implementation. The initial
inverse function inverts the bits and performs the random permutation. The
final inverse function which get the 256-bit output from 128-bit level, it again
invert the bits and performed random permutation. The final inverse function

is designed in such a way that it cancel out the effect of initial inverse function.

The function takes the 16-bit K, string as input. Next, it determines the number of
iteration of the particular level. Then K, is given a left-rotations and the modifies string
makes the first 16 bits of the expanded string. Another left-rotation is given to the first 16-bits
to produce the next 16-bits, and so on.

Sixteen such modifications of the 16-bit string finally produce the 256-bit string for
that particular level and that particular iteration. Thus, a 256-bit output is generated by the
expansion function, which then gets XORed with the 256-bit output of the n-bit near-

swapping of that particular iteration of the level.

8.2.3 Decryption

The decryption algorithm is just the reverse of the encryption algorithm. In case of
decryption, the 256-bit cipher text fed to the cipher first undergoes 128-bit level, then 64-bit
level and so on till 2-bit level. Figure 8.9 shows the decryption algorithm.

Even the order of operations inside each level is reversed with the expansion function
operating first, then the n-bit near swap and then the n-bit far swap, as depicted in figure 8.10.

All the individual function retains exactly the same functionality as in case of encryption. The
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only function that gets a little modified in case of decryption is the Expansion Function.
Figure 8.11 clearly explains the functioning of the expansion function in case of decryption.

8.3 Example
The proposed technique is defined on 256-bit plaintext and 112-bit key with 7-rounds.
To understand it in better way here 2-bit level round/structure encryption is illustrated. A 16-

bit plain text and a key of 8-bit are taken as an example.

Table 8.1: TSV encryption using 2-bit level with 16-bit plaintext and 8-bit Key

Step No. Caption Bit Sequence

1 Input 16-bit Plaintext 1011010010101001

2 Input 8-bit Key 11000110

3 Formation of 2-bit block of Plaintext | 10 11 01 00 10 10 10 01
4 Far Swap 011010100001 1110
5 Near Swap 100110100100 1011
6 Key Expansion 11000110 10001101
7 XOR operation and Final Output 0101110011000110

A simple TSV encryption is shown in table 8.1. The technique, TSV, has seven round
structure, 2-bit level, 4-bit level, 8-bit level, 16-bit level, 32-bit level, 64-bit level and 128-bit
level. In this example 16-bit plaintext, 8-bit key and 2-bit level structure encryption is

illustrated. All the steps are shown in Table 8.1.

e Step 1: Take 16-bit plaintext as input.

e Step 2: Take 8-bit key as input.

e Step 3: Since, it is a 2-bit stage, the 16-bit plaintext is now broken into eight
blocks of 2-bit each.

e Step 4. Now far swap function is performed. Let consider the above eight
blocks as B1, B2, B3, ....... , B8. In far swap, B1 is swapped with B8,
B2 is swapped with B7, B3 is swapped with B6 and finally B4 is
swapped with B5.
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e Step 5: Now near swap function is performed. Let consider the above eight
blocks as B1, B2, B3, ....... , B8. In near swap, B1 is swapped with B2,
B3 is swapped with B4, B5 is swapped with B6 and finally B7 is
swapped with B8.

e Step 6: In this technique key expansion is proposed to form round keys. To
perform XOR operation of round key with 16-bit plaintext have to
expand the input 8-bit key. Expansion function works as: first 8-bit of
round key is same as 8-bit input key, then 8-bit input key is left
rotated by 1-bit and which form the next 8-bit of round key, thus got
16-bit round key.

e Step 7: In this step the 16-bit round key (output from Step no. 6) is XORed
with 16-bit output from near swap operation (Step no. 5). Thus got the

final encrypted stream.

In actual implementation, the output from 2-bit level is passed to 4-bit level and so on.
Decryption is just the opposite of encryption just illustrated. When this algorithm is
implemented with CBC mode of operation it get poly-alphabetic cipher with good avalanche

effect and better non-homogeneity.

8.4 Implementation and Key Generation

Proposed technique, TSV, has swapping, round key generation and Cipher Block
Chaining (CBC) as the main important module for hardware implementation. Let first
describe the hardware implementation of CBC. Section 8.4.1 gives the implementation details

of Cipher Block Chaining (CBC) mode and section 8.4.2 illustrates the round key generation.
8.4.1 Cipher Block Chaining (CBC) Mode

In Cipher Block Chaining (CBC) mode, the output of one block cipher is fed into the
other block cipher along with the next block message. CBC mode converts the block cipher

into stream cipher. The algorithm below describes the mode and a pictorial description is

provided in figure 8.12 and figure 8.13 respectively.
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Algorithm CBC_Encryption

K (P)

1: Partition P into P1, P2, ..., Pm
2:C1 EK(P1_IV);

3:fori 2tom

4: Ci EK(Pi_Ci-1)

5: end for

6: return C1,C2,...,Cm

Figure 8.12: Top level algorithm for CBC encryption of TSV

Algorithm CBC_Decryption
K (C)
1: Partition C into C1,C2,...,Cm
2:P1 E-1
K(CLl) _IV
3:fori 2tom
4:Pi E-1
K (Ci) _Ci-1
5: end for
6: return P1, P2, ...,Pm
Figure 8.13: Top level algorithm for CBC decryption of TSV

Figure 8.12 depicts the top level algorithm for CBC encryption and figure 8.13
depicts the top level algorithm for CBC decryption, these algorithms has been implemented
in both C- programming for software implementation and VHDL implementation for FPGA-
based systems. CBC takes as input m message blocks and an initialization vector (I1V).
During encryption, the output of the ith block depends on the previous i—1 blocks. So, CBC
encryption is inherently sequential. The output of each block depends on all the previous
blocks and thus provides more security than ECB. The sequential design does not allow a

fully pipelined implementation for this mode.
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8.4.2 Round Key Generation

Round Key Generation is another important module of TSV, the round key is a

function of session key and number of iterations of each round.

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.tsv_package.all;

entity key gen is
port (key: in STD_LOGIC_VECTOR(111 downto 0);
round: in round_type;
DATAOUT: out STD_LOGIC_VECTOR(255 downto 0));
end entity key_gen;

architecture top_tsv_RTL of key _gen is
begin
process (key, round) is
begin
DATAOUT <= ROUNDKEY_GEN(key, round);
end process;

end architecture top_tsv_RTL;

Figure 8.14: Top level VHDL module for round key generation of TSV

Key

Round Key Dataout
Generation of TSV

Round

Figure 8.15: Top level entity of round key generation of TSV
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Figure 8.14 shows the top level VHDL module for round key generation for TSV.
Here ‘key gen’ is an entity for round key generation. As stated before the round keys of each
round is generated from the user given key, the length of each round key is 256-bits and user
key is 112-bit. Figure 8.15 shows the top level entity of round key generation of TSV.

In port logic, ‘key’ is an array of 112-bit (111-0), which takes the 112-bit user
encryption/decryption key. Then this key and round number is passed through process
‘ROUNDKEY_GEN”, this process generates the 256-bit round key for each round and it is
stored in ‘DATAOUT’ array of 256-bit (255-0).

Key length is one of the two most important security factors of any encryption
algorithm—the other one being the design of the algorithm itself. The effective key length of
Triple SV is 112 bits, giving 2'*% possible combinations. The 112-bit key is completely user
defined and is provided by the user in the form of numbers of iteration that each of the n-bit
levels would have while the encryption or decryption process progresses. The 112 bits of the
key have been logically divided into seven 16-bit binary sequences, each of which relates to a

particular n-bit level. The association is elucidated below.

e Bit number 1 to 16 form string K2, and is associated with 2-bit level.

e Bit number 17 to 32 form string K4, and is associated with 4-bit level.

e Bit number 33 to 48 form string K8, and is associated with 8-bit level.

e Bit number 49 to 64 form string K16, and is associated with 16-bit level.

e Bit number 65 to 80 form string K32, and is associated with 32-bit level.

e Bit number 81 to 96 form string K64, and is associated with 64-bit level.

e Bit number 97 to 112 form string K128, and is associated with 128-bit level.

Therefore, TSV is successfully implemented in VHDL with CBC modes of operation;
round key of 128-bits is also generated by taking 112-bits input as session key. TSV is also
implemented in C-programming to find the testing parameters and to compare it with RSA
and previously proposed techniques. TSV is giving a much better result in avalanche ratio

test and non-homogeneity test using Chi-Square values.
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8.5 Analysis

TSV is implemented in both hardware and software modules. Some of the

characteristics are:

o TSV encryption and decryption is done in CBC mode so it converts a block
cipher to stream cipher.

o The avalanche ratio test reveals a much better result for TSV, which means if
alter a few bits/bytes in session key or in plaintext than it effects or alters
99.9% bits/bytes of ciphertext.

o TSV also involves generation of 128-bits round keys from 112-bits of session
key, during decryption the round keys are applied in reverse manner as that
was applied during encryption.

o TSV gives much better result in non-homogeneity test using Chi-Square
values that means that the ciphertext differs in large manner from plaintext.

o Algorithmic complexity of TSV is found to be O(n?).

o TSV is symmetric block cipher which means same key is used for encryption
and decryption.

o TSV is also a non Feistal block cipher, which is commonly used for design of
symmetric block cipher.

o In hardware implementation perspective TSV uses much less resources than
that of RSA where giving better results in testing parameters.

o TSV can be used in key distribution techniques using Key Distribution Centres
(KDC).

8.6 Results and Simulations

In this section some of the results of TSV are discussed and the various comparisons
made with the earlier proposed technique and also with RSA. Section 8.6.1 discuss results of
RTL/Hardware implementation, section 8.6.2 discuss the results of frequency distribution
graph, section 8.6.3 discuss the results of Chi-Square test for non-homogeneity of source files
and encrypted files, section 8.6.4 discuss the results of time complexity and section 8.6.5

discuss the results of avalanche ratio test.
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8.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed
technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main
objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.
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Figure 8.16: RTL diagram of RSA
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Figure 8.17: Spartan 3E RTL diagram of TPRT
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Figure 8.19: Spartan 3E schematic of ROBAST

Figure 8.20: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT
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Figure 8.21: Spartan 3E RTL diagram of TSV

The design of TSV is done using VHDL and implemented in Xilinx Spartan-3E
XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i design
tool. Figure 8.16 shows the RTL of RSA, figure 8.17 shows the RTL of TPRT, figure 8.18
shows RTL of TMAT, figure 8.19 shows RTL of ROBAST, figure 8.20 shows RTL of SRAT
and figure 8.21 shows the RTL diagram of TSV. Here 64-bit implementation timing diagram
is illustrated, plaintext is of 64-bit and user encryption/decryption key is of 56-bit, the output
64-bit ciphertext is got after 450ns.

Table 8.2: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,

SRAT and TSV)

Sr Netlist Components Number

No. RSA | TPRT | TMAT | ROBAST | SRAT | TSV
1 ROMs/RAMs 430 10 14 25 28 12
2 Adders/Subtractions 3 0 2 20 28 0
3 Registers 420 20 30 50 641 10
4 Latches 80 0 0 10 80 0
5 Multiplexers 120 0 0 10 136 0

Table 8.2 illustrates the hardware implementation analysis of TSV and its
comparisons with other techniques/algorithms, namely, RSA, TPRT, TMAT, ROBAST and
SRAT. This proposed technique, TSV, uses no adder/subtractions, latches and multiplexers.
TSV uses 22 memory units (ROM/RAM) and 10 registers which are quite less than that of
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other techniques/algorithms. Observing the above table it is seen that RSA consumes
maximum of resources, then comes ROBAT followed by SRAT. TPRT, TMAT consumes

the minimum resources.

Table 8.3: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST, SRAT

and TSV)
Sr Timing Values
No. Constraint RSA TPRT | TMAT | ROBAST | SRAT TSV
1 Speed Grade -5 -5 -5 -5 -5 -5
2 Minimum 9.895 5.66 7.95 5.55 5.50 10.22
period (ns)
3 Maximum 101.06 | 101.06 | 101.06 | 101.06 | 101.06 | 101.06
Frequency
(MHZ)
4 Minimum input | 6.697 4.33 5.55 5.55 4.25 6.66
arrival time
before clock
(ns)
5 Maximum 4.31 3.33 4.25 4.44 3.33 5.55
output required
time after clock
(ns)

Table 8.3 illustrates the entire timing summary obtained after HDL synthesis. The
speed grade and maximum frequency is same as all the techniques/algorithms have been
implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).
TPRT and ROBAST gives optimal solution in terms of minimum period, minimum input
arrival time and maximum output time. Though TSV doesn’t give optimal results in hardware

implementation but it gives best result in avalanche effect.
8.6.2 The Frequency Distribution Graph
The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.
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Figure 8.24: Frequency distribution graph of SRAT encrypted files
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Figure 8.25: Frequency distribution graph of TSV encrypted files

The results shown are obtained after calculating the respective Frequency
Distributions of the source file ‘genesis.txt’. Figure 8.22 shows the frequency distribution
graph of source file, RSA encrypted file and TPRT encrypted file. Figure 8.23 shows
frequency distribution graph of TMAT encrypted file and ROBAST encrypted file. Figure
8.24 shows the frequency distribution graph of SRAT encrypted file and figure 8.25 shows
frequency distribution graph of TSV encrypted file. It obvious that TSV is giving much better
result than that of RSA. The frequencies of TSV aggregated to a specific range thus it is very

difficult for cryptanalysis.

8.6.3 The Non-Homogeneity Test

Another way to analyze the technigue is to test the non-homogeneity of the source and

the encrypted file. The Chi-Square test has been performed for this purpose.
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Figure 8.26: Pictorial representation of Chi-Square values




Table 8.4: Comparison of Chi-Square values of ROBAST, RSA, TPRT, TMAT, SRAT and

TSV
Source File File Chi-Square Values
Size
(Bytes) ROBAST RSA TMAT TPRT SRAT TSV

license.txt 17,632 6472 5668 201530 | 191382 | 201960 | 210050

cs405(ei).doc | 25,422 4407 2654 286025 | 253470 | 305590 | 306000

acread9.txt | 35,121 | 560357 | 447984 | 440184 | 410735 | 451125 | 475590

deutsch.txt | 47,829 | 3307374 | 685963 | 555220 | 505121 | 558330 | 3567900

genesis.txt | 49,600 | 2679799 | 3318506 | 659045 | 638592 | 683128 | 3580050

pod.exe 69,981 | 8495675 | 694410 | 905416 | 896405 | 937565 | 8590100

mspaint.exe | 136,463 | 3131296 | 2667664 | 1297256 | 1203665 | 1308890 | 3595000

cmd.exe 152,028 | 9559993 | 2216429 | 1759014 | 1692655 | 2009956 | 9569921

d3dim.dil | 193,189 | 3102369 | 906300 | 4630652 | 4250652 | 9900630 | 9910550

clbcatg.dll | 403,901 | 2590855 | 3896171 | 4167801 | 3922143 | 4525650 | 5125590

Table 8.5: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT, SRAT and

TSV

Source File | File Size Degree of Freedom
(BYeS) "ROBAST | RSA | TMAT | TPRT | SRAT | TSV
license.txt | 17,632 253 253 255 255 | 253 | 255
cs405(ei).doc | 25,422 253 253 255 255 | 254 | 255
acread9.txt | 35,121 253 253 255 255 | 255 | 254
deutsch.txt | 47,829 253 253 255 255 | 240 | 253
genesis.xt | 49,600 253 253 255 255 | 255 | 255
pod.exe 69,981 253 253 255 255 | 255 | 255
mspaint.exe | 136,463 | 254 254 255 255 | 255 | 254
cmdexe | 152,028 | 253 253 255 255 | 255 | 255
d3dimdll | 193,189 | 253 253 255 255 | 255 | 253
clocatq.dll | 403,901 | 253 253 255 255 | 255 | 255

The Chi-Square test has been performed for this purpose. Table 8.4 and figure 8.26
show the file size and the corresponding Chi-Square values for ten different files. Table 8.5

gives the degree of freedom values. The Chi-Square values for the proposed technique are
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comparatively lower than those obtained by RSA. The value of degree of freedom is on an
average 127. Hence the source and the corresponding encrypted files are considered to be
heterogeneous. The degree of freedom is listed in table 8.5. Average Chi-Square value of
TSV is 4165, RSA is 47505, TMAT is 1490214, TPRT is 1396482, ROBAST is 3343860 and
Shuffle-RAT is 21076. Thus in terms of non-homogeneity TSV doesn’t show optimal result.

8.6.4 The Time Complexity Analysis

In this section it will discuss time complexity analysis of the proposed technique,
TSV, the time complexity analysis is broadly divided into two categories, namely encryption
time and decryption time. The encryption time is the time required to convert a plaintext into
a ciphertext and the decryption time is the time required to convert the ciphertext into the
plaintext for a given block size and key. Here ten different sample files are taken and their

complexities are noted down.

Table 8.6: Comparison of encryption time of ROBAST, RSA, TMAT, TPRT, SRAT and
TSV
Source File | File Size Encryption Time
(Bytes) | ROBAST | RSA | TMAT | TPRT | SRAT | TSV
license.txt 17,632 0.00 0.01 0.03 0.02 0.00 | 0.00
cs405(ei).doc | 25,422 0.01 0.06 0.00 0.00 0.01 | 0.00

acread9.txt 35,121 0.02 0.07 0.13 0.10 0.01 | 0.01
deutsch.txt 47,829 0.03 0.11 0.25 0.20 0.01 | 0.01
genesis.txt 49,600 0.04 0.12 0.28 0.25 0.02 | 0.01
pod.exe 69,981 0.04 0.12 0.39 0.35 0.02 | 0.02
mspaint.exe | 136,463 0.06 0.20 0.44 0.40 0.03 | 0.02
cmd.exe 152,028 0.07 0.25 0.55 0.50 0.05 | 0.03

d3dim.dll 193,189 0.08 0.28 0.55 0.52 0.05 | 0.04
clbcatq.dll 403,901 0.08 0.32 0.67 0.60 0.05 | 0.05
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Table 8.7: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT, SRAT and

TSV
Source File | File Size Decryption Time
(Bytes) | ROBAST | RSA TMAT TPRT | SRAT | TSV
license.txt 17,632 0.01 0.15 0.11 0.10 0.00 | 0.00
cs405(ei).doc | 25,422 0.02 0.71 0.00 0.00 0.01 | 0.00
acread9.txt 35,121 0.03 1.15 0.13 0.10 0.01 0.01
deutsch.txt 47,829 0.03 1.36 0.15 0.11 0.01 | 0.01
genesis.txt 49,600 0.04 1.61 0.25 0.20 0.02 0.02
pod.exe 69,981 0.04 1.86 0.39 0.35 0.02 | 0.02
mspaint.exe | 136,463 0.05 2.71 0.48 0.40 0.02 | 0.03
cmd.exe 152,028 0.06 3.34 0.52 0.42 0.05 | 0.03
d3dim.dll 193,189 0.07 3.73 0.60 0.50 0.05 | 0.04
clbcatq.dll 403,901 0.08 4.25 0.65 0.55 0.05 | 0.05
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Figure 8.27: Pictorial representation of encryption time against file size
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Figure 8.28: Pictorial representation of decryption time against file size

Table 8.6 and table 8.7 illustrate the encryption time and decryption time of the
proposed techniques with RSA. This section compares the time complexity of the TSV with
that of RSA by taking the encryption and decryption times into consideration. The graphical
analysis of the encryption and decryption time of the Triple SV and RSA has been depicted in
Figure 8.27 and figure 8.28 respectively. The time complexity of the proposed technique is
well comparable to RSA. It is also observed that the time complexity of the proposed
technique, TSV, is quite less than the previously proposed techniques, ROBAST, TMAT,
TPRT and Shuffle-RAT. Thus TSV gives optimal solution in respect to time complexity

analysis taking account both encryption time and decryption time.
8.6.5 The Avalanche Ratio Test
Avalanche Effect refers to a desirable property of any cryptographic algorithm where,

if an input is changed slightly (for example, flipping a single bit) the output changes
significantly (e.g., more than half the output bits flip).

- 257 -



Table 8.8: Comparison of avalanche ratio of ROBAST, RSA, TPRT, TMAT, SRAT and TSV
encrypted files

Source File File Avalanche | Avalanche | Avalanche | Avalanche | Avalanche | Avalanche
Size Ratio of Ratio of Ratio of ratio of ratio of ratio of

(Bytes) | ROBAST RSA TPRT TMAT SRAT TSV

encrvpted | encrypted | encrvpted | encrvpted | encrypted | encrvpted

files (in files (in | file (in %) | file (in %) | file (in %) | file (in %)

%) %)

license.txt 17.632 71.90 58.0 77.7 80.8 913 999
cs405(ei).doc | 25,422 99.69 60.0 80.0 85.5 90.5 99 8
acread9.txt | 35,121 9993 75.0 888 90.0 98.0 999
deutsch.txt | 47.829 99.96 789 89.0 915 995 997
genesis_txt 49.600 97.72 809 87.0 947 999 99 6
pod.exe 69,981 77.00 38.0 77.0 80.0 999 99 8
mspaint.exe | 136,463 98.22 589 76.0 80.0 98.0 999
cmd exe 152,028 9997 67.0 77.0 80.0 97.0 998
d3dim dll 193,189 99 98 679 829 85.0 975 99.7
clbcatq.dll | 403,901 75.55 68.0 88.5 90.5 99.0 999

Table 8.8 compares the avalanche effect ratio for TSV, RSA and previous proposed
techniques/algorithm and which are obtained after calculating the respective Avalanche
Effect by making a change of a few (approx 3) characters in each file. It is observed that the
proposed technique is showing an average avalanche ratio percentage of 99.7% which is way
higher than that obtained using RSA. High avalanche ratio ensures higher security from brute
force attack. It is also observed that this avalanche ratio test of TSV is better than Shuffle-
RAT, TPRT, TMAT and ROBAST.

8.7 Discussions

The cryptographic technique, Triple SV is a symmetric block cipher using a 256-bit
block and 112-bit key. From the above discussions it can be inferred that Triple SV is
potentially a promising algorithm which can find its efficient implementation in different
fields. Triple SV has a way better Avalanche Effect than any of the other existing algorithms
and hence can be incorporated in the process of encryption of any plaintext. The high
avalanche ratio and a key size of 112 bits ensure sound security from brute force attacks. The
implementation in CBC mode ensures low predictability and tougher cryptanalysis. Even the
time complexity of the proposed algorithm is considerably viable and even better than RSA at
many instances. The proposed model(s) and conclusion(s) of this thesis is given in next part

of this thesis.
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Chapter 9
Modified Forward Backward Overlapped Modulo Arithmetic Technique (MFBOMAT)






9.1 Introduction

In this chapter, a new Cryptosystem based on block cipher has been proposed where
the encryption is done through Modified Forward Backward Overlapped Modulo Arithmetic
Technique (MFBOMAT). The original message is considered as a stream of bits, which is
then divided into a number of blocks, each containing n bits, where n is any one of 2, 4, 8, 16,
32, 64, 128, 256. The first and last blocks are then added where the modulus of addition is 2".
The result replaces the last block (say Nth block), first block remaining unchanged (Forward
mode). In the next attempt the second and the Nth block (the changed block) are added and
the result replaces the second block (Backward mode).Again the second (the changed block)
and the (N-1)th block are added and the result replaces the (N-1)th block (Forward
mode).The modulo addition has been implemented in a very simple manner where the carry
out of the MSB is discarded to get the result. The technique is applied in a cascaded manner
by varying the block size from 2 to 256. The whole technique has been implemented by using
a modulo subtraction technique for decryption.

In the proposed scheme the source file is taken as input as streams of binary bits. For
its implementation the stream size to be 512 bits have been taken though the scheme may be
implemented for larger stream sizes also. The input stream, S, is first broken into a number of
blocks, each containing n bits (n=2k, k=1,2,3,......,8) so that S = B1B2B3....... B m where
m=512/n. Starting from the MSB, the blocks are paired as (B1,Bm), (B2,Bm), (B2,Bm-
1),(B3,Bm-1) and so on. So there is a common member in any two non-adjacent block-pairs,
i.e. the block-pairs are overlapping and hence the name given to the techniqgue The FBOMAT
operation is applied to each pair of blocks. The process is repeated, each time increasing the
block size till n=256.The proposed scheme has been implemented by using the reverse
technique, i.e. modulo subtraction technique, for decryption.

Section 9.2 discussed the algorithm of MFBOMAT with a block level diagram,
section 9.3 gives a detailed example of encryption and decryption process, section 9.4
discussed the implementation issues with key generation, section 9.5 gives a brief analysis,
section 9.6 discussed the results obtained based on implementation and a brief discussions are

given in section 9.7.



9.2 The Algorithm of MFBOMAT

After chapping the input stream into blocks of 2 bits each and pairing the blocks as

explained in Section 1, the following operations are performed starting from the most

significant side:

Round 1:

Round 2:

The whole plaintext is divided into finite number of blocks of 2-bit
block size. Then get a number of blocks B1, B2, B3, ....., Bn. Bl is
modulo added to Bn and the result replaces the Bn, then Bn is
modulo added to B2, result replacing the B2, then B2 is modulo
added to Bn-1 and the result replaces the Bn-1. Then Bn-1 is modulo
added to B3 and the result replaces the B3 and it continues in similar
manner. In each pair of blocks, the first member of the pair is added
to the second member where the modulus of addition is 2n for block
size n. Therefore for 2-bit blocks, the modulus of addition will be 4.
This round is repeated for a finite number of times and the number
of iterations will form a part of the session key as discussed in
section 9.4.

The same operation as in Round 1 is performed with block size 4. In
the next round the block size of 8-bits is taken and the same
operation is repeated. In this fashion several rounds are completed
till it reaches Round 8 where the block size is 256 and get the
encrypted bit-stream. The operations of the non adjacent block-pairs
increase the complexity of the algorithm resulting in the

enhancement of security.

During decryption, the reverse operation, i.e. modulo subtraction, is performed

instead of modulo addition, starting from the blocks B n/2 and ((B n)
/2) +1 and then ((B n)/2) and ((B n) /2) +2 and then ((B n)/2)-1 and
((B n) /2) +2 .The process continues until all the remaining blocks
are decrypted. Where the nth block is the last block of the 512-bits

stream.

- 262 -



MEFBOMAT MFBOMAT

Encryption Decryption
n -bit plain text n-bit Plaintext

\

k- mumber of

“different block .

blocks. each n'k? Z s sizes and
bits rounds given by
[} user
First block is First block is
added to nth modulo
block and result subtracted from
replaces nth nth block
! hlack replacing nth
[nthblockis | k- number of
added to 2nd blocks. each n'k
block and bits
replacing the
'result of 2nd
"block 7]
different bloc nth block is
sizes and modulo
rounds given by :> subtracted
ser from 2nd
hock .
n-bit Ciphertext —— n-bit Ciphertext

Figure 9.1: Block diagram of MFBOMAT

Figure 9.1 gives the block diagram of MFBOMAT, The whole plaintext is divided
into finite number of blocks of 2-bit block size. Then get a number of blocks B1, B2, B3, .....,
Bn. B1 is modulo added to Bn and the result replaces the Bn, then Bn is modulo added to B2,
result replacing the B2, then B2 is modulo added to Bn-1 and the result replaces the Bn-1.
Then Bn-1 is modulo added to B3 and the result replaces the B3 and it continues in similar
manner. In each pair of blocks, the first member of the pair is added to the second member

where the modulus of addition is 2n for block size n. Therefore for 2-bit blocks, the modulus
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of addition will be 4. This round is repeated for a finite number of times and the number of
iterations will form a part of the session key as discussed in section 9.4.

9.2.1 The Modulo Addition

An alternative method for modulo addition is proposed here to make the calculations
simple. The need for computation of decimal equivalents of the blocks is avoided here since
it will get large decimal integer values for large binary blocks. The method proposed here is
just to discard the carry out of the MSB after the addition to get the result. For example, if
add 1101 and 1001 and get 10110. In terms of decimal values, 13+9=22. Since the modulus
of addition is 16 (24) in this case, the result of addition should be 6 (22-16=6). Discarding the
carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So the result will be
0110, which is equivalent to 6 in decimal. The same is applicable to any block size.

9.3 Example

Although the proposed scheme is applied to a 512-bit input stream, for the sake of

brevity, consider a stream of 16 bits, say S = 1101001100011011 each round is performed

only once to make the process simple for understanding.

9.3.1 The Encryption

Round 1: Block size = 2, number of blocks = 8

The blocks are B1 = 11, B2 = 11, B3 = 01, B4 = 01, B5 = 00, B6 = 10, B7 = 01 and
B8 = 10.

The MFBOMAT is applied to these eight blocks
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| 11 | 11 | 01 | 01 | 0o | 10 | 01 | 10 |
El B2 B3 B4 B3 B6 BT BE
(B4, B6)mod4, Change B4
Input
| 11 | 11 | 01 | 01 | 00 | 10 | 01 | 10 |
Bl B2 B3 B4 B3 Bé BT BE
Cutput
| 11 | 11 | 01 | 01 | 01 | 10 | 01 | 10 |
Bl B2 B3 B4 B3 E6 BT E8

(B4, B5) mod4, Change B3

Round 2: Block size =4, number of blocks =4

Input
| 1111 | 0101 | 0110 | 0110 |
El B2 E3 B4
Cutput:
| 1111 | 0101 | 0110 | 0101 |
Bl B2 B3 E4
(Bl, B4)modl6, Change B4
Input
| 1111 | 0101 | 0110 | 0101 |
Bl B2 B3 B4
Output
| 1111 | 1010 | 0110 | 0101 |
El E2 B3 B4
(B2, B4)modl6, Change B2
Input
| 1111 | 1010 0110 0101
Bl B2 B3 B4
Cutput
| 1111 1010 0000 0101
El B2 B3 B4

(B2, B3) mod16, Change B3

Round 3: Block size = 8, number of blocks = 2

Input
| 11111010 | 00000101 |
Bl B2
Output
11111010 | 11111111
Bl B2

(B1. B2) mod 256. Change B2

Since it has been considered only a 16-bit stream cannot be proceed further. The
output from Round 3, say S', is the encrypted stream, ie. S' =.1111101011111111.For
decryption the opposite method i.e. modular subtraction is used to get back the original bit

stream in S.
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9.3.2 The Decryption

For decryption the opposite method i.e. modular subtraction is used to get back the

original bit stream in S.

Round 1:Block size=8, number of blocks =2

Input
11111010 | 11111111
B1 B2
Output
11111010 | 00000101
B1 B2

(B1. B2) mod 256. Change B2

Round 2:Block size=4., number of blocks=4

Input

| 1111 | 1010 0000 0101
Bl B2 B3 B4

Output

| 1111 | 1010 0110 0101 |
Bl B2 B3 B4

(B2. B3) mod16, Change B3

Input

| 1111 | 1010 0110 0101
BI B2 B3 B4

Output

| 1111 | 0101 0110 0101
Bl B2 B3 B4

(B2. B4) mod16, Change B2

Input
| 1111 | 0101 0110 0101
Bl B2 B3 B4
Output
| 1111 | 0101 0110 0110 |
Bl B2 B3 B4

(B1. B4) mod4. Change B4
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Round 3:Block size=2. number of blocks =8

Input
| 11 ] 11 | o1 | 01 | 01 10 01 10 |
Bl B2| B3 B4 B5 B6 B7 BS
Output
[ 11 ] 11 | 01 | 01 | 00 10 01 10 |
Bl B2 B3 B3 B6 B7 Bg
(B4, B5) mod4, Change B3
Input
| 11 ] 11 | o1 | 01 | 00 10 01 10 |
Bl B2 B3 B4 B5 B6 B7 BS
Output
[ 11 ] 11 | 01 | 11 | 00 10 01 10 |
Bl B2 B3 B4 BS B6 B7 BS
(B4. B6) mod4, Change B4
Input
| 11 ] 11 | o1 | 11 | 00 10 01 10 |
Bl B2 B3 B4 BS B6 B7 B8
| 11 ] 11 | o1 | 11 | 00 01 01 10 |
Bl B2 B3 B4 BS B6 B7 B8
(B3. B6) mod4, Change B6
Input
| 11 ] 11 | o1 | 11 | 00 01 01 10 |
Bl B2 B3 B4 BS B6 B7 BS
Output
[ 11 ] 11 | 00 | 11 | 00 01 01 10 ]
Bl B2 B3 B4 BS B6 B7 BS
(B3. B7) mod4, Change B3
Input
| 11 ] 11 | 00 | 11 | 00 01 01 10 |
Bl B2 B3 B4 BS B6 B7 BS
Qutput
| 11 ] 11 | 00 | 11 | 00 01 10 10 |
Bl B2 B3 B4 BS B6 B7 BS
(B2. B7) mod4, Change B7
Input
[ 11 ] 11 | o0 | 11 | 00 01 10 10 |
Bl B2 B3 B4 BS B6 B7 BS
Output
[ 11 ] 01 | 00 | 11 | 00 01 10 10 |
Bl B2 B3 B4 BS B6 B7 BS
(B2. BR) mod4, Change B2
Input
[ 11 ] 01 | o0 | 11 | 00 01 10 10 |
Bl B2 B3 B4 BS B6 B7 BS
Output
| 11 ] 01 | 00 | 11 | 00 01 | 10 11 |
Bl B2 B3 B4 BS B6 B7 BS

(B1. B8) mod4, Change B8

The decrypted bit stream: S”=1101001100011011.So S=S.
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9.4 Implementation and Key Generation

The technique executes modulo addition between two blocks, the first iteration
performs in forward basis and then backward operation is performed. Next, final permutation

is done to get the final cipher text.

library std;

library ieee;

use ieee.std_logic_arith.all;

use work.pack.all;

use std.textio.all;

use ieee.std_logic_ TEXTIO.all;

entity MFBOMAT_VHDL is

Port (input_bits : in BIT_VECTOR (16 downto 1);
output_bits : out BIT_VECTOR (16 downto 1); key_bits : in
BIT_VECTOR (8 downto 1);

EN_DN:in BIT);

end MFBOMAT_VHDL;

architecture Behavioral of MFBOMAT_VHDL is

begin

process(EN_DN)

variable varin_bits,varout_bits: bit_vector(16 downto 1);

begin

if (EN_DN="1")then varin_bits:=input_bits;

AA: MFBOMAT _Encryption(varin_bits,key_bits,varout_bits);
output_bits<=varout_bits;

else

BB: MFBOMAT _Decryption(varin_bits,key bits,varout_bits);
output_bits<=varout_bits;

end if;

end process;

end Behavioral,
Figure 9.2: MFBOMAT entity and its function
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input_bits
— | MFBOMAT '
key by |-VEDL RS

Figure 9.3: Top level RTL design of MFBOMAT

FPGA based implementation of the technique has been done in VHDL. In both
implementation, the technique takes input from file as a source stream and encryption is
performed. The cipher text generated is finally written in another file. The data blocks (8, 16,
32, 64, 128 and 256-bits) from the input file have been stored in array. Then encryption is
performed and also stored in array. The reading and writing of data from and in file is based
on 8-bit ASCII codes. XilinX ISE 8.1i software has been used for writing codes in VHDL.

Figure 9.2 gives the implementation of MFBOMAT entity and its function. The
encryption/decryption entity input bit vector (16-bit), output bit vector (16-bit), key bit vector
(8-bit) and EN_DN signal. If EN_DN = 1 then encryption is performed else decryption is
performed. During encryption the input bit vector of 16-bits is the plaintext and output 16-bit
vector is the ciphertext where as EN_DN value is ‘1°. During decryption the input bit vector
of 16-bits is the ciphertext and the output 16-bit vector is the plaintext where as EN_DN
value is ‘0’. Figure 9.3 shows the top RTL diagram of MFBOMAT.

When EN DN = 1, the ‘MFBOMAT Encryption’ function is called with the
parameters, ‘varin_bits’ which is the plaintext, ‘varout bits’ which is the ciphertext, both of
these are of 16-bits and third parameter is the ‘key bits’ which is the session key of the
encryption of 8-bits. When EN_ DN = 0, the ‘MFBOMAT Decryption’ function is called
with the parameters, ‘varin_bits’ which is the ciphertext, ‘varout bits’ which is the plaintext,
both of these are of 16-bits and third parameter is the ‘key bits’ which is the session key of
the decryption of 8-bits. This code is written in VHDL using behavioral model of coding. The
‘MFBOMAT VHDL’ entity in this coding has three ports, ‘input bits’ of IN type of bit
vector of 16-bits, ‘output_bits’ of OUT type of bit vector of 16-bits, ‘key bits” of IN type of
bit vector of 16-bits and ‘EN_DN” bit of IN type. ‘Behavioral’ is the architecture of the entity
‘MFBOMAT VHDL’, this architecture contains a process which is called on the signal
‘EN_DN?’ that is whenever there is a signal in ‘EN_DN” this process is called. This process
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contains two functions, ‘MFBOMAT Encryption’ and ‘MFBOMAT Decryption’. These two
functions are called according to the value of signal bit ‘EN_DN’ which is already discussed.
The implementation here is both functional and files type. These means that the code can be
implemented in Xilinix FPGA and the simulation takes the input from a text file and the
output is written into another text file. There are various libraries are used, library ‘std’ and
library ‘ieee’, it is important to note that library ‘ieee.std logic TEXTIO.all’ is used for the
implementation of text file reading and writing. Figure 9.2 gives the main MFBOMAT entity
coded in VHDL.

Section 9.4.1 deals with the key generation process, section 9.4.2 illustrates an

example.

9.4.1 The Key Generation Process of MFBOMAT

In this section key generation process has been illustrated, the session key is 128-bits

for generalized MFBOMAT implementation.

Table 9.1: Representation of number of iterations in each round by bits, the key generation
for MFBOMAT

Round Block Size Number of Iterations
Decimal Binary
8. 256 50021 1100001101100101
7. 128 49870 1100001011001110
6. 64 48950 1011111100110110
5. 32 44443 1010110110011011
4. 16 46250 1011010010101010
3. 8 4321 0001000011100001
2. 4 690 0000001010110010
1. 2 72 0000000001001000
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Figure 9.4: Graphical representation of key generation of MFBOMAT

The key generation process depends on block size, iteration of each block and final
permutation performed. Thus, in the proposed scheme, eight rounds have been considered,
each for 2, 4, 8, 16, 32, 64, 128, and 256 block size. As mentioned in each round is repeated
for a finite number of times and the number of iterations will form a part of the encryption-
key. Although the key may be formed in many ways, for the sake of brevity it is proposed to
represent the number of iterations in each round by a 16-bit binary string. The binary strings
are then concatenated to form a 128-bit key for a particular key. Table 9.1 gives the key
generation process and the same is shown graphically in figure 9.4. For the block size of 2-
bits are considering 72 rounds, for block size of 4-bits are considering 690 rounds and so on
and finally for block size of 256-bits 50021rounds have been considered for encryption. Since
the technique is symmetric block cipher so for decryption same number of rounds will be
required. These numbers of rounds have been considered in binary value, for each block size
the number of rounds is considered in 16-bits of binary value. So there is eight block sizes

and their corresponding eight 16-bits rounds, the key is formed by concatenating all the 16-

-271-



bits binary values. Therefore, the size of the session key proposed here is 16 X 8 = 128-bits,
which is now a day’s considered the secure key length.

An example of key generation is illustrated in section 9.4.2. Section 9.4.3 describes
the modulo addition used in MFBOMAT, which is an important operation in the technique

and should be taken into account while forming the session key.

9.4.2 An Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for
block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 9.1 shows the
corresponding binary value for the number of iterations in each round. If consider the block
size of 256-bits then the binary value of round is ‘1100001101100101°, for block size of 128-
bit the binary value of round is ‘1100001011001110” and so on finally for block size of 2-bits
the binary value of round is ‘0000000001001000°. These eight 16-bits binary strings are

concatenated together to form the 128-bit binary string, which is given below.

e 110000110110010111000010110011101011111100110110101011011001101110110
10010101010000100001110000100000010101100100000000001001000

Block_Size
MEBOMAT K

ev_Generation

Iteration Key 128 bits

Figure 9.5: Session key generation of MFBOMAT

This 128-bit binary string will be the encryption-key for this particular session.
During decryption, the same key is taken to iterate each round of modulo-subtraction for the
specified number of times and reverse permutation. Figure 9.5 shows the top level RTL

diagram of session key generation of MFBOMAT.
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9.5 Analysis
Some of the analyses of this technique are as follows:-

e The algorithmic complexity of MFBOMAT is O(n?).

e This technique incorporates forward and backward mode of encryption.

e This technique incorporates two rounds, round 1 for forward mode of encryption
and round 2 is for backward mode of encryption.

e Decryption is same as encryption where the round keys are provided in reverse
order.

e The modulo addition is incorporated as a main functional block of the technique.

e 128-bit key is proposed for encryption and decryption using MFBOMAT.

9.6 Results and Simulations

This section will discuss some of the results of TSV and the various comparisons
made with the proposed techniques and RSA. Section 9.6.1 discuss results of RTL/Hardware
implementation, section 9.6.2 discuss the results of frequency distribution graph, section
9.6.3 discuss the results of Chi-Square test for non-homogeneity of source files and encrypted
files, section 9.6.4 discuss the results of time complexity and section 9.6.5 discuss the results

of avalanche ratio test.
9.6.1 RTL Simulation Based Result

In this section some of the results found on implementing of the proposed technique
in VHDL have been given. The code has been simulated and synthesized in Xilinx 8.1i. The

main objective is to find an efficient FPGA-based cryptographic technique for

implementation in embedded systems.
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Figure 9.8: Spartan 3E RTL diagram of TMAT
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Figure 9.10: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT
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Figure 9.11: Spartan 3E RTL diagram of TSV
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Figure 9.12: Spartan 3E RTL diagram of MFBOMAT

The design of MFBOMAT is done using VHDL and implemented in Xilinx Spartan-
3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i design
tool. Figure 9.6 shows the RTL of RSA, figure 9.7 shows the RTL of TPRT, figure 9.8 shows
RTL of TMAT, figure 9.9 shows RTL of ROBAST, figure 9.10 shows RTL of SRAT, figure
9.11 shows the RTL diagram of TSV and figure 9.12 shows RTL diagram of MFBOMAT.
Here 256-bit implementation timing diagram is illustrated, plaintext is of 256-bit and user

encryption/decryption key is of 128-bit, the output 256-bit ciphertext is got after 450ns.

Table 9.2: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,
SRAT, TSV and MFBOMAT)

Sr | Netlist Components Number
No. RSA | TPRT | TMAT | ROBAST | SRAT | TSV | MFBOMAT
1 ROMs/RAMs 430 10 14 25 28 12 09
2 | Adders/Subtractions | 3 0 2 20 28 0 15
3 Registers 420 20 30 50 641 10 10
4 Latches 80 0 0 10 80 0 0
5 Multiplexers 120 0 0 10 136 0 0
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Table 9.2 illustrates the hardware implementation analysis of MFBOMAT and its
comparisons with other techniques/algorithms, namely, RSA, TPRT, TMAT, ROBAST,
SRAT and TSV. This technique uses 15 adder/subtractions and no latches and multiplexers.
MFBOMAT uses 09 memory units (ROM/RAM) and 10 registers which are quite less than
that of other techniques/algorithms. Observing the above table it is seen that RSA consumes
maximum of resources, then comes ROBAT followed by SRAT. TPRT, TMAT and
MFBOMAT consume the minimum resources.

Table 9.3 illustrates the entire timing summary obtained after HDL synthesis. The

speed grade and maximum frequency is same as all the techniques/algorithms have been
implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).

Table 9.3: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST, SRAT

and TSV)

Sr

No.

Timing

Constraint

Values

RSA

TPRT | TMAT | ROBAST | SRAT | TSV | MFBOMAT

Speed
Grade

-5 -5 -5 -5 -5 -5

Minimum

period (ns)

9.895

5.66 7.95 5.55 5.50 | 10.22 4.99

Maximum
Frequency
(MHZ)

101.06

101.06 | 101.06 | 101.06 | 101.06 | 101.06 101.06

Minimum
input arrival
time before

clock (ns)

6.697

4.33 5.55 5.55 4.25 6.66 4.20

Maximum
output
required
time after

clock (ns)

431

3.33 4.25 4.44 3.33 5.55 3.30
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MFBOMAT is obtained minimum period of 4.99ns followed by RSA 9.89ns, TPRT
5.66ns, TMAT 7.95ns, ROBAST 5.55ns, SRAT 5.50ns and TSV 10.22ns. MFBOMAT s
also require minimum input arrival time before clock of 4.20ns followed by RSA 6.70ns,
TPRT 4.33ns, TMAT 5.55ns, ROBAST 5.55ns, SRAT 4.25ns and TSV 6.66ns. MFBOMAT
requires minimum value in maximum output required time after clock of 3.30ns followed by
RSA 4.31ns, TPRT 3.33ns, TMAT 4.25ns, ROBAST 4.44ns, SRAT 3.33ns and TSV 5.55ns.
Thus it can be said that MFBOMAT is giving optimal result in terms of hardware
implementation.

9.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters present
in the respective files. This is also a cryptographic parameter which measures the degree of
cryptanalysis. The analysis has been given after the following figures showing the frequency
distribution encrypted by all the proposed techniques.

Frequency -->

Characters of Source File --»
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Frequency -->

UL L L L

Characters of RSA Encrypted File -->

Frequency -->

Characters of TPRT Encrypted File -->

Figure 9.13: Frequency distribution graph of source, RSA encrypted and TPRT encrypted
files
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Characters of TMAT Encrypted File
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Frequency -->

Characters of ROBAST Encrypted File -->

Figure 9.14: Frequency distribution graph of TMAT and ROBAST encrypted files
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Figure 9.15: Frequency distribution graph of SRAT encrypted files

Frequency -->
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Characters of TSV encrypted file -->

Figure 9.16: Frequency distribution graph of TSV encrypted files
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Frequency -->
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Figure 9.17: Frequency distribution graph of MFBOMAT encrypted files

The results shown are obtained after calculating the respective Frequency
Distributions of the source file ‘genesis.txt’. Figure 9.13 shows the frequency distribution
graph of source file, RSA encrypted file and TPRT encrypted file. Figure 9.14 shows
frequency distribution graph of TMAT encrypted file and ROBAST encrypted file. Figure
9.15 shows the frequency distribution graph of SRAT encrypted file, figure 9.16 shows
frequency distribution graph of TSV encrypted file and figure 9.17 shows the frequency
distribution graph of MFBOMAT encrypted files. It obvious that MFBOMAT is giving much
better result than that of RSA.

9.6.3 The Non-Homogeneity Test

The extent of non-homogeneity between source file/plaintext and encrypted
file/ciphertext is computed using Chi-Square value. In this context the observed frequency is
the plaintext files and the expected frequency is the ciphertext files. Thus it gives the extent

of non-homogeneity between plaintext files and ciphertext files.
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Table 9.4: Comparison of Chi-Square values of ROBAST, RSA, TPRT, TMAT, SRAT, TSV

and MFBOMAT
Source File File Chi-Square Values
Size | ROBAST| RSA TMAT | TPRT SRAT TSV | MEBOMAT

(Bytes)
license.txt 17.632 6472 5668 201530 | 191382 | 201960 | 210050 221045

cs405(ei).doc | 25,422 4407 2654 286025 | 253470 | 305590 | 306000 317698
acread9.txt | 35,121 | 560357 | 447984 | 440184 | 410735 | 451125 | 475590 476075
deutsch.txt | 47.829 | 3307374 | 685963 | 555220 | 505121 | 558330 | 3567900 | 3882550
genesis.txt | 49.600 | 2679799 | 3318506 | 659045 | 638592 | 683128 | 3580050 | 4001235

pod.exe 69.981 | 8495675 | 694410 | 903416 | 896405 | 937565 | 8590100 | 8955633
mspaint.exe | 136.463 | 3131296 | 2667664 | 1297256 | 1203665 | 1308890 | 3595000 | 4125600
cmd.exe 152,028 | 9559993 | 2216429 | 1759014 | 1692655 | 2009956 | 9569921 [ 9570030
d3dim.dll | 193.189 | 3102369 | 906300 | 4630652 | 4250652 | 9900630 | 9910550 | 9928915
clbcatq.dll | 403,901 | 2590855 | 3896171 | 4167801 | 3922143 | 4525650 | 5125590 | 6290590

Table 9.4 shows the Chi-Square values of all the techniques, the cummulative Chi-
Square value of MFBOMAT is 47769393, TSV is 44930751, SRAT is 20882824, TPRT is
13964820, TMAT is 14902143, ROBAST is 33438597 and RSA is 14841749. So,
MFBOMAT generates the optimal result therefore MFBOMAT is the most heterogeneous

technique.
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Figure 9.18: Pictorial representation of Chi-Square values against file size
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Table 9.5: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT, SRAT, TSV
and MFBOMAT

Source File File Degree of Freedom
Size ROBAST | RSA | TMAT | TPRT | SRAT | TSV | MFBOMAT
(Bytes)

license.txt | 17,632 253 253 | 255 255 | 253 | 255 255
cs405(ei).doc | 25,422 253 253 255 255 254 | 255 255
acread9.txt | 35,121 253 253 255 255 255 | 254 254
deutsch.txt | 47,829 253 253 | 255 255 | 240 | 253 255
genesis.txt | 49,600 253 253 255 255 255 | 255 255
pod.exe 69,981 253 253 | 255 255 | 255 | 255 253
mspaint.exe | 136,463 254 254 255 255 255 | 254 255
cmd.exe 152,028 253 253 255 255 255 | 255 255
d3dim.dll | 193,189 253 253 | 255 255 | 255 | 253 255
clbcatg.dll | 403,901 253 253 255 255 255 | 255 255

Figure 9.18 gives the Chi-Square graph where it can be seen that MFBOMAT is
giving the optimal result. Table 9.5 giving the degree of freedom values where MFBOMAT

is giving almost 255 values.

9.6.4 The Time Complexity Analysis

In this section time complexity analysis has been taken and for this encryption time
and decryption time has been taken for analysis.

Table 9.6 gives the encryption times of ten different files. The cumulative time of
MFBOMAT is 0.15 seconds, TSV is 0.19 seconds, SRAT is 0.25 seconds, TPRT is 2.94
seconds, TMAT is 3.29 seconds, ROBAST is 0.43 seconds and RSA is 1.54 seconds.
Therefore MFBOMAT is giving optimal result in terms of encryption time complexity

analysis.
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Table 9.6: Comparison of encryption time of ROBAST, RSA, TMAT, TPRT, SRAT, TSV

and MFBOMAT

Source File File Encryption Time
Size ROBAST | RSA | TMAT | TPRT | SRAT | TSV | MFBOMAT
(Bytes)
license.txt 17,632 0.00 0.01 | 0.08 0.02 | 0.00 | 0.00 0.00
cs405(ei).doc | 25,422 0.01 0.06 | 0.00 0.00 | 0.01 | 0.00 0.00
acread9.txt | 35,121 0.02 0.07| 0.13 | 010 | 0.01 |0.01 0.01
deutsch.txt 47,829 0.03 0.11 | 0.25 0.20 0.01 | 0.01 0.01
genesis.txt | 49,600 0.04 0.12 | 028 | 0.25 | 0.02 | 0.01 0.01
pod.exe 69,981 0.04 0.12 | 0.39 0.35 | 0.02 | 0.02 0.01
mspaint.exe | 136,463 0.06 0.20 | 0.44 0.40 | 0.03 | 0.02 0.02
cmd.exe 152,028 0.07 0.25 | 0.55 0.50 | 0.05 | 0.03 0.02
d3dim.dll 193,189 0.08 0.28 | 0.55 0.52 | 0.05 | 0.04 0.03
clbcatg.dll | 403,901 0.08 0.32 | 0.67 0.60 0.05 | 0.05 0.04
08
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Figure 9.19: Pictorial representation of encryption time against file size

- 284 -




Table 9.7: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT, SRAT and
TSV

Source File File Decryption Time

Size | ROBAST | RSA | TMAT | TPRT | SRAT | TSV | MFBOMAT
(Bytes)

license.txt 17,632 0.01 0.15 | 0.11 0.10 | 0.00 | 0.00 0.00

cs405(ei).doc | 25,422 0.02 0.71 | 0.00 0.00 | 0.01 | 0.00 0.00

acread9.txt | 35,121 0.03 1.15 | 0.13 0.10 | 0.01 |0.01 0.00

deutsch.txt | 47,829 0.03 136 | 0.15 0.11 0.01 | 0.01 0.01

genesis.txt 49,600 0.04 1.61 | 0.25 0.20 0.02 | 0.02 0.01

pod.exe 69,981 0.04 1.86 | 0.39 035 | 0.02 | 0.02 0.01

mspaint.exe | 136,463 0.05 271 | 0.48 0.40 | 0.02 | 0.03 0.02

cmd.exe 152,028 0.06 3.34 | 0.52 042 | 0.05 | 0.03 0.03

d3dim.dll | 193,189 0.07 3.73 | 0.60 0.50 | 0.05 | 0.04 0.03

clbcatg.dll | 403,901 0.08 425 | 0.65 0.55 | 0.05 | 0.05 0.04

Table 9.7 gives the decryption times of ten different files. The cumulative time of
MFBOMAT is 0.15 seconds, TSV is 0.21 seconds, SRAT is 0.24 seconds, TPRT is 2.73
seconds, TMAT is 3.28 seconds, ROBAST is 0.43 seconds and RSA is 20.87 seconds.
Therefore MFBOMAT is giving optimal result in terms of decryption time complexity

analysis.
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Figure 9.20: Pictorial representation of decryption time against file size
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Figure 9.19 and figure 9.20 gives the encryption time complexity graph and

decryption time complexity graph respectively. Thus it is clear from the graph that

MFBOMAT gives the optimal result in time complexity analysis.

9.6.5 The Avalanche Ratio Test

Avalanche Effect refers to a desirable property of any cryptographic algorithm where,

if an input is changed slightly (for example, flipping a single bit) the output changes

significantly (e.g., more than half the output bits flip).
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Table 9.8 compares the avalanche effect ratio for TSV, RSA and previous proposed
techniques/algorithm and which are obtained after calculating the respective Avalanche
Effect by making a change of a few (approx 3) characters in each file. It is observed that the
proposed technique is showing an average avalanche ratio percentage of 99.7% which is way
higher than that obtained using RSA. High avalanche ratio ensures higher security from brute
force attack. It is also observed that this avalanche ratio test of TSV is better than Shuffle-
RAT, TPRT, TMAT, ROBAST and MFBOMAT. Therefore MFBOMAT is giving optimal

result in avalanche ratio test but not better than TSV.

9.7 Discussions

The technique proposed takes little time to encode and decode though the block
length is high. The encoded string will not generate any overhead bits. The block length may
further increased beyond 256 bits, which may enhance the security. Selecting the block pairs
in random order, rather than taking those in consecutive order may enhance security. The

proposed scheme may be applicable to embedded systems.
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Chapter 10
Proposed Models






10.1 Proposed Models

In this chapter two models have been proposed out of research carried out during the
generic of study. Section 10.2 describes a proposed model derived from microprocessor
based solutions and section 10.3 gives another proposed model derived from FPGA-Based

solutions. Discussions on the proposed model are given in section 10.4.
10.2 The Proposed Model for Microprocessor-Based Solutions

Complete functionaries could be obtained through models and this chapter proposed
models for the same. Figure 10.1 shows the proposed model for microprocessor-based
solutions. In this model a 64-bit plaintext is encrypted to produce a 64-bit ciphertext, with a
key of 128-bit key size. In this model there are three parts, first one is the encryption process,
second one is the decryption process and the third one is the key generation or sub-key

generation or round-key generation process.

64 -bit Plain text 128 -bit Key 64 -bit Plain text
K1
=
B
g
5
6]
K2 v
e

Key Gen-II |

Encryption Process
Decryption Process

32-bit Swap

32-bit Swap

64 -bit Cipher text 64 -bit Cipher text

Through Unsecure Channel > 4\

Figure 10.1: Proposed model for microprocessor-based solutions



64-bit plaintext is fed into Modified Recursive Modulo-2" and Key Rotation
Technique (MRMKRT) block which gets the round-key/sub-key, K1, and this plaintext is
encrypted by MRMKRT encryption. The output from this is divided into two blocks of 32-bit
each, the left 32-bit block and right 32-bit block, then a 32-bit swap is done, here the left 32-
bit block becomes the right 32-bit block and right 32-bit block becomes the left 32-bit block.
After swapping two blocks are merged to form 64-bit block. This 64-bit block is then fed to
Recursive Transposition Technique (RTT), which gets round-key/sub-key, K2; this 64-bit
input is encrypted by RTT encryption. The output from this phase is again performed 32-bit
swap. The 64-bit output from this final phase is the ciphertext. Let’s now discuss the
decryption process.

The 64-bit ciphertext produced above by the encryption process travels through
unsecure channel and reaches the destination. The decryption process is just the reverse of the
encryption process and the round-keys/sub-keys is applied in reverse order. At first a 32-bit
swap operation is performed, this means the 32-bit left input block becomes right output
block and the 32-bit right input block becomes left output block. This 64-bit block is fed to
RTT decryption, round-key/sub-key, K2. Again the output from this phase is performed a
similar 32-bit swap. Finally, this 64-bit block is fed to MRMKRT decryption with round-
key/sub-key, K1, this produce back the original 64-bit plain text. Now discuss the key
generation process.

In this proposed model 128-bit key size has been considered. First, 128-bit key is fed
to first stage of key generation (Key Gen — 1), this round-key/sub-key generation process
which is already described in section 2.5 of chapter 2. First round-key/sub-key, K1 generated
is passed to MRMKRT in both encryption process and decryption process. This 128-block
key is performed a circular left shift of 1 — bit (LS — 1). The output from this phase is fed to
second phase of key generation (Key Gen — 1), this round-key/sub-key generation process
which is already described in section 3.3 of chapter 3. This phase generates a round-key/sub-
key, K2, which is fed to RTT encryption process and decryption process. This proposed
model has been implemented both in 8085 microprocessor and C-programming language.

Detailed analysis of results of the proposed model is given in section 10.2.1.

10.2.1 Results and Comparisons

The main emphasis is given on comparisons of the results with RSA. Section 10.2.1.1

gives implementation based results, section 10.2.1.2 gives frequency distribution graph,
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section 10.2.1.3 gives non-homogeneity test, section 10.2.1.4 deals with time complexity

analysis and avalanche ratio is given in section 10.2.1.5.
10.2.1.1 Implementation based result

In this section results obtained from implementation of the proposed model is
compared with MRMKRT and RTT as there is no low level implementation is available of

RSA.

Table 10.1: Implementation based results of MRMKRT, RTT and proposed model

Characteristics | Proposed Techniques - MRMKRT | RTT | Proposed
Model

Block Cipher V \ \
Fixed Length Block Cipher \ - -
Variable Length Block Cipher - V \
Implementation in Bit-Level V V \
Implementation other than Bit-Stream - - -
Private/Symmetric Key System \ \ \
Substitution Technique \ \ \
Transposition Technique - \ \
Boolean as Basic Operation \ \ -
Non-Boolean as Basic Operation \ - -
No Alteration in Size \ \
Formation of Cycle \ \ -
Non-formation of Cycle - - \
Number of sub-programs used 4 7 12
Number of 10/M operations per block of 9 5 15
encryption/decryption
Number of Boolean operations used per block of 1 1 1
encryption/decryption
Number of Non Boolean operations used per block of 5 0 5
encryption/decryption
Calculated T-states per block of encryption/decryption 760 544 1350

Table 10.1 gives the summary of implementation based results where this proposed
model is compared with MRMKRT and RTT.
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Figure 10.2: Graphical representation of implementation based results of the model,
MRMKRT and RTT

Figure 10.2 shows the graphical representation of implementation based result. This
proposed model is variable size block cipher, the implementation is bit level with private key
stream, it also involve both permutation and substitution technique, this proposed model also
have Boolean and non Boolean operations and there is no alteration of cycle and also cycle is
not formed.

Number of subprogram is used is 12, IO/M operation is 15, Boolean operation is 1,
non Boolean operation is 5 and calculated T-states is 1350. Therefore with these results it can

be said that the proposed model is successfully implemented in low level that in 8085.

10.2.1.2 Frequency Distribution Graph

All 255 ASCII characters are taken for this test for both plaintext/source file and
ciphertext/encrypted file. The frequency graph of source file, RSA encrypted file and
proposed model encrypted file is taken for consideration. There are ten files taken for various
result and analysis but only one file is taken for frequency distribution analysis and other nine

files giving the similar result.
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Figure 10.5: Graphical representation of frequency distribution of proposed model (encrypted

file)

Figure 10.3 gives the frequency distribution graph of source file, figure 10.4 shows
the same for RSA encrypted file and figure 10.5 shows the same for this proposed model

encrypted file. Thus frequency distribution graph of this proposed model is well comparable

with RSA.
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10.2.1.3 Non-Homogeneity Test

Chi-square test is performed to find the non-homogeneity of the proposed model with
RSA. Ten files of different file typed and different file sizes are taken for this test.
Table 10.2: Comparisons of Chi-Square values of RSA and proposed model

Source File File Size Chi-Square Value Degree of Freedom
(Bytes) Proposed RSA Proposed RSA
model model
license.txt 17,632 225000 40159 255 64
cs405(ei).doc 25,422 299125 199354 255 66
acread9.txt 35,121 460050 179524 255 73
deutsch.txt 47,829 588660 344470 255 77
genesis.txt 49,600 690010 416029 255 75
pod.exe 69,981 901556 751753 255 76
mspaint.exe 136,463 1550000 | 1204193 255 88
cmd.exe 152,028 1908000 585857 255 73
d3dim.dll 193,189 496590 328677 255 10
clbcatg.dll 403,901 3907125 328511 255 11

Table 10.2 shows the Chi-Square values of ten source files of RSA and the proposed
model. It is clearly observed that the extent of non-homogeneity of the proposed model is
quite higher than that of RSA. So, this proposed model is giving optimal solution in terms of

non-homogeneity by using Chi-Square values.

4500000 -

4000000

3500000

3000000

2500000
M Proposed model

2000000

H RSA

1500000

Chi-Square Values -->

1000000

Fi.lli
0 = 'L = ._T'L = g - |3 ~T=, T =1 ] = vy =
2 3 4 5 6 7 8 =]

10

Source File -->

Figure 10.6: Graphical representation of Chi-Square for RSA and proposed model
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Figure 10.6 shows the result graphically, where it can be see that for all the ten source
files the Chi-Square value of this proposed model is quite higher than that of RSA.

10.2.1.4 Time Complexity Analysis

Time complexity analysis is taken for encryption time and decryption time. This
analysis is taken for all the ten source files.

Table 10.3 gives the tabulation for encryption time and decryption time of both RSA
and proposed model. Figure 10.7 gives the graphical representation of encryption time and
figure 10.8 gives the graphical representation of decryption time. The cumulative encryption
time of this proposed model is 4.34 seconds and the cumulative encryption time of RSA is
4.35 seconds. The cumulative decryption time of the proposed model is 5.69 seconds and
cumulative decryption time of RSA is 51.97 seconds. Therefore it can be said that the
proposed model is giving much better result than that of RSA.

Table 10.3: Comparison of time complexity analysis of RSA and proposed model

Source File | File Size | Encryption time | Decryption time

(Bytes) (in Seconds) (in seconds)
Proposed | RSA | Proposed | RSA
Model model

license.txt 17,632 0.02 0.01 0.15 0.28
cs405(ei).doc | 25,422 0.02 0.03 0.15 0.30
acread9.txt | 35,121 0.20 0.21 0.20 1.67
deutsch.txt | 47,829 0.30 0.35 0.30 3.51
genesis.txt | 49,600 0.40 0.40 0.55 5.06
pod.exe 69,981 0.80 0.39 0.45 4.34
mspaint.exe | 136,463 0.70 0.65 0.80 8.37
cmd.exe 152,028 0.50 0.61 0.90 6.59
d3dim.dll 193,189 0.70 0.75 0.99 10.15
clbcatg.dll | 403,901 0.70 0.95 1.20 11.70
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10.2.1.5 The Avalanche Ratio Test

The avalanche ratio test is the extent of which the ciphertext bits filliped when one or

more bits of plaintext or key are flipped.
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Table 10.4: Comparison of avalanche ratio of RSA and proposed model

Source File File Size (Bytes) | Avalanche Ratio(in Percentage)
RSA Proposed model

license.txt 17,632 58.0 88.8
cs405(ei).doc 25,422 60.0 80.0
acread9.txt 35,121 75.0 88.8
deutsch.txt 47,829 78.9 90.5
genesis.txt 49,600 80.9 95.5
pod.exe 69,981 58.0 90.0
mspaint.exe 136,463 58.9 96.5
cmd.exe 152,028 67.0 87.0
d3dim.dll 193,189 67.9 85.0
clbcatq.dll 403,901 68.0 95.5

Table 10.4 is giving the avalanche ratio test and here the proposed model is giving far
better result than that of RSA.

10.3 The Proposed Model for FPGA-Based Solutions

An FPGA-based model has also been proposed here where, the complete
functionaries of FPGA-based techniques is described here through another proposed model.
Figure 10.9 shows the proposed model for FPGA-based solutions. In this model also a 64-bit
plaintext is encrypted to produce a 64-bit ciphertext, with a key of 128-bit key size. In this
model there are three parts, first one is the encryption process, second one is the decryption
process and the third one is the key generation or sub-key generation or round-key generation
process. Let explain it one by one.

At first 64-bit plaintext is fed into Triangular Modulo Arithmetic Technique (TMAT)
block which gets the round-key/sub-key, K1, and this plaintext is encrypted by TMAT
encryption. The output from this is now performed a circular left shift of 1 — bit (LS — 1).
After shifting operation this 64-bit block is then fed to Recursively Oriented Block Addition
and Substitution Technique (ROBAST), which get round-key/sub-key, K2, this 64-bit input is
encrypted by ROBAST encryption. The output from this phase is again performed circular
left shift of 2 — bits (LS — 2).
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Figure 10.9: Proposed model for FPGA-based solutions

After shifting operation the 64-bit block is fed to Shuffle-RAT (SRAT) phase, which
get round-key/sub-key, K3, from the key generation process. This 64-bit block is encrypted
with SRAT. After this the 64-bit block is now performed a circular left shift of 3 — bits (LS —
3). The 64-bit output is now fed to Triple-SV (TSV) phase, which get round-key/sub-key, K4,
from the key generation process. Now, finally the 64-bit block is Forward Backward
Overlapped Modulo Arithmetic Techniqgue (FBOMAT) encrypted to produce 64-bit
ciphertext with a round key of K5. Let’s now discuss the decryption process.

The 64-bit ciphertext produced above by the encryption process travels through
unsecure channel and reaches the decryption process. Since the techniques were symmetric in
nature so the proposed model is symmetric too. The decryption process is just the reverse of
the encryption process and the round-keys/sub-keys is applied in reverse order. At first 64-bit
ciphertext is decrypted through FBOMAT decryption with round key K5. Then 64-bit
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ciphertext is TSV decrypted, with the round key/sub key, K4. This 64-bit block is now
performed a circular right shift of 3 — bits (RS — 3). The 64-bit output from this phase is now
fed to SRAT, with round-key/sub-key, K3, this is now SRAT decrypted. Then this 64-bit
block is performed a circular right shift of 2 — bits (RS — 2). Now, this 64-bit block is fed to
ROBAST decryption, round-key/sub-key, K2. Again the output from this phase is performed
a similar circular right shift of 1 — bits (RS — 1). Finally, this 64-bit block is fed to TMAT
decryption with round-key/sub-key, K1, this produce back the original 64-bit plain text. Now
discuss the key generation process.

In this proposed model, the key is considered to be 128-bit key size, which is now
recommended. First, 128-bit key is fed to Two Pass Replacement Technique (TPRT), this
whole 128-bit key is encrypted with one round of TPRT which takes system time as a key
input. This phase produce the first round-key/sub-key, K1, which is passed to TMAT in both
encryption process and decryption process. Now this 128-block key is divided into two 64-bit
blocks and swap operation is done, this means the right input 64-bit becomes left output 64-
bit and left input 64-bit becomes right output 64-bit, finally the output blocks are merged to
form 128-bit block. The output from this phase is fed to Key Gen — I, this round-key/sub-key
generation process which is already described in section 4.4.1 of chapter 4. This phase
generates a round-key/sub-key, K2, which is fed to ROBAST encryption process and
decryption process. The 128-bit output from this phase is again performed a 64-bit swap
operation as discussed earlier. After the swapping operation, this 128-bit block key is fed to
Key Gen — I, already discussed in section 8.4.2 of chapter 8, to produce the third round-
key/sub-key, K3, which is fed to both SRAT encryption process and SRAT decryption
process. The 128-bit output from the previous phase is again performed 64-bit swap operation
described earlier. The next round-key/sub-key is produced by performing the Key Gen — Il
operation as already described in section 9.4.1 of chapter 9, this round-key/sub-key, K4, is
fed to both TSV encryption process and decryption process. Finally another 64-bit swap
operation is performed and it forms the final round key, K5, which is fed to both FBOMAT
encryption and decryption. Here one should note that all the round-keys/sub-keys is of 128-
bit key size. This proposed model has been implemented in both FPGA-based systems by
VHDL and C-programming language. Section 10.3.1 gives the results to analyse this

proposed model for its acceptance.
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10.3.1 Results and Simulations

The main emphasis is given on comparisons with RSA. Section 10.3.1.1 gives RTL
simulation based results, section 10.3.1.2 gives frequency distribution graph, section 10.3.1.3
gives non-homogeneity test, section 10.3.1.4 deals with time complexity analysis and section
10.3.1.5 chalk out the avalanche ratio test.

10.3.1.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed model
in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main objective is
to find an efficient FPGA-based cryptographic technique for implementation in embedded

systems.
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Figure 10.10: RTL diagram of RSA

__"-_]!,:El— ! —= [ [ ——

SiEE ==

= s T — : =S

] T —7 It ——t 1
=

.L':I—I%

;—IJ— e
. R N |
1L>— —L— ==
e Ees N He=—
— L L -=E—-£
[l= | ;_:'_ —— =_==.=
== ——5 S
[ To—7F H=>—
O T
rl':.E]— HT>— 1
—L > 1
=== H—T >
I =
= e
el ] S —
[—CR_

Figure 10.11: Spartan 3E RTL diagram of proposed model
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The design of proposed model is done using VHDL and implemented in Xilinx
Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i
design tool. Figure 10.10 shows the RTL of RSA, figure 10.11 shows the RTL of proposed
model.

Table 10.5: HDL synthesis report (Netlist generation of RSA and proposed model)

Sr No. | Netlist Components Number
RSA | Proposed model
1 ROMSs/RAMs 430 110
2 Adders/Subtractions | 3 70
3 Registers 420 770
4 Latches 80 80
5 Multiplexers 120 120

Table 10.5 gives the HDL synthesis report, specifically net list generation of RSA and
proposed model. Proposed model uses 110 ROMs/RAMs where as RSA uses 430
ROMs/RAMSs, proposed model uses 70 adders/subtractions where RSA uses only 3
adder/subtractions, proposed model uses 770 registers where as RSA uses 420 registers, both
proposed model and RSA uses 80 lathes and 120 multiplexers. Therefore this proposed model
is well comparable with RSA.

Table 10.6 gives the HDL synthesis report specifically timing summary of RSA and
proposed model. The minimum period of RSA is 9.895ns and proposed model is 9.55ns,
minimum input arrival time before clock of RSA is 6.697ns and proposed model is 6.55 ns
and maximum output required time after clock of RSA is 4.31ns and the proposed model is
4.30ns. This implementation has been made on speed grade of -5 and maximum frequency of
101.06 MHZ. Therefore it can be said that proposed model is giving much better result than
that of RSA and this proposed model is well comparable with RSA.

10.3.1.2 The Frequency Distribution Graph
The frequency distribution is the distribution of the all 256 ASCII characters in the
respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.
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Table 10.6: HDL synthesis report (Timing summary of RSA and proposed model)

Sr No. Timing Constraint Values
RSA Proposed model

1 Speed Grade -5 -5

2 Minimum period (ns) 9.895 9.55

3 Maximum Frequency (MHZ) 101.06 101.06

4 Minimum input arrival time before 6.697 6.55
clock (ns)

5 Maximum output required time after 4.31 4.30
clock (ns)
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Figure 10.13: The frequency distribution graph of RSA encrypted file
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Figure 10.14: The frequency distribution graph of proposed model

Figure 10.12 gives the frequency distribution graph of source file, figure 10.13 shows
the same for RSA encrypted file and figure 10.14 shows the same for this proposed model

encrypted file. Thus frequency distribution graph of this proposed model is well comparable

with RSA.

10.3.1.3 The Non-Homogeneity Test

Chi-square test is performed to find the non-homogeneity of the proposed model with

RSA. Ten files of different file typed and different file sizes are taken for this test.

Table 10.7: Chi-Square values of RSA and proposed model

Source File File Chi-Square Values Degree of freedom
Size RSA Proposed RSA | Proposed model
(Bytes) model

license.txt 17,632 5668 6005 64 253
cs405(ei).doc | 25,422 2654 338690 66 254
acread9.txt | 35,121 | 447984 475859 73 255
deutsch.txt | 47,829 | 685963 3885550 77 255
genesis.txt | 49,600 | 3318506 4112060 75 254
pod.exe 69,981 | 694410 8992436 76 255
mspaint.exe | 136,463 | 2667664 4560124 88 255
cmd.exe 152,028 | 2216429 9956700 73 240
d3dim.dll 193,189 | 906300 9925690 10 255
clbcatg.dll | 403,901 | 3896171 6556900 11 254
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Figure 10.15: Graphical representation of Chi-Square value of RSA and proposed model

Table 10.7 shows the Chi-Square values of ten source files of RSA and the proposed
model. It is clearly observed that the extent of non-homogeneity of the proposed model is
quite higher than that of RSA. So, this proposed model is giving optimal solution in terms of
non-homogeneity by using Chi-Square values.

Figure 10.15 shows the result graphically, from it is seen that that for all the ten
source files the Chi-Square value of this proposed model is quite higher than that of RSA.
The degree of freedom of this proposed model is also quite higher than that of RSA.

10.3.1.4 The Time Complexity Analysis

Another way to analyze any algorithm is to take the time complexity analysis. Here

encryption time and decryption time have been taken into account.
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Table 10.8: Encryption and decryption time of RSA and proposed model

Source File File Encryption Time Decryption Time

Size | RSA | Proposed | RSA Proposed
(Bytes) model model
license.txt | 17,632 | 0.01 0.06 0.28 0.15
cs405(ei).doc | 25,422 | 0.06 0.06 0.30 0.25
acread9.txt | 35,121 | 0.07 0.07 1.67 0.80
deutsch.txt | 47,829 | 0.11 0.10 351 0.90
genesis.txt | 49,600 | 0.12 0.10 5.06 2.30
pod.exe 69,981 | 0.12 0.10 4.34 3.50
mspaint.exe | 136,463 | 0.20 0.20 8.37 4.50
cmd.exe 152,028 | 0.25 0.20 6.59 6.10
d3dim.dll | 193,189 | 0.28 0.25 10.15 8.50
clbcatg.dll | 403,901 | 0.32 0.35 11.70 10.50

Table 10.8 gives the tabulation for encryption time and decryption time of both RSA
and proposed model. Figure 10.16 gives the graphical representation of encryption time and
figure 10.17 gives the graphical representation of decryption time. The cumulative encryption
time of this proposed model is 1.49 seconds and the cumulative encryption time of RSA is
1.54 seconds. The cumulative decryption time of the proposed model is 37.5 seconds and

cumulative decryption time of RSA is 51.97 seconds. Therefore it can be said that the

proposed model is giving much better result than that of RSA.
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Figure 10.16: Pictorial representation of encryption time of RSA and proposed model
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Figure 10.17: Pictorial representation of decryption time of RSA and proposed model

10.3.1.5 The Avalanche Ratio Test

The avalanche ratio test is the extent of which the ciphertext bits filliped when one or

more bits of plaintext or key are flipped.

Table 10.9: The avalanche ratio of RSA and proposed model

Source File File Size Avalanche Ratio(in Percentage)
(Bytes) RSA Proposed model

license.txt 17,632 58.0 88.8
cs405(ei).doc 25,422 60.0 80.0
acread9.txt 35,121 75.0 88.8
deutsch.txt 47,829 78.9 90.5
genesis.txt 49,600 80.9 95.5
pod.exe 69,981 58.0 90.0
mspaint.exe 136,463 58.9 96.5
cmd.exe 152,028 67.0 87.0
d3dim.dll 193,189 67.9 85.0
clbcatq.dll 403,901 68.0 95.5
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Table 10.9 is giving the avalanche ratio test and here the proposed model is giving far
better result than that of RSA.

10.4 Discussions

In this chapter two proposed models have been discussed. In all the models 64-bit
plaintext is encrypted to get 64-bit ciphertext. The key size of all the models are 128-bit. The
128-bit key ensure better cryptographic strength and 64-bit block length is also recommended
for symmetric block cipher.

In microprocessor-based model two proposed techniques, MRMKRT and RTT, are
incorporated. In this model three round keys are generated from 128-bit input key.
MRMKRT is found optimal for frequency distribution analysis and degree of freedom
analysis, RTT is found optimal for Chi-square value (non-homogeneity) analysis and
avalanche ratio. Thus, by implementing this proposed model, hope to get better cryptographic
strength and algorithmic properties.

In FPGA-based model, TMAT, ROBAST, Shuffle-RAT, TSV have been incorporated
for encryption/decryption process and FBOMAT is used in round key generation process.
TMAT is found suitable for frequency distribution analysis, degree of freedom and hardware
implementation based results, ROBAST is optimal for Chi-Square and degree of freedom
analysis, Shuffle-RAT gives high confusion and diffusion and TSV is giving high avalanche
effect. Thus, by implementing this proposed models. Better cryptographic strength and
algorithmic properties may be achieved.

Thus, by implementing these proposed models better cryptographic strength and

algorithmic properties may be achieved.
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Chapter 11

Conclusions






11.1 Conclusive Discussions

In this thesis eight novel techniques are proposed. Modified Recursive Modulo-2" and
Key Rotation Technigue (MRMKRT) and Recursive Transposition Technique (RTT) are
microprocessor-based proposal and implemented techniques. Two Pass Replacement
Technique (TPRT), Triangular Modulo Arithmetic Technique (TMAT), Recursively Oriented
Block Addition and Substitution Technique (ROBAST), Shuffle-RAT (SRAT), Triple-SV
(TSV / 3SV) and Forward Backward Overlapped Modulo Arithmetic Technique (FBOMAT)
are FPGA-based proposal and implemented techniques. The conclusions on microprocessor-
based techniques, FPGA-based techniques and all the eight proposed techniques are
discussed in subsequent paragraphs. Section 11.2 illustrates the future works with concluding
remarks.

Table 11.1 illustrates overall conclusion scenario for microprocessor-based solutions.
In this table two proposed algorithms/techniques are compared along with the existing,
renowned and industrially accepted RSA. The symbol “\” shows the optimal solution. Here
also six properties are considered for the evaluation. The properties for evaluation are
frequency distribution graph, Chi-Square values for non-homogeneity, degree of freedom,
avalanche ratio, encryption time and decryption time.

If frequency distribution graph is considered and it is seen that the entire proposed
algorithm generate optimal solutions, which means the frequencies are well distributed in
ciphertext as compared to plaintext; here exception is the RSA, whose frequency is not well
distributed. Now considering Chi-Square values, the proposed technique, RTT, obtained the
higher and best result, thus the RTT encrypted ciphertext is most non-
homogeneous/heterogeneous among all the proposed techniques and also from RSA. If
degree of freedom is considered almost all the proposed techniques are obtained the optimal
solution except RSA.

Frequency distribution graph has a uniform distribution with higher degree of
freedom. Now, taking avalanche ratio, the proposed technique, RTT, obtained the optimal
solution. This means if a single bit/byte in plaintext and or key is changed then there is a
large alteration in ciphertext. Now consider encryption time, the proposed technique, RTT,
shows the best result, thus the time of encryption of RTT is least than other techniques and
RSA.



Table 11.1: Characteristics of microprocessor-based solutions

Techniques »> MRMKRT | RTT RSA
Properties
Frequency \ \ -

Distribution Graph

Chi-Square Values -

Degree of Freedom \

Avalanche Ratio -

Encryption Time -

2] 2] 2] <21 2]

Decryption Time -

Now, considering decryption time, the proposed technique, RTT, gives the good
solution, this means time of decryption of RTT is least than other proposed techniques and
RSA.

Techniques are implemented in bit-level with private/symmetric key cryptography
where as RSA is public key cryptography. MRMKRT is substitution cipher where as RTT is
substitution and transposition technique and RSA is substitution cipher, RTT uses Boolean as
basic operation and MRMKRT uses both modulo addition (non Boolean) and Boolean as a
basic operation and RSA is non-Boolean operation.

The plaintext size and ciphertext size remains same for both proposed techniques
where as for RSA the plaintext size and ciphertext size are not equal. MRMKRT and RTT
forms cycle where the plaintext regenerates after some finite number of iteration depends on
block size and number of iteration used during encryption and for RSA plaintext never
regenerates. MRMKRT, RTT and RSA used 4, 7 and 10 sub-programs respectively.
MRMKRT used 9 10/M operations, RSA uses 50 10/M operations and RTT used 5 10/M
operations per block encryption/decryption. MRMKRT and RTT used one Boolean operation
per block of encryption/decryption but MRMKRT also used 5 non Boolean operations. RSA
uses 50 Boolean operations and uses 10 non-Boolean operations per block of

encryption/decryption.
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Table 11.2: Comparisons of MRMKRT, RTT and RSA

Characteristics | Proposed Techniques - MRMKRT RTT RSA
Block Cipher N N N
Fixed Length Block Cipher N - N
Variable Length Block Cipher - N -
Implementation in Bit-Level N N N
Implementation other than Bit-Stream - - -
Private/Symmetric Key System N N -
Substitution Technique N N N
Transposition Technique - N -
Boolean as Basic Operation N N -
Non-Boolean as Basic Operation N - N
No Alteration in Size N N -
Formation of Cycle N N -
Non-formation of Cycle - - N
Number of sub-programs used 4 7 10
Number of 10O/M operations per block of 9 5 50
encryption/decryption

Number of Boolean operations used per block of 1 1 50
encryption/decryption

Number of Non Boolean operations used per block of 5 0 10
encryption/decryption

Calculated T-states per block of encryption/decryption 760 544 950

So, T-states calculated for MRMKRT, RTT and RSA are 760, 544 and 950
respectively. Thus it can be said that in microprocessor based implementation perspective
RTT is the faster than MRMKRT and RSA in terms of execution speed per block of

encryption/decryption.
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Figure 11.1: Graphical representation of comparisons of MRMKRT, RTT and RSA

Thus RTT is giving the optimal solution in respect to microprocessor based
implementation. Table 11.2 and figure 11.1 summarize these discussions.

Table 11.3 illustrates the overall conclusion scenario for FPGA based solutions. In
this table the six proposed algorithms/techniques are compared along with the existing,
renowned and industrially accepted RSA. The symbol “» shows the optimal solution got
against a property or the best solution. Here also seven properties are considered for the
evaluation, in this chapter and also throughout the thesis. The proposed techniques are TPRT,
TMAT, ROBAST, SRAT, TSV and FBOMAT. The properties taken are frequency
distribution graph, Chi-Square values for non-homogeneity, degree of freedom, avalanche
ratio, encryption time, decryption time and simulation based results.

Taking frequency distribution graph, it is seen that the all proposed algorithm obtain
the optimal solution that means the frequencies are well distributed in ciphertext as compared
to plaintext; here exception is the TSV and RSA, whose frequency is not well distributed.
Now taking the Chi-Square values, the proposed, MFBOMAT, obtain the higher and best
result, thus the MFBOMAT encrypted ciphertext is most non-homogeneous/heterogeneous
among all the proposed technique and also from RSA. Now taking the degree of freedom,
almost all the proposed techniques are obtained the optimal solution except TSV and RSA,
so, this result is at par with the result of frequency distribution graph. Now consider

avalanche ratio, the technique, ROBAST and TSV, obtained the optimal solution.
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Table 11.3: Characteristics of FPGA-based solutions

Techniques
9

TPRT

TMAT

ROBAST

Shuffle-
RAT

TSV

RSA

MFBOMAT

Properties

Frequency
Distribution
Graph

Chi-Square

Values

Degree of
Freedom

Avalanche
Ratio

Encryption

Time

Decryption

Time

Simulation
Based

Results

As these two techniques are implemented as Cipher Block Chaining (CBC) mode, so,

the result is also at par with the theory of cryptography. This means if a bit/byte in plaintext

and or key is changed then there is a large change in ciphertext. Now taking encryption time,

the proposed techniqgue, MFBOMAT, shows the best result, thus the time of encryption of
MFBOMAT is least than other techniques and RSA. In terms of decryption time, the

proposed, MFBOMAT, gives the best solution. In terms of simulation based results, this

property is based on results of RTL schematic, less number of Look-Up-Tables thus less area,

less time slices, less timing simulation parameters, thus the proposed, MFBOMAT, gives the

best solution in this respect, it is obvious because the MFBOMAT is the simplest technique

than all the other proposed techniques.
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Table 11.4: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,
SRAT, TSV and MFBOMAT)

Sr | Netlist Components Number
No. RSA | TPRT | TMAT | ROBAST | SRAT | TSV | MFBOMAT
1 ROMSs/RAMs 430 10 14 25 28 12 09
2 | Adders/Subtractions | 3 0 2 20 28 0 15
3 Registers 420 20 30 50 641 10 10
4 Latches 80 0 0 10 80 0 0
5 Multiplexers 120 0 0 10 136 0 0

ERSA

ETPRT

BTMAT

B ROBAST

BSRAT

mTsV
MFBOMAT

Number of Component -

Figure 11.2: Pictorial representation of HDL synthesis report of net-list generation

Table 11.4 illustrates the hardware implementation analysis of MFBOMAT, RSA,
TPRT, TMAT, ROBAST, SRAT and TSV. RSA uses 430, TPRT uses 10, TMAT uses 14,
ROBAST uses 25, SRAT uses 28, TSV uses 12 and MFBOMAT uses 9 numbers of
ROMs/RAMs. RSA, TPRT, TMAT, ROBAST, SRAT, TSV and MFBOMAT uses 3, nil, 2,
20, 28, nil and 15 adders/substrations respectively. RSA uses 420, TPRT uses 20, TMAT
uses 30, ROBAST uses 50, SRAT uses 641, TSV uses 10 and MFBOMAT uses 10 numbers
of registers. RSA uses 80, ROBAST uses 10, SRAT uses 80 and others use nil number of
latches. RSA uses 120, ROBAST uses 10, SRAT uses 136 and others use nil number of

latches. Thus from these analysis we can conclude that MFBOMAT is giving optimal result
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in terms of HDL synthesis of net list generation for FPGA-based implementation. Figure 11.2
gives the summarized result.

Table 11.5 illustrates the entire timing summary obtained after HDL synthesis. The
speed grade and maximum frequency is same as all the techniques/algorithms have been
implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).

Table 11.5: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST,
SRAT and TSV)

Sr Timing Values

No. | Constraint RSA | TPRT | TMAT | ROBAST | SRAT | TSV | MFBOMAT

1 Speed -5 -5 -5 -5 -5 -5 -5
Grade

2 Minimum 9.895 5.66 7.95 5.55 550 | 10.22 4.99
period (ns)

3 Maximum | 101.06 | 101.06 | 101.06 | 101.06 | 101.06 | 101.06 101.06
Frequency
(MHZ)

4 Minimum 6.697 4.33 5.55 5.55 4.25 6.66 4.20
input arrival
time before

clock (ns)

5 Maximum 4.31 3.33 4.25 4.44 3.33 5.55 3.30
output
required

time after

clock (ns)

MFBOMAT is obtained minimum period of 4.99ns followed by RSA 9.89ns, TPRT
5.66ns, TMAT 7.95ns, ROBAST 5.55ns, SRAT 5.50ns and TSV 10.22ns. MFBOMAT is
also require minimum input arrival time before clock of 4.20ns followed by RSA 6.70ns,
TPRT 4.33ns, TMAT 5.55ns, ROBAST 5.55ns, SRAT 4.25ns and TSV 6.66ns.
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Figure 11.3: Pictorial representation of HDL synthesis report of timing summary

MFBOMAT requires minimum value in maximum output required time after clock of
3.30ns followed by RSA 4.31ns, TPRT 3.33ns, TMAT 4.25ns, ROBAST 4.44ns, SRAT
3.33ns and TSV 5.55ns. Thus from these analysis we can conclude that MFBOMAT is giving
optimal result in terms of HDL synthesis of timing summary for FPGA-based
implementation. Figure 11.3 gives the summarized result. Therefore from the discussions of
HDL synthesis report of both netlist generation and timing summary it can be concluded that
MFBOMAT is the optimal solution for FPGA-based implementation.

11.2 The Future Work

Authors have implemented eight techniques and compared with RSA. There are other
existing algorithm exist such as TDES and AES. Author have also not carried out
cryptanalysis of these techniques. The following are the main points where a further research

may be carried out in future.

e Design and implementation of public key cryptography in FPGA and
microprocessor based system.

e Design and implementation of Elliptic Curve Cryptography in microprocessor
based and FPGA-based systems.
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e Study on cryptanalysis like differential attack, linear attack, power analysis of
crypto-hardware/crypto-processor, key boomerang attack, side channel attack,
improved meet-in-the-middle attack etc.

e FPGA-based systems like implementation of fast, secure crypto solution for
FPGA(s), FPGA-based TLC schemes, design of firewalls, gateways in FPGA-
based systems, design of memory systems in FPGA(s) etc.

In this thesis eight novel techniques are proposed, two of them are realized in
microprocessor-based systems and six of them are realized in FPGA-based systems.
MRMKRT and TPRT gives better result in frequency distribution graph analysis and degree
of freedom analysis than RSA. MFBOMAT gives better result in FPGA simulation based
analysis and time complexity analysis than RSA. ROBAST gives better result in Chi-Square
value analysis (non-homogeneity) than RSA. SRAT adds better confusion and diffusion
cryptographic properties. TSV gives better avalanche ratio analysis than RSA.

Therefore, proposed models can be used in modern Information and Communication
Technology (ICT) and Information Technology Enabled Services (ITES) for providing the

primary goal of data/information confidentiality.
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