
AN APPROACH TOWARDS DESIGN AND IMPLEMENTATION

OF MICROPROCESSOR AND FPGA BASED SYMMETRIC

ENCODER FOR EMBEDDED SYSTEM

Thesis submitted for the Degree of Doctor of Philosophy (Engineering)

In the Department of Computer Science and Engineering

Faculty of Engineering, Technology and Management

University of Kalyani

By

Rajdeep Chakraborty

Under the Supervision of

Dr. Jyotsna Kumar Mandal

Professor, Department of Computer Science and Engineering

University of Kalyani

Department of Computer Science and Engineering

University of Kalyani

Kalyani, Nadia, West Bengal, India

January 2016

University of Kalyani

FACULTY OF ENGINEERING TECHNOLOGY AND MANAGEMENT

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled “AN APPROACH TOWARDS DESIGN AND

IMPLEMENTATION OF MICROPROCESSOR AND FPGA BASED SYMMETRIC

ENCODER FOR EMBEDDED SYSTEM” submitted by Shri Rajdeep Chakraborty, who

got his name registered on 04/July/2007 (Ref. No. Ph.D./Regn./Comp.Sc. & Engg./RC/2007

dated August 04, 2008) and re-registered on 04/July/2012 (Ref. No. Ph.D./Re-Regn./Com.

Sc. & Engg./RC/2012 dated June 18, 2012) for the award of Ph.D (Computer Science and

Engineering) degree of the University of Kalyani is absolutely based upon his own work

under my supervision and that neither his thesis nor any part of the thesis has been submitted

for any degree or diploma or any other academic award anywhere before. I recommend that

Shri Rajdeep Chakraborty has fulfilled all the requirements according to rules of this

university regarding the work embodied in this thesis.

Date: (Dr. JYOTSNA KUMAR MANDAL)

Place: Kalyani Prof, Dept. of CSE, FETM

University of Kalyani

Dr. J. K. Mandal

M. Tech (Comp. Sc.), Ph. D.(Engg.)

Professor, Department of Computer

Science and Engineering (CSE),

University of Kalyani

Kalyani 741235, Nadia, West

Bengal, India

Phone: +91-33-25809617 (O)

Mobile: +91-9434352214

E-mail:

jkmandal@rediffmail.com,

jkm.cse@gmail.com

--- -----------------

Dedicated to My Father, Mother, Younger Brother and My Wife, Mrs. Priya Chakraborty

Acknowledgements

This thesis would have been impossible without the support and mentoring of my

advisor, Dr. Jyotsna Kumar Mandal. Even after several years of working with him, I am

constantly surprised by his amazing intelligence, infinite energy, boundless optimism, and

genuine friendliness. He exhibits every and all support for the research carried out by me.

Day or night, Office or home, time and places are no boundary for his encouragement and

guide towards me. It’s also worthwhile to say that his family members also supported me in

every respect.

There is no word to express my feeling for my family, especially my wife, Mrs. Priya

Chakraborty. She encouraged me in every sphere with her constant cooperation; actually she

is the driver of my success and this thesis. She kept me tensionless in keeping all the family

matter to able me to concentrate on my work. I also like to express my gratitude towards my

parent, my father, retired bank official, encouraged and supported me since my childhood. He

supported me in every respect in my studies and also during my research work. My mother, a

housewife, sacrificed her life in service to the family. Her moral support has also helped me

to overcome the odd times and hurdles of my life and makes this research work successful.

Finally, I would also like to mention my younger brother for his help for some of the figures

and diagrams for me, he is a good artist.

I would like to thank my ex-colleague and friends at IMPS College of Engineering

and Technology (IMPSCET, Malda, West Bengal, India), Sikkim – Manipal Institute of

Technology (SMIT, Majitar, Sikkim, India), Dept. of Computer Science and Application of

University of North Bengal (Siliguri, West Bengal, India) and Ajay Binay Institute of

Technology (ABIT, Cuttack, Orissa, India). I would also like to acknowledge the cooperation

extended to me by faculties and staff of Netaji Subhash Engineering College (NSEC,

Kolkata, West Bengal, India).

Like all the students I know, I am very happy I’ve had the chance to study and do my

research work in Computer Science at Department of Computer Science and Engineering

(CSE) in University of Kalyani, Kalyani, Nodia, West Bengal, India. The department has a

unique atmosphere of academic excellence combined with friendliness and openness that

makes it a very special place to learn in. I greatly enjoyed the interaction with quite lot

faculty members, research scholars and fellow students.

One of the many reasons I am grateful to Mr. Avijit Das was his encouragement and

support of my first job. As a result, in a relatively short time, I have met, interacted and

viii

worked with so many wonderful people, that I cannot mention all of them here and also able

to carry out my research which required monetary support.

In my early hours of my research work, it is worthwhile to mention the name of two

persons, Mr. S. Mal and Mr. S. Sinha, for helping me to learn the microprocessor based

programming. I have had helpful discussions and received comments and suggestions from

many other people, also received a lot of input and support from my relatives and friends, and

gave me unconditional aid. Last, but not the least, I thank god for his kindness and grace,

which drives me through this work, in my past and also in the future.

Date:

Place: Kalyani

 (RAJDEEP CHAKRABORTY)

Dept. of CSE, University of

Kalyani, Kalyani, W.B., India

List of Publications

International Journals

1. Rajdeep Chakraborty and J. K. Mandal, “An RTL Based Design & Implementation

of Block Cipher through Time-Stamp-Keyed-Oriented Encryption Technique (TSK-

OET)”, published in International Journal of Advanced Research in Computer

Science (IJARCS), ISSN 0976 – 5697, accepted & published in Volume 2 – No. 1

(Jan – Feb 2011) issue, pp-428 – 432, indexed by Index Copernicus, Directory of

Open Access Journal (DAOJ), Open J Gate, Ulrichs Web, EBSCOhost, Electronic

Journal Library, New Jour, ScienceCentral.com, Genamics, Mlibrary of University of

Michigan, Kun Shan University Library and Dayang Journal System.

2. Rajdeep Chakraborty and J. K. Mandal, “FPGA Based Cipher Design &

Implementation of Recursive Oriented Block Arithmetic and Substitution Technique

(ROBAST)”, published in (IJACSA) International Journal of Advanced Computer

Science and Applications, ISSN 2156-5570 (online), ISSN 2158-107X (print),

accepted and published in Volume 2- Issue 4 (April 2011) issue pp-54 – 59, indexed

by. docstoc, Scribd, getCITED, CiteSeer
x
, EBSCO HOST, Directory of Open Access

Journal (DAOJ), Google Scholar, Journal Seek, Index Copernicus, GEORGETOWN

UNIVERSITY LIBRARY and Powered by Microsoft Research.

3. Rajdeep Chakraborty, Sananda Mitra and J. K. Mandal, “Shuffle-RAT: An FPGA-

based Iterative Block Cipher”, published in International Journal of Advanced

Research in Computer Science (IJARCS), ISSN 0976 – 5697, accepted & published

in Volume 2 – No. 3 (May – June 2011) issue, pp-21 – 24, indexed by Index

Copernicus, Directory of Open Access Journal (DAOJ), Open J Gate, Ulrichs Web,

EBSCOhost, Electronic Journal Library, New Jour, ScienceCentral.com, Genamics,

Mlibrary of University of Michigan, Kun Shan University Library and Dayang

Journal System.

x

4. Rajdeep Chakraborty, Sonam Agarwal, Sridipta Misra, Vineet Khemka, Sunit Kr

Agarwal and J. K. Mandal, “Triple SV: A Bit Level Symmetric Block-Cipher Having

High Avalanche Effect”, published in (IJACSA) International Journal of Advanced

Computer Science and Applications, ISSN 2156-5570 (online), ISSN 2158-107X

(print), accepted and published in Volume 2- Issue 7 (July 2011) issue pp-61 – 68,

indexed by. docstoc, Scribd, getCITED, CiteSeer
x
, EBSCO HOST, Directory of Open

Access Journal (DAOJ), Google Scholar, Journal Seek, Index Copernicus,

GEORGETOWN UNIVERSITY LIBRARY, Ulrichsweb, BASE, WorldCat and

Powered by Microsoft Research.

5. Rajdeep Chakraborty, Debajyoti Guha and J. K. Mandal, “A Block Cipher Based

Cryptosystem Through Forward Backward Overlapped Modulo Arithmetic Technique

(FBOMAT)”, published in International Journal of Engineering & Science Journal

(IJESR), ISSN 2277 – 2685, accepted & published in Volume 2 – Issue 5 (May

2012) issue, pp-349 – 360, indexed by Index Copernicus, Open J Gate, Ulrichs Web,

Google Scholar.

6. Debajyoti Guha, Rajdeep Chakraborty and Abhirup Sinha “A Block Cipher Based

Cryptosystem Through Modified Forward Backward Overlapped Modulo Arithmetic

Technique (MFBOMAT)”, published in IOSR Journal of Computer Engineering

(IOSR–JCE), e-ISSN: 2278-0661, p-ISSN: 2278-8727, accepted & published in

Volume 13, Issue 1 (Jul. - Aug. 2013) issue, PP 138-146, indexed by NASA, Cross

Ref, Arxiv.org, Cabell’s, Index Copernicus, EBSCO Host, Ulrichs Web, Google

Scholar, ANED, Jour Informatics.

7. Rajdeep Chakraborty, Sibendu Biswas and JK Mandal “Modified Rabin

Cryptosystem through Advanced Key Distribution System”, published in IOSR

Journal of Computer Engineering (IOSR–JCE), e-ISSN: 2278-0661, p-ISSN: 2278-

8727, accepted & published in Volume 16, Issue 2 Ver XII (Mar. - Apr. 2014) issue,

PP 01-07, indexed by NASA, Cross Ref, Arxiv.org, Cabell’s, Index Copernicus,

EBSCO Host, Ulrichs Web, Google Scholar, ANED, Jour Informatics.

xi

8. Rajdeep Chakraborty, Santanu Basak and JK Mandal “An FPGA Based Crypto

Processor through Triangular Modulo Arithmetic Technique (TMAT)”, published in

International Journal of Multidisciplinary in Cryptology and Information

Security (IJMCIS) ISSN 2320 –2610, accepted & published in Volume 3, No.3

(May – June 2014) issue, PP 14-20, indexed by Google scholar, Cite Seer, getCited,

.docstoc, Scribd, Ulrich Web, Index Copernicus, Microsoft Academics, New Jour,

DOAJ.

9. Rajdeep Chakraborty, Avishek Datta and J. K. Mandal, “Modified Recursive

Modulo 2
n
 and Key Rotation Technique (MRMKRT)”, published in International

Journal of Engineering & Science Research (IJESR), ISSN 2277 – 2685, accepted &

published in Volume 5 – Issue 2 (February 2015) issue, pp-76 – 81, indexed by

Index Copernicus, Open J Gate, Ulrichs Web, Google Scholar.

10. Rajdeep Chakraborty, Avishek Datta and JK Mandal “Secure Encryption Technique

(SET): A Private Key Crypto System”, published in International Journal of

Multidisciplinary in Cryptology and Information Security (IJMCIS) ISSN 2320

–2610, accepted & published in Volume 4, No.1 (January – February 2015) issue,

PP 10-13, indexed by Google scholar, Cite Seer, getCited, .docstoc, Scribd, Ulrich

Web, Index Copernicus, Microsoft Academics, New Jour, DOAJ.

International Conferences

1. S. Sinha, J. K. Mandal and R. Chakraborty, “A Microprocessor-based Block Cipher

through Overlapped Modulo Arithmetic Technique (OMAT)”, published in 12
th

International Conference on Advance Computing and Communication (ADCOM

2004), held on December 15-18, 2004 at Ahmedabad, INDIA, organized and

sponsored by Advance Computing and Communication Society (ACS), IEEE Gujrat

Section and Computer Society of India (CSI) Ahmedabad Chapter, and published by

Allied Publishers Pvt. Limited, Mumbai, India, ISBN 81-7764-717-2, pp 276–280.

xii

2. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-Based Block Cipher

through Rotational Addition Technique (RAT)”, published & presented in 9
th

International Conference on Information Technology (ICIT 2006), held on 18-21

December 2006, at Bhubaneswar, India, organized and sponsored by IEEE Computer

Society, IEEE, Orissa Information Technology Society (OITS), Institute of Technical

Education and Research (ITER), New Jersey Institute of Technology (NJIT), Satyam

Computers Ltd. and IEEE New jersey Section, and published by IEEE Computer

Society Conference Publishing Services, ISBN-10: 0-7695-2635-7/06, ISBN-13: 978-

0-7695-2635-5, pp 155–159.

3. Rajdeep Chakraborty and J.K. Mandal, “An Approach Towards Digital Content

Protection Through Two Pass Replacement Technique (TPRT)”, published in First

International Conference on Information Technology (INTL-INFOTECH 2007),

held on March 19-21, 2007 at Haldia, INDIA, organized and sponsored by

Department of Computer Science and Informatics, Haldia Institute of Technology

(HIT), Technical Education Quality Improvement Program (TEQIP), Computer

Society of India (CSI) (Kolkata), TEQIP network Partners, University of Calcutta

(Kolkata), Govt. College of Engineering and Ceramic Technology (Kolkata), and

published by Vitasta Publishing Pvt. Ltd., New Delhi, India, ISBN 81-89766-74-0,

ISSN 0973-6824,pp 62–65.

4. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-Based Stream Cipher

Through Stream Addition Technique (SAT)”, published in International Conference

on Systemics, Cybernetics and Informatics (ICSCI 2009), held on January 07-10,

2009 at Hyderabad, India, organized, sponsored and, published by Pentagram

Research Center Pvt. Ltd. Hyderabad, India, Volume 1 of 2, pp 41–45.

xiii

5. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-based Stream Cipher

through Stream Parity Technique (SPT)”, published & presented in First

International Conference on Computer, Communication, Control and Information

Technology (C
3
IT 2009), held on 06-07 February, 2009 at Hoogly, West Bengal,

INDIA, organized and sponsored by Academy of Technology (AOT), IEEE Leos

Calcutta Chapter, IEEE EDS Calcutta Chapter, All India Council for Technical

Education (AICTE), Indian Space Research Organization (ISRO), and CSIR, and

published by MACMILLAN PUBLISHERS INDIA LTD Advanced Research Series,

New Delhi, India, ISBN 10: 0230-63759-0, ISBN 13: 978-0230-63759-7, pp 417–

423.

6. Rajdeep Chakraborty and J.K. Mandal, “Ensuring e-Security through

Microprocessor-Based Recursive Transposition Technique (RTT)”, published &

presented in 12
th
 International Conference on Information Technology (ICIT 2009),

held on December 21-24, 2009, at Bhubaneswar, India, organized and sponsored by

IEEE, IEEE Computer Society, Orissa Information Technology Society (OITS),

Temple City Institute of Technology and Engineering (TITE), Silicon Institute of

Technology, IIIT, NIST, OCAC and Techno India Group (Kolkata), and published by

Tata McGraw Hill Education Private Limited, New Delhi, India, ISBN-10: 0-07-

068104-0, ISBN-13: 978-0-07-068104-2, pp 66–69.

7. Rajdeep Chakraborty and J. K. Mandal, “An RTL Based Design & Implementation

of Block Cipher through Oriented Encryption Technique (OET)”, published &

presented in International Conference on Computing and Systems (ICCS 2010), held

on November 19-20, 2010, at Burdwan, West Bengal, India, organized and published

by Department of Computer Science, The University of Burdwan, Burdwan – 713104,

West Bengal, India, ISBN – 93-80813-01-5, pp 335 – 338.

xiv

8. Rajdeep Chakraborty, Sridipta Misra, Sunit Kumar Agarwal, Vineet Khemka,

Sonam Agarwal and J. K. Mandal, “Efficient Hardware Realization of Triple Data

Encryption Standard (TDES) Algorithm using Spartan-3E FPGA”, published &

presented in International Conference on Issues and Challenges in Networking,

Intelligence and Computing (ICNICT 2011), held on 2-3 September, 2011, at

Ghaziabad, India, organized and sponsored by Department of Computer Science and

Engineering, Krishna Institute of Engineering and Technology (KIET), India,

Department of Science & Technology, Govt. of India, New Delhi, Computer Society

of India (Ghaziabad Chapter), International Neural Network Society (India Regional

Chapter), International Journal of Advanced Research in Computer Science and

Ubiquitous Computing and Communication Journal, and published by Nandani

Prakashan Pvt. Ltd., New Delhi, India, ISBN – 978-93-81126-27-1, pp 60 – 63.

9. Avishek Datta, Rajdeep Chakraborty and J.K. Mandal, “The CRYPSTER: A

Private Key Crypto System”, published & presented in 2015 IEEE International

Conference on Computer Graphics, Vision and Information Security (IEEE CGVIS

2015) IEEE Conference Record number: #36759, held on November 02-03, 2015,

at Bhubaneswar, India, organized and sponsored by IEEE Kolkata Section, KIIT

University, Bhubaneswar, Odisha India and published in IEEE XPLORE CFP 15C89-

ART ISBN: 978-1-4673-7437-8, CD-ROM CFP 15C89-CDR ISBN: 978-1-4673-

7436-1, pp 35–37.

Papers Presented

1. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-Based Block Cipher

through Rotational Addition Technique (RAT)”, published and presented in 9
th

International Conference on Information Technology (ICIT 2006), held on 18-21

December 2006, at Bhubaneswar, India, organized and sponsored by IEEE Computer

Society, IEEE, Orissa Information Technology Society (OITS), Institute of Technical

Education and Research (ITER), New Jersey Institute of Technology (NJIT), Satyam

Computers Ltd. and IEEE New jersey Section, and published by IEEE Computer

Society Conference Publishing Services, ISBN-10: 0-7695-2635-7/06, ISBN-13: 978-

0-7695-2635-5, pp 155–159.

2. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-based Stream Cipher

through Stream Parity Technique (SPT)”, published and presented in First

International Conference on Computer, Communication, Control and Information

Technology (C
3
IT 2009), held on 06-07 February, 2009 at Hoogly, West Bengal,

INDIA, organized and sponsored by Academy of Technology (AOT), IEEE Leos

Calcutta Chapter, IEEE EDS Calcutta Chapter, All India Council for Technical

Education (AICTE), Indian Space Research Organization (ISRO), and CSIR, and

published by MACMILLAN PUBLISHERS INDIA LTD Advanced Research Series,

New Delhi, India, ISBN 10: 0230-63759-0, ISBN 13: 978-0230-63759-7, pp 417–

423.

3. Rajdeep Chakraborty and J.K. Mandal, “Ensuring e-Security through

Microprocessor-Based Recursive Transposition Technique (RTT)”, published and

presented in 12
th
 International Conference on Information Technology (ICIT 2009),

held on December 21-24, 2009, at Bhubaneswar, India, organized and sponsored by

IEEE, IEEE Computer Society, Orissa Information Technology Society (OITS),

Temple City Institute of Technology and Engineering (TITE), Silicon Institute of

Technology, IIIT, NIST, OCAC and Techno India Group (Kolkata), and published by

Tata McGraw Hill Education Private Limited, New Delhi, India, ISBN-10: 0-07-

068104-0, ISBN-13: 978-0-07-068104-2, pp 66–69.

xvi

4. Rajdeep Chakraborty and J. K. Mandal, “An RTL Based Design and

Implementation of Block Cipher through Oriented Encryption Technique (OET)”,

published and presented in International Conference on Computing and Systems

(ICCS 2010), held on November 19-20, 2010, at Burdwan, West Bengal, India,

organized and published by Department of Computer Science, The University of

Burdwan, Burdwan – 713104, West Bengal, India, ISBN – 93-80813-01-5, pp 335 –

338.

5. Rajdeep Chakraborty, Sridipta Misra, Sunit Kumar Agarwal, Vineet Khemka,

Sonam Agarwal and J. K. Mandal, “Efficient Hardware Realization of Triple Data

Encryption Standard (TDES) Algorithm using Spartan-3E FPGA”, published and

presented in International Conference on Issues and Challenges in Networking,

Intelligence and Computing (ICNICT 2011), held on 2-3 September, 2011, at

Ghaziabad, India, organized and sponsored by Department of Computer Science and

Engineering, Krishna Institute of Engineering and Technology (KIET), India,

Department of Science and Technology, Govt. of India, New Delhi, Computer

Society of India (Ghaziabad Chapter), International Neural Network Society (India

Regional Chapter), International Journal of Advanced Research in Computer Science

and Ubiquitous Computing and Communication Journal, and published by Nandani

Prakashan Pvt. Ltd., New Delhi, India, ISBN – 978-93-81126-27-1, pp 60 – 63.

6. Avishek Datta, Rajdeep Chakraborty and J.K. Mandal, “The CRYPSTER: A

Private Key Crypto System”, published & presented in 2015 IEEE International

Conference on Computer Graphics, Vision and Information Security (IEEE CGVIS

2015) IEEE Conference Record number: #36759, held on November 02-03, 2015,

at Bhubaneswar, India, organized and sponsored by IEEE Kolkata Section, KIIT

University, Bhubaneswar, Odisha India and published in IEEE XPLORE CFP 15C89-

ART ISBN: 978-1-4673-7437-8, CD-ROM CFP 15C89-CDR ISBN: 978-1-4673-

7436-1, pp 35–37.

Contents of Thesis

Topic Page no.

Acknowledgements ………………………………………………

List of Publications ……………………………………………....

Papers Presented …………………………………………………

List of Figures ……………………………………………………

List of Tables …………………………………………………….

List of Abbreviations …………………………………………….

List of Symbols …………………………………………………..

Abstract ..

vii

ix

xv

xxiii

xxxi

xxxvii

xli

xliii

Chapter 1: Introduction ..

 1.1 Introduction ...

 1.2 Literature Survey ..

 1.3 Problem Domain ...

 1.4 Proposed Methodology ...

 1.5 Salient Features of the Thesis ...

 1.6 Organization of the Thesis ..

1

3

33

59

61

64

65

Section I: Microprocessor Based Solutions 71

Chapter 2: Modified Recursive Modulo-2
n
 and Key Rotation

Technique (MRMKRT) ...

 2.1 Introduction ……………………..………………………...

 2.2 The Algorithm of MRMKRT .….…………………............

 2.3 Example ……………………..……………………............

 2.4 The Modulo Addition …………………………..………...

 2.5 Key Generation …………………………..……………….

 2.5.1 Example of Key Generation ….…………………..….

 2.6 Analysis ….………………..………………………………

 2.7 Implementation ….……..…………………………………

 2.7.1 Algorithm of routine ‘addblocks’ ….……….………

 2.7.2 Algorithm of routine ‘rot’ ….……….………………

 2.7.3 Algorithm of routine ‘store’ ….….………………….

 2.7.4 Algorithm of routine ‘subblocks’ ….………….…….

73

75

76

78

81

81

82

83

85

85

86

87

88

xviii

 2.7.5 Main Program of MRMKRT ….………….………...

 2.8 Results and Comparisons ….…………….……………….

 2.8.1 Implementation Based Results ….………….……….

 2.8.2 Frequency Distribution Analysis …….……….…….

 2.8.3 Non-Homogeneity Test ..

 2.8.4 Time Complexity Analysis ….………….…………..

 2.8.5 The Avalanche Test ……….…………….………….

 2.9 Discussions ……….……….……………………………..

89

90

90

92

93

95

97

98

Chapter 3: Recursive Transposition Technique (RTT) ……...

 3.1 Introduction …….……….………………………………..

 3.2 The Algorithm of RTT …….………….………………….

 3.2.1 The Encryption Process ………….….……………...

 3.2.2 The Decryption Process ….…………….…………...

 3.2.3 Example ….…………….…………………………...

 3.3 Key Generation Process ……..…………………………...

 3.4 Analysis ……….…………….……………………………

 3.5 Implementation …………..………………………………

 3.5.1 Routine ‘save’ ……….………….…………………..

 3.5.2 Routine ‘b’ ………………..………………………...

 3.5.3 Routine ‘a’ ………………….….…………………...

 3.5.4 Routine ‘c’ …………….…….……………………...

 3.5.5 Routine ‘prg’ …………………..……………………

 3.5.6 Routine ‘outp’ ……………….…….………………..

 3.5.7 Routine ‘supply’ ………………..…………………...

 3.5.8 Algorithm of the Main Program for RTT Encoder …

 3.6 Results and Comparisons …………….………….……….

 3.6.1 Implementation Based Results ……………..……….

 3.6.2 Frequency Distribution Graph …….……….……….

 3.6.3 Non-Homogeneity Test …………….…….…………

 3.6.4 Time Complexity Analysis ……….…….…………..

 3.6.5 The Avalanche Ratio Test ………….….……………

 3.7 Discussions ……………….….…………………………..

99

101

102

103

104

104

105

107

108

109

109

110

111

111

112

113

113

114

114

116

118

119

121

122

xix

Section II: FPGA-Based Solutions ... 123

Chapter 4: Two Pass Replacement Technique (TPRT)

 4.1 Introduction ..

 4.2 The Algorithm of TPRT ………………..………………...

 4.2.1 The Encryption Process …….…….………………...

 4.2.2 The Decryption Process …………..………………...

 4.3 Example …………….…….……………………………...

 4.4 Implementation and Key Generation ………………..…...

 4.4.1 Key Generation …….……………….………………

 4.5 Analysis ……………………..……………………………

 4.6 Results and Simulations ………….….…………………...

 4.6.1 RTL Simulation Based Results ……………..………

 4.6.2 Frequency Distribution Graph ……………..……….

 4.6.3 The Non-Homogeneity Test ……………..…………

 4.6.4 The Time Complexity Analysis ………………..…...

 4.6.5 The Avalanche Ratio ………………..………………

 4.7 Discussions ….………………….………………………..

125

127

128

129

130

130

132

135

138

140

140

142

144

145

147

148

Chapter 5: Triangular Modulo Arithmetic Technique

(TMAT) ...

 5.1 Introduction ..

 5.2 The Algorithm of TMAT ….……….…………………….

 5.2.1 The Modulo Addition ……………..………………..

 5.3 Example …………….….………………………………...

 5.3.1 The Encryption Process ……………..……………...

 5.3.2 The Decryption Process ………………..…………...

 5.4 Implementation and Key Generation ………….….……...

 5.4.1 Key Generation ……………….….…………………

 5.4.1.1 Example of Key Generation …………….….….

 5.4.1.1.1 Key Generation for Phase 1 and Phase 3 ...

 5.4.1.1.2 Key Generation for Phase 2 ……………...

 5.5 Analysis ………………..…………………………………

 5.6 Results and Simulations ………….……….……………...

 5.6.1 RTL Simulation Based Result …….………….…….

149

151

152

155

155

155

158

160

163

164

164

165

166

167

167

xx

 5.6.2 The Frequency Distribution Graph ………….……...

 5.6.3 The Non-Homogeneity Test …………….….………

 5.6.4 The Time Complexity Analysis …………….……....

 5.6.5 The Avalanche Ratio Test ……………..……………

 5.7 Discussions ………………….…….……………………..

170

172

174

176

177

Chapter 6: Recursively Oriented Block Addition and

Substitution Technique (ROBAST) ..

 6.1 Introduction ..

 6.2 The Algorithm of ROBAST …………….……….……….

 6.3 Example …………….……….…………………………...

 6.4 Implementation and Key Generation ………….…….…...

 6.4.1 The Key Generation Process of ROBAST ……….....

 6.4.2 An Example of Key Generation …………….….…...

 6.4.3 Modulo Addition Used in ROBAST …………..……

 6.5 Analysis …………………..………………………………

 6.6 Results and Simulations …………….……….…………...

 6.6.1 RTL Simulation Based Result …….…………….….

 6.6.2 The Frequency Distribution Graph …………..……..

 6.6.3 The Non-Homogeneity Test ………….………….…

 6.6.4 The Time Complexity Analysis …………..………...

 6.6.5 The Avalanche Ratio Test ……………..……………

 6.7 Discussions ………….……….…………………………..

179

181

182

184

185

188

189

190

190

191

191

194

196

198

201

202

Chapter 7: Shuffle – Rotational Addition Technique (SRAT)

 7.1 Introduction …….……….………………………………..

 7.2 The Algorithm of SRAT ………………..………………..

 7.3 Example …………..……………………………………...

 7.4 Implementation and Key Generation ………….….……...

 7.4.1 Key Generation ……….…….………………………

 7.4.2 Example of Key Generation ……….….…………….

 7.5 Analysis …….………….…………………………………

 7.6 Results and Simulations ……….….……………………...

 7.6.1 RTL Simulation Based Result …………..………….

 7.6.2 The Frequency Distribution Graph …………..……..

203

205

206

209

211

214

216

216

217

218

221

xxi

 7.6.3 The Non-Homogeneity Test ………….….…………

 7.6.4 The Time Complexity Analysis ……………..……...

 7.6.5 The Avalanche Ratio Test ………….……….………

 7.7 Discussions ………………..……………………………..

223

225

228

228

Chapter 8: Triple Sagacious Vanquish (TSV)

 8.1 Introduction ….……………….…………………………..

 8.2 The Algorithm of TSV …………………..……………….

 8.2.1 Modes of Operation ...

 8.2.2 Encryption ..

 8.2.3 Decryption ..

 8.3 Example ...

 8.4 Implementation and Key Generation

 8.4.1 Cipher Block Chaining (CBC) Mode …….….……..

 8.4.2 Round Key Generation …………….….……………

 8.5 Analysis ..

 8.6 Results and Simulations ...

 8.6.1 RTL Simulation Based Result ……………..……….

 8.6.2 The Frequency Distribution Graph …………..……..

 8.6.3 The Non-Homogeneity Test ……………..…………

 8.6.4 The Time Complexity Analysis ……………..……...

 8.6.5 The Avalanche Ratio Test ….………….……………

 8.7 Discussions ……….…….………………………………..

231

233

234

234

236

240

241

242

242

244

246

246

247

250

253

255

257

258

Chapter 9: Modified Forward Backward Overlapped

Modulo Arithmetic Technique (MFBOMAT)

 9.1 Introduction ………….……….…………………………..

 9.2 The Algorithm of MFBOMAT ……….…….……………

 9.2.1 The Modulo Addition …………….…….…………..

 9.3 Example ………….…….………………………………...

 9.3.1 The Encryption …………….…….………………….

 9.3.2 The Decryption ……………….….…………………

 9.4 Implementation and Key Generation

 9.4.1 The Key Generation Process of MFBOMAT ……....

 9.4.2 An Example of Key Generation ………….….……...

259

261

262

264

264

264

266

268

270

272

xxii

 9.5 Analysis ..

 9.6 Results and Simulations ...

 9.6.1 RTL Simulation Based Result ……………..……….

 9.6.2 The Frequency Distribution Graph …………..……..

 9.6.3 The Non-Homogeneity Test …………….….………

 9.6.4 The Time Complexity Analysis ……………..……...

 9.6.5 The Avalanche Ratio Test …………………..………

 9.7 Discussions ….….………………………………………..

273

273

273

278

281

283

286

287

Chapter 10: Proposed Models ...

 10.1 Proposed Models ..

 10.2 The Proposed Model for Microprocessor-Based Solutions .

 10.2.1 Results and Comparisons ……………….………....

 10.2.1.1 Implementation based result

 10.2.1.2 Frequency Distribution Graph …………..…...

 10.2.1.3 Non-Homogeneity Test ……………..………..

 10.2.1.4 Time Complexity Analysis …………….….…

 10.2.1.5 The Avalanche Ratio Test ……………….…..

 10.3 The Proposed Model for FPGA-Based Solutions

 10.3.1 Results and Simulations ...

 10.3.1.1 RTL Simulation Based Result ……………….

 10.3.1.2 The Frequency Distribution Graph ………..…

 10.3.1.3 The Non-Homogeneity Test ……………..…..

 10.3.1.4 The Time Complexity Analysis …………..….

 10.3.1.5 The Avalanche Ratio Test ……………..……..

 10.4 Discussions ..

289

291

291

292

293

294

296

297

298

299

302

302

303

305

306

308

309

Chapter 11: Conclusions ...

 11.1 Conclusive Discussions ...

 11.2 The Future Work ..

311

313

320

References ... 323

List of Figures

Figure

No.

Figure Caption Page No.

1.1 Taxonomy of cryptography …………………………………….. 4

1.2 Taxonomy of symmetric key cryptography …………………….. 7

1.3 Taxonomy of public key cryptography …………………………. 9

1.4 Intel 8085 microprocessor ……………………………………… 11

1.5 Intel 8085 microprocessor architecture …………………………. 12

1.6 Internal structure of a generic FPGA .. 16

1.7 Simplified illustration of a logic cell …………………………… 17

2.1 Modified recursive modulo-2
n
 and key rotation technique

(MRMKRT) ……………………………………………………..

76

2.2 First round of MRMKRT ……………………………………….. 78

2.3 Second round of MRMKRT ……………………………………. 79

2.4 Third round of MRMKRT ……………………………………… 80

2.5 Fourth round of MRMKRT …………………………………….. 80

2.6 Round v/s iteration in MRMKRT ………………………………. 82

2.7 MRMKRT encryption and decryption algorithm ………………. 89

2.8 Frequency distribution of ASCII characters in the RSA

encrypted file ……………………………………………………

92

2.9 Frequency distribution of source file and MRMKRT encrypted

files ………………………………………………………………

93

2.10 Chi-Square values for MRMKRT and RSA encrypted files …… 94

2.11 Encryption and decryption time of MRMKRT and RSA ………. 96

3.1 RTT encoder ……………………………………………………. 101

3.2 Block diagram of Recursive Transposition Technique (RTT) …. 102

3.3 Algorithmic flow in RTT ……………………………………….. 104

3.4 Graphical representation of comparisons of MRMKRT and RTT 115

3.5 The frequency distribution graph of RSA encrypted file ………. 116

3.6 The frequency distribution graph of source file and MRMKRT

encrypted file ……………………………………………………

117

3.7 Frequency distribution graph of RTT encrypted file …………… 117

xxiv

Figure

No.

Figure Caption Page No.

3.8 Graphical comparisons of Chi-Square values of RTT,

MRMKRT and RSA …………………………………………….

119

3.9 Pictorial representation of time graph of RTT, MRMKRT and

RSA encryption ………………………………………………….

120

3.10 Pictorial representation of time graph of RTT, MRMKRT and

RSA decryption ………………………………………………….

121

4.1 Block diagram of Two Pass Replacement Technique (TPRT) …. 129

4.2 Top-level design of TPRT ……………………………………… 133

4.3 Top-level RTL design of TPRT ………………………………… 134

4.4 Top-level RTL design of TPRT fixed size key generation ……... 136

4.5 Top-level RTL design of TPRT variable size key generation ….. 138

4.6 RTL diagram of RSA …………………………………………… 140

4.7 RTL diagram for Spartan 3E of the proposed TPRT …………… 141

4.8 The frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

143

4.9 Graphical representation of Chi-Square values of RSA and

TPRT …………………………………………………………….

145

4.10 Graphical comparisons of encryption and decryption time of

TPRT and RSA ………………………………………………….

147

5.1 Block diagram of TMAT ……………………………………….. 152

5.2 Triangle formation ……………………………………………… 153

5.3 Encryption example of phase 1 in TMAT ……………………… 156

5.4 Encryption example of phase 2 in TMAT ……………………… 157

5.5 Encryption example of phase 3 in TMAT ……………………… 158

5.6 Decryption example of phase 1 in TMAT ……………………… 158

5.7 Decryption example of phase 2 in TMAT ……………………… 159

5.8 Decryption example of phase 3 in TMAT ……………………… 160

5.9 Top level design of TMAT ……………………………………... 161

5.10 Top level RTL design of TMAT ………………………………... 161

5.11 Top level RTL for round key generation for TMAT …………… 166

5.12 RTL diagram of RSA …………………………………………… 168

xxv

Figure

No.

Figure Caption Page No.

5.13 Spartan 3E RTL diagram of TPRT ……………………………... 168

5.14 Spartan 3E RTL diagram of TMAT ……………………………. 169

5.15 The frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

171

5.16 Frequency distribution graph of TMAT encrypted file ………… 172

5.17 Graphical representation Chi-Square value of TMAT, RSA and

TPRT …………………………………………………………….

173

5.18 Pictorial representation of time complexity analysis of TMAT,

RSA and TPRT ………………………………………………….

175

6.1 Block diagram of ROBAST …………………………………….. 183

6.2 ROBAST entity and its function ………………………………... 186

6.3 Top level RTL design of ROBAST …………………………….. 187

6.4 Graphical representation of key generation of ROBAST ………. 188

6.5 Session key generation of ROBAST …………………………… 190

6.6 RTL diagram of RSA …………………………………………… 191

6.7 Spartan 3E RTL diagram of TPRT ……………………………... 192

6.8 Spartan 3E RTL diagram of TMAT ……………………………. 192

6.9 Spartan 3E schematic of ROBAST ……………………………... 192

6.10 Frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

195

6.11 Frequency distribution graph of TMAT and ROBAST encrypted

files ………………………………………………………………

196

6.12 Pictorial representation of Chi-Square values of ROBAST, RSA,

TPRT and TMAT ………………………………………………..

197

6.13 Pictorial representation of encryption time of ROBAST, RSA,

TMAT and TPRT ..

200

6.14 Pictorial representation of decryption time of ROBAST, RSA,

TMAT and TPRT ..

200

7.1 Block diagram of Shuffle-RAT ………………………………… 206

7.2 Graphical representation of number of iterations to obtain source

stream using modulo-addition …………………………………..

209

xxvi

Figure

No.

Figure Caption Page No.

7.3 Top-level hardware architecture for Shuffle-RAT ……………... 211

7.4 Full adder at stage i with Pi and Gi ……………………………………………… 213

7.5 4-bit modulo carry look-ahead adder implementation details ….. 214

7.6 Graphical representation of round v/s iteration ………………… 215

7.7 Session key generation for SRAT ………………………………. 216

7.8 RTL diagram of RSA …………………………………………… 218

7.9 Spartan 3E RTL diagram of TPRT ……………………………... 218

7.10 Spartan 3E RTL diagram of TMAT ……………………………. 219

7.11 Spartan 3E schematic of ROBAST ……………………………... 219

7.12 Spartan 3E RTL schematic of the main controller module of

Shuffle-RAT …………………………………………………….

219

7.13 Frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

222

7.14 Frequency distribution graph of TMAT and ROBAST encrypted

files ………………………………………………………………

222

7.15 Frequency distribution graph of SRAT encrypted files ………… 223

7.16 Comparison of Chi-Square values for ROBAST, RSA, TMAT,

TPRT and SRAT ………………………………………………...

225

7.17 Pictorial representation of encryption time against file size ……. 227

7.18 Pictorial representation of decryption time against file size ……. 227

8.1 Overview of the TSV …………………………………………… 233

8.2 The Cipher Block Chaining (CBC) mode for encryption in TSV 234

8.3 The Cipher Block Chaining (CBC) mode for decryption in TSV 234

8.4 TSV encryption overview ... 235

8.5 n-BIT level structure (encryption) for TSV 236

8.6 n-bit far swap function for TSV .. 237

8.7 n-bit near swap function for TSV ... 237

8.8 Expansion function for encryption of TSV 237

8.9 TSV decryption process .. 238

8.10 n-bit level structure (decryption) of TSV 238

8.11 Expansion function for decryption of TSV 239

xxvii

Figure

No.

Figure Caption Page No.

8.12 Top level algorithm for CBC encryption of TSV ………………. 243

8.13 Top level algorithm for CBC decryption of TSV ………………. 243

8.14 Top level VHDL module for round key generation of TSV 244

8.15 Top level entity of round key generation of TSV 244

8.16 RTL diagram of RSA …………………………………………… 247

8.17 Spartan 3E RTL diagram of TPRT ……………………………... 247

8.18 Spartan 3E RTL diagram of TMAT ……………………………. 248

8.19 Spartan 3E schematic of ROBAST ……………………………... 248

8.20 Spartan 3E RTL schematic of the main controller module of

Shuffle-RAT …………………………………………………….

248

8.21 Spartan 3E RTL diagram of TSV ………………………………. 249

8.22 Frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

251

8.23 Frequency distribution graph of TMAT and ROBAST encrypted

files ………………………………………………………………

252

8.24 Frequency distribution graph of SRAT encrypted files ………… 252

8.25 Frequency distribution graph of TSV encrypted files ………….. 253

8.26 Pictorial representation of Chi-Square values 253

8.27 Pictorial representation of encryption time against file size 256

8.28 Pictorial representation of decryption time against file size 257

9.1 Block diagram of MFBOMAT …………………………………. 263

9.2 MFBOMAT entity and its function …………………………….. 268

9.3 Top level RTL design of MFBOMAT ………………………….. 269

9.4 Graphical representation of key generation of MFBOMAT …… 271

9.5 Session key generation of MFBOMAT ………………………… 272

9.6 RTL diagram of RSA …………………………………………… 274

9.7 Spartan 3E RTL diagram of TPRT ……………………………... 274

9.8 Spartan 3E RTL diagram of TMAT ……………………………. 274

9.9 Spartan 3E schematic of ROBAST ……………………………... 275

9.10 Spartan 3E RTL schematic of the main controller module of

Shuffle-RAT …………………………………………………….

275

xxviii

Figure

No.

Figure Caption Page No.

9.11 Spartan 3E RTL diagram of TSV ………………………………. 275

9.12 Spartan 3E RTL diagram of MFBOMAT ………………………. 276

9.13 Frequency distribution graph of source, RSA encrypted and

TPRT encrypted files ……………………………………………

279

9.14 Frequency distribution graph of TMAT and ROBAST encrypted

files ………………………………………………………………

280

9.15 Frequency distribution graph of SRAT encrypted files ………… 280

9.16 Frequency distribution graph of TSV encrypted files ………….. 280

9.17 Frequency distribution graph of MFBOMAT encrypted files ….. 281

9.18 Pictorial representation of Chi-Square values against file size …. 282

9.19 Pictorial representation of encryption time against file size ……. 284

9.20 Pictorial representation of decryption time against file size ……. 285

10.1 Proposed model for microprocessor-based solutions 291

10.2 Graphical representation of implementation based results of the

model, MRMKRT and RTT ...

294

10.3 Frequency distribution of source file .. 295

10.4 The frequency distribution graph of RSA encrypted file ………. 295

10.5 Graphical representation of frequency distribution of proposed

model (encrypted file) …………………………………………...

295

10.6 Graphical representation of Chi-Square for RSA and proposed

model ..

296

10.7 Pictorial representation of encryption time 298

10.8 Graphical representation of decryption time 298

10.9 Proposed model for FPGA-based solutions 300

10.10 RTL diagram of RSA …………………………………………… 302

10.11 Spartan 3E RTL diagram of proposed model …………………... 302

10.12 Frequency distribution of source file .. 304

10.13 The frequency distribution graph of RSA encrypted file ………. 304

10.14 The frequency distribution graph of proposed model 305

10.15 Graphical representation of Chi-Square value of RSA and

proposed model ...

306

xxix

Figure

No.

Figure Caption Page No.

10.16 Pictorial representation of encryption time of RSA and proposed

model ..

307

10.17 Pictorial representation of decryption time of RSA and proposed

model ..

308

11.1 Graphical representation of comparisons of MRMKRT, RTT

and RSA …………………………………………………………

316

11.2 Pictorial representation of HDL synthesis report of net-list

generation ………………………………………………………..

318

11.3 Pictorial representation of HDL synthesis report of timing

summary …………………………………………………………

320

List of Tables

Table

No.

Table Caption Page No.

2.1 Representation of number of iterations in each round by bits …... 81

2.2 Plaintext and ciphertext pair in hex for single iteration of

MRMKRT ………………………………………………………..

83

2.3 Implementation based results of MRMKRT …………………….. 91

2.4 Chi-Square values of RSA and MRMKRT ……………………... 94

2.5 The time complexity analysis of MRMKRT and RSA ………….. 95

2.6 Avalanche ratio values of MRMKRT and RSA ………………… 97

3.1 Number of iteration against block sizes …………………………. 105

3.2 Key generation for variable block length technique, RTT ………. 106

3.3 Comparisons of MRMKRT and RTT …………………………… 115

3.4 Chi-Square values of RSA, MRMKRT and RTT ……………….. 118

3.5 Comparisons of time complexity analysis of RTT, MRMKRT

and RSA ………………………………………………………….

120

3.6 Comparisons of avalanche ratio of RTT, MRMKRT and RSA …. 122

4.1 Encryption process of TPRT …………………………………….. 131

4.2 Decryption process of TPRT ……………………………………. 132

4.3 Representation of number of iterations in each round by bits for

2
n
 …………………………………………………………………

135

4.4 Key generation for variable block length technique for TPRT ….. 137

4.5 Plaintext and equivalent Hex code ………………………………. 139

4.6 Hex code and equivalent ciphertext ……………………………... 139

4.7 HDL synthesis report (netlist generation of RSA and TPRT) …... 141

4.8 HDL Synthesis Report (Timing Summary of RSA and TPRT) … 141

4.9 Chi-Square values of RSA and TPRT ………………………… 144

4.10 Comparisons of time complexity analysis of TPRT and RSA ….. 146

4.11 Comparisons of avalanche ratio of TPRT and RSA …………….. 148

5.1 Target block selection using selection key ……………………… 164

5.2 Key distribution for the Triangular Technique ………………….. 165

5.3 Key generation for MAT ………………………………………... 165

xxxii

Table

No.

Table Caption Page No.

5.4 HDL synthesis report (Netlist generation of RSA, TPRT and

TMAT) …………………………………………………………...

169

5.5 HDL synthesis report (Timing summary of RSA, TPRT and

TMAT) …………………………………………………………...

170

5.6 Chi-Square values and degree of freedom of TMAT, RSA and

TPRT ……………………………………………………………..

173

5.7 The time complexity analysis of TMAT, RSA and TPRT ……… 175

5.8 The avalanche ratio of RSA, TPRT and TMAT ………………… 176

6.1 An encryption example of ROBAST ……………………………. 184

6.2 Example of decryption in ROBAST …………………………….. 185

6.3 Representation of number of iterations in each round by bits, the

key generation for ROBAST …………………………………….

188

6.4 HDL synthesis report (Netlist generation of RSA, TPRT, TMAT

and ROBAST) ……………………………………………………

193

6.5 HDL synthesis report (Timing summary of RSA, TPRT, TMAT

and ROBAST) ……………………………………………………

194

6.6 Chi-Square values of ROBAST, RSA, TPRT and TMAT ……… 197

6.7 Degree of freedom of ROBAST, RSA, TPRT and TMAT ……… 298

6.8 Comparison of encryption time of ROBAST, RSA, TMAT and

TPRT ……………………………………………………………..

199

6.9 Comparison of decryption time of ROBAST, RSA, TMAT and

TPRT ……………………………………………………………..

199

6.10 Comparison of avalanche ratio of ROBAST, RSA, TPRT and

TMAT encrypted files ……………………………………………

201

7.1 Number of iteration to regenerate source stream using modulo-

addition …………………………………………………………..

208

7.2 Encryption process of SRAT ……………………………………. 209

7.3 Decryption process of SRAT ……………………………………. 210

7.4 Representation of number of iterations in each round in SRAT … 215

7.5 HDL synthesis report (Netlist generation of RSA, TPRT, TMAT,

ROBAST and SRAT) ……………………………………………

220

xxxiii

Table

No.

Table Caption Page No.

7.6 HDL synthesis report (Timing summary of RSA, TPRT, TMAT,

ROBAST and SRAT) ……………………………………………

220

7.7 Comparison of Chi-Square values of ROBAST, RSA, TPRT,

TMAT and SRAT ………………………………………………..

224

7.8 Comparison of degree of freedom of ROBAST, RSA, TPRT,

TMAT and SRAT ………………………………………………..

224

7.9 Comparison encryption time of ROBAST, RSA, TMAT, TPRT

and SRAT ………………………………………………………...

226

7.10 Comparison of decryption time of ROBAST, RSA, TMAT,

TPRT and SRAT …………………………………………………

226

7.11 Comparison of avalanche ratio of ROBAST, RSA, TPRT,

TMAT and SRAT encrypted files ………………………………..

228

8.1 TSV encryption using 2-bit level with 16-bit plaintext and 8-bit

Key ...

241

8.2 HDL synthesis report (Netlist generation of RSA, TPRT, TMAT,

ROBAST, SRAT and TSV) ……………………………………...

249

8.3 HDL synthesis report (Timing summary of RSA, TPRT, TMAT,

ROBAST, SRAT and TSV) ……………………………………...

250

8.4 Comparison of Chi-Square values of ROBAST, RSA, TPRT,

TMAT, SRAT and TSV ………………………………………….

254

8.5 Comparison of degree of freedom of ROBAST, RSA, TPRT,

TMAT, SRAT and TSV ………………………………………….

254

8.6 Comparison of encryption time of ROBAST, RSA, TMAT,

TPRT, SRAT and TSV …………………………………………..

255

8.7 Comparison of decryption time of ROBAST, RSA, TMAT,

TPRT, SRAT and TSV …………………………………………..

256

8.8 Comparison of avalanche ratio of ROBAST, RSA, TPRT,

TMAT, SRAT and TSV encrypted files …………………………

258

9.1 Representation of number of iterations in each round by bits, the

key generation for MFBOMAT ………………………………….

270

xxxiv

Table

No.

Table Caption Page No.

9.2 HDL synthesis report (Netlist generation of RSA, TPRT, TMAT,

ROBAST, SRAT, TSV and MFBOMAT) ……………………….

276

9.3 HDL synthesis report (Timing summary of RSA, TPRT, TMAT,

ROBAST, SRAT and TSV) ……………………………………...

277

9.4 Comparison of Chi-Square values of ROBAST, RSA, TPRT,

TMAT, SRAT, TSV and MFBOMAT …………………………..

282

9.5 Comparison of degree of freedom of ROBAST, RSA, TPRT,

TMAT, SRAT, TSV and MFBOMAT …………………………..

283

9.6 Comparison of encryption time of ROBAST, RSA, TMAT,

TPRT, SRAT, TSV and MFBOMAT ……………………………

284

9.7 Comparison of decryption time of ROBAST, RSA, TMAT,

TPRT, SRAT and TSV …………………………………………..

285

9.8 Comparison of avalanche ratio of ROBAST, RSA, TPRT,

TMAT, SRAT and TSV encrypted files …………………………

286

10.1 Implementation based results of MRMKRT, RTT and proposed

model ……………………………………………………………..

293

10.2 Comparisons of Chi-Square values of RSA and proposed model . 296

10.3 Comparison of time complexity analysis of RSA and proposed

model ……………………………………………………………..

297

10.4 Comparison of avalanche ratio of RSA and proposed model …… 299

10.5 HDL synthesis report (Netlist generation of RSA and proposed

model) ……………………………………………………………

303

10.6 HDL synthesis report (Timing summary of RSA and proposed

model) ……………………………………………………………

304

10.7 Chi-Square values of RSA and proposed model ………………… 305

10.8 Encryption and decryption time of RSA and proposed model ….. 307

10.9 The avalanche ratio of RSA and proposed model ………………. 308

11.1 Characteristics of microprocessor-based solutions 314

11.2 Comparisons of MRMKRT, RTT and RSA …………………….. 315

11.3 Characteristics of FPGA-based solutions 317

xxxv

Table

No.

Table Caption Page No.

11.4 HDL synthesis report (Netlist generation of RSA, TPRT, TMAT,

ROBAST, SRAT, TSV and MFBOMAT) ……………………….

318

11.5 HDL synthesis report (Timing summary of RSA, TPRT, TMAT,

ROBAST, SRAT and TSV) ……………………………………...

319

List of Abbreviations

Abbreviation Interpretation

ADC Analog-to-Digital Converter

AES Advance Encryption Standard, A Symmetric Cipher

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

BASIC Beginners All-assigned Symbolic Instruction Code

BIC Bit Independent Criteria

BISDN Broadband ISDN

CAD Computer Aided Design

CALL, RET,

LHLD,

SHLD,

MOV, ADD,

SUB, JMP

8085-Microprocessor Instructions

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Mode

CL Cryptography Language

CLB Configurable Logic Blocks

CP Crypto Processor

CPLD Complex Programmable Logic Device

CRBOCAB Cascaded Recursive Bitwise Operation and Carry Addition on Blocks

CRCAKR Cascaded Recursive Carry Addition and Key Rotation

CRKRAB Cascaded Recursive Key Rotation of a Session Key and Addition of

Blocks

CRT Chinese Remainder Theorem

DAC Digital-to-Analog Converter

DES Data Encryption Standard

Df Degree of freedom

DLL Delay Locked Loop

DMA Direct Memory Access

ECB Electronic Codebook Mode

ECC Elliptic Curve Cryptography

xxxviii

Abbreviation Interpretation

ECCP Elliptic Curve Crypto Processor

EFT Electronic Fund Transfer

FPAA Field Programmable Analog Array

FPGA Field Programmable Gate Array

HDL Hardware Definition Language

HOLD,

HLDA

8085-Microprocessor Signals

IC Integrated Circuit

IDEA International Data Encryption Algorithm, A Symmetric Cipher

IEEE Institute of Electrical and Electronic Engineer

IP Internet Protocol

IP, IP
-1

 Initial Permutation and Inverse Initial Permutation

IPsec Secure IP Network

ISAKMP Internet Security Association and Key Management Protocol

ISDN Integrated Services Digital Network

IV Initial Vector

KB Kilo-Bytes

LAN Local Area Network

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

LUT Look-Up Tables

MAN Metropolitan Area Network

MB Mega Bytes

MFBOMAT Modified Forward Backward Overlapped Modulo Arithmetic

Technique

MHz Mega Hertz

MobileIP Mobile IP Network

MOS Metal Oxide Silicon Circuit

MP Microprocessor

MRMKRT Modified Recursive Modulo-2
n
 and Key Rotation Technique

MSB Most Significant Bit

NIST National Institute of Standard and Technology

xxxix

Abbreviation Interpretation

OET Oriented Encryption Technique

OFB Output Feedback Mode

OMAT Overlapped Modulo Addition Technique

PIN Personal Identification Number

PKI Public Key Infrastructure

PLL Phase Locked Loop

RAM Random Access Memory

RAT Rotational Addition Technique

RISC Reduced Instruction Set Computer

RKEP Remote Key Encryption Protocol

RKR Recursive Key Rotation

ROBAST Recursively Oriented Block Addition and Substitution Technique

ROM Read Only Memory

RSA Rivest-Shamir-Adleman (RSA), A Public Key Cipher

RTL Register Transfer Logic

RTO Recursive Transposition Operation

RTT Recursive Transposition Technique

SAC Strict Avalanche Criteria

SoC System on Chip

SP Stack Pointer

SRAT, S-

RAT

Shuffle Rotational Arithmetic Technique

SSL Secure Socket Layer Protocol

TDES, 3DES Triple Data Encryption Standard, A Symmetric Cipher

TEA Tiny Encryption Algorithm

TMAT Triangular Modulo Arithmetic Technique

TPRT Two Pass Replacement Technique

TRAP, RST,

INTR

8085-Microprocessor Interrupt

TSK-OET Time-Stamp-Keyed OET

TSV, 3SV Triple Sagacious Vanquish

xl

Abbreviation Interpretation

VHDL,

VHSICHDL

Very High Speed Integrated Circuit Hardware Definition Language

VLSI Very Large Scale Integrated Circuit

VPN Virtual Private Network

WAN Wide Area Network

WEP Wired Equivalent Privacy

WIFI Wide-Fidelity Network, A Wireless Communication

XOR, EXOR Exclusive-OR Operation

List of Symbols

Sr.

No.

Symbol Interpretation

01 Exclusive-OR Operation

02 = Variable Assignment

03 <= Signal Assignment

04 => Port Mapping

05 χ , X Chi-Square value

06 logn Natural Logarithm with Base n

07 O(n) Big-Oh Notation for Time Complexity Analysis

08 Φ Euler's Totient Function

09 √ Optimal Solution

http://en.wikipedia.org/wiki/Euler%27s_totient_function

Abstract

It is widely recognized that data security is playing a crucial role in the design of

future IT systems. Cryptography is one of the methods to achieve this goal; basic

cryptography is implemented in most aspects of the computer world, from emails to personal

file. The outmost use of computer and communication systems by industry has increased the

risk of theft of proprietary information. Thus cryptography is not only important for person in

particular but it is also very much important for industry in general. Many of these IT

applications in today’s world are realized as embedded systems such as wireless phones,

mobile phones, direct to home (DTH) pay-television, mobile internet connectivity to PC and

Laptops, audio/video consumer products, digital cinemas, Automatic Teller Machines

(ATMs), information kiosk and so on. All modern security protocols use symmetric key as

well as public key cryptography algorithms. It is now established that symmetric key

cryptography is as important in providing security to these embedded systems than that of

public key cryptography. The symmetric key algorithms are very important in providing

security for a large quantity of data with faster processing time. In this thesis eight symmetric

key techniques have been proposed all are bit level implemented techniques. This thesis work

is mainly focused in developing symmetric key cryptography having high degree of

acceptance in terms of encryption and decryption time, degree of non-homogeneity, the

avalanche effect and frequency distribution.

Now the question is where to implement or what is/are the target devise. As the work

is for embedded systems, the implementation is targeted on two most widely used devises,

Microprocessor and Field Programmable Gate Array (FPGA). It is well known that till today

most of the embedded systems are realized through microprocessors and the FPGA is the

future of embedded systems. The implementation in hardware device is mainly focused on

high throughput, low power consumptions and low computational complexity.

Implementation of security protocols in FPGA leads to the achievement of high efficiency as

well as cost effectiveness.

Therefore to achieve the above goal, this thesis is mainly divided into two parts, the

first parts proposes two novel symmetric key techniques for microprocessor-based systems.

The second part of the thesis proposes another novel set of six symmetric key techniques for

FPGA-based systems. In this thesis new models are also being proposed.

The two microprocessor based techniques are Modified Recursive Modulo-2
n
 and

Key Rotation Technique (MRMKRT) and Recursive Transposition Technique (RTT). In

xliv

MRMKRT the plaintext is considered a block of bits then each block are modulo added

replacing the second block after that the whole plaintext block is left circularly rotated. In

RTT the whole plaintext is divided into blocks and matrix is formed for each block. Then bit

wise XOR operation is performed between two adjacent matrixes, the result replacing the

second matrix. After that these matrixes are transformed into blocks and combining all the

blocks the resultant ciphertext is formed.

The six FPGA-based techniques have also been proposed and these are Two Pass

Replacement Technique (TPRT), Triangular Modulo Arithmetic Technique (TMAT),

Recursively Oriented Block Addition and Substitution Technique (ROBAST), Shuffle

Rotational Arithmetic Technique (SRAT), Triple Sagacious Vanquish (TSV) and Modified

Forward Backward Overlapped Modulo Arithmetic Technique (MFBOMAT).

In TPRT n-bit plaintext is divided into k-number of blocks and each block consists of

n/k – bits. Each adjacent block are then XORED replacing the second block, and then again

two adjacent blocks are XORED and now replacing the first block. After that combining the

blocks n-bit ciphertext is generated. In TMAT n-bit plaintext is divided into blocks, the odd

numbers of blocks are encrypted with triangular encryption techniques and even numbers of

blocks are encrypted with modulo arithmetic technique. In second phase odd numbers of

blocks are encrypted with modulo arithmetic technique and even number of blocks are

encrypted with triangular encryption technique. Finally combining all the blocks the n-bit

ciphertext is generated. In ROBAST n-bit plaintext is divided into blocks, first block is

modulo added with second block, the result replacing the second block and so on. Finally

permutation of bits is performed for all the blocks, thus combining the blocks the n-bit

ciphertext is generated. In SRAT, during encryption, a butterfly shuffle is applied to the

whole source stream, then the source stream is broken down into blocks of fixed size, then

the consecutive blocks are modulo added, the result replaces the second block keeping the

first block intact, in the next phase the whole block is left circular rotated. Now the blocks are

concatenated and again another round of butterfly shuffle is applied. TSV consist of several

rounds, first inverse function is applied then 2-bit level, 4-bit level, 8-bit level, 16-bit level,

32-bit level, 64-bit level and 128-bit levels are applied on n-bit plaintext. Finally again

inverse function is applied. In MFBOMAT, The original message is considered as a stream of

bits, which is then divided into a number of blocks, each containing n bits, where n is any one

of 2, 4, 8, 16, 32, 64, 128, 256. The first and last blocks are then added where the modulus of

addition is 2
n
. The result replaces the last block (say Nth block), first block remaining

unchanged (Forward mode). In the next attempt the second and the Nth block (the changed

xlv

block) are added and the result replaces the second block (Backward mode).Again the second

(the changed block) and the (N-1)th block are added and the result replaces the (N-1)th block

(Forward mode). Finally combining the blocks the n-bit ciphertext is generated.

Chapter 1

Introduction

1.1 Introduction

In the age of global connectivity and the presence of hacker’s and electronic

eavesdropping [121, 122] grows the need of security [69, 121, 122, 130] and there is an

endless scope of research in this field. There are two main reasons for the essentiality of

security of digital systems.

 First, explosive growth in the need of information through computers and

networks.

 Second, the disciplines of cryptography [121, 122, 130] should be adaptive to

enforce network security [38, 121, 122, 130].

Cryptography involves the study of mathematical techniques that allow the

practitioner to achieve/provide the following objectives or services [121, 122]:

 Confidentiality: Service that keeps the data involved in an electronic

transaction private. Meaning that the transmitted information

is accessible only by authorized parties. This service includes

both protections of all user data transmitted between two

points over a period of time as well as protection of traffic

flow from analysis.

 Data Integrity: Service that requires that computer system assets and

transmitted information be capable of modification only by

authorized users. Modification includes writing, changing,

changing the status, deleting, creating, and the delaying or

replaying of transmitted messages. It is important to point

out that integrity relates to active attacks and therefore, it is

concerned with detection rather than prevention. Moreover,

integrity can be provided with or without recovery, the first

option being the more attractive alternative.

 Authentication: Service that is concerned with assuring that the origin of a

message is correctly identified. That is, information

delivered over a channel should be authenticated as to the

- 4 -

origin, date of origin, data content, time sent, etc. For these

reasons this service is subdivided into two major classes:

entity authentication and data origin authentication. Notice

that the second class of authentication implicitly provides

data integrity.

 Non-Repudiation: This simply tells that the actions performed by the service

user in an electronic transaction are non revocable so that

they are legally binding. Therefore, neither the sender nor the

receiver of a message should be able to deny the transaction.

There are two major classes of algorithms in cryptography: Private-key or Symmetric-

key algorithms [10, 13, 22, 32, 39, 41, 42, 117, 121, 122, 130] and Public-key or

Asymmetric-key algorithms [14, 60, 64, 67, 82, 121, 122, 130]. Symmetric-key cryptography

can be divided into block ciphers [16, 17, 24, 25, 44, 45, 47, 89, 94, 121, 122, 130] and

stream ciphers [7, 52, 54, 55, 56, 57, 58, 59, 121, 122, 130, 133, 134]. Figure 1.1 depicts the

taxonomy of cryptography.

Figure 1.1: Taxonomy of cryptography

 The current research work has been carried out using symmetric key cryptography

implemented in 8085 microprocessor [17, 95, 101, 102, 104, 109, 111, 112, 113, 123, 124,

130] and FPGA-based system [1, 18, 19, 21, 29, 30, 63, 76, 77, 78, 79, 80, 81, 85, 86, 87, 88,

106, 107, 108, 125, 126] and has been simulated in Xilinx [127, 128] software for making of

crypto-processor [1, 41, 61, 70, 96, 104] and or crypto-hardware [41, 88, 116, 117, 118].

- 5 -

Private-key or Symmetric-key algorithms are based on techniques where the

encryption and decryption key [15, 27, 33, 35, 37, 46, 55, 71, 75, 121, 122, 130] is the

identical, or the decryption key can easily be calculated from the encryption key and vice

versa. The main function of these algorithms, which are also called secret-key algorithms, is

encryption of data, often at high speeds. Private-key algorithms require the sender and the

receiver to agree on the key prior to the communication. The security of private-key

algorithms rests in the key; guessing the key means that anyone can perform encryption [8, 9,

15, 20, 27, 35, 36, 37, 62, 74, 77, 90, 121, 122, 130] and decryption [8, 9, 15, 20, 27, 35, 36,

37, 62, 74, 77, 90, 121, 122, 130] of messages [121, 122, 130]. Therefore, as long as the

communication needs to remain secret, the key must remain secret. There are two types of

symmetric-key algorithms, which are commonly distinguished: Block Ciphers and Stream

Ciphers. The advantage of symmetric-key cryptography is it can encrypt bulk data very

efficiently compared to asymmetric-key cryptography. Specialized algorithms for use in

contexts were usual algorithms do not provide adequate performance, especially low-power

embedded devices/systems [40, 63, 77, 119, 126] is another advantage of symmetric

algorithms/techniques. The terminology of symmetric cryptography algorithms mainly

includes the followings:

 Plaintext: Plaintext [121, 122, 130] is the ordinary

information that the sender wishes to transmit to

the receiver(s) at destination.

 Cipher Text: The encrypted text is called Ciphertext [121, 122,

130].

 Encryption and Decryption: Encryption is the process of converting plain text

into cipher text. Decryption is the reverse

process, converting from cipher text back to the

original plain text.

 Cipher: A cipher is a pair of algorithms, which ensure the

encryption and the reversing decryption. The

detailed operation of a cipher is controlled both

by the algorithm and by a specific key.

 Key: The key is a secret parameter for encrypting or

decrypting a specific message-exchange context.

- 6 -

- 7 -

o of successive digits varies during the encryption.

Stream ciphers typically execute at a higher

speed than block ciphers and have lower

hardware complexity. Stream ciphers that only

encrypt and decrypt data one bit at a time are not

really suitable for software implementation. This

explains why stream ciphers can be better

implemented in hardware than block ciphers.

Figure 1.2 shows the block diagram of symmetric key cryptography.

Figure 1.2: Taxonomy of symmetric key cryptography

Asymmetric cryptography, also called public key cryptography, invented by Diffie

and Hellman [43, 121, 122] in 1976 .The essential difference to symmetric cryptography is

that this kind of algorithm uses two different keys for encryption and corresponding

decryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys--a

public and a private key--associated with an entity that needs to authenticate its identity

electronically or to sign or encrypt data. Each public key is published, and the corresponding

private key is kept secret.

 Private Key: This key must be known only by its owner.

 Public key: This key is known to everyone (it is public).

- 8 -

- 9 -

Figure 1.3: Taxonomy of public key cryptography

The 8085 is a conventional von Neumann design based on the Intel 8080. Unlike the

8080 it does not multiplex state signals onto the data bus, but the 8-bitdata bus was instead

multiplexed with the lower part of the 16-bit address bus to limit the number of pins to 40.

Pin No. 40 is used for the power supply (+5v) and pin No. 20 for ground. Pin No. 39 is used

as the hold pin. Pins No. 15 to No. 8 are generally used for address buses. The processor was

designed using n MOS circuitry and the later "H" versions were implemented in Intel's

enhanced nMOS process called HMOS, originally developed for fast static RAM products.

Only a 5 Volt supply is needed, like competing processors and unlike the 8080. The 8085

uses approximately 6,500 transistors. The 8085 has extensions to support new interrupts, with

three mask able interrupts (RST 7.5, RST 6.5 and RST 5.5), one non-mask able

interrupt (TRAP), and one externally serviced interrupt (INTR). The RST n.5 interrupts refer

to actual pins on the processor, a feature which permitted simple systems to avoid the cost of

a separate interrupt controller.

Like 8080, the 8085 can accommodate slower memories through externally

generated wait states (pin 35, READY), and has provisions for Direct Memory

Access (DMA) using HOLD and HLDA signals (pins 39 and 38). An improvement over the

8080 was that the 8085 can itself drive a piezoelectric crystal directly connected to it, and a

built in clock generator generates the internal high amplitude two-phase clock signals at half

the crystal frequency (a 6.14 MHz crystal would yield a 3.07 MHz clock, for instance).

The processor has seven 8-bit registers named A, B, C, D, E, H, and L, where A is the

8-bit accumulator and the other six can be used as independent byte-registers or as three 16-

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/Address_bus
http://en.wikipedia.org/wiki/NMOS_logic
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/Non-maskable_interrupt
http://en.wikipedia.org/wiki/Wait_state
http://en.wikipedia.org/wiki/Direct_Memory_Access
http://en.wikipedia.org/wiki/Direct_Memory_Access
http://en.wikipedia.org/wiki/Piezoelectric_crystal
http://en.wikipedia.org/wiki/Two-phase_clock
http://en.wikipedia.org/wiki/Processor_register

- 10 -

- 11 -

frame can be allocated using DAD SP and SPHL, and a branch to a computed pointer can be

done with PCHL. These abilities make it feasible to compile languages such as PL/M, Pascal,

or C with 16-bit variables and produce 8085 machine code. Subtraction and bitwise logical

operations on 16 bits is done in 8-bit steps. Operations that have to be implemented by

program code (subroutine libraries) included comparisons of signed integers as well as

multiply and divide.

The 8085 supported up to 256 input/output (I/O) ports, accessed via dedicated Input /

Output instructions—taking port addresses as operands. This Input / Output mapping scheme

was regarded as an advantage, as it freed up the processor's limited address space.

For the extensive use of 8085 in various applications, the microprocessor is provided

with an instruction set which consists of various instructions such as MOV, ADD, SUB, JMP

etc. These instructions are written in the form of a program which is used to perform various

operations such as branching, addition, subtraction, bitwise logical and bit shift operations.

More complex operations and other arithmetic operations must be implemented in software.

For example, multiplication is implemented using a multiplication algorithm.

The 8085 processor was used in a few early personal computers, for example,

the TRS-80 Model 100 line used a OKI manufactured 80C85 (MSM80C85ARS).

The CMOS version 80C85 of the NMOS/HMOS 8085 processor has several manufacturers.

Some manufacturers provide variants with additional functions such as additional

instructions. The red-hard version of the 8085 has been in on-board instrument data

processors for several NASA and ESA space physics missions in the 1990s and early 2000s,

including CRRES, Polar, FAST, Cluster, HESSI, the Sojourner Mars Rover, and THEMIS.

The Swiss company SAIA used the 8085 and the 8085-2 as the CPUs of their PCA1 line

of programmable logic controllers during the 1980s.

In many engineering schools the 8085 processor is used in introductory

microprocessor courses. Trainer kits composed of a printed circuit board, 8085, and

supporting hardware are offered by various companies. These kits usually include complete

documentation allowing a student to go from solder to assembly language programming in a

single course.

Figure 1.4: Intel 8085 microprocessor (courtesy Intel)

http://en.wikipedia.org/wiki/PL/M
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Bit_shifting
http://en.wikipedia.org/wiki/Multiplication_algorithm
http://en.wikipedia.org/wiki/TRS-80_Model_100_line
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Rad-hard
http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/ESA
http://en.wikipedia.org/wiki/CRRES
http://en.wikipedia.org/wiki/Polar_(satellite)
http://en.wikipedia.org/w/index.php?title=FAST_(satellite)&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Cluster_(satellite)&action=edit&redlink=1
http://en.wikipedia.org/wiki/HESSI
http://en.wikipedia.org/wiki/Mars_Pathfinder
http://en.wikipedia.org/wiki/THEMIS_(satellite)
http://en.wikipedia.org/wiki/Programmable_logic_controller

- 12 -

Figure 1.5: Intel 8085 microprocessor architecture (courtesy Intel)

Digital electronics is concerned with circuits which represent information using a

finite set of output states. Most of the applications use in fact just two states, which are often

labelled ‘0’ and ‘1’. Behind this choice is the fact that the whole Boolean formalism then

becomes available for the solution of logic problems, and also that arithmetic using binary

representations of numbers is a very mature field.

A field-programmable gate array (FPGA) is an integrated circuit designed to be

configured by the customer or designer after manufacturing—hence "field-programmable".

The FPGA configuration is generally specified using a hardware description language (HDL)

[127, 128, 130], similar to that used for an application-specific integrated circuit (ASIC) [63,

127, 128, 130] (circuit diagrams were previously used to specify the configuration, as they

were for ASICs, but this is increasingly rare). FPGAs can be used to implement any logical

function that an ASIC could perform. The ability to update the functionality after

shipping, partial re-configuration of the portion of the design

and the low non-recurring

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Circuit_diagram
http://en.wikipedia.org/wiki/Partial_re-configuration

- 13 -

- 14 -

- 15 -

- 16 -

FPGA chip, be it logic or interconnect, must be stored

in a file to program the flash.

Of these four phases, only the first one is human-labour intensive. Somebody has to

type in the HDL code, which can be tedious and error-prone for complicated designs

involving, for example, lots of digital signal processing. This is the reason for the appearance,

in recent years, of alternative flows which include a preliminary phase in which the user can

draw blocks at a higher level of abstraction and rely on the software tool for the generation of

the HDL. Some of these tools also include the capability of simulating blocks which will

become HDLs with other blocks which provide stimuli and processing to make the

simulation output easier to interpret. The concept of hardware co-simulation is also becoming

widely used. In co-simulation, stimuli are sent to a running FPGA hosting the design to be

tested and the outputs of the design are sent back to a computer for display (typically through

a Joint Test Action Group (JTAG), or Ethernet connection). The advantage of co-simulation

is that one is testing the real system, therefore suppressing all possible misinterpretations

present in a pure simulator. In other cases, co-simulation may be the only way to simulate a

complex design in a reasonable amount of time.

Figure 1.6: Internal structure of a generic FPGA (courtesy Xilinx)

- 17 -

Figure 1.7: Simplified illustration of a logic cell (courtesy Xilinx)

VHDL stands for very high-speed integrated circuit hardware description language.

This is one of the programming languages used to model a digital system by dataflow,

behavioral and structural style of modeling. This language was first introduced in 1981 for

the department of Defense (DoD) under the VHSIC [125, 126, 127, 128, 130] program. In

1983 IBM, Texas instruments and Intermetrics started to develop this language. In 1985

VHDL 7.2 version was released. In 1987 IEEE standardized the language. VHDL is

commonly used to write text models that describe a logic circuit. Such a model is processed

by a synthesis program, only if it is part of the logic design. A simulation program is used to

test the logic design using simulation models to represent the logic circuits that interface to

the design. This collection of simulation models is commonly called a test bench. VHDL has

constructs to handle the parallelism inherent in hardware designs, but these constructs

(processes) differ in syntax from the parallel constructs in Ada (tasks). Like Ada, VHDL

is strongly typed and is not case sensitive. In order to directly represent operations which are

common in hardware, there are many features of VHDL which are not found in Ada, such as

an extended set of Boolean operators including nand and nor. VHDL also allows arrays to be

indexed in either ascending or descending direction; both conventions are used in hardware,

whereas in Ada and most programming languages only ascending indexing is available.

VHDL has file input and output capabilities, and can be used as a general-purpose language

for text processing, but files are more commonly used by a simulation test bench for stimulus

or verification data. There are some VHDL compilers which build executable binaries. In this

case, it might be possible to use VHDL to write a test bench to verify the functionality of the

design using files on the host computer to define stimuli, to interact with the user, and to

compare results with those expected. However, most designers leave this job to the simulator.

It is relatively easy for an inexperienced developer to produce code that simulates

successfully but that cannot be synthesized into a real device, or is too large to be practical.

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Strongly_typed
http://en.wikipedia.org/wiki/Case_sensitivity

- 18 -

- 19 -

- 20 -

despite being valid for simulation. While different synthesis tools have different capabilities,

there exists a common synthesizable subset of VHDL that defines what language constructs

and idioms map into common hardware for many synthesis tools. IEEE 1076.6 defines a

subset of the language that is considered the official synthesis subset. It is generally

considered a "best practice" to write very idiomatic code for synthesis as results can be

incorrect or suboptimal for non-standard constructs.

In VHDL an entity is used to describe a hardware module.

An entity can be described using,

 1. Entity declaration.

 2. Architecture.

 3. Configuration

 4. Package declaration.

 5. Package body.

Let’s see what are these?

 Entity declaration:

It defines the names, input output signals and modes of a hardware module.

Syntax:

 entity entity_name is

 Port declaration;

 end entity_name;

An entity declaration should starts with ‘entity’ and ends with ‘end’ keywords.

Ports are interfaces through which an entity can communicate with its environment.

Each port must have a name, direction and a type. An entity may have no port declaration

also. The direction will be input, output or inout.

- 21 -

- 22 -

Block_configuration defines the binding of components in a block. This can be

written as

 for block_name

 component_binding;

 end for;

 block_name is the name of the architecture body. Component binding binds the

components of the block to entities. This can be written as,

 for component_labels:component_name

 block_configuration;

 end for;

Package declaration:

Package declaration is used to declare components, types, constants, functions and so

on.

Syntax:

package package_name is

 Declarations;

 end package_name;

Package body:

A package body is used to declare the definitions and procedures that are declared in

corresponding package. Values can be assigned to constants declared in package in package

body.

Syntax:

 package body package_name is

 Function_procedure

definitions;

end package_name;

- 23 -

The internal working of an entity can be defined using different modeling styles

inside architecture body. They are

1. Dataflow modeling.

2. Behavioral modeling.

3. Structural modeling.

Structure of an entity:

Let’s try to understand with the help of one example.

Data flow modeling:

In this style of modeling, the internal working of an entity can be implemented using

concurrent signal assignment.

Let’s take half adder example which is having one XOR gate and a AND gate.

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

 entity ha_en is

 port (A,B:in bit;S,C:out bit);

 end ha_en;

 architecture ha_ar of ha_en is

 begin

 S<=A xor B;

 C<=A and B;

 end ha_ar;

Here STD_LOGIC_1164 is an IEEE standard which defines a nine-value logic type,

called STD_ULOGIC. use is a keyword, which imports all the declarations from this

package. The architecture body consists of concurrent signal assignments, which describes

- 24 -

the functionality of the design. Whenever there is a change in RHS, the expression is

evaluated and the value is assigned to LHS.

Behavioral modeling:

In this style of modeling, the internal working of an entity can be implemented using

set of statements.

 It contains:

 Process statements

 Sequential statements

 Signal assignment statements

 Wait statements

Process statement is the primary mechanism used to model the behavior of an entity.

It contains sequential statements, variable assignment (:=) statements or signal assignment

(<=) statements etc. It may or may not contain sensitivity list. If there is an event occurs on

any of the signals in the sensitivity list, the statements within the process are executed. Inside

the process the execution of statements will be sequential and if one entity is having two

processes the execution of these processes will be concurrent. At the end it waits for another

event to occur.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

 entity ha_beha_en is

 port(

 A : in BIT;

 B : in BIT;

 S : out BIT;

 C : out BIT

);

 end ha_beha_en;

architecture ha_beha_ar of ha_beha_en is

- 25 -

 begin

 process_beh:process(A,B)

 begin

 S<= A xor B;

 C<=A and B;

 end process process_beh;

 end ha_beha_ar;

Here whenever there is a change in the value of a or b the process statements are

executed.

Structural modeling:

The implementation of an entity is done through set of interconnected components.

It contains:

 Signal declaration.

 Component instances

 Port maps.

 Wait statements.

 Component declaration:

 Syntax:

 component component_name [is]

 List_of_interface ports;

 end component component_name;

Declaration is done before instantiation of the component. Component declaration

declares the name of the entity and interface of a component. Let’s try to understand this by

taking the example of full adder using two half adder and one OR gate.

- 26 -

library IEEE;

use IEEE.STD_LOGIC_1164.all;

 entity fa_en is

 port(A,B,Cin:in bit; SUM, CARRY:out bit);

 end fa_en;

 architecture fa_ar of fa_en is

 component ha_en

 port(A,B:in bit;S,C:out bit);

 end component;

 signal C1,C2,S1:bit;

 begin

 HA1:ha_en port map(A,B,S1,C1);

 HA2:ha_en port map(S1,Cin,SUM,C2);

 CARRY <= C1 or C2;

 end fa_ar;

The program that have written for half adder in dataflow modeling is instantiated as

shown above. ha_en is the name of the entity in dataflow modeling. C1, C2, S1 are the

signals used for internal connections of the component which are declared using the keyword

signal. Port map is used to connect different components as well as connect components to

ports of the entity.

Component instantiation is done as follows.

 Component_label: component_name port map (signal_list);

Signal_list is the architecture signals which are connecting to component ports. This

can be done in different ways. What is declared here is positional binding. There is another

type of binding termed as ‘named’ binding. The situation described can be written in terms of

named binding as,

HA1:ha_en port map(A => A,B => B, S => S1 ,C => C1);

HA2:ha_en port map(A => S1,B => Cin, S=> SUM, C => C2);

- 27 -

Test bench:

The correctness of the above program can be checked by writing the test bench.

The test bench is used for generating stimulus for the entity under test. Let’s write a

simple test bench for full adder.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

 entity tb_en is

 end tb_en;

 architecture tb_ar of tb_en is

 signal a_i,b_i,c_i,sum_i,carry_i:bit;

 begin

 eut: entity work.fa_en(fa_ar)

 port map(A=>a_i,B=>b_i,Cin=>c_i,SUM=>sum_i,CARRY=>carry_i);

 stimulus: process

 begin

 a_i<='1';b_i<='1';c_i<='1';

 wait for 10ns;

 a_i<='0';b_i<='1';c_i<='1';

 wait for 10ns;

 a_i<='1';b_i<='0';c_i<='0';

 wait for 10ns;

 if now=30ns then

 wait;

 end if;

 end process stimulus;

 end tb_ar;

- 28 -

- 29 -

- 30 -

- 31 -

- 32 -

- 33 -

storage locations (space complexity) [12, 15, 17, 23, 27, 33, 34, 35, 36, 37, 39, 93, 94, 121,

122, 129, 130, 142].

Algorithm analysis is an important part of a broader computational complexity theory,

which provides theoretical estimates for the resources needed by any algorithm which solves

a given computational problem. These estimates provide an insight into reasonable directions

of search for efficient algorithms. In theoretical analysis of algorithms it is common to

estimate their complexity in the asymptotic sense, i.e., to estimate the complexity function for

arbitrarily large input. Big O notation, notation and theta notation are used to this end. For

instance, binary search is said to run in a number of steps proportional to the logarithm of the

length of the list being searched, or in O(log(n)), colloquially "in logarithmic time".

Usually asymptotic estimates are used because different implementations of the same

algorithm may differ in efficiency. However the efficiencies of any two "reasonable"

implementations of a given algorithm are related by a constant multiplicative factor called

a hidden constant.

Exact (not asymptotic) measures of efficiency can sometimes be computed but they

usually require certain assumptions concerning the particular implementation of the

algorithm, called model of computation. A model of computation may be defined in terms of

an abstract computer, e.g., Turing machine, and/or by postulating that certain operations are

executed in unit time. For example, if the sorted list to which to apply binary search

has n elements, and it can guarantee that each lookup of an element in the list can be done in

unit time, then at most log2 n + 1 time units are needed to return an answer.

Section 1.2 gives the details literature survey, section 1.3 describes the problem

domain; section 1.4 illustrates the proposed methodology, section 1.5 states the salient

features of this thesis and section 1.6 figures out the organization of this thesis.

1.2 Literature Survey

Diffie and Hellman [43] in the year 1976 gave a new direction in cryptography. Two

kinds of contemporary in cryptography are examined. Widening applications of

teleprocessing have given rise to the need of new type of cryptographic systems, which

minimize the need for secure key distribution channels and supply the equivalent of a written

signature. This paper suggests ways to solve these currently open problems. It also discusses

how the theories of communication and computation are beginning to provide the tools to

solve cryptographic problems of long standing.

http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/w/index.php?title=Theta_notation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Asymptotic_analysis
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Abstract_machine
http://en.wikipedia.org/wiki/Turing_machine

- 34 -

- 35 -

- 36 -

- 37 -

- 38 -

- 39 -

- 40 -

- 41 -

- 42 -

- 43 -

- 44 -

- 45 -

- 46 -

- 47 -

- 48 -

- 49 -

- 50 -

- 51 -

- 52 -

- 53 -

- 54 -

- 55 -

- 56 -

- 57 -

- 58 -

- 59 -

A linear cryptanalysis of block ciphers has been proposed in the year 2011 by

Bogdanov and Rijmen [48]. Linear cryptanalysis, along with differential cryptanalysis, is an

important tool to evaluate the security of block ciphers. This work introduced a novel

extension of linear cryptanalysis – zero-correlation linear cryptanalysis – a technique

applicable to many block cipher constructions. It is based on linear approximations with a

correlation value of exactly zero. For a permutation on n bits, an algorithm of complexity

O(2n−1) is proposed for the exact evaluation of correlation. Non-trivial zero-correlation

linear approximations are demonstrated for various block cipher structures including AES,

balanced Feistel networks, Skipjack, CLEFIA, and CAST256. Using the zero-correlation

linear cryptanalysis, a key-recovery attack is shown on 6 rounds of AES-192 and AES-256 as

well as 13 rounds of CLEFIA-256.

A differential cryptanalysis of block ciphers has been proposed in the year 2011 by

Blondeau and Gerard [50]. Differential cryptanalysis is a well-known statistical attack on

block ciphers. Authors presented a generalisation of attack called multiple differential

cryptanalysis. Authors also study the data complexity, the time complexity and the success

probability of such an attack and it is experimentally validate the formulas on a reduced

version. Finally, authors proposed a multiple differential cryptanalysis on 18-round

PRESENT for both 80-bit and 128-bit master keys.

1.3 Problem Domain

Campbell [101] proposed a microprocessor based module to provide security in

electronic fund transfer. Electronic Fund Transfer (EFT) is expected to grow in importance

and to result in national interchange system. The potential for fraud in EFT is quite

significant, and can be prevented by the use of cryptographic security techniques. A

microprocessor based security module has been developed which serves as a CPU peripheral

to perform all cryptographic functions which an EDP facility requires to secure its EFT

operations.

Computer communication systems, local-area networks, interconnected local-area

networks, and electronic mail systems are playing an increasingly important role in office

automation, telecommunications, and factory automation. A microprocessor based crypto-

processor has been proposed by Schloer [104]. Recent advances have made the technology of

cryptography a viable tool for providing security. The DES-Data Encryption Standard as well

as public-key systems have also been used extensively. The overall system structure and user

- 60 -

- 61 -

 FPGA can be used to develop crypto hardware or crypto processor for

secure electronic fund transfer or as an embedded system to be used for

security purpose.

 Develop such techniques which are faster, and this can be achieved by

using microprocessor based techniques and FPGA based techniques.

 Develop such techniques which are simpler which means techniques

with low computational complexity.

 Development of Non-Fiestel block cipher [150] but still with good

cryptographic parameters.

 Development of symmetric block ciphers that is the source stream

repeats after some number of iterations.

 The cryptographic parameters like non-homogeneity test using Chi-

Square test, frequency distribution, avalanche ratio test and key length

have been achieved to satisfactory level in this thesis with respect to

RSA.

 The algorithmic parameters like encryption time and decryption time has

been achieved to satisfactory level in this thesis with respect to RSA.

 The hardware parameter like HDL synthesis report (both timing and

component) has also been achieved to satisfactory level in this thesis

with respect to RSA.

Therefore, the problem domain is to develop efficient microprocessor based

techniques and FPGA-based techniques to be used in embedded system.

1.4 Proposed Methodology

Any mechanical or electrical system that is controlled by a computer working as part

of an overall system is called embedded system. A general-purpose computer is made to

perform a variety of functions. An embedded system, which may contain a high performance

CPU than in general purpose computers one, has a set of specific tasks for which the system

is made.

Embedded systems have grown tremendously in recent years. There are three

important reasons of this.

- 62 -

- 63 -

- 64 -

1.5 Salient Features of the Thesis

The detailed study in literature survey reveals to me the following facts:

 Most of the algorithms/techniques implemented are software based; my

intention is for hardware implementation for high speed, low area and much

lesser power consumption.

 It is also learnt that still today most of the low end embedded system uses

microprocessor as a driving device, so the candidate has also opted for

microprocessor-based implementation.

 FPGA is the future of embedded systems and a lot of research is still awaited

in this domain, so the work is a step towards the same.

 Most of the algorithms/techniques devised are based on Friestel block cipher

[121, 122]; the proposed work is to design non-Friestel ciphers with better

cryptographic and algorithmic parameters. These designs are suitable for

embedded systems.

 Since symmetric ciphers are much faster and simpler design than asymmetric

ciphers having the same properties so my design is based on symmetric

ciphers. Symmetric ciphers are also suitable for embedded systems.

An embedded system is a special-purpose computer system designed to perform one

or a few dedicated functions, often with real-time computing constraints. It is usually

embedded as a part of a complete device including hardware and embedded software.

Embedded systems many of the common devices in use today. Embedded systems are

commonly used in today’s world ranges from portable MP4 player to most common mobile

phones; others are iPod, DTH and many more. An embedded system is a combination of

hardware and software that may have some mechanical components to perform some specific

task. Embedded systems consist of small computerized parts within a large device that serves

more general purpose. The programs and instruction written for embedded systems are called

firmware and are stored in read-only memory or flash memory. In today’s world the use of

embedded system is common in everybody’s life. Hence, the security concern in embedded

systems is growing in exponential terms. Cryptography is one of the ways to provide security

- 65 -

in these embedded systems. So, the realization of this goal can achieved through

microprocessor based solution and also fast growing FPGA based solutions.

Any work is to be accepted widely requires some betterment than the existing

systems. In this research work the devised techniques are compared with existing and

industrially accepted asymmetric block cipher RSA (Rivest-Shamir-Adleman). Finally a

security model is proposed in the end of the thesis. Thus the proposed work can be

summarized as follows:

 To devise symmetric key cryptographic technique. As symmetric key

cryptography is faster than that of asymmetric key cryptography which can be

used for embedded systems. Symmetric key cryptography is also suitable for

encryption of large data or files.

 Then these techniques are compared with existing algorithms such as RSA.

The parameters are Chi-Square value, Frequency distribution, Encryption

time, Decryption time, and Avalanche ratio.

 After satisfying the above parameters a set of techniques are then implemented

in 8085 Microprocessor based systems.

 Again satisfying the same another set of techniques are then implemented in

FPGA based system, both for the use of these techniques in embedded systems

and also in general purpose computers.

1.6 Organization of the Thesis

This thesis consist of three parts, the first part is from Chapter two to Chapter three

which contains two proposed microprocessor based solutions, in the second part from

Chapter four to Chapter nine which contains a different set of six proposed FPGA based

solutions and in the last part from Chapter ten and Chapter eleven models are proposed and

conclusions are drawn.

In this thesis following eight new techniques are proposed:-

 Modified Recursive Modulo-2
n
 And Key Rotation Technique (MRMKRT)

 Recursive Transposition Technique (RTT)

 Two Pass Replacement Technique (TPRT)

- 66 -

- 67 -

- 68 -

- 69 -

discarded to get the result. The technique is applied in a cascaded manner by varying the

block size from 2 to 256. The whole technique has been implemented by using a modulo

subtraction technique for decryption. MFBOMAT is giving much better result in all respect

than previously proposed technique.

Chapter ten gives cryptographic models for microprocessor based systems and FPGA

based systems and conclusions are drawn in Chapter eleven.

Section I

Microprocessor Based Solutions

Chapter 2

Modified Recursive Modulo-2
n
 and Key Rotation Technique (MRMKRT)

2.1 Introduction

In this chapter, a novel block cipher based on a microprocessor system has been

proposed where the encryption and decryption is done through Modified Recursive Modulo-

2
n
 and Key Rotation Technique (MRMKRT). The original message is considered as a stream

of bits, which is then divided into a number of blocks, each containing n bits, where n is any

one of 2, 4, 8, 16, 32, 64, 128, 256. The two adjacent blocks are then added where the

modulus of addition is 2
n
. The result replaces the second block, first block remaining

unchanged. The modulo addition has been implemented in a very simple manner where the

carry out of the MSB is discarded to get the result. After addition one bit left circular rotation

is applied. The technique is applied in a cascaded manner by varying the block size from 2 to

256. The whole technique has been implemented through a microprocessor-based system by

using a modulo subtraction technique for decryption.

For this implementation the stream size of 512 bits has been taken but the scheme

may be implemented for larger stream sizes also. The input stream, S, is first broken into a

number of blocks, each containing n bits (n=2
k
, k=1,2,3,......,8) so that S = B1B2B3.......Bm,

where m=512/n. Starting from the MSB, the blocks are paired as (B1,B2), (B2,B3), (B3,B4) and

so on. The MRMKRT operation with modulo addition is applied to each pair of blocks, the

result replaces the second block keeping first block intact. After addition one bit left circular

rotation is applied. The process is repeated, each time increasing the block size till n=256. So,

encryption is a process of converting intelligent message into stupid form. Therefore,

decryption is the process of getting back the intelligent message from the stupid one. The

proposed scheme has been implemented by using the reverse technique, i.e. modulo

subtraction technique, for decryption. The flow of the work is to first implement all the

proposed algorithms in C programming, the test for feasibility using frequency distribution

test, test for non-homogeneity, time complexity analysis and avalanche ratio test. Then the

proposed algorithms are implemented for microprocessor and FPGA.

Section 2.2 described the algorithm of MRMKRT in detail using block diagram,

section 2.3 illustrates an example, section 2.4 shows how modulo addition is being done,

section 2.5 deals with key generation issues, section 2.6 gives the algorithmic analysis of the

scheme, section 2.7 gives generalized routine as a microprocessor based implementation,

section 2.8 illustrates various results and its comparisons with existing RSA algorithm and

section 2.9 gives a brief discussions.

- 76 -

2.2 The Algorithm of MRMKRT

The algorithm of MRMKRT is based on bit level encryption technique. A plaintext is

taken for encryption in the sender side and ciphertext is taken for decryption in the receiver

side. It is a bit level cipher so, during encryption plaintext is first broken down into a blocks

of bits, let B1 = {a0,a1,a2,….,an-1}, B2 = {b0,b1,b2,…..,bn-1}, …. Bm={…..}, so here each

block is n-bits in size and number of blocks are ‘m’ then MRMKRT encryption is performed

which is again combined, C1||C2||….||Cm, here block B1 is converted to block C1 after

MRMKRT encryption, block B2 is converted to block C2 after MRMKRT encryption and so

on to block Bm is converted to Cm after MRMKRT encryption, hereto form ciphertext.

During decryption ciphertext is broken down into blocks of bits, let C1 = {a0,a1,a2,….,an-1),

C2 = {b0,b1,b2,…..,bn-1), …. Cm={…..}, so here each block is n-bits in size and number of

blocks are ‘m’ then MRMKRT decryption is performed which is again combined,

B1||B2||….||Bm, block B1 is regenerated from block C1 after MRMKRT decryption, block

B2 is regenerated from block C2 after MRMKRT decryption and so on to block Bm is

regenerated from block Cm, to form plaintext. A generalized approach is taken for explaining

the algorithm of MRMKRT.

Figure 2.1: Modified recursive modulo-2
n
 and key rotation technique (MRMKRT)

- 77 -

Figure 2.1 gives the block diagram of MRMKRT. The MRMKRT is defined with n-

bit plaintext which is to be encrypted, ‘k’ blocks with ‘n/k’ bits per block. It has three main

rounds/steps which are explained below:-

 Round 1: At first n-bit plaintext has been broken into k number of blocks and

each block has n/k bits as given in figure 2.1 of the block diagram of

MRMKRT, let the blocks are B1, B2, B3, …. Bk, the following

operations are performed starting from the most significant bit

towards least significant bits.

 Round 2: In each pair of blocks, the first member of the pair, say block B1, is

added to the second member, say block B2, where the modulus of

addition is 2
m
 for block size m. Therefore for 2-bit blocks, the

modulus of addition will be 4.

 Round 3: Now the whole n-bit text is left circular shifted/rotation by 1-bit

position.

This round is repeated for a finite number of times and the number of iterations will

form a part of the session key as discussed in section 2.5, which is given by the user.

So, in general the whole plaintext is broken down into two-bits block size, then

modulo addition are performed and at last a one-bit left circular shift is performed. After that

the same three operations are performed for 4-bit block size, i.e. the whole n-bit stream is

now broken down into block of sizes 4-bits. In this fashion several rounds are completed till

it reaches a round where the block size is 256 and the encrypted bit-stream is obtained. Since

the original content of block Bi changes due the addition with block Bi-1, a new content of Bi

is added to block Bi+1. This is due to the overlapping nature of the block-pairs, which

increases the complexity of the algorithm resulting in the enhancement of security.

During decryption, the reverse operation, i.e. modulo subtraction, is performed

instead of modulo addition, starting from the LSB and decreasing the block size from 256 to

2. At first whole n-bit ciphertext in right circular shifted/rotation by one-bit position, as

shown in figure 2.1. Then the n-bit ciphertext is first broken into blocks of sizes 256-bits,

then the two adjacent blocks, say B1, and B2, are modulo subtracted instead of addition,

these three stems are repeated for a number of iterations and various block sizes given by the

user, actually this forms the key.

- 78 -

2.3 Example

As discussed in section 2.2 MRMKRT encrypts n-bits of plaintext with ‘k’ blocks

with ‘n/k’-bits per blocks. In this section 32-bit plaintext is considered as an example of

MRMKRT, the whole encryption and decryption process is performed by the following four

rounds:-

 Round 1: In first round, 16-blocks are taken for encryption and decryption,

therefore block size is ‘32/16 = 2 bits’ per block.

 Round 2: In second round, 8-blocks are taken for encryption and decryption,

therefore block size is ‘32/8 = 4 bits’ per block.

 Round 3: In third round, 4-blocks are taken for encryption and decryption,

therefore block size is ‘32/4 = 8 bits’ per block.

 Round 4: In fourth and final round, 2-blocks are taken for encryption and

decryption, therefore block size is ‘32/2 = 16 bits’ per block.

Consider a stream of 32 bits, say S = 11010011000110111010011101000101. The

whole process of MRMKRT is described in four rounds in figure 2.2 to 2.5.

Round 1: Block size = 2 bits, number of blocks = 16

Input:

B1 B2 B3 B4 B5 B6 B7 B8

11 01 00 11 00 01 10 11

B9 B10 B11 B12 B13 B14 B15 B16

10 10 01 11 01 00 01 00

Output:

B1 B2 B3 B4 B5 B6 B7 B8

11 00 00 11 00 01 10 01

B9 B10 B11 B12 B13 B14 B15 B16

10 00 01 00 01 01 01 01

Figure 2.2: First round of MRMKRT

- 79 -

Figure 2.2 shows the first round of MRMKRT, the 32-bit plaintext is broken down

into 16 numbers of blocks and each block is of size 2-bits. So, first block B1 has ‘11’, next

block B2 has ‘01’ and so on until last block B16 has ‘00’ as value was got, these are reflected

in input blocks. Then the two adjacent blocks B1 and B2 are modulo-2 added, so, ‘11’ + ‘01’

mod 2 = ‘00’, which is replacing the second block B2, the first block B1 is unaltered, this is

reflected in Output block. The whole operation is performed for all the sixteen blocks. As a

result the sub-stream as, X = 11000011000110011000010001010101. Now a one-bit left

circular shift is performed. Which generates, X’ = 10000110001100110000100010101011.

This sub-stream will be now input to the round 2.

Round 2: Block size = 4 bits, number of blocks = 8

Input:

B1 B2 B3 B4 B5 B6 B7 B8

1000 0110 0011 0011 0000 1000 1010 1011

Output:

B1 B2 B3 B4 B5 B6 B7 B8

1000 1110 0011 0110 0000 1000 1010 0101

Figure 2.3: Second round of MRMKRT

Figure 2.3 shows the second round of MRMKRT, where, the input blocks from round

1, X’, this 32-bit stream is broken down into 8 numbers of blocks and each block is of size 4-

bits. So, first block B1 has ‘1000’, next block B2 has ‘0110’ and so on until to get last block

B8 has ‘1011’ as value, these are reflected in input blocks. Then the two adjacent blocks B1

and B2 are then added as modulo-2
4
, so, ‘1000’ + ‘0110’ mod 2

4
 = ‘1110’, which is replacing

the second block B2, the first block B1 is unaltered, this is reflected in output block. This

modulo addition is very clear when adding block B7 and Block B8, here ‘1010’ + ‘1011’

modulo 2
4
 = ‘0101’. The whole operation is performed for all the eight blocks. After this to

get the sub-stream as, Y =10001110001101100000100010100101. Now a one-bit left circular

shift is performed. Y’ = 00011100011011000001000101001011 was obtained. This sub-

stream will be now input to the round 3.

- 80 -

Round 3: Block size = 8 bits, number of blocks = 4

Input:

B1 B2 B3 B4

00011100 01101100 00010001 01001011

Output:

B1 B2 B3 B4

00011100 01010010 00010001 01011100

Figure 2.4: Third round of MRMKRT

Figure 2.4 shows the third round of MRMKRT, the input blocks from round 2, Y’,

this 32-bit stream is broken down into 4 numbers of blocks and each block is of size 8-bits.

So, first block B1 has ‘00011100’, next block B2 has ‘01101100’ and so on until to get last

block B4 whose value ‘01001011’ is generated. These are reflected in input blocks. Two

adjacent blocks B1 and B2 are then modulo-2
8
 added, so, ‘00011100’ + ‘01101100’ mod 2

8

= ‘01010010’, which is replacing the second block B2, the first block B1 is unaltered, this is

reflected in Output block. The whole operation is performed for all the four blocks. After this

to get the sub-stream as, Z =00011100010100100001000101011100. Now a one-bit left

circular shift is performed. Z’ =00111000101001000010001010111000 is obtained. This sub-

stream will be now input to the round 4.

Round 4: Block size = 16 bits, number of blocks = 2

Input:

B1 B2

0011100010100100 0010001010111000

Output:

B1 B2

0011100010100100 0101101101011100

Figure 2.5: Fourth round of MRMKRT

Figure 2.5 shows the fourth round of MRMKRT, taking Z’ as an input from the round

3, the whole 32-bit stream is now divided into two blocks each of size 16-bits. After modulo-

2
16

 addition to get the 32-bit stream as C’ = 00111000101001000101101101011100. Now

- 81 -

performing a circular left shift of one bit, to get the final ciphertext as,

C=01110001010010001011011010111000.

2.4 The Modulo Addition

An alternative method for modulo addition is proposed here to make the calculations

simple. The need for computation of decimal equivalents of the blocks is avoided here since

it will get large decimal integer values for large binary blocks. The method proposed here is

just to discard the carry out of the MSB after the addition to get the result. For example, if to

add 1101 and 1001 the result will be 10110. In terms of decimal values, 13+9=22. Since the

modulus of addition is 16 (2
4
) in this case, the result of addition should be 6 (22-16=6).

Discarding the carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So

the result will be 0110, which is equivalent to 6 in decimal. The same is applicable to any

block size.

2.5 Key Generation

In the proposed scheme, eight rounds have been considered, each for 2, 4, 8, 16, 32,

64, 128, and 256 block size. Each round is repeated for a finite number of times and the

number of iterations will form a part of the encryption-key. Although the key may be formed

in many ways, for the sake of brevity it is proposed to represent the number of iterations in

each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-

bit key for a particular key. Example in section 2.5.1 illustrates the key generation process.

Table 2.1: Representation of number of iterations in each round by bits

Round Block

Size

Number of Iterations

Decimal Binary

1. 256 50021 1100001101100101

2. 128 49870 1100001011001110

3. 64 48950 1011111100110110

4. 32 44443 1010110110011011

5. 16 46250 1011010010101010

6. 8 4321 0001000011100001

7. 4 690 0000001010110010

8. 2 72 0000000001001000

- 82 -

Figure 2.6: Round v/s iteration in MRMKRT

2.5.1 Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for

block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 2.1 shows the

corresponding binary value for the number of iterations in each round. Figure 2.6 shows the

graph for the round v/s iteration. When the block size is 2-bit then the process of MRMKRT

is applied 72 times, for 4-bit block size the process of MRMKRT is applied 690 times,

similarly when the block size is 256-bit then the process of MRMKRT is applied 50021

times. The number of times of iteration is solely decided by the user or sender of the secret

message.

These numeric values are converted to equivalent binary strings and these binary

strings are concatenated together to form the 128-bit binary string:

- 83 -

110000110110010111000010110011101011111100110110101011011001101110110100101

01010000100001110000100000010101100100000000001001000.

This 128-bit binary string will be the key for encryption for a particular session.

During decryption, the same key is taken to iterate each round of modulo-subtraction

for the specified number of times.

2.6 Analysis

MRMKRT described here is symmetric in nature, that is same key is required for

encryption and decryption. Symmetric ciphers are also those where the number of

iterations/steps involved is the same in the decryption that is if ‘i’ is the number of iterations

performed during encryption then the number of iteration required during decryption is also

‘i’, but this is not the case for MRMKRT encryption and decryption if modulo addition is

considered in both cases. MRMKRT is off-course symmetric key/private-key cryptography

where same key is used for both encryption and decryption.

Table 2.2: Plaintext and ciphertext pair in hex for single iteration of MRMKRT

Block Size Input Plaintext Output Ciphertext Number of Iteration to Get Back the

Original Plaintext

2-bits D31BA745 863308AB 16

4-bits 863308AB 476844363 256

8-bits 476844363 38A422B8 4096

16-bits 38A422B8 7148B6B8 65536

Table 2.2 gives the plaintext and the corresponding ciphertext obtained based on

executing single iteration of MRMKRT and also the number of iteration required to get back

the original plaintext when modulo addition is performed. When block size is 2-bits, the

plaintext is ‘D31BA745’ and the corresponding ciphertext is ‘863308AB’. The number of

iteration required to get back the original plaintext with modulo addition is 16. In the next

round, when block size is 4-bits, the plaintext is ‘863308AB’ and the corresponding

ciphertext is ‘476844363’. The number of iteration required to get back the original plaintext

with modulo addition is 256. In the next round, when block size is 8-bits, the plaintext is

‘476844363’ and the corresponding ciphertext is ‘38A422B8’. The number of iteration

- 84 -

required to get back the original plaintext with modulo addition is 4096. In the next round,

when block size is 16-bits, the plaintext is ‘38A422B8’ and the corresponding ciphertext is

‘7148B6B8’. The number of iteration required to get back the original plaintext with modulo

addition is 65536. Thus by observing the table the order of time complexity of MRMKRT is

O(n
4
). Therefore to minimize this time complexity the modulo-subtraction is proposed for

decryption.

After the first rotation by one bit, msb has taken the lsb position and all other bits are

shifted left by one bit. So eight such rotations are required to regenerate the original string

for an 8 bit string and one of the seven intermediate strings can be used as encoded string. If

the string generated after 2
nd

 rotation is used as encoded string, then (8 –2) = 6 more

rotations are to applied on the encoded string to get back the original string.

The principle can be extended to n byte string. The number of rotation required to get

back the original string for n byte string (m) = n x 8, where n is the number of bytes in the

string.

The total number of intermediately generated string, (k) = (n x 8 –1)

For n = 1, k = 7.

Considering that after i-th rotation, the generated string is used as encoded string.

Then the number of rotations to be applied on the encoded string at the time of decoding, l =

n x 8 – i.

For n = 1 and i = 2 , then l = 6.

When a large number of bytes are taken into consideration in the string, the rotational

encoding will not be very effective. On 8
th

 rotation, the MS byte will go to the LS byte

position and all other bytes will be moved to the right. The characters in the string will appear

again in the shifted condition and MS byte character will come to the LS byte position. On

16
th

 rotation the same thing will happen. So after 8 and its multiple rotations the part of the

message will reappear with cut and paste condition. This is the disadvantage with the

rotational encoding.

On rotational encoding a modification is suggested here with a view to eliminate the

disadvantage with the rotational encoding. Before applying the rotational encoding, a

particular bit (say, lsb) of each byte of the string under consideration is complemented. This

additional feature is very effective and will eliminate the disadvantage of re-appearing the

bytes after 8 and its multiple rotations. This will also be very effective for any number of

bytes. The encoding with large number of bytes with a particular bit inverted will be more

effective. The complexity will be high with large number of bits in the string.

- 85 -

2.7 Implementation

The 8085 microprocessor has been used for realizing the Modified Recursive

Modulo-2
n
 and Key Rotation Technique (MRMKRT). MRMKRT is first implemented with

8-bits block size, then with 16-bits block size, then with 24-bits block size continuing up-to

256-block size. In this section generalized routine with block size 8-bit or more has been

discussed. The HL-pair is loaded with memory location where the bytes will be stored,

register C is stored with the value of number of iterations to be performed, and register D is

stored with the value of block size. To realize the encoder, following four routines are

written. The following four routines are called from the main routine during execution of the

algorithm.

 Routine ‘addblocks’ – This routine will add the two adjacent blocks in

general.

 Routine ‘rot’ – This routine will rotate the string of n bytes by one bit in

left circular shift.

 Routine ‘store’ – This routine will store the string as well as the

intermediate strings generated.

 Routine ‘subblocks’ – This routine will subtract the second block from the

first block in general.

Four routines are discussed followed by diagram. These subprograms are illustrated

from section 2.7.1 to 2.7.4 and main program is illustrated in section 2.7.5.

2.7.1 Algorithm of ‘addblocks’ routine

This routine has used HL pair as memory pointer, it will add two consecutive memory

locations pointed by HL-pair, and C register as counter, representing the number of times the

addition of blocks will be performed. The register D is stored with the value of the block size,

this value can be set to 08h means the block size is 8-bit or with any higher value, say 10h

means the block size is 16-bit and so on.

- 86 -

Step 1: Clear register C and CARRY flag.

Step 2: Load C with counter value, say 05H.

Step 3: Load D and E with block size, say 10H.

Step 4: Load HL pair to point to memory location F900H.

Step 5: Move the content of memory to A register.

Step 6: Increment HL pair as many a times the value stored in D.

Step 7: Move the content of memory to B register.

Step 8: Add A and B registers without CARRY.

Step 9: Move the result stored in A to memory location pointed to by HL pair.

Step 10: Decrement D.

Step 11: If D = 0, then go to Step 16.

Step 12: Load again HL pair with F900H.

Step 13: Decrement C register.

Step 14: Add the content of C to HL pair and store the result in HL pair.

Step 15: Repeat from Step 5.

Step 16: Increment HL pair by 10H.

Step 17: If C is zero then go to Step 18 else go to Step 6.

Step 18: Return.

By changing the value in register D the block size can be changed, register C here

store the number of iteration this modulo addition can be done, the result is stored in the

consecutive memory locations pointed by the HL-pair. After each addition the register C is

decremented by 1H and the HL-pair is incremented by block size, in this routine HL-pair is

incremented by 10H. The whole operation is repeated until register C becomes zero.

2.7.2 Algorithm of ‘rot’ routine

This routine rotates the string anticlockwise by one bit, containing n bytes. It is

assumed that the string is stored from F900H onwards, LSB in F900H. The ls bit of the string

stored in F900H is checked for 0 or 1 and set the carry accordingly. Then, the memory

pointer is set to the last location, containing the MSB, and rotates the byte left by one bit

through carry. The process is continued till the first location, containing the LSB, is reached.

- 87 -

Step 1: Register C is initialized as counter

Step 2: HL pair, used as memory pointer, is set to F900h

Step 3: The memory content is moved to A.

Step 4: 01h is ANDed with A.

Step 5: If the zero flag is set, register B is loaded with 00h, otherwise with 01h.

Step 6: The memory pointer is set to the last location.

Step 7: The ls bit in B is shifted to carry bit.

Step 8: The memory content is rotated through carry.

Step 9: The pointer is decremented.

Step 10: The byte counter, C is decremented.

Step 11: Till the counter is exhausted, go to step 8.

Step 12: Returned.

By changing the count value in C, the bit length in string can be changed, that is the

number of bits to be left circular rotated.

2.7.3 Algorithm of ‘store’ routine

This routine is used for storing the string as well as the intermediate string generated

from F900h onwards during encoding or decoding. Here the HL pair is used the pointer of the

memory from where the bytes will stored. The initialization of the HL pair is made through

the main program and will be used as parameter to the routine ‘store’.

Step 1: The BC and DE pair is saved in the stack.

Step 2: The D is initialized with byte counter.

Step 3: The BC pair is initialized with F900H.

Step 4: The content of memory pointed by BC pair is moved to A.

Step 5: The content of A is moved to the memory pointed by HL pair.

Step 6: The HL and BC pairs are incremented.

Step 7: The D, byte counter is decremented.

Step 8: Till it is zero, go to step 4.

Step 9: BC and DE pairs are incremented.

Step 10: Returned.

- 88 -

By changing the counter value in D, the byte length can be changed. Thus this routine

stores the intermediate results on memory location F900H onwards.

2.7.4 Algorithm of ‘subblocks’ routine

This routine has used HL pair as memory pointer, it will subtract second block from

the first block of two consecutive memory locations pointed by HL-pair, and C register as

counter, representing the number of times the subtraction of blocks will be performed. The

register D is stored with the value of the block size, this value can be set to 08h means the

block size is 8-bit or with any higher value, say 10h means the block size is 16-bit and so on.

Step 1: Clear register C and CARRY flag.

Step 2: Load C with counter value, say 05H.

Step 3: Load D and E with block size, say 10H.

Step 4: Load HL pair to point to memory location F900H.

Step 5: Move the content of memory to A register.

Step 6: Increment HL pair as many a times the value stored in D.

Step 7: Move the content of memory to B register.

Step 8: Subtract A from B registers.

Step 9: Move the result stored in A to memory location pointed to by HL pair.

Step 10: Decrement D.

Step 11: If D = 0, then go to Step 16.

Step 12: Load again HL pair with F900H.

Step 13: Decrement C register.

Step 14: Add the content of C to HL pair and store the result in HL pair.

Step 15: Repeat from Step 5.

Step 16: Increment HL pair by 10H.

Step 17: If C is zero then go to Step 18 else go to Step 6.

Step 18: Return.

By changing the value in register D the block size can be changed, register C here

store the number of iteration this modulo subtraction can be done, the result is stored in the

consecutive memory locations pointed by the HL-pair. After each subtraction the register C is

- 89 -

decremented by 1H and the HL-pair is incremented by block size, in this routine HL-pair is

incremented by 10H. The whole operation is repeated until register C becomes zero.

2.7.5 Main Program of MRMKRT

The generalized implementation is discussed here; MRMKRT is first implemented

with 8-bits block size, then with 16-bits block size followed by with 24-bits block size

continuing up-to 256-block size.

Main Program

1. Store A with 0H or 1H

2. If A = 0 Call ‘Encoding’ else Call ‘Decoding’

__

Encoding Decoding

1: Store register C with number of iteration 1: Store register C with number of iteration

2: Store register D with the block size 2: Store register D and E with the block size

3: Call routine ‘addblocks’ 3: Call routine ‘subblocks’

4: Call routine ‘store’ 4: Call routine ‘store’

5: Decrement D by 01H 5: Decrement D by 01H

6: If D=0 go to step(7) else go to step(3) 6: If D=0 go to step(7) else go to step(3)

7: Call routine ‘rot’ 7: Calculate B = E – C

8: Decrement C by 01H 8: Call routine ‘rot’

9: If C=0 go to step (10) else go to step (7) 9: Decrement B by 01H

10: Return 10: If B=0 go to step(11) else go to step(8)

 11: Return

Figure 2.7: MRMKRT encryption and decryption algorithm

Figure 2.7 gives the generalized routine for MRMKRT encryption and decryption.

Initially Accumulator (or any other register) is stored with the value 0H or 1H, 0H value for

encryption and 1H value for decryption.

- 90 -

In encryption routine, register C is stored with the number of iteration to be performed

and register D is stored with the block size. Then routine ‘addblocks’ is called to add

consecutive blocks given by HL-pair and after that routine ‘store’ is called to store the

intermediate results in stack. These processes will continue for given number of block sizes

as given by register D, thereafter routine ‘rot’ is called to rotate the blocks by circular left

rotation and the number of rotation is given by the value stored in register C.

In decryption routine, register C is stored with the number of iteration to be performed

and register D is stored with the block size. Then routine ‘subblocks’ is called to subtract the

second block from the first block of consecutive blocks given by HL-pair and after that

routine ‘store’ is called to store the intermediate results in stack. These processes will

continue for given number of block sizes as given by register D, thereafter routine ‘rot’ is

called to rotate the blocks by circular left rotation and the number of rotation is given by the

value stored in register B which is equal to E (block size) – C (number of iterations

performed during encryption).

2.8 Results and Comparisons

MRMKRT is also implemented in high-level C-programming language and some of

the results are extracted after encrypting some plaintext files then these are compared with

existing algorithms, RSA, to prove the feasibility of MRMKRT. Finally it is encoded for

microprocessor based system using 8085-assembly language programming. The acceptance

of any solution must satisfy some test parameters, here MRMKRT is tested for feasibility in

five dimensions, these are implementation based results, frequency distribution graph

analysis, Chi-Square test for non-homogeneity, time complexity analysis taking encryption

and decryption time and finally the avalanche ratio test. Section 2.8.1 discuss the

implementation based results, section 2.8.2 illustrates the frequency distribution analysis,

section 2.8.3 test for non-homogeneity, section 2.8.4 gives the time complexity analysis and

section 2.8.5 illustrates the avalanche ratio test.

2.8.1 Implementation Based Results

MRMKRT is encoded in 8085-assembly language program, MRMKRT is encoded

for 4-bit block size, then 8-bit block size continuing up-to 256-bit block size and finally a

- 91 -

generalized coding has been done. This section explains some of the implementation based

results.

Table 2.3: Implementation based results of MRMKRT

Characteristics ↓ Proposed Techniques MRMKRT

Block Cipher √

Fixed Length Block Cipher √

Variable Length Block Cipher -

Implementation in Bit-Level √

Implementation other than Bit-Stream -

Private/Symmetric Key System √

Substitution Technique √

Transposition Technique -

Boolean as Basic Operation √

Non-Boolean as Basic Operation √

No Alteration in Size √

Formation of Cycle √

Non-formation of Cycle -

Number of sub-programs used 4

Number of IO/M operations per block of encryption/decryption 9

Number of Boolean operations used per block of encryption/decryption 1

Number of Non Boolean operations used per block of encryption/decryption 5

Calculated T-states per block of encryption/decryption 760

MRMKRT is fixed length block cipher techniques and these are encoded with fixed

length block size say 8-bit, 16-bit, 24-bit continuing up-to 256-bit block size and finally a

generalized coding has been done. Technique is implemented in bit-level with

private/symmetric key cryptography. MRMKRT is substitution cipher, MRMKRT uses both

modulo addition (non Boolean) and Boolean as a basic operation. The plaintext size and

ciphertext size remains same for MRMKRT. MRMKRT forms cycle where the plaintext

regenerates after some finite number of iteration depends on block size and number of

iteration used during encryption. MRMKRT used 4 sub-programs and MRMKRT used 9

IO/M operations per block encryption/decryption. MRMKRT used one Boolean operation per

block of encryption/decryption but MRMKRT also used 5 non Boolean operations per block

of encryption/decryption. So, T-states calculated for MRMKRT is 760. Thus it can be said

that in microprocessor based implementation perspective MRMKRT is successfully realized.

Table 2.3 summarizes these discussions.

- 92 -

2.8.2 Frequency Distribution Analysis

The variation of frequencies of all the 256 ASCII characters between the source file

and the encrypted file are given in this section. The evenly distribution of character

frequencies over the 0-255 region of the encrypted file against the source file ensures better

security provided by the proposed algorithm, MRMKRT, and it also shows the

heterogeneity between the two files.

Figure 2.8: Frequency distribution of ASCII characters in the RSA encrypted file

The frequency distribution graph of RSA encrypted file is drawn in figure 2.8.

According to the percentage of occurrence of a particular character, not the total number of

occurrence. In the frequency distribution graph of RSA encrypted file it can be clearly seen

that the frequencies are scattered in some regions and not well distributed throughout the

region.

Although ten different files were encrypted and decrypted using both RSA and

MRMKRT, only one such file is considered here for analyzing the results. Figure 2.9

illustrates the frequencies of occurrence of all the 256 ASCII characters in the source file and

encrypted file with MRMKRT. A close observation will reveal that the characters in source

file are distributed in a particular region where as in the encrypted file using MRMKRT the

characters are fairly well distributed throughout the character space. Thus if comparing the

same with RSA, shown in figure 2.8 and MRMKRT, shown in figure 2.9, to find that the

characters of the MRMKRT encrypted file is well distributed than that of RSA encrypted file.

- 93 -

Figure 2.9: Frequency distribution of source file and MRMKRT encrypted files

Hence the MRMKRT scheme may be comparable with RSA in terms of frequency

distribution graph.

2.8.3 Non-Homogeneity Test

Non-homogeneity test illustrates how far the plaintext differs from ciphertext. This

test is carried out with the help of Chi-Square test. It’s basically a statistical test where

obtained frequency is compared with the expected frequency and thus giving the extent of

non-homogeneity between obtained frequency and expected frequency. In this section the

non-homogeneity between plaintext/source file and ciphertext/encrypted files is given.

- 94 -

Table 2.4: Chi-Square values of RSA and MRMKRT

Figure 2.10: Chi-Square values for MRMKRT and RSA encrypted files

Table 2.4 and figure 2.10 show the file size and the corresponding Chi-Square values

for ten different files. The Chi-Square values of the proposed algorithm, MRMKRT, are

coming to be in the range of twenty thousand, thirty thousand, forty thousand, fifty thousand

and so on, which are very good results indeed. It is observed that the Chi-Square values for

Source File File Size

(Bytes)

Chi-Square Value Degree of

Freedom

MRMKRT RSA MRMKRT RSA

license.txt 17,632 221484 40159 255 64

cs405(ei).doc 25,422 295480 199354 255 66

acread9.txt 35,121 420836 179524 255 73

deutsch.txt 47,829 555127 344470 255 77

genesis.txt 49,600 657591 416029 255 75

pod.exe 69,981 886397 751753 255 76

mspaint.exe 136,463 1213869 1204193 255 88

cmd.exe 152,028 1792759 585857 255 73

d3dim.dll 193,189 4351663 328677 255 10

clbcatq.dll 403,901 3823423 328511 255 11

- 95 -

MRMKRT are larger compared to RSA. Further, the high values prove that Chi-Square is

highly significant at 1% level of significance. Hence the source and the corresponding

encrypted files are considered to be heterogeneous. Also it has been noted that the time taken

to encrypt a file using MRMKRT is very small compared to that using RSA. One can decide

from this observation that MRMKRT is comparable to RSA from the heterogeneity point of

view.

Table 2.4 also gives values of degree of freedom; in this context the degree of

freedom means the different type of characters present in the encrypted file. If observing this

table the degree of freedom of MRMKRT encrypted files are coming to be 255 and that of

RSA encrypted file is quite less. It means that all the ASCII characters are present in

MRMKRT encrypted file and this result is at par with the frequency distribution graph, where

it is also seen that frequency of MRMKRT encrypted file is well distributed.

2.8.4 Time Complexity Analysis

Time complexity analysis is another vital algorithmic parameter, time complexity is

basically is the amount of time required for an algorithm to complete. The time complexity

analysis is basically done by two ways, first one is a priory estimates and second one is a

posteriori estimates. Second one is taken for tome complexity analysis of MRMKRT. This

section shows the time complexity analysis by taking encryption time and decryption time.

Table 2.5: The time complexity analysis of MRMKRT and RSA

Source File File Size

(Bytes)

Encryption time

(in Seconds)

Decryption time

(in seconds)

MRMKRT RSA MRMKRT RSA

license.txt 17,632 0.01 0.01 0.12 0.28

cs405(ei).doc 25,422 0.01 0.03 0.13 0.30

acread9.txt 35,121 0.15 0.21 0.15 1.67

deutsch.txt 47,829 0.18 0.35 0.18 3.51

genesis.txt 49,600 0.23 0.40 0.20 5.06

pod.exe 69,981 0.39 0.39 0.33 4.34

mspaint.exe 136,463 0.40 0.65 0.43 8.37

cmd.exe 152,028 0.44 0.61 0.51 6.59

d3dim.dll 193,189 0.57 0.75 0.52 10.15

clbcatq.dll 403,901 0.60 0.95 0.55 11.70

- 96 -

Figure 2.11: Encryption and decryption time of MRMKRT and RSA

Table 2.5 shows the encryption time and decryption time of the proposed technique

and that of RSA. Figure 2.11 represent the same graphically. The time complexity analysis is

one of the important factors in algorithm design. Here both encryption time and decryption

time is tabulated and shown in the figure. The green line shows the time complexity of RSA

- 97 -

and pink line gives the time complexity of this proposed technique, MRMKRT. If observing

the encryption time, MRMKRT time of encryption is marginally lower than that of RSA, and

observing the decryption time than it is seen that MRMKRT time of decryption is quite less

than that of RSA. The cumulative encryption time of MRMKRT is 2.98 seconds and RSA is

4.35 seconds. The cumulative decryption time of MRMKRT is 3.12 seconds and RSA is

51.97 seconds. Hence it can be concluded that the time complexity of the proposed technique,

MRMKRT, is quite less than that of RSA.

2.8.5 The Avalanche Test

The Avalanche ratio is another important parameter for the cryptographic security.

The Avalanche is the ratio of difference between the simple encrypted file and one bit

modified source/key file. The avalanche ratio is the degree of measure for cryptanalysis. In

general terms it is the measure that in what extent the characters/bits in the encrypted file will

differ if to modify some characters/bits in the source file or in the session key.

Table 2.6: Avalanche ratio values of MRMKRT and RSA

Source File File Size

(Bytes)

Avalanche Ratio

(in Percentage)

RSA MRMKRT

license.txt 17,632 58.0 77.7

cs405(ei).doc 25,422 60.0 80.0

acread9.txt 35,121 75.0 88.8

deutsch.txt 47,829 78.9 89.0

genesis.txt 49,600 80.9 87.0

pod.exe 69,981 58.0 77.0

mspaint.exe 136,463 58.9 76.0

cmd.exe 152,028 67.0 77.0

d3dim.dll 193,189 67.9 82.9

clbcatq.dll 403,901 68.0 88.5

Table 2.6 illustrates the result of avalanche ratio of the proposed technique,

MRMKRT. During this test some characters/bits in the source file are modified and then

again these modified source files are encrypted. Then the percentage of the difference

- 98 -

between the original encrypted files and the modified encrypted files are taken. It is observed

from table 2.5 that the avalanche ratio of the proposed technique is nearly 80% and that of

RSA is 65%, hence in terms of avalanche ratio analysis MRMKRT is quite comparable with

RSA.

2.9 Discussions

The technique proposed takes little time to encode and decode though the block

length is high. The encoded string will not generate any overhead bits. The block length may

further increased beyond 256 bits, which may enhance the security. Selecting the block pairs

in random order, rather than taking in consecutive order may enhance security. The proposed

scheme may be applicable to embedded systems. Since it is giving very good results for text

files so this proposed technique can be applicable in text based messaging, to encrypt and

decrypt the text messages. The main advantages of this proposed technique are its

heterogeneity and even frequency distribution. The main disadvantage is since it substitutes

the second block and the first block remains unaltered, so this leads to the weakness of these

techniques which are going to overcome in the next proposed technique.

Chapter 3

Recursive Transposition Technique (RTT)

3.1 Introduction

This is another method of Encoding as described in earlier chapters. It is also a

symmetric and block cipher type in connection with the encryption. MRMKRT described in

the previous chapter is a substitution type cipher where the modulo addition of two

consecutive blocks replaces the second block, RTT described in this chapter is a permutation

and substitution type cipher where permutation of plaintext bits are performed first and then

XOR operation is performed between two consecutive matrices and the result replaces the

second matrix. In MRMKRT modulo addition is the main component of this technique

whereas in RTT XOR is the main component of this technique. Considering that a k-bit string

is passed through the RTT encoder, which encodes a string of same length at its output as

shown in figure 3.1.

 Plaintext Ciphertext

Figure 3.1: RTT encoder

Let X be the string of k-bit. It is supplied as an input to the RTT Encoder. The

encoder will generate a string X’

of k-bit at the output. This is the first cycle of encoding. If

the generated string is allowed to pass to the input of the encoder again, then the encoder will

again generate a string X’’. This is called the 2
nd

 cycle and so on.

The process is repeated and checked each time at the output, whether the output is

identical with the string supplied initially (i.e. X) or not. It is assumed that the original string

is generated after i cycles. Then the intermediately generated one of (i-1) strings can be used

as encoded string.

Let consider that after m (m<i) cycles the generated string is used as encoded string.

The original string X can be decoded by applying (i-m) cycles on the encoded string.

This encoder has been tested and verified with the help of a microprocessor based

system, the specification of which is given the previous chapter, with a string of 256 bit

maximum. The length of string, as recommended presently, is sufficiently high for

decryption.

RTT Encoder

k-bit k-bit

- 102 -

Section 3.2 describe the algorithm of RTT, section 3.3 explain key generation process,

section 3.4 performs an analysis, section 3.5 give the implementation details, section 3.6

illustrates results and comparisons and section 3.7 gives a short discussions and chalk out the

future work (the next part of this thesis with FPGA-based solutions).

3.2 The Algorithm of RTT

The plaintext is first broken down into blocks of bits then RTT encryption is

performed, same is done during RTT decryption. The number of iterations in encryption and

decryption is also same. A generalized approach has been consider to describe RTT.

RTT is proposed here which shows comparable result in terms of Non-Homogeneity

test, time complexity analysis and avalanche ratio test than that of RSA, and MRMKRT. RTT

is also a bit level symmetric key cryptography.

Figure 3.2: Block diagram of Recursive Transposition Technique (RTT)

- 103 -

Encryption and decryption is broadly divided into seven steps, firstly n-bit source

stream is formed into blocks, then these blocks are formed into matrix, XOR operation is

performed into two consecutive matrices, result in formation of output matrix, then these

matrix are again formed into blocks, these steps are repeated for various block sizes and

iteration given by session key, finally blocks are merged to form output stream.

Figure 3.2 shows the block diagram of RTT. Section 3.2.1 describes the encryption

process in details, section 3.2.2 describes the decryption process in details, and section 3.2.3

illustrates an example.

3.2.1 The Encryption Process

The block diagram of RTT is shown in figure 3.2. The input stream is rounded into

blocks of n- bits each the n may be even or it may be odd and pairing the blocks as explained

in section 3.1, the following operations are performed starting from the most significant side.

This is a recursive type algorithm/technique.

Initially, the whole plain text is considered as a stream of bits and it is broken down

into a finite number of k blocks. As it is generalized approach so block size of k = 2 * n or

(2*n +1) where n = {1,2,3,……} is a set of positive integer. The block size varies between

even and or odd numbers of bits. As shown in figure 3.2, let n-bit plaintext form two blocks

be [a1,a2,a3, ……a9] and [a10,a11,a12, …..a18], here it can be seen that the block size is 9-

bit which odd number of bits is. The block length may be odd or even bits which is the

strength of this technique.

Now, the blocks are formed into a matrix of n * m size where ‘n’ is the number of

rows and ‘m’ is the number of columns respectively of the matrix. As shown in the figure the

two nine bit blocks forms two 3 X 3 matrices.

Then, two matrices are XORED, b1 = a1 XOR a10, b2 = a2 XOR a11, b3 = a3 XOR

a12, …….b9 = a9 XOR a18.

Next, the resultant matrix replaces the second matrix remaining the first matrix as it

is. So, as shown in the block diagram of RTT, now get the two matrices [a1,a2,a3, …..a9] and

[b1,b2,b3, ……..b9]. The two matrices are noted down in row major order to get the cipher

text. Here to get the n-bit ciphertext as [a1,a2,a3, ……a9,b1,b2,b3,……b9].

After that, the whole operation is performed on k numbers of blocks that is 0
th

 block

to (k-1) the block.

- 104 -

Lastly, the whole operation is performed for various block sizes, matrix sizes and

number of iteration. The block sizes, matrix sizes and iterations will form a part of the session

key as discussed in section 3.3. The different values of block size, matrix size and iteration

number will give total different ciphertext output for same plaintext. This is another strength

of this technique, which is the flexibility described in section 3.4.

3.2.2 The Decryption Process

The technique is symmetric in nature so the decryption is done in similar manner. The

decryption is nothing but the iteration of the same encryption process until the source stream

is got. The number of iteration requires for the decryption depends upon the block size,

matrix size and the number of iterations performed during encryption.

Firstly, n-bit ciphertext is again broken down into two blocks, [a1,a2,a3, …….a9] and

[a10,a11,a12, ……a18].

Now, this two block is now formed into two 3 X 3 matrices and XOR operation is

performed. So, get b1 = a1 XOR a10, b2 = a2 XOR a11, b3 = a3 XOR a12, …….b9 = a9

XOR a18.

Then the result replaces second matrices, last get the n-bit plaintext as [a1,a2,a3,

……a9,b1,b2,b3, …….b9].

3.2.3 Example

RTT is also a variable length block-cipher, that is block size is not restricted to 2
n
,

where n = {Set of positive integers}. Here block sizes are of odd number of bits. This

property gives the programmer the flexibility to encode RTT technique in many different

ways/solutions. This is explained elaborately in section 3.4.

=

Figure 3.3: Algorithmic flow in RTT

 IP1

 101

 010

 111

IP2

100

000

101

OP1

101

010

111

OP2

001

010

010

- 105 -

As shown in figure 3.3 let consider a source stream of S= 101010111100000101. This

source stream is formed into two 3 x 3 matrix. In the figure IP1 and IP2 are the two input

matrices. Now, bit wise XOR is performed between matrix IP1 and matrix IP2. Here

considering only the first row of the two input matrices, a1 = 1, a2 = 0, a3 = 1 in IP1 and a10

= 1, a11 = 0, a12 = 0 in IP2. The exclusive operation will result in, b1 = 1 XOR 1 = 0, b2 = 0

XOR 0 = 0, b3 = 1 XOR 0 = 1. So, the output bits are 0, 0, 1 which is the first row of the

output matrix OP2, OP1 is same as IP1. Similar operation will be performed for the second

and third input matrices. As given in figure 3.3 after the encryption process the resultant

cipher text is obtained as S’ = 101010111001010010. Following the same steps during

decryption then plaintext is regenerated.s

3.3 Key Generation Process

In the proposed RTT, the key generation process is given for both fixed block size and

also for variable block size. The fixed block size are those where the plaintext and ciphertext

are grouped into 2
n
 block sizes, where ‘n’ is the set of positive integers and the variable block

size are those where the plaintext and ciphertext are grouped into odd number of bits block

sizes.

Table 3.1: Number of iteration against block sizes

In the key generation process of fixed block size eight rounds have been considered,

each for 2, 4, 8, 16, 32, 64, 128, and 256-block sizes. As given in table 3.1, each round is

Round Block

Size

Number of Iterations

Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

Tag field 0

- 106 -

repeated for a finite number of times, for example, for block size of 8-bits (round 3) the

iteration is for 4321 times, so, the number of iterations will form a part of the encryption-key.

Although the key may be formed in many ways, for the sake of brevity it is proposed to

represent the number of iterations in each round by a 16-bit binary string. Since there are

eight rounds so, the binary strings are then concatenated to form a 16 X 8 = 128-bit key for a

particular session. The tag field is also a part of key as given in table 3.1, tag value 0 means

RTT encryption and 1 means RTT decryption, so, the tag field is concatenated at LSB to get

the key of 129 –bit length.

Table 3.2 gives the key generation process for variable block size operation. Here, if

to see the round 4, so, the block size here is of 61-bits and the number of iteration for this

block size is 38 times. Hence, the block size here is also a part of session key since its value

is variable.

In this process the block size is taken as 8-bit value and iteration is also an 8-bit value

per round. Therefore for each round total bits is 8 + 8 = 16 bits. There are eight rounds so

total size is 16 X 8 = 128-bits.

Table 3.2: Key generation for variable block length technique, RTT

Round Block Size Number of Iterations

Decimal Binary Decimal Binary

8. 253 11111101 203 11001011

7. 103 01100111 101 01100101

6. 99 01100011 83 01010011

5. 70 01000110 55 00110111

4. 61 00111101 38 00100110

3. 33 00100001 20 00010100

2. 17 00010001 10 00001010

1. 3 00000011 2 00000010

Tag field 1

Adding the tag field get total session key length as 129-bits. So, in either or both cases

the key bit length is 128 bits + 1 tag bit = 129 bits.

- 107 -

3.4 Analysis

This technique is very much flexible and has a generalized approach. As this

technique uses the concept of matrix so a little alteration in the algorithm produces a larger

avalanche. The alteration comes up with the following specifications:-

 The block sizes can be changed to get a different solution. In the example

given in section 3.2.3, the block size is 9-bits, if to change the block size to 16-

bits then there will be different solution for the same plaintext.

 Matrix size can also be altered to get a different solution, for example the 16-

bit block size can get 4 X 4 matrix and 8 X 2 matrix sizes.

 The 1
st
 matrix and or 2

nd
 matrix can be transposed to get a different

cryptographic solution.

 The orientation among the rows and or columns of the either and or both

matrix also leads to another cryptographic solution. Such as after formation of

two input matrices, the first row or column of the first input matrix is swapped

with third row or column. This will result another cryptographic solution for

the same plaintext.

So, there are many ways of alteration possible to generate new ciphers.

Considering a k-bit string is passed through the Recursive Transposition Technique

(RTT) encoder, which encodes a string of same length at its output. Let X is the string of k-

bit. It is supplied as an input to the RTT Encoder. The encoder will generate a string X
1

of k-

bit at the output. This is the first cycle of encoding. If the generated string is allowed to pass

to the input of the encoder again, then the encoder will generate a string X
2

. This is called

the 2
nd

 cycle and so on. The process is repeated and checked each time at the output, whether

the output is same as the string supplied initially (i.e. X) or not. It is assumed that the

original string is generated after i cycles. Then the intermediately generated one of (i-1)

strings can be used as encoded string. Consider that after m (m<i) cycles the generated string

is used as encoded string. The original string X can be decoded by applying (i-m) cycles on

the encoded string.

In microprocessor based implementation MRMKRT used three routines which are

then called by main program of MRMKRT. Whereas RTT uses eight subroutine which is

- 108 -

then called by main program (as it will be seen shortly in section 3.5), so, the space and time

complexity of microprocessor implementation of RTT is quite more than MRMKRT.

MRMKRT there is replacement of only one block, that is, only second block was replaced

keeping the first block intact. The RTT can also be implemented for the replacement of two

blocks; it is one of the flexibility of RTT. In this technique the number of iteration needed for

decryption is same as the number of iteration needed for encryption. The first routine will

clear the memory locations for storing the counter needed for regeneration of stream, so if to

consider three iterations for encryption then there will be three more iteration for decryption;

hence the total value of this counter is six. Therefore, in microprocessor implementation

perspective the RTT is more complex in terms of time and space than MRMKRT.

RTT consist of matrix operation for both encryption and decryption so the algorithmic

complexity found to be O(n
2
) which is much less than MRMKRT where the algorithmic

complexity is O(n
4
).

3.5 Implementation

RTT is a variable length block size so it is first implemented in 9-bits, then 17-bits,

then 35-bits and continuing up-to 255-bits block size, in this section the generalized

implantation has been discussed.

The routines are developed for realizing the RTT Encoder. The routines are

generalized in nature. With proper change in parameter in the routines, these may be used for

any bit stream. The algorithms are written for 255 bit string. The registers described in

algorithms below are A (Accumulator), B, C, D, E, H, L, SP (Stack Pointer) and PC

(Program Counter). The BC, DE and HL are used as a pair of registers.

The routines are:

 Save: This routine saves the final result.

 B: This routine saves the intermediate results.

 A: This routine form the block size.

 C: This routine form the matrix.

 Prg: This routine performs XOR operation.

 Outp: This routine forms the output matrix.

 Supply: This routine regenerates the blocks.

- 109 -

The subroutines are described from section 3.5.1 to section 3.5.7 and the main

program routine is given in section 3.5.8.

3.5.1 Routine ‘save’

This routine saves the final result. This routine saves the string stored from FA00h

onwards to the save area which starts from F9B0h onwards. Here ‘D’ register is used as

counter, HL and BC pair is the memory pointer, loop is used to store the final data byte by

byte. Since it is a generalized approach, RTT has been implemented for 256 bits, so the loop

will iterate for 32-times as there are 32 bytes. All the subroutines are called in main program

described in section 3.5.8.

Step 1: The D register is used as counter, loaded with 20h.

Step 2: The HL pair is used as pointer pointed to F9B0h, the destination

Step 3: The BC pair is used as pointer pointed to F9B0h, the source.

Step 4: The memory content pointed by BC pointer is moved to A.

Step 5: The content of A is moved to destination.

Step 6: The HL and BC pairs are incremented

Step 7: The counter register, D is decremented, till the counter is exhausted, go

to step 4

Step 8: Return

3.5.2 Routine ‘b’

This routine saves the intermediate results. This routine clears the temporary result

area starts from FA20h onwards for 20h bytes. HL pair is used sa a memory pointer, routine

firs clears the temporary result area then stores the intermediate results. The register C is the

counted which is loaded with 32 byte.

Step 1: The HL pair is used as memory pointer pointed to FA20h

Step 2: The register A is cleared.

Step 3: The register C, used as counter is loaded with 20h.

Step 4: The content of A is moved to memory.

- 110 -

Step 5: The memory pointer, HL pair is incremented.

Step 6: The counter is decremented.

Step 7: Till the counter is exhausted, go to step 4

Step 8: Return

3.5.3 Routine ‘a’

This routine forms the blocks with given block size, register A is the counter, HL and

BC pairs are used as memory pointer, register D is used for loop, register E is the block size.

Step 1: The register A is loaded with count value, 20h and saved in FE00h

Step 2: The HL pair used as pointer is pointed to memory location FE00h.

Step 3: The BC pair is pointed to memory location FA00h.

Step 4: The register D is cleared.

Step 5: The register E is loaded with 08h.

Step 6: The content of the memory pointed by the BC pair is moved to the

register A.

Step 7: The content of A is rotated right through carry.

Step 8: Jump on no-carry to step 11.

Step 9: On carry, the content of D will move to the memory pointed by the HL

pair.

Step 10: The HL pair is incremented.

Step 11: The D register is incremented.

Step 12: The E register is decremented.

Step 13: Till the register E is exhausted, go to step 7.

Step 14: Else the BC pair is incremented.

Step 15: The count value is retrieved and decremented and pushes back to the

stack.

Step 16: Till the count value is exhausted, go to step 5.

Step 17: The content of L is moved to the memory location FDFFh.

Step 18: Return

- 111 -

3.5.4 Routine ‘c’

This routine form the matrices of the input stream, HL pair is used as memory pointer,

register C is the matrix size, MSB 4-bits is the row size of the matrix and the LSB 4-bits are

the column size. This routine also calls routine ‘prg’ to perform matrix wise XOR operation.

Step 1: The HL pair used as pointer is set to the memory location FDFFh.

Step 2: The content of the memory location FDFFh is moved to C register.

Step 3: Is the memory content zero?

Step 4: If yes, return.

Step 5: Else, the HL pointer is incremented to FE00h.

Step 6: The routine ‘prg’ is called.

Step 7: The register C is decremented.

Step 8: Till the content of register C is exhausted, go to step 5.

Step 9: Return.

3.5.5 Routine ‘prg’

This routine performs the XOR operation of the two consecutive matrices. The

register H is loaded with FBh which is the matrix location, XOR operation is performed bit

by bit of the two consecutive memory locations. The row and column information is obtained

from register A and C. Thus this routine performs the main function of RTT Encoding.

Step 1: The content of the memory is moved to the register L.

Step 2: The register H is loaded with FBh.

Step 3: The memory content is moved to register A and C register. This 8 bit

data gives the row and column information of the position of the target.

The 5 most significant bits give the row and the 3 least significant bits

the column information.

Step 4: The row information is derived from the data, stored in register E and

in memory FAFFh.

Step 5: The column information is derived from the data and stored in FAFFh.

Step 6: The BC pair is set to FAFEh.

Step 7: The HL pair is set to FA20h, the base address of the result area.

- 112 -

Step 8: The content of the memory, pointed by BC pair is moved to register A.

Step 9: If the content of A is zero, go to step 11.

Step 10: The HL pair is incremented and the A register is decremented till the

content of A is zero.

Step 11: The BC pair is pointed to the memory location FAFFh.

Step 12: The content of FAFFh is moved to the register A.

Step 13: The register D is loaded with 00000001b.

Step 14: If the content of A is zero, go to step 20.

Step 15: Else, the content of A is moved to the register C.

Step 16: The content of register D is moved to the register A.

Step 17: The content of A is rotated left and the register C is decremented.

Step 18: Till the content of C is exhausted, go to step 17.

Step 19: The content of A is moved to D register.

Step 20: The content of A is XORed with that of the memory and the result is

in A.

Step 21: Return.

3.5.6 Routine ‘outp’

This routine compares the data from location F9B0h onwards with that of FA20h

onwards for 20h bytes. This routine regenerates the output matrix, HL and BC pair is used for

memory pointer, register D is counter, as it is a generalized implementation of 256-bits

source stream so there are 32 bytes which is 20h and loaded into register D.

Step 1: The HL pair and BC pair are pointed to F9B0h and FA20h

respectively.

Step 2: The register D used as counter is loaded with 20h.

Step 3: The content of memory pointed by BC pair is moved to A.

Step 4: The content of A is compared with that of the memory, pointed by the

HL.

Step 5: If not zero, go to step 9.

Step 6: Else, the HL pair and BC pair are incremented.

Step 7: The register D is decremented.

Step 8: If not zero, go to step 3.

- 113 -

Step 9: Return.

3.5.7 Routine ‘supply’

This routine is used to supply the generated string at FA20h onwards to FA00h

onwards for 20h bytes. This routine regenerates the output blocks. HL and BC pair is used as

memory pointer. Register D is loaded with 20h (32 bytes) to regenerates the output blocks.

Step 1: The HL and BC pair are pointed to FA00h and FA20h respectively.

Step 2: The register D used as counter is loaded with 20h.

Step 3: The content of the memory pointed by BC pair is moved to A.

Step 4: The content of A is moved to the memory pointed by the HL pair.

Step 5: Both the BC and HL pairs are incremented.

Step 6: The content of D register is decremented.

Step 7: Till the content of D is exhausted, go to step 3.

Step 8: Return.

3.5.8 Algorithm of the Main Program for RTT Encoder

The main program for RTT Encoding calls the routines described above for the

transformation. When the routines are called, the registers used for it are properly saved in

the stack and at the time of leaving the routine the previous condition is restored by popping.

Step 1: The stack pointer SP is initialized at the highest address of the usable

RAM.

Step 2: A register pair HL is used as pointer for iteration / cycle is initialized.

Step 3: Another pointer used for storing the result (the transformed block) is

saved in memory.

Step 4: The routine ‘save’ is called to save the string from FA00h onwards to

F9B0h onwards.

Step 5: The routine ‘b’ is called the temporary result area.

Step 6: The routine ‘a’ is called to find the positions of 1s in the string and

store from FE00h onwards.

- 114 -

Step 7: The routine ‘c’ is called to check for presence of 1s in the string and

calls ‘prg’ for the transformation consulting the table stored FB00h

onwards.

Step 8: The content of the memory pointed by the pointer is incremented.

Step 9: The routine ‘outp’ is called to compare the generated string with the

saved string.

Step 10: The transformed block is equal to the original block, the result is

displayed and go to step 12.

Step 11: Else, the generated result is supplied to the location from where the

transformation will begin, by calling the routine ‘supply’ and go to

step 5.

Step 12: Stop and end.

The above algorithm is implemented in assembly level for 15 bit initially in order to

verify the transformation. The same algorithm is extended to 255 bit block with the presently

available microprocessor based kit in the laboratory. It is worth pointing that there is no

limitation in increasing the length of the block, if the microprocessor based system supports

with large memory. For the bit-length higher than 255 bit, the destination of the target has to

be coded for more than 9 bits. The developed assembly level programs are available.

Therefore the theoretically computed iterations / cycles conforms the experimental value.

3.6 Results and Comparisons

RTT is also implemented in C-programming language and some of the results are

taken to compares with RSA and MRMKRT, to prove the feasibility of RTT and then finally

implemented for microprocessor based solutions. Section 3.6.1 discuss implementation based

issues, section 3.6.2 illustrates the frequency distribution graph, section 3.6.3 test for non-

homogeneity, section 3.6.4 gives the time complexity analysis and section 3.6.5 illustrates the

avalanche ratio test.

3.6.1 Implementation Based Results

MRMKRT and RTT are encoded in 8085-assembly language program, MRMKRT is

encoded for 4-bit block size, then 8-bit block size continuing upto 256-bit block size and

- 115 -

finally a generalized coding has been done. RTT is variable length techniques and these are

encoded with variable length block size say 9-bit, 15-bit, 25-bit continuing upto 255-bit block

size and finally a generalized coding has been done. Techniques are implemented in bit-level

with private/symmetric key cryptography. MRMKRT is substitution cipher where as RTT is

substitution and transposition technique, RTT uses Boolean as basic operation and

MRMKRT uses both modulo addition (non Boolean) and Boolean as a basic operation.

Table 3.3: Comparisons of MRMKRT and RTT

Characteristics ↓ Proposed Techniques MRMKRT RTT

Block Cipher √ √

Fixed Length Block Cipher √ -

Variable Length Block Cipher - √

Implementation in Bit-Level √ √

Implementation other than Bit-Stream - -

Private/Symmetric Key System √ √

Substitution Technique √ √

Transposition Technique - √

Boolean as Basic Operation √ √

Non-Boolean as Basic Operation √ -

No Alteration in Size √ √

Formation of Cycle √ √

Non-formation of Cycle - -

Number of sub-programs used 4 7

Number of IO/M operations per block of encryption/decryption 9 5

Number of Boolean operations used per block of encryption/decryption 1 1

Number of Non Boolean operations used per block of

encryption/decryption

5 0

Calculated T-states per block of encryption/decryption 760 544

Figure 3.4: Graphical representation of comparisons of MRMKRT and RTT

- 116 -

The plaintext size and ciphertext size remains same for both proposed techniques.

MRMKRT and RTT forms cycle where the plaintext regenerates after some finite number of

iteration depends on block size and number of iteration used during encryption. MRMKRT

and RTT used 4 and 7 sub-programs respectively. MRMKRT used 9 IO/M operations, and

RTT used 5 IO/M operations per block encryption/decryption. MRMKRT and RTT used one

Boolean operation per block of encryption/decryption but MRMKRT also used 5 non

Boolean operations. So, T-states calculated for MRMKRT and RTT are 760 and 544

respectively. Thus it can be said that in microprocessor based implementation perspective

RTT is the faster than MRMKRT in terms of execution speed per block of

encryption/decryption. Table 3.3 and figure 3.4 summarize these discussions.

3.6.2 Frequency Distribution Graph

This section illustrates frequency distribution graph obtained after encrypting source

file/plaintext file with RSA, MRMKRT and RTT. The frequency distribution graph shows the

percentage of occurrences of 256-ASCII characters in both plaintext/source file and

ciphertext/encrypted file. Though there are ten files encrypted with all four

algorithms/techniques but here one source file and the corresponding encrypted file is taken

for analysis as other nine files shows the same result. This analysis is one of the important

statistical analyses for any cryptographic solutions.

Figure 3.5: The frequency distribution graph of RSA encrypted file

- 117 -

Figure 3.6: The frequency distribution graph of source file and MRMKRT encrypted file

Figure 3.7: Frequency distribution graph of RTT encrypted file

 The variation of frequencies of all the 256 ASCII characters between the source file

and the encrypted file are given in above figures. Over the 0-255 region of the encrypted file

against the source file ensures better security provided by the proposed algorithm and it also

shows the heterogeneity between the two files. These variation frequencies ensure against

- 118 -

brute force attack. Figure 3.5 shows the frequency distribution of RSA encrypted file. Figure

3.6 shows the frequency distribution of source file and frequency distribution of MRMKRT

encrypted file. The upper half is the frequencies of source file and lower half is the

frequencies of MRMKRT encrypted file. Figure 3.7 shows the frequency distribution of RTT

encrypted file. The frequency distribution of this proposed technique, RTT, is well

distributed. It is also observed that the frequency of MRMKRT is also well distributed. But it

is evident that the frequency distribution of RSA is not well distributed. So it can be say that

the proposed technique, RTT, shows a marginal improvement over RSA but this result is

same for MRMKRT. Thus it can be said that RTT is well comparable with RSA and

MRMKRT in terms of frequency distribution analysis.

3.6.3 Non-Homogeneity Test

Chi-Square test is carried out to perform non-homogeneity test, the observed

frequency is here the plaintext file and the expected frequency is here the ciphertext file. Chi-

Square test basically gives the non-homogeneity between observed frequency and expected

frequency, therefore giving the non-homogeneity between plaintext and ciphertext.

Table 3.4: Chi-Square values of RSA, MRMKRT and RTT

Source File File Size

(Bytes)

Chi-Square Value Degree of Freedom

RTT MRMKRT RSA RTT MRMKRT RSA

license.txt 17,632 240550 221484 40159 255 255 64

cs405(ei).doc 25,422 270080 295480 199354 255 255 66

acread9.txt 35,121 449011 420836 179524 255 255 73

deutsch.txt 47,829 582499 555127 344470 255 255 77

genesis.txt 49,600 688115 657591 416029 255 255 75

pod.exe 69,981 916577 886397 751753 255 255 76

mspaint.exe 136,463 1340770 1213869 1204193 255 255 88

cmd.exe 152,028 1990000 1792759 585857 255 255 73

d3dim.dll 193,189 4350880 4351663 328677 255 255 10

clbcatq.dll 403,901 4425780 3823423 328511 255 255 11

The Chi-Square values are used to analyze the scheme to test the non-homogeneity of

the source and the encrypted file. Table 3.4 gives the file size and the corresponding Chi-

- 119 -

Square values for ten different types of files. It is evident that Chi-Square values for RTT are

greater compared to RSA and MRMKRT. The average Chi-Square values of RTT,

MRMKRT and RSA are 1525426, 1421863 and 437853 respectively. Hence the source and

the corresponding encrypted files of RTT are considered to be more heterogeneous than rest

of the techniques/algorithm, RSA and MRMKRT.

Figure 3.8: Graphical comparisons of Chi-Square values of RTT, MRMKRT and RSA

 Figure 3.8 shows the Chi-Square value graph of RTT, MRMKRT and RSA encrypted

files of the corresponding files. Ten files are encrypted with RTT, MRMKRT and RSA and

their values are tabulated and shown in figure. It is obvious that Chi-Square value of RTT is

greater than that of MRMKRT and RSA. Therefore it can be said that RTT shows more

heterogeneous result than MRMKRT and RSA.

3.6.4 Time Complexity Analysis

 Time complexity analysis is another important algorithmic parameter. A posteriori

estimate method of time complexity analysis has been done, in this method an algorithm is

encoded first and then the time of executing is noted down with test data. In this section

- 120 -

encryption time and decryption time is taken as parameters for performing time complexity

analysis.

Table 3.5: Comparisons of time complexity analysis of RTT, MRMKRT and RSA

Source File File Size

(Bytes)

Encryption time (in

Seconds)

Decryption time (in

seconds)

RTT MRMKRT RSA RTT MRMKRT RSA

license.txt 17,632 0.01 0.01 0.01 0.00 0.12 0.28

cs405(ei).doc 25,422 0.01 0.01 0.03 0.01 0.13 0.30

acread9.txt 35,121 0.05 0.15 0.21 0.05 0.15 1.67

deutsch.txt 47,829 0.12 0.18 0.35 0.10 0.18 3.51

genesis.txt 49,600 0.20 0.23 0.40 0.20 0.20 5.06

pod.exe 69,981 0.37 0.39 0.39 0.35 0.33 4.34

mspaint.exe 136,463 0.40 0.40 0.65 0.38 0.43 8.37

cmd.exe 152,028 0.42 0.44 0.61 0.42 0.51 6.59

d3dim.dll 193,189 0.45 0.57 0.75 0.45 0.52 10.15

clbcatq.dll 403,901 0.55 0.60 0.95 0.55 0.55 11.70

 Table 3.5 illustrates time complexity data taking encryption time and decryption time.

It is observed that the cumulative time of encrypting all the ten files of RTT is 2.58 seconds,

MRMKRT is 2.98 seconds and RSA is 4.35 seconds. It is also observed that cumulative time

of decrypting all the ten files of RTT is 2.51 seconds, MRMKRT is 3.12 seconds and RSA is

51.97 seconds. Thus in terms of time complexity analysis RTT is far better that MRMKRT

and RSA.

Figure 3.9: Pictorial representation of time graph of RTT, MRMKRT and RSA encryption

- 121 -

Figure 3.10: Pictorial representation of time graph of RTT, MRMKRT and RSA decryption

 Figure 3.9 shows the encryption time of RTT, MRMKRT and RSA. It has been seen

that encryption time complexity of RTT is quite comparable with MRMKRT and RSA.

Figure 3.10 shows the decryption time of RTT, MRMKRT and RSA. The decryption time of

RSA is so large that rest of the techniques almost falls in same line. But still it can be said

that time complexity of RTT is quite comparable with MRMKRT and RSA.

3.6.5 The Avalanche Ratio Test

 The extent of dependency between many bits of plaintext, ciphertext and key is shown

with the help of Avalanche ratio test. If a single bit in plaintext or key is modified then it will

alter many bits of the ciphertext. Thus avalanche ratio test is another important cryptographic

parameter, this section performs this test.

 Table 3.6 shows the avalanche ratio test results of RTT, MRMKRT and RSA. This

test doesn’t show any significant result of RTT. MRMKRT involves left circular rotation

after modulo addition so avalanche ratio test is greater in MRMKRT than RTT where only

one block (second block) is replaced during encryption. The avalanche ratio test of RTT is

comparable with RSA.

- 122 -

Table 3.6: Comparisons avalanche ratio of RTT, MRMKRT and RSA

Source File File Size (Bytes) Avalanche Ratio(in Percentage)

RSA MRMKRT RTT

license.txt 17,632 58.0 77.7 60.0

cs405(ei).doc 25,422 60.0 80.0 65.0

acread9.txt 35,121 75.0 88.8 68.5

deutsch.txt 47,829 78.9 89.0 73.0

genesis.txt 49,600 80.9 87.0 75.5

pod.exe 69,981 58.0 77.0 80.0

mspaint.exe 136,463 58.9 76.0 81.5

cmd.exe 152,028 67.0 77.0 70.0

d3dim.dll 193,189 67.9 82.9 73.5

clbcatq.dll 403,901 68.0 88.5 65.0

3.7 Discussions

 The technique proposed giving satisfactory result in heterogeneous point of view. The

average Chi-Square values of RTT, MRMKRT and RSA are 1525426, 1421863 and 437853

respectively. So, it can be concluded that this proposed RTT, has the highest average Chi-

Square value and is most heterogeneous. The block length may further increased beyond 256

bits, which may enhance the security. The future scope of this work is to incorporate the

algorithm / Technique in embedded systems. The satisfactory results have been found after

implementation and testing. So, this technique is can be used in future for achieving security

in electronic devices.

 The future scope of work is to propose various cryptographic solutions/techniques in

FPGA based systems. As FPGA based system is a hot research topic now a day so the

candidate developed some FPGA based systems. Six set of algorithms/techniques has been

proposed for FPGA-Based solutions. These are given in next sections of this thesis.

Section II

FPGA Based Solutions

Chapter 4

Two Pass Replacement Technique (TPRT)

4.1 Introduction

Corporate objectives, such as increasing profits and sales revenue while utilizing

research and development efficiently, are putting severe pressure on today’s research and

design engineering teams. The resulting system level challenges—creating new products and

lowering the cost of existing “successful” products with fewer people and resources in less

time—can be addressed by using a design philosophy based on FPGAs. A system

architecture using FPGAs as a key component not only reduces new product-development

research and development costs but also the total cost of the organization of a product’s entire

life cycle. It is the new low cost, power devices, the FPGA family, can reduce total system

costs in addition to improving the quality of the products.

Global competition and economic factors are squeezing profits and sales of high-tech

products, putting tremendous pressure on design engineer to bring to market products with

lower cost. Investing in research and development in new product development presents two

different system challenges: creating completely new products that take advantage of the

latest technologies, features, or solutions available in the market, and developing the same for

low cost. For high-tech companies in today’s cost-conscious and power-sensitive “green”

environment, the first challenge translates into creating a completely new product with some

specific functionality not offered by anyone else, while having a lower priced entry point

and/or lower power footprint. The cost reduction of existing successful products is typically

handled by driving down the cost of the components from the product’s bill of materials is

another challenge. Another option is for design teams to redesign the product, not for new

functionalities, but also to achieve more significant reduction of costs.

These goals can be achieved now with a new technological solution namely “FPGA-

based system design”. Keeping views with all these section II of thesis deals with

cryptographic solutions based on FPGA.

In previous section, chapter two and chapter three MRMKRT and RTT were designed

and proposed respectively for microprocessor based systems. As FPGA has revolutionised

the hardware design so the next six techniques are proposed based on FPGA systems.

Section 4.2 discussed the algorithm of TPRT with a block level diagram, section 4.3

gives a detailed example of encryption and decryption process, section 4.4 discussed the

implementation issues with key generation, section 4.5 gives a brief analysis, section 4.6

discussed the results obtained based on implementation and discussions are given in section

4.7.

- 128 -

4.2 The Algorithm of TPRT

.

The proposed technique is a type of replacement technique or substitution technique.

A substitution cipher is one in which each symbol of the plaintext is exchanged for another

symbol. If this is done uniformly this is called a mono-alphabetic cipher or simple

substitution cipher. If different substitutions are made depending on where in the plaintext the

symbol occurs, this is called a poly-alphabetic substitution. This proposed technique is a

poly-alphabetic cipher.

The original message is considered as a stream of bits, which is then divided into a

number of blocks, each containing k (variable number of bits) bits. As it is a generalized

approach so, k = 2 * n or k = (2*n+1) that is even or odd numbers of bits per block, where n =

{set of positive integers}. The technique is implemented in both FPGA-based system and in

high level programming language. The two adjacent blocks of a given size are XORed, the

result replaces the second block, and the first block remains unchanged. In next iteration the

two adjacent blocks are again XORed, now result replaces the first block, and the second

block remains unchanged. Then writing the adjacent two blocks gives the target stream. The

same process is repeated in whole message using a variable size of stream. The round is

repeated for a finite number of times and the intermediate stream is considered as an

encrypted stream.

The technique is symmetric in nature so the decryption is done in similar manner.

After decomposing the encrypted stream into number of blocks, the two adjacent blocks are

XORed, the result replaces the first block, and the second block remains unchanged. In next

iteration the two adjacent blocks are again XORed, now result replaces the second block, and

the first block remains unchanged. The decryption is nothing but the iteration until the source

stream is got. The number of iteration requires for the decryption depends upon the block size

and the number of iterations performed during encryption. The flow is during encryption in

first iteration second block is changed with the XORed result and in the second iteration first

block is changed with the XORed result. During decryption in first iteration first block is

changed with the XORed result and in the second iteration second block is changed with the

XORed result.

TPRT is a bit-level symmetric key block cipher. The number of iterations required for

TPRT decryption is same as the number of iterations used in TPRT encryption. A generalized

approach is taken for explaining the algorithm of TPRT.

- 129 -

Figure 4.1: Block diagram of Two Pass Replacement Technique (TPRT)

4.2.1 The Encryption Process

The whole message is considered as a stream of n-bits and it is broken down into a

finite number of k blocks, so the size of each block, m = n/k bits. As it is generalized

approach so block size of m = 2 * i or (2*i +1) where i = {1,2,3,……} is a set of positive

integer. The block size varies between even and or odd numbers of bits. The block diagram of

the encryption and decryption process of TPRT is given in figure 4.1.

Two successive blocks of a given length are XORED to get the result. The result

replaces the second block remaining the first block intact. The whole operation is performed

- 130 -

on ‘m’ numbers of blocks that is 0
th
 block to (m-1) the block. As discussed above is repeated

in reversible manner that is the result of the XORED operation between the first block and

second block is replaces the first block, keeping the second block intact.

Varying the block sizes performs the whole operation again, let the initial TPRT

operation is for block size of 2-bits, then the next TPRT operation could be for block size of

4-bits. The number of blocks must be even, to obtain this successive zeroes are added in LSB

position. This round is repeated for a finite number of times and the number of iterations will

form a part of the session key as discussed in section 4.4.

4.2.2 The Decryption Process

The technique is symmetric in nature so the decryption is done in similar manner. At

the receiver end the n-bit ciphertext stream is broken into k-number of blocks each having,

m=n/k number of bits. As it is generalized approach so block size of m = 2 * i or (2*i +1)

where i = {1,2,3,……} is a set of positive integer. So, the block size varies between even and

or odd numbers of bits. The flow diagram of the encryption and decryption process of TPRT

is given in figure 4.1. Now, the first block is XORED with second block and the result

replaces the first block keeping second block intact, in this way the XOR operation is

performed for the all k-blocks. In the next iteration the first block and second block are

XORED and now replacing the second block keeping first block intact. The number of

iteration requires for the decryption depends upon the block size and the number of iterations

performed during encryption.

4.3 Example

Two Pass Replacement Technique (TPRT) is an approach towards e-security through

a variable length block cipher based symmetric encryption technique implemented in FPGA

based systems. The term ‘variable length’ block cipher means that TPRT is not restricted to

2
n
 block sizes, where n = {0,1,2,……}, TRRT can also have odd number bits block sizes and

with this TPRT encryption and TPRT decryption can be carried out successfully.

- 131 -

Table 4.1: Encryption process of TPRT

Encryption

Phase

Source Stream 10101100

Pass1 10 10 11 00

Pass2 Source Stream after Pass2

10 00 11 11

Pass3 Source Stream after Pass3

10 00 00 11

Encrypted stream 10000011

The encryption process of TPRT is illustrated in table 4.1. Let the source stream be,

S=10101100, now in the encryption pass1 this stream is broken down into four blocks each of

having 2-bits size. So, there are four blocks, ‘10’, ‘10’, ‘11’ and ‘00’ which is illustrated row

one of table. Then in encryption process, first block is XORED with second block and the

result is replacing the second block keeping the first block intact, similarly the third block and

fourth blocks are XORed and the replacing the fourth block keeping third block intact. Now

to get the blocks, ‘10’, ‘00’, ‘11’ and ‘11’, which is depicted in row two of table. In the

encryption pass3 the same operation is performed but here the result of XOR between first

block and second block replaces the first block keeping second block intact, similarly the

result of XOR between the third block and fourth block replaces the third block keeping

fourth block intact. Now the blocks, ‘10’, ‘00’, ‘00’ and ‘11’ are generated, which is given in

row three of table. Concatenating blocks gives the target stream, finally depicted in row four

of table. Here, the encrypted stream is generated, S’=10000011. In this section only 8-bit

source stream is considered for understanding the technique, but during actual

implementation the block size taken as 256-bits.

- 132 -

Table 4.2: Decryption process of TPRT

Decryption

Phase

Encrypted Stream 10000011

Pass1 10 00 00 11

Pass2 Source Stream after Pass2

10 00 11 11

Pass3 Source Stream after Pass3

10 10 11 00

Decrypted Stream 10101100

The decryption process of TPRT is illustrated in table 4.2. The ciphertext is,

S’=10000011, now in the decryption pass1 this stream is broken down into four blocks each

of having 2-bits size. So, there are four blocks, ‘10’, ‘00’, ‘00’ and ‘11’, which is depicted in

row one of table. Then in decryption process, first block of a given length is XORED with

second block and the result is replacing the first block keeping the second block intact,

similarly the third block and fourth blocks are XORED and the replacing the third block

keeping fourth block intact. Now to get the blocks, ‘10’, ‘00’, ‘11’ and ‘11’, which is

illustrated in row two of table. In the decryption pass3 the same operation is performed but

here the result of XOR between first block and second block replaces the second block

keeping first block intact, similarly the result of XOR between the third block and fourth

block replaces the fourth block keeping third block intact. Now got the blocks, ‘10’, ‘10’,

‘11’, and ‘00’, which is depicted in row three of table. Then writing the adjacent blocks gives

the target stream. Here, the decrypted stream is generated, S’’=10101100, which is finally

given in row four of table. Therefore, if compare S = S’’, that is, the source stream is again

regenerated.

4.4 Implementation and Key Generation

To analyze the performance, TPRT has been implemented both in FPGA and C

programming language. This has been implemented in VHDL for RTL design to be

embedded in the FPGA based systems. A good synthesis and simulation been generated in

Xilinx ISE 8.1i software. Section 4.4.1 discusses key generation process.

- 133 -

library IEEE, STD;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.numeric_std.all;

use work.rajdeep.all;

use std.textio.all;

use std.standard.all;

use IEEE.std_logic_textio.all;

entity TPRT_Final_VHDL is

 Port (IN_DATA : in BIT_VECTOR (255 downto 0);

 OUT_DATA : out BIT_VECTOR (255 downto 0);

 EN_DN : inout BIT;

 ITERATION: in BIT_VECTOR(7 downto 0);

 BLOCK_SIZE : in BIT_VECTOR(7 downto 0));

 end TPRT_Final_VHDL;

Figure 4.2: Top-level design of TPRT

This proposed technique has been implemented in IEEE VHDL using 256-bit block

size. The block-size can be altered just by altering the size of bit_vector type variables,

signals and ports from 255 downto 0 to n-1 downto to 0 where ‘n’ is the block size. The

modular design approach is taken while coding this cipher.

Figure 4.2 shows the top-level design of TPRT. The main features of the

implementation are as follows:-

 TPRT Encryption and Decryption using same RTL design.

 Coded using Behavioural model.

 This program is implemented for text file input and output and also for RTL

design for FPGA-chip.

 Encryption and decryption available for all the block size.

 This top-level module has five ports, in_data, out_data, block_size, iteration

and EN_DN.

- 134 -

 EN_DN = 0, means encryption is being done, EN_DN = 1, means decryption

is being done.

 The chip entity, in_data is the input bit stream; out_data is the output bit

stream.

 block_size selects block size upon which encryption to be performed or

decryption to be performed.

 Iteration selects the number of iterations to be performed during encryption

and decryption for particular block size.

 EN_DN will tell the receiver side that encryption or decryption is being done.

 As this program will also work for text data files so there are three types of

TEXT files used in this implementation, “in.txt” for Source block (SB),

“out.txt” for Target Block (TB) and “block_size.txt” for selecting block size

for encryption/decryption operation.

The rest of the coding is done by defining the package which contains functions and

procedures.

Figure 4.3: Top-level RTL design of TPRT

Figure 4.3 shows the top level RTL design of TPRT. TPRT mainly consist of three

functions namely TPRT_ENDN, TPRT_Encryption_ALL, TPRT_Decryption_ALL. TPRT

also consist of one procedure namely TPRT_Formation. The function in IEEE VHDL has

many input parameters but only one output parameter and procedure in IEEE VHDL has

many input and or output parameters. The functions and procedures which are used to realize

TPRT are as follows:-

 Function TPRT_ENDN:- This is the main function which performs

encryption/decryption using given block size

and iteration options.

- 135 -

 Function

TPRT_Encryption_ALL:-

This is the function which performs

encryption using given block size and

iteration options.

 Function

TPRT_Decryption_ALL:-

This is the function which performs

decryption using given block size and

iteration options.

 Procedure

TPRT_Formation:-

This is the common VHDL procedure which

forms the cone according to the Source Block

(SB), before performing

encryption/decryption.

Therefore, by using the modular design approach and behavioral approach this

proposed cipher has been successfully realized in IEEE VHDL.

4.4.1 Key Generation

In the proposed TPRT, the key generation process is given for both fixed block size

and also for variable block size.

Table 4.3 illustrates the key generation process for fixed block size or in other words

blocks sizes of 2
n
, where ‘n’ is any integer.

Table 4.3: Representation of number of iterations in each round by bits for 2
n

Round Block Size Number of Iterations

Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

Tag field 0

- 136 -

In the fixed block size key generation process eight rounds have been considered,

each for 2, 4, 8, 16, 32, 64, 128, and 256-block sizes. As given in table 4.3, each round is

repeated for a finite number of times, for example, for block size of 2-bits (round 1) the

iteration is for 72 times, for block size of 4-bits (round 2) the iteration is for 690 times, for

block size of 8-bits (round 3) the iteration is for 4321 times, for block size of 16-bits (round

4) the iteration is for 46250 times, for block size of 32-bits (round 5) the iteration is for 44443

times, for block size of 64-bits (round 6) the iteration is for 48950 times, for block size of

128-bits (round 7) the iteration is for 49870 times, and for block size of 256-bits (round 8) the

iteration is for 50021 times, so, the number of iterations will form a part of the encryption-

key. Although the key may be formed in many ways, for the sake of brevity it is proposed to

represent the number of iterations in each round by a 16-bit binary string. Since there are

eight rounds so, the binary strings are then concatenated to form a 16 X 8 = 128-bit key for a

particular session. The tag field is also a part of key as given in table 4.3, tag value 0 means

TPRT encryption and 1 means TPRT decryption, so, the tag field is concatenated at LSB to

get the key of 129 –bit length. So, got the key as,

K=110000110110010111000010110011101011111100110110101011011001101110110001

010101000010000111000010000001010110010000000000100100000.

Figure 4.4: Top-level RTL design of TPRT fixed size key generation

Figure 4.4 illustrates the top level RTL design for the TPRT fixed size key generation,

here it can be seen that there are four ports, the three input ports are Block_Size, Iteration,

Encryption/Decryption option. The output port is the generated session key of 129-bits in

size.

- 137 -

Table 4.4: Key generation for variable block length technique for TPRT

Round Block Size Number of Iterations

Decimal Binary Decimal Binary

8. 253 11111101 203 11001011

7. 103 01100111 101 01100101

6. 99 01100011 83 01010011

5. 70 01000110 55 00110111

4. 61 00111101 38 00100110

3. 33 00100001 20 00010100

2. 17 00010001 10 00001010

1. 3 00000011 2 00000010

Tag field 0

Table 4.4 gives the key generation process for variable block size operation. Here if to

see the round 1, so, the block size here is of 3-bits and the number of iteration for this block

size is 2 times, for round 2 the block size is 17-bits and the number of iteration is 10 times,

for round 3 the block size is 33-bits and the number of iteration is 20 times, for round 4 the

block size is 61-bits and the number of iteration is 38 times, for round 5 the block size is 70-

bits and the number of iteration is 55 times, for round 6 the block size is 99-bits and the

number of iteration is 83 times, for round 7 the block size is 103-bits and the number of

iteration is 101 times, and for round 8 the block size is 253-bits and the number of iteration is

203 times. Hence, the block size here is also a part of session key since its value is variable.

In this scheme the block sizes are taken as 8-bit value and iteration is also an 8-bit value per

round. Therefore for each round total bits is 8 + 8 = 16 bits. There are eight rounds so total

size is 16 X 8 = 128-bits. Adding the tag field got total session key length as 129-bits. Tag

value 0 means TPRT encryption and 1 means TPRT decryption So, in either or both cases

the key bit length is 128 bits + 1 tag bit = 129 bits. So, got the key as,

K=111111011100101101100111011001010110001101010011010001100011011100111101

001001100010000100010100000100010000101000000011000000100.

- 138 -

Figure 4.5: Top-level RTL design of TPRT variable size key generation

Figure 4.5 illustrates the top level RTL design for the TPRT variable size key

generation, here it be can seen that there are four ports, the three input ports are Block_Size,

Iteration, Encryption/Decryption option. The output port is the generated session key of 129-

bits in size.

4.5 Analysis

Block ciphers are cryptographic primitives that operate on fixed size texts (blocks).

Most designs aim towards secure and fast encryption of large amounts of data. The number of

iterations of TPRT encryption and TPRT decryption is same so, the order of complexity of

TPRT is O(n
2
) where ‘n’ is the block size, this means the encryption time and decryption

time varies linearly with the block size, this is illustrated in result and comparison section.

Block ciphers also serve as the building block of a number of hash functions and message

authentication codes (MAC). The TPRT is a simple block cipher to implement so, it can be

used to generate encryption based Message Authentication Codes (MAC). The task of

cryptanalysis is to ensure that no attack violates the security bounds specified by generic

attack namely exhaustive key search and table lookup attacks. The non-homogeneity using

Chi-Square value is also illustrated in result and comparison section. Since, the key length is

129-bits so; brute force attack is somehow difficult. Most general types of block cipher

cryptanalysis has been discussed concentrating on the algebraic attacks. While the algebraic

techniques have been successful on certain stream cipher the application to block ciphers has

not shown any significant results so far.

- 139 -

Table 4.5: Plaintext and equivalent Hex code

Plaintext Hex

code

Plaintext Hex

code

Plaintext Hex

code

Plaintext Hex

code

A 41 O 4F <space> 20 T 54

T 54 S 53 U 55 O 4F

T 54 T 54 N 4E M 4D

A 41 P 50 T 54 O 4F

C 43 O 4F I 49 R 52

K 4B N 4E L 4C R 52

<space> 20 E 45 L 4C O 4F

P 50 D 44 <space> 20 W 57

Let it encrypt P = “ATTACK POSTPONED UNTILL TOMORROW”. This plaintext

has been encrypted using the key obtained in section 4.4.1. During encryption the letters are

converted into ASCII which is then the equivalent hex code is fed into FPGA-based

implemented routine described in section 4.4. Then to get the encrypted hex value which is

again converted to equivalent ASCII letters. Table 4.5 shows the plaintext letters and the

corresponding hex codes, the plaintext letters are taken in column-major order.

Table 4.6: Hex code and equivalent ciphertext

Hex

Code

Ciphertext Hex

Code

Ciphertext Hex

Code

Ciphertext Hex

Code

Ciphertext

10 ► 5C \ 75 U 5E ^

06 ♠ C3 ├ 73 S DC ▬

10 ► FC Η 96 Û 8B Ϊ

5D] 58 X C3 ├ 20 <space>

1A → 68 H F3 ≤ 2D -

06 ♠ A8 ¿ 66 F 5C \

07 • 82 É 0F ☼ CF ╧

06 ♠ 33 3 F3 ≤ 22 “

Table 4.6 shows the hex codes obtained after encryption and the corresponding

ciphertext letters. Thus got the Ciphertext as, C = “►♠►]→♠•♠\├ηXh¿é3 usû├≤f☼≤^▬Ϊ -

\╧“”.

- 140 -

4.6 Results and Simulations

This section gives the results obtained based on various parameters. The main results

that are described here, RTL based result, frequency distribution graph, Chi-Square test for

non-homogeneity, time complexity analysis and the avalanche ratio test. These are described

in respective sub sections.

Section 4.6.1 gives the RTL based results got after implementation in FPGA-based

systems, section 4.6.2 discuss the frequency distribution graph, section 4.6.3 gives the test for

non-homogeneity with Chi-Square values, section 4.6.4 analyze the time complexity of the

proposed technique and finally section 4.6.5 discuss the avalanche ratio test.

4.6.1 RTL Simulation Based Results

In this section some of the results obtained on implementing the proposed technique

in VHDL. This code has been simulated and synthesized in Xilinx ISE 8.1i. The main

objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.

Figure 4.6: RTL diagram of RSA

- 141 -

Figure 4.7: RTL diagram for Spartan 3E of the proposed TPRT

Table 4.7: HDL synthesis report (netlist generation of RSA and TPRT)

Sr No. Netlist Components Number

RSA TPRT

1 ROMs/RAMs 430 10

2 Adders/Subtractions 3 0

3 Registers 420 20

4 Latches 80 0

5 Multiplexers 120 0

Table 4.8: HDL Synthesis Report (Timing Summary of RSA and TPRT)

Sr No. Timing Constraint Values

RSA TPRT

1 Speed Grade -5 -5

2 Minimum period (ns) 9.895 5.66

3 Maximum Frequency

(MHZ)

101.06 101.06

4 Minimum input arrival time

before clock (ns)

6.697 4.33

5 Maximum output required

time after clock (ns)

4.31 3.33

- 142 -

Figure 4.6 gives the RTL schematic of RSA and figure 4.7 gives the RTL schematic

for Spartan 3E of TPRT. If closely observing figure 4.6, it can be seen that there are many

look-up tables used in the RSA. Figure 4.7 reveals that six look-up tables are used for TPRT

which is quite less than that of RSA.

Table 4.7 gives the HDL synthesis report for netlist generation of TPRT and RSA.

Number of ROMs used in RSA is 430 and that of TPRT is 10, number of adder/subtractor

used in RSA is 3 and NIL that of TPRT, number of registers used in RSA is 420 and that of

TPRT is 20, number of latches in RSA is 80 and that of TPRT is NIL and number of

multiplexers used in RSA is 120 and that of TPRT is NIL. So, it inferred that TPRT uses least

number of resources than that of RSA in view of FPGA implementation.

Table 4.8 gives the HDL synthesis report for timing summary of RSA and TPRT. The

minimum period of RSA is 9.86ns and TPRT is 5.66ns. Minimum input arrival time before

clock of RSA is 6.66ns where for TPRT is 4.33ns. Maximum output required time after clock

of RSA is 4.31ns and that of TPRT is 3.33ns. So, it is also seen here that TPRT uses much

less timing summary than that of RSA.

So this implantation is synthesizable and can be burn into the Spartan 3E FPGA-chip.

After synthesis of the design, the design translation, design mapping, placement of I/Os and

routing has also been done successfully. The conclusions has been described in the next

section.

4.6.2 Frequency Distribution Graph

This section illustrates the frequency distribution graph of RSA and TPRT. The

frequency graph is the collection of different ASCII characters present in plaintext as well as

in ciphertext. Although ten different files are encrypted but here the frequency distribution

graph of only one such file is given, the rest gives the similar result.

- 143 -

Figure 4.8: The frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

Figure 4.8 gives the frequency distribution graphs of source file, RSA encrypted file

and TPRT encrypted file. This frequency distribution illustrates the percentage of each

characters present in the file, source and encrypted. Since, ASCII character coding is used

- 144 -

here so, the X-axis region is 0 to 255, ASCII got 8-bit character coding. The Y-axis is the

percentage of occurrences of each character. Although ten different files, with different file

types, are encrypted with RSA as well as TPRT, and only frequency distribution of a single

file is illustrated here. The file “GENESIS.TXT” is taken here for analysis. Observe from

figure 4.8 that the frequency distribution of source file is in the region 0-127. The frequency

distribution of RSA encrypted file is also not well distributed, where as the frequency

distribution of TPRT encrypted file is well distributed in the region 0-255. This result

illustrates the frequency of the proposed technique is well distributed than that of RSA.

Hence, in terms of frequency distribution analysis this proposed technique, TPRT, is well

comparable with RSA.

4.6.3 The Non-Homogeneity Test

This section computed the extent of non-homogeneity between source file and

encrypted file. The parameter taken for this test is Pearsonian Chi-Square test.

Table 4.9: Chi-Square values of RSA and TPRT

Source File File Size

(Bytes)

Chi-Square Value Degree of

Freedom

TPRT RSA TPRT RSA

license.txt 17,632 191382 30148 255 64

cs405(ei).doc 25,422 253470 185351 255 66

acread9.txt 35,121 410735 169424 255 73

deutsch.txt 47,829 505121 334371 255 77

genesis.txt 49,600 638592 396128 255 75

pod.exe 69,981 896405 761842 255 76

mspaint.exe 136,463 1203665 1053183 255 88

cmd.exe 152,028 1692655 545752 255 73

d3dim.dll 193,189 4250652 307565 255 10

clbcatq.dll 403,901 3922143 327510 255 11

Table 4.9 gives the Chi-Square values of the proposed technique (TPRT) and that of

RSA. Figure 4.9 illustrates the same graphically. The Chi-Square value gives the extent of

non-homogeneity between source file and encrypted file.

- 145 -

Figure 4.9: Graphical representation of Chi-Square values of RSA and TPRT

The Pearsonian Chi-Square value has been computed which is already described in

Chapter 1. If looking at the table, the Chi-Square value of, first source file of TPRT comes

1,91,382 and RSA comes 30,148, for second source file TPRT comes 2,53,470 and RSA

comes 1,85,351 and so on. So observing the above table and figure it has been seen that Chi-

Square values of the proposed technique is quite higher than RSA and also the degree of

freedom comes to be at a value of 255 in TPRT which says a well distribution of characters

present in the TPRT encrypted files than that of source file. The degree of freedom of RSA

comes under 100 in all the source files. Hence, from the study of the degree of freedom it is

seen that the character distribution of TPRT encrypted file is well distributed than that of

RSA which is at par with the result of frequency distribution already discussed in section

5.2.1. Hence, in terms of Chi-Square value analysis this proposed technique, TPRT, is well

comparable with RSA.

4.6.4 The Time Complexity Analysis

This section illustrates the time complexity analysis and for the purpose encryption

time and decryption time is taken into account.

- 146 -

Table 4.10: Comparisons of time complexity analysis of TPRT and RSA

Source File File Size

(Bytes)

Encryption

time (in

Seconds)

Decryption

time (in

seconds)

TPRT RSA TPRT RSA

license.txt 17,632 0.02 0.01 0.10 0.28

cs405(ei).doc 25,422 0.00 0.03 0.00 0.30

acread9.txt 35,121 0.10 0.21 0.10 1.67

deutsch.txt 47,829 0.20 0.35 0.11 3.51

genesis.txt 49,600 0.25 0.40 0.20 5.06

pod.exe 69,981 0.35 0.39 0.35 4.34

mspaint.exe 136,463 0.40 0.65 0.40 8.37

cmd.exe 152,028 0.50 0.61 0.42 6.59

d3dim.dll 193,189 0.52 0.75 0.50 10.15

clbcatq.dll 403,901 0.60 0.95 0.55 11.70

- 147 -

Figure 4.10: Graphical comparisons of encryption and decryption time of TPRT and RSA

From table 4.10 it is seen that the encryption time and decryption time of the proposed

technique and that of RSA within same frame graphically in figure 4.10. The time complexity

analysis is one of the important factors in algorithm design. Here both encryption time and

decryption time is tabulated and shown in the figure. The pink line shows the time

complexity of RSA and blue line gives the time complexity of this proposed technique,

TPRT. If observing the encryption time, TPRT time of encryption is marginally lower than

that of RSA, and observing the decryption time than it is seen that TPRT time of decryption

is quite less than that of RSA. Hence it may be concluded that the time complexity of the

proposed technique, TPRT, is quite less than that of RSA.

4.6.5 The Avalanche Ratio

The Avalanche ratio is another important parameter for the cryptographic security.

Ten files have been taken for this analysis. Some bits of plaintext files have been modified

and these ten files again encrypted. The difference between original encrypted files and

modified encrypted files has been recorded as avalanche ratio in percentage.

- 148 -

Table 4.11: Comparisons of avalanche ratio of TPRT and RSA

Source File File Size

(Bytes)

Avalanche Ratio (in Percentage)

RSA TPRT

license.txt 17,632 58.0 77.7

cs405(ei).doc 25,422 60.0 80.0

acread9.txt 35,121 75.0 88.8

deutsch.txt 47,829 78.9 89.0

genesis.txt 49,600 80.9 87.0

pod.exe 69,981 58.0 77.0

mspaint.exe 136,463 58.9 76.0

cmd.exe 152,028 67.0 77.0

d3dim.dll 193,189 67.9 82.9

clbcatq.dll 403,901 68.0 88.5

Table 4.11 illustrates the result of avalanche ratio of the proposed TPRT. During this

test some characters/bits in the source file have been modified and then again these modified

source files are encrypted. Then the percentage of the difference between the original

encrypted files and the modified encrypted files are taken. It is observed from table 4.11 that

the avalanche ratio of the proposed technique is nearly 80% and that of RSA is 65%, hence in

terms of avalanche ratio analysis TPRT is quite comparable with RSA.

4.7 Discussions

The technique given here is easily implemented in high level language and also in

VHDL. This technique is very easy and it’s implemented in FPGA-based systems, the goal of

fast execution and strong cryptanalysis requirements are also obtained here. Moreover this

technique can be fabricated in chip to be used in embedded systems. The main goal of the

author is to develop an efficient FPGA-based crypto hardware and this proposed technique is

the first step towards this.

Chapter 5

Triangular Modulo Arithmetic Technique (TMAT)

5.1 Introduction

Unlike the TPRT, Triangular Modulo Arithmetic Technique (TMAT) is designed in

such a manner that neither any cycle is formed nor the process of decryption is the same as

that of the encryption. There is no positional orientation of bits. In TMAT a generating

function is used to covert plaintext to ciphertext, thus C = fk(P), where ‘P’ is plaintext block,

‘C’ is the ciphertext, fk is the generating function and ‘k’ is the secret. The generating

function of TMAT is directly related with the different bits present in the plaintext. The

source block is considered as a stream of bits, it is then divided into blocks of bits of same

size and then generating function is applied to each of the blocks to get the ciphertext. The

generating function of TMAT has two parts; first one is the modulo-2
n
 addition operation and

second one is triangular operation.

In contrast to TPRT technique discussed in chapter 4 and the TMAT technique there

is application of Boolean algebra as well as non Boolean operation during encryption as well

as decryption. During encryption, the decimal equivalent of the block of bits under

consideration is one integral value from which the recursive modulo-2
n
 operation starts; this

operation is sandwiched between two triangular operations. The modulo-2
n
 operation is

performed between successive two blocks, before and after modulo operation the triangular

operation is performed. These three processes is operated in whole plaintext considering

different block sizes and iterations therefore recursively these processes is carried out to a

finite number of times, which is exactly the length of the source block. During encryption the

flow of these three processes is from MSB-to-LSB direction. To generate the source code

during decryption, bits in the target block are to be considered along LSB-to-MSB direction.

In second iteration one triangular operation is sandwiched between two modulo-2
n
 addition

operations.

Section 5.2 discussed the algorithm of TMAT with a block level diagram, section 5.3

gives a detailed example of encryption and decryption process, section 5.4 discussed the

implementation issues with key generation, section 5.5 gives a brief analysis, section 5.6

discussed the results obtained based on implementation and a brief discussions are given in

section 5.7.

- 152 -

5.2 The Algorithm of TMAT

The proposed scheme has been developed in conjunction with two algorithm, MAT

[17] and Triangular algorithm [148, 149]. The source file is taken as binary streams. The

input stream size and input key size have been considered 512 bits and 128 bits for the

implementation, though the scheme can be implemented for larger input stream sizes as well

as any input size also. Section 5.2.1 briefly discuss the modulo addition.

Input

Stream

(Bits)

 First

Phase

 Second Phase Third

Phase

 Output

Stream

(Bits)

511

to

488

 Triangle

(Block 1)

Modulo

Arithmetic

Technique

(MAT) for

block size

2, 4, 8, 16,

32, 64,

128, 256.

487

to

384

 Triangle

(Block 2)

383

to

320

Triangle

(Block 3)

319

to

256

 Triangle

(Block 4)

255

to

192

Triangle

(Block 5)

191

to

128

 Triangle

(Block 6)

127

to

64

Triangle

(Block 7)

 63

to

0

 Triangle

(Block 8)

Figure 5.1: Block diagram of TMAT

The proposed algorithm is consisted of three phase where the Triangular algorithm is

performed in Phase 1 and Phase 3 and that of MAT is performed in Phase 2. The key

- 153 -

generation and low level implementation will be discussed in section 5.4. Figure 5.1 shows

the block diagram of TMAT.

In Phase 1, 512 bits input stream, S, is broken into 8 numbers of equal size blocks,

each containing 64 bits and the Triangular algorithm is implemented on block number 1, 3, 5,

7 (i.e. odd blocks) where the rest of the blocks are (even blocks) remain unchanged. Consider

that the source block size t (here 64). In the Triangular Encryption technique an intermediate

block of size (t-1) is generated from the source block, by applying the exclusive NOR

(XNOR) operation between each two consecutive bits. In the next step a new block of size (t-

2) is generated from previous block of size (t-1) and this process goes on until the generation

of block size 1. All these blocks under consideration is taken together to form an equilateral

triangle-like shape. After the formation of such a triangular shape, putting together either the

MBSs or the LSBs of all the blocks under consideration in either sequence, the target block is

formed. The key takes a vital role because only by knowing this key the receiver can

understand how the target block is formed from the triangular shape. The encrypted stream of

bits is generated by putting together all the target blocks. Then the both changed and

unchanged blocks are concatenated and formed bit stream of 512 bits, say S
1
. The Triangular

technique is shown in figure 5.2. There are four ways to encrypt in triangular operation, ‘00’

is taking MSB from top to bottom, ‘01’ is taking MSB from bottom to top, ‘10’ is taking LSB

from top to bottom and ‘11’ is taking LSB from bottom to top.

S0
0 S0

1 S0
2 S0

t-3 S0
t-2 S0

t-1

S1
0 S1

1 S1
2 S1

t-3 S1
t-2 S1

t-1

S2
0 S2

1 S2
t-2 S2

t-1

S3
0 S3

1 S3
t-2 S3

t-1

St-3
0 S t-3

1 S t-3
3

S t-2
0 S t-2

2

S t-1
0

Figure 5.2: Triangle formation

In phase 2 of the technique, Modulo Arithmetic Technique (MAT) is performed on

that stream of 512 bits. This is done in 8 rounds. The input stream, S
1
, is broken into a

number of blocks, each containing n bits where n=2
k

, k=1,2,3,......,8, k denotes the round

number. So, S
1
 = B1B2B3.......Bm, where m=512/n. Starting from the MSB, the blocks are

01

00

11

10

- 154 -

paired as (B1, B2),(B3, B4),(B5, B6), …,(Bm-1, Bm). The addition is performed between two

blocks of each pair and the content of the second block of each pair is replaced by the result.

This will be going on until the content of the last block Bm is replaced by the result. The

process is repeated and each time the block size increases till n=256. So a new encrypted

stream, S
2
 is generated after MAT is performed with block size 256.

 Round 1: In this round of encryption, block size is taken as 2, it means k=1

and addition is performed between each pair of blocks and second

block of each pair is replaced by the result. This round is repeated

for a finite number of times and the number of iterations will form a

part of the session key as discussed in Section II.

 Round 2: Identical operation is performed as in Round 1 with block size 4 (i.e.

k=2).

Eight rounds are performed repeatedly with increasing block size to encrypt the

stream with varying block size up to 256. So after the completion of Round 8 another

encrypted bit stream is generated, say, S
3
.

In phase 3, the intermediate binary stream, S
3
 is divided into 8 equal size of blocks

and Triangular algorithm is imposed on block no 2, 4, 6, 8 (i.e. even blocks) and rest of the

blocks are (odd blocks) remain unchanged. After which all blocks are concatenated together

to produce final output stream, S
en

.

During decryption, the reverse operation is performed. In phase 1, triangular

algorithm is performed on block no 2, 4, 6, 8 (i.e even blocks) and odd blocks are remain

unchanged and then in the phase 2, modulo subtraction, is performed instead of

performing modulo addition where block size starts from 256 and end with 2 (n=2
k
, k=8, 7, 6

,...... 3, 2, 1). In phase 3, Triangular algorithm is performed on block no 1, 3, 5, 7 (i.e. odd

blocks) and even blocks are remain unchanged. Formation of result is quite different than that

of encryption technique. If selection is 00 or 11 during encryption, it is same for decryption

technique but if it is 01 or 10, interchange is done between them.

- 155 -

5.2.1 The Modulo Addition

An alternative method for modulo addition has been proposed here to make the

calculations more simple. The need for computation of decimal equivalents of the blocks is

avoided here since it will be got large decimal integer values for large binary blocks. In the

proposed method the carry out of the MSB has been discarded after the addition of two

blocks of each pair. For example, if add 1101 and 1000 got 10101. In terms of decimal

values, 13+8=21. Since the modulus of addition is 16 (2
4
) in this case, the result of addition

should be 5 (21-16=5). Discarding the carry from 10101 is equivalent to subtracting 10000

(i.e. 16 in decimal). So the result will be 0101, which is equivalent to 5 in decimal. The same

is applicable for any block size.

5.3 Example

Although the proposed scheme is applicable for a 512-bit input stream but here 16 bit

input stream has been considered for the convenience, to make the process simple for

understanding. Section 5.3.1 discuss the encryption scheme and section 5.3.2 discuss the

decryption scheme

5.3.1 The Encryption Process

Consider a stream of 16 bits stream, say S = 1101001100011011 .

In first phase, the input stream is divided into four blocks consisting of 4 bits each.

The Triangular technique is performed on odd blocks (i.e. Block 1 and Block 3) and even

blocks (i.e. Block 2 and Block 4) are remaining unchanged.

Consider that the selection of key for block 1 is 00 and Block 3 is 11. Then output

from block 1 is 1100 and from block 3 is 0101. Block 2 and block 4 are remaining

unchanged. So after Phase 1 output, S
1
 = 1100110001010010. This output is the input for

phase 2. Figure 5.3 shows the example of phase 1.

- 156 -

Input

Block 1 Block 2 Block 3 Block 4

1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0

Triangular implementation on Block 1 and Block 3.

Output

Block 1 Block 2 Block 3 Block 4

1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0

Figure 5.3: Encryption example of phase 1 in TMAT

In phase 2, MAT is performed for block size 2, 4 and 8 (as input is taken 16 bits, so

maximum block size is to be 8). So total number of rounds is 3. Each round is performed

only once to make the process simple for understanding. Figure 5.4 shows the details of

this phase.

Round 1 : Block size = 2, number of blocks = 8.

Input

B1 B2 B3 B4 B5 B6 B7 B8

11 00 11 00 01 01 00 10

Block 1

1 1 0 1

1 0 0

0 1

0

Block 3

1 1 0 1

1 0 0

0 1

0

- 157 -

(B1, B2) Modulo Addition, B2 is replaced by result. Same operation is performed for (B3,

B4), (B5, B6) and (B7, B8).

Output

B1 B2 B3 B4 B5 B6 B7 B8

11 11 11 11 01 10 00 10

Round 2 : Block size = 4, number of blocks = 4.

Input

B1 B2 B3 B4

1111 1111 0110 0010

Output

B1 B2 B3 B4

1111 1110 0110 1000

Round 3 : Block size = 8, number of blocks = 2.

Input

B1 B2

11111110 01101000

Output

B1 B2

11111110 01100110

Figure 5.4: Encryption example of phase 2 in TMAT

So, on applying phase 2, generated output, S
2
 = 1111111001100110, which is input

for phase 3.

In phase 3 the triangular technique is again performed on even blocks, i.e. block 2 and

block 4 where odd blocks (blocks 1 and blocks 2) are remain unchanged.

- 158 -

Input

Block 1 Block 2 Block 3 Block 4

1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0

Triangular implementation on Block 2 and Block 4.

Figure 5.5: Encryption example of phase 3 in TMAT

Consider that the selection key for block 2 is 01 and block 4 is 10. Then output from

block 2 is 1101 and from block 4 is 0010. Block 1 and block 3 are remaining unchanged. So

after on completion of phase 3 output, S
en

 = 1111011101100001. This is the final encrypted

output. Figure 5.5 elaborate the example.

5.3.2 The Decryption Process

The output stream, which was generated during encryption technique, has been

considered as input bit stream for decryption process.

Input

Block 1 Block 2 Block 3 Block 4

1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1

Triangular implementation on block 2 and block 4.

Output

Block 1 Block 2 Block 3 Block 4

1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0

Figure 5.6: Decryption example of phase 1 in TMAT

Block 2

1 1 1 0

1 1 0

1 0

0

Block 4

0 1 1 0

0 1 0

0 0

1

Block 2

0 1 1 1

0 1 1

0 1

0

Block 4

0 0 0 1

1 1 0

1 0

0

- 159 -

In first phase, the input stream is divided into four blocks with 4 bits each. The

Triangular technique is performed on even blocks (i.e. block 2 and block 4) and odd blocks

(i.e. block 1 and block 3) are remaining unchanged.

As the selection keys were considered during encryption technique, 01 for block 2 and

10 for block 4. Then output from block 2 is 1010 and from block 4 is 0011. Block 1 and

block 3 remain unchanged. So after phase 1 output, S1
1
 = 1111111001100110, which is the

input of phase 2. Figure 5.6 shows the example.

In second phase, MAT is performed but instead of using modulo addition, modulo

subtraction is used. Block size is used in reverse order (i.e. 8, 7, 6, …, 1). Figure 5.7 shows

this phase.

Round 1 : Block size = 8, number of blocks = 2

Input

B1 B2

11111110 01100110

Output

B1 B2

11111110 01101000

Round 2 : Block size = 4, number of blocks = 4

Input

B1 B2 B3 B4

1111 1110 0110 1000

Output

B1 B2 B3 B4

1111 1111 0110 0010

Round 3 : Block size = 2, number of blocks = 8

Input

B1 B2 B3 B4 B5 B6 B7 B8

11 11 11 11 01 10 00 10

Output

B1 B2 B3 B4 B5 B6 B7 B8

11 00 11 00 01 01 00 10

Figure 5.7: Decryption example of phase 2 in TMAT

So on completion of phase 2 output, S1
2
 = 1100110001010010, which is the input of

phase 3.

- 160 -

In this phase 3, the Triangular technique is applied on odd blocks (i.e. block 1 and

block 3) and even blocks (i.e. block 2 and block 4) are remaining unchanged. Figure 5.8

shows this example.

Input

Block 1 Block 2 Block 3 Block 4

1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0

Output

Block 1 Block 2 Block 3 Block 4

1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0

Figure 5.8: Decryption example of phase 3 in TMAT

As the keys were considered during encryption technique, 00 for block 1 and 11 for

block 3. Then output from block 1 is 1101 and from block 3 is 1101. Block 2 and block 4

remain unchanged. So on completion of phase 3 output, S1
de

 = 1101110011010010. The

decrypted bit stream: S1
de

= 1101110011010010.So S1
de =

S
en

.

5.4 Implementation and Key Generation

The proposed technique has been implemented in IEEE VHDL using 8-bit block size.

The block-size can be increased just by increasing the size of bit_vector type variables,

signals and ports from 7 downto 0 to n-1 downto to 0 where ‘n’ is the block size. The

modular design approach is taken while coding this cipher. Figure 5.9 shows the top-level

design of TMAT and figure 5.10 gives the top level RTL design. Section 5.4.1 gives the key

generation process.

Block 1

1 1 0 0

1 0 1

0 0

1

Block 3

0 1 0 1

0 0 0

1 1

1

- 161 -

library IEEE, STD;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.numeric_std.all;

use work.rajdeep.all;

use std.textio.all;

use std.standard.all;

use IEEE.std_logic_textio.all;

entity TMAT_Final_VHDL is

 Port (IN_DATA : in BIT_VECTOR (7 downto 0);

 OUT_DATA : out BIT_VECTOR (7 downto 0);

 EN_DN : inout BIT;

 OPTION_DATA : in BIT_VECTOR(2 downto 0));

 end TMAT_Final_VHDL;

Figure 5.9: Top level design of TMAT

Figure 5.10: Top level RTL design of TMAT

The main features of the implementation are given below:-

 Triangular Encryption and Decryption using all options.

 Coded using behavioural model.

 This program is implemented for text file input and output and also for RTL

design for FPGA-chip.

- 162 -

 All the four options are available for encryption/decryption, 001st option,

012nd option, 103rd option and 114th option.

 This top-level module have four ports, in_data, out_data, option_data and

EN_DN.

 EN_DN = 0, means encryption is being done, EN_DN = 1, means decryption

is being done.

 The chip entity, in_data is the input bit stream; out_data is the output bit

stream.

 option_data selects encryption to be performed or decryption to be performed.

 option_data also selects which of the four types of encryption/decryption is to

be performed.

 option_data is of 3-bit, The LSB selects the encryption or decryption is to be

performed.

 First two bit of option_data selects the encryption/decryption type from the

four alternatives.

 EN_DN will tell the receiver side that encryption or decryption is being done.

 There three types of TEXT files used in this implementation, “in.txt” for

Source block (SB), “out.txt” for Target Block (TB) and “option.txt” for dual

purpose of selecting option and encryption/decryption choice.

The rest of the coding is done by defining the package which contains functions and

procedures. The functions and procedures which are used to realize TMAT are noted below:-

 Function TMAT_ENDN:- This is the main function which performs

encryption/decryption using all options.

 Function TMAT_Encryption_ALL:- This is the function which performs

encryption using all options.

 Function TMAT_Decryption_ALL:- This is the function which performs

decryption using all options.

 Function TMAT_Encryption_00, Function TMAT_Encryption_01, Function

TMAT_Encryption_10, and Function TMAT_Encryption_11:- These are the

four encryption functions according to each of the options.

- 163 -

 Function TMAT_Decryption_00, Function TMAT_Decryption_01, Function

TMAT_Decryption_10, and Function TMAT_Decryption_11:- These are the

decryption function according to each of the options.

 TMAT_ADD:- This function performs the modulo addition of two successive

blocks and store the result in second block.

 Procedure TMAT_Formation:- This is the common VHDL procedure which

forms the triangle according to the Source Block (SB), before performing

encryption/decryption.

 The function in IEEE VHDL has many input parameters but only one output

parameter and procedure in IEEE VHDL has many input and or output

parameters.

Therefore, by using the modular design approach and behavioral approach this

proposed cipher has been successfully realized in IEEE VHDL.

5.4.1 Key Generation

In the proposed technique, eight blocks (block 1, block 2, block 3, block 4, block 5,

block 6, block 7 and block 8) have been considered for Triangular and eight rounds (for block

size 2, 4, 8, 16, 32, 64, 128 and 256) have been considered for MAT. In case of the

Triangular technique as 2 bits are required for selection from each block, so for eight blocks,

16 bits are required from 128 bits key. So 16 bits are selected from LSB of 128 bits key for

eight rounds of the Triangular technique. Then 16 bits are equally divided into eight blocks (2

bits in each). From MSB of that 8 blocks are used for block 1 to block 8. Each round of MAT

is repeated for a finite number of times and the number of iterations is a part of the 112 bits

from MSB of 128 bits key. Then those 112 bits are equally divided and formed 8 blocks (14

bits in each). Each block of those 8 blocks are used as number of iterations of a round (from

Round 1 to Round 8). In case of decryption technique, same key is used in the same way.

Example in section 5.4.1.1 illustrates the key generation process.

- 164 -

5.4.1.1 Example of Key Generation

The key generation procedure has been illustrated in this section. As proposed scheme

consists of three phase and same procedure is used for phase 1 and phase 3, the example will

be shown in two steps. Table 5.1 shows target block selection using selection key and table

5.2 shows target block selection for the example. Consider a particular session, where 128

bits input key stream is:

000000000100101000000010101010000001000010110110101011011000110010101101100

1101110111110111011101100001011001110 1100001101100100.

So, 16 bits from LSB are used for the Triangular algorithm and remaining 112 bits are

used for MAT. Section 5.4.1.1.1 illustrates the key generation for phase 1 (Triangle) and

phase 3 (Triangle), section 5.4.1.1.2 illustrates key generation for phase 2 (MAT).

Table 5.1: Target block selection using selection key

Sl.

No.

Selection

Key (2 bits)

Target Block Selection

1. 00 Taking all the MSBs starting from the source block till the last

block generated

2. 01 Taking all the MSBs starting from the last block generated till the

source block

3. 10 Taking all the LSBs starting from the source block till the last

block generated

4. 11 Taking all the LSBs starting from the last block generated till the

source block

5.4.1.1.1 Key Generation for Phase 1 and Phase 3

16 bits key string is: 1100100101111000.

- 165 -

Table 5.2: Key distribution for the Triangular Technique.

Block

No.

Phase Target Block Selection

Selection key (2

bits)

Used for Encryption Used for Decryption

1 1 11 11 11

2 3 00 00 00

3 1 10 10 01

4 3 01 01 10

5 1 01 01 10

6 3 11 11 11

7 1 10 10 01

8 3 00 00 00

5.4.1.1.2 Key Generation for Phase 2

In this phase of key generation, 112 bits key is used in MAT for block sizes 2, 4, 8,

16, 32, 64, 128, and 256 bits, respectively.

Table 5.3: Key generation for MAT

Round

No.

Block Size No. of Iteration

Binary Decimal

1 2 00000000010010 18

2 4 10000000101010 8234

3 8 10000001000010 8258

4 16 11011010101101 13997

5 32 10001100101011 9003

6 64 01100110111011 6587

7 128 11101110111011 15291

8 256 00001011001110 718

Table 5.3 shows the key distribution of phase 2. 112 bits key is:

000000000100101000000010101010000001000010110110101011011000110010101101100

1101110111110111011101100001011001110.

- 166 -

Figure 5.11: Top level RTL for round key generation for TMAT

Figure 5.11 shows the top level RTL for round key generation for TMAT, in this

entity there are three ports as follows:-

 SK:- It’s the input port where user gives 128 bit session key.

 RKP13:- It’s the output port where LSB 16-bits are taken as round key

for phase 1 and phase 2 of TMAT.

 RKP2:- It’s the output port which is the rest 112-bits round key for

phase 2 of TMAT.

Therefore it have been successfully implemented TMAT and key generation through

VHDL implementation for FPGA.

5.5 Analysis

TMAT gives four different ways to encrypt, as TMAT consist of two techniques, the

triangular and modulo addition. Figure 5.2 shows the formation of triangle and following are

the four ways by which encryption can be done:-

 Option 00: Taking all the MSBs starting from the source block till the last

block is generated.

 Option 01: Taking all the MSBs starting from the last block generated till the

source block.

 Option 10: Taking all the LSBs starting from the source block till the last

block generated.

- 167 -

 Option 11: Taking all the LSBs starting from the last block generated till the

source block.

TMAT has four ways of decryption also given in the following points:-

 Option 00: Taking all the MSBs starting from the source block till the last

block is generated.

 Option 01: Taking all the LSBs starting from the source block till the last

block generated.

 Option 10: Taking all the MSBs starting from the last block generated till the

source block.

 Option 11: Taking all the LSBs starting from the last block generated till the

source block.

Therefore in single implementation, have four ways of encryption and decryption.

Since the formation of triangle consist of matrix implementation so the algorithmic

complexity of TMAT is O(n
2
).

5.6 Results and Simulations

This section gives the results found on various parameters. The main results that are

described here are RTL based results, frequency distribution graph, Chi-Square test for non-

homogeneity, time complexity analysis and the avalanche ratio. These are all described in

respective sub sections. Section 5.6.1 discuss results of RTL/Hardware implementation,

section 5.6.2 discuss the results of frequency distribution graph, section 5.6.3 discuss the

results of Chi-Square test for non-homogeneity of source files and encrypted files, section

5.6.4 discuss the results of time complexity and section 5.6.5 discuss the results of avalanche

ratio test.

5.6.1 RTL Simulation Based Result

In this section results obtained on after implementing the proposed technique in

VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main objective is to

- 168 -

find an efficient FPGA-based cryptographic technique for implementation in embedded

systems.

Figure 5.12: RTL diagram of RSA

Figure 5.13: Spartan 3E RTL diagram of TPRT

- 169 -

Figure 5.14: Spartan 3E RTL diagram of TMAT

Figure 5.12 gives the RTL diagram of RSA; figure 5.13 shows the Spartan 3E RTL

diagram of previous technique TPRT and figure 5.14 shows the Spartan 3E RTL diagram of

proposed technique TMAT. If closely observing figure 5.14, it can be seen that six Look-Up-

Tables (LUTs) are used here. So this implantation is synthesizable and can be burn into the

Spartan 3E FPGA-chip. On synthesis of the design, the design translation, design mapping,

placement of I/Os and routing has also been done successfully. RTL diagram is created after

successfully implementation of the technique in VHDL. Since there is not much difference in

the encryption step and decryption step so the two RTL diagrams comes to be almost same

and which is at par with the theoretical description of techniques, TPRT and TMAT.

Table 5.4: HDL synthesis report (Netlist generation of RSA, TPRT and TMAT)

Sr No. Netlist Components Number

RSA TPRT TMAT

1 ROMs/RAMs 430 10 14

2 Adders/Subtractions 3 0 2

3 Registers 420 20 30

4 Latches 80 0 0

5 Multiplexers 120 0 0

- 170 -

Table 5.5: HDL synthesis report (Timing summary of RSA, TPRT and TMAT)

Sr No. Timing Constraint Values

RSA TPRT TMAT

1 Speed Grade -5 -5 -5

2 Minimum period (ns) 9.895 5.66 7.95

3 Maximum Frequency

(MHZ)

101.06 101.06 101.06

4 Minimum input

arrival time before

clock (ns)

6.697 4.33 5.55

5 Maximum output

required time after

clock (ns)

4.31 3.33 4.25

Table 5.4 gives the netlist generation of RSA, TPRT and TMAT. The number of

ROMs/RAMs has increased in this proposed technique, TMAT, adder/sub tractors are also

there for TMAT but it was nil for TPRT, number of registers used has also increased in

TMAT where as number of latches and multiplexers are still nil in TMAT. So it can be said

here that the number of resources used has increased for this proposed technique, TMAT,

than TPRT but keeping the technique, TMAT, cryptographically strong than TPRT. It can be

also said that comparing with RSA, TMAT uses few less resources but in the same time it is

giving comparable results.

Table 5.5 gives the timing constraint of TMAT. It can be seen that the timing

parameters have subsequently increased in this proposed technique, TMAT than TPRT. This

result is also at par with the theoretical foundation of the technique and same result also got

in previous time-complexity analysis. It can be also said here that comparing with RSA,

TMAT is much faster in timing summary but in the same time it is giving comparable results.

5.6.2 The Frequency Distribution Graph

This section compares the frequencies of ASCII characters found in plaintext/source

file and ciphertext/encrypted file through frequency distribution graph.

- 171 -

Figure 5.15: The frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

Figure 5.15 gives the frequency distribution graphs of source file, RSA encrypted file

and TPRT encrypted file and figure 5.16 shows the frequency distribution graph of the

proposed technique, TMAT. Frequency distribution graph is one of the important

cryptographic properties, the more uniform distribution of the characters in the encrypted file

- 172 -

the harder for cryptanalysis. Although ten different types of source files are encrypted but for

analysis one such source file is considered and shown in figure 5.15. The source file

considered is of text file type, in text file type the characters are present in the range of 0-127

ASCII value. As already seen in figure 5.15 the characters in the source file is concentrated in

a particular region, immediate below the frequency distribution graph of RSA encrypted file

is given, and finally the frequency distribution graph of TPRT encrypted file is given. Figure

5.16 gives the frequency distribution graph of TMAT encrypted file.

Figure 5.16: Frequency distribution graph of TMAT encrypted file

This result illustrates the frequency of the proposed technique is well distributed than

that of RSA; this infers the statistical cryptanalysis may be difficult. It is also seen that the

frequency distribution graph is well comparable with that of the previous technique, TPRT.

Thus it can be inferred that TMAT showing a good and comparable result in terms of

frequency distribution. The frequency distribution of TPRT and TMAT encrypted files are

almost same, though got good and comparable result but there is not any subsequent

improvement in frequency distribution graph of the proposed technique, TMAT than that of

previous technique, TPRT.

5.6.3 The Non-Homogeneity Test

This section compares the extent of non-homogeneity between plaintext/source file

and ciphertext/encrypted file through Pearsonian Chi-Square test.

- 173 -

Table 5.6: Chi-Square values and degree of freedom of TMAT, RSA and TPRT

Source File File Size

(Bytes)

Chi-Square Value Degree of Freedom

TMAT RSA TPRT TMAT RSA TPRT

license.txt 17,632 201530 30148 191382 255 64 255

cs405(ei).doc 25,422 286025 185351 253470 255 66 255

acread9.txt 35,121 440184 169424 410735 255 73 255

deutsch.txt 47,829 555220 334371 505121 255 77 255

genesis.txt 49,600 659045 396128 638592 255 75 255

pod.exe 69,981 905416 761842 896405 255 76 255

mspaint.exe 136,463 1297256 1053183 1203665 255 88 255

cmd.exe 152,028 1759014 545752 1692655 255 73 255

d3dim.dll 193,189 4630652 307565 4250652 255 10 255

clbcatq.dll 403,901 4167801 327510 3922143 255 11 255

 Figure 5.17: Graphical representation Chi-Square value of TMAT, RSA and TPRT

Table 5.6 gives the Chi-Square values of the proposed technique (TMAT), TPRT and

that of RSA. Figure 5.17 illustrates the same graphically. The Chi-Square test is another

cryptographic parameter in which get the measure of non-homogeneity/heterogeneity

between the source file/plaintext and the encrypted file/ciphertext. The Pearsonian Chi-

- 174 -

Square value is considered here. If observing table 5.6, the minimum Chi-Square value of

TMAT is 201530, RSA is 30148 and TPRT is 191382. The maximum Chi-Square value of

TMAT is 4167801, RSA is 327510 and TPRT is 3922143. Here ten different types of files

are encrypted and Chi-Square values are tabulated, text file (TXT), Microsoft word

documents (DOC), executable files (EXE) and DLL files are used here for results and

analysis.

So observing the above table and figure it has been seen that Chi-Square values of the

proposed technique is quite higher than RSA and also the degree of freedom comes to be at a

value of 255 in TMAT which says a well distribution of characters present in the TMAT

encrypted files than that of source file. It is also been observed that the Chi-Square value of

TMAT is quite higher than that of TPRT. Thus it can be seen that this proposed technique,

TMAT, produces more heterogeneous files than that of the previous technique, TPRT and

RSA. Therefore the Chi-Square values are at par with that of frequency distribution graph

result illustrated in section 5.6.2. So, this is the one improvement that got in this chapter.

5.6.4 The Time Complexity Analysis

 The main purpose of this chapter is to develop an efficient and fast RTL design so;

time complexity analysis is one of the major factors in developing the technique.

- 175 -

Figure 5.18: Pictorial representation of time complexity analysis of TMAT, RSA and TPRT

Table 5.7: The time complexity analysis of TMAT, RSA and TPRT

Source File File Size

(Bytes)

Encryption time (in

Seconds)

Decryption time (in

seconds)

TMAT RSA TPRT TMAT RSA TPRT

license.txt 17,632 0.03 0.01 0.02 0.11 0.28 0.10

cs405(ei).doc 25,422 0.00 0.03 0.00 0.00 0.30 0.00

acread9.txt 35,121 0.13 0.21 0.10 0.13 1.67 0.10

deutsch.txt 47,829 0.25 0.35 0.20 0.15 3.51 0.11

genesis.txt 49,600 0.28 0.40 0.25 0.25 5.06 0.20

pod.exe 69,981 0.39 0.39 0.35 0.39 4.34 0.35

mspaint.exe 136,463 0.44 0.65 0.40 0.48 8.37 0.40

cmd.exe 152,028 0.55 0.61 0.50 0.52 6.59 0.42

d3dim.dll 193,189 0.55 0.75 0.52 0.60 10.15 0.50

clbcatq.dll 403,901 0.67 0.95 0.60 0.65 11.70 0.55

 Table 5.7 shows the encryption time and decryption time of the proposed technique,

TMAT, previous technique, TPRT, and that of RSA. Figure 5.18 represents the same

graphically. The time complexity analysis here given in the unit of file size (in KB) v/s time

(in Seconds). If observing the encryption time then it is seen that average encryption time of

TMAT is 0.329 seconds, TPRT is 0.294 seconds and RSA is 0.435 seconds. The average

decryption time of TMAT is 0.328 seconds, TPRT is 0.273 seconds and RSA is 5.197

- 176 -

seconds. Considering the above results it can be seen that the time complexity of this

proposed technique, TMAT is quite better than RSA. The average encryption time of TMAT

is less than that of RSA and the average decryption time of TMAT is quite less than that of

RSA. So it can be said that the time complexity of the proposed technique is quite less than

that of RSA. But it is obvious from the table and graphs that the time complexity of the

proposed technique, TMAT is quite higher than that of the previous technique, TPRT. This

fact is true because this technique involves extra steps of generating key from the system time

and another extra step is there to XOR this time stamp key to the plain text. But, in overall

this technique is quite comparable. Therefore it can be concluded that in time complexity

analysis though it is better than RSA but there is no significant improvement over TPRT due

to algorithmic complexity.

5.6.5 The Avalanche Ratio Test

 More the avalanche ratio more difficult to analyses for known plain text – known

cipher text pair. The avalanche ratio here obtained by encrypting few bits of source file and

then obtaining the percentage of difference between encrypted files of actual source file and

modified source files.

Table 5.8: The avalanche ratio of RSA, TPRT and TMAT

Source File File Size

(Bytes)

Avalanche Ratio (in Percentage)

RSA TPRT TMAT

license.txt 17,632 58.0 77.7 80.8

cs405(ei).doc 25,422 60.0 80.0 85.5

acread9.txt 35,121 75.0 88.8 90.0

deutsch.txt 47,829 78.9 89.0 91.5

genesis.txt 49,600 80.9 87.0 94.7

pod.exe 69,981 58.0 77.0 80.0

mspaint.exe 136,463 58.9 76.0 80.0

cmd.exe 152,028 67.0 77.0 80.0

d3dim.dll 193,189 67.9 82.9 85.0

clbcatq.dll 403,901 68.0 88.5 90.5

- 177 -

 Table 5.8 clearly illustrates the result of avalanche ratio, which is found a satisfactory

result for the proposed technique, TMAT. If observing clearly then the minimum avalanche

ratio of TMAT is 80.0%, TPRT is 77.0% and RSA is 58.0%. The maximum avalanche ratio

of TMAT is 94.7%, TPRT is 89.0% and RSA is 80.9%. Here it can be said that at least 80.0%

of ciphertext alters and almost 94.7% of ciphertext alters when alter one-bit/byte of source

file and apply TMAT. The same analysis can be drawn for TPRT and RSA. Thus TMAT

gives far better result that TPRT and RSA. This is another achievement of this chapter.

5.7 Discussions

 The technique given here is easily implemented in high-level language and in VHDL.

This technique is very easy and it’s implemented in FPGA-based systems, the goal of fast

execution and strong cryptanalysis requirements are also obtained here. In Chi-Square value

analysis that got a much better result, that means this technique, TMAT produces more

heterogeneous ciphertext than that of RSA and TPRT. Also in the avalanche ratio analysis

this technique, TMAT, giving better result than that of RSA and TPRT. This means that

plaintext and keys of this technique is much more related with ciphertext.

 So, it can be inferred that improvement impressing of the proposed technique is there

in two factors, Chi-Square test and Avalanche ratio test. In hardware implementation and

results also got satisfactory results. It uses much less resources than that of RSA but same

time giving cryptographically strong results. So, get low power and low area objective with

this technique, TMAT. It also giving much faster execution result than that of RSA when

comparing the timing simulation results. Moreover this technique can be fabricated in chip to

be used in embedded systems. The main goal of the author(s) is to develop an efficient

FPGA-based crypto hardware and this chapter is another milestone towards this.

Chapter 6

Recursively Oriented Block Addition and Substitution Technique (ROBAST)

6.1 Introduction

The proposed technique in this chapter termed as, Recursively Oriented Block

Addition and Substitution Technique or ROBAST, is a secret-key cryptosystem. In this

technique, after decomposing the source stream of bits into a finite number of blocks of finite

length, the positions of the bits of each of the blocks is re-oriented using a generating

function. For a particular length of block, the block itself is regenerated after a finite number

of such iterations. Any of the intermediate blocks during this cycle is considered to be the

encrypted block. To decrypt the encrypted block from the ciphertext, the same process is to

be followed but the generating function may have to be applied different number of times.

To achieve the security of a satisfactory level, it is proposed that different blocks or

blocks should be of different sizes. Accordingly, for different blocks, number of iterations

during the encryption and the number of iterations during the decryption also not necessarily

should be fixed. This information in a proposed fixed format, described later in this chapter,

constitutes the secret key for the system, which is to be transmitted by the sender to the

receiver, either with the message or in an isolated manner. The technique does not cause any

storage overhead. It provides a large key space, so that the chance of breaking the ciphertext

is almost nullified by any technique of cryptanalysis. The implementation on practical

scenario is well proven with positive outcome.

TMAT described in Chapter 5 is capable of producing encrypted stream more

heterogeneous than TPRT described in Chapter 4. ROBAST described in this chapter is also

generator stream which is more heterogeneous than TPRT and TMAT. The HDL synthesis of

ROBAST in both netlist and timing summary giving much better result than TPRT and

TMAT. Time complexity analysis taking encryption time and decryption time of ROBAST is

also giving much better result than TPRT and TMAT. Avalanche test of ROBAST is also

better than TPRT and TMAT, that means altering a single/few bits in plaintext/source file or

in session key, ROBAST alters many bits in ciphertext/destination file than that of TPRT and

TMAT.

Section 6.2 discussed the algorithm of TMAT with a block level diagram, section 6.3

gives a detailed example of encryption and decryption process, section 6.4 discussed the

implementation issues with key generation, section 6.5 gives a brief analysis, section 6.6

discussed the results obtained based on implementation and a brief discussions are given in

section 6.7.

- 182 -

6.2 The Algorithm of ROBAST

ROBAST is a bit level cipher, the source stream is broken into some finite number of

blocks with a fixed block size and then the scheme is applied into these blocks.

The total message can be considered as blocks of bits with different block size like 8,

16, 32, 64, 128 and 256 bits. Figure 6.1 gives the block/flow diagram of the proposed

technique, ROBAST. This is a symmetric block cipher so a block of n-bits is considered for

encryption. The rules to be followed for generating a cycle are as follows:

 Consider any source stream of a finite number (where N=2
n
, n =3 to 8) and

divide it into two equal parts.

 Make the source stream into paired form so that a pair can be used for the

operation.

 Make the modulo-2
n
 addition between the first and second pair, second and

third pair, third and fourth pair of the source stream, to get the first

intermediate block.

 The same process is repeated recursively between second and first, third and

second, fourth and third of the source stream, to get the next intermediate

block.

 The above points are mainly substitute technique and then permutation

technique has been performed by orientation of bits based on the session key.

Therefore, these resultant blocks of stream can be considered as cipher text.

This process is repeated until the source stream is generated. After a finite number of

iterations source stream is regenerated. So, decryption is basically the iteration of the same

process. Thus any of the intermediate blocks can be considered as a cipher text, since it is a

symmetric block cipher so the same number of iterations that are used during encryption

process is required for decryption. This technique gives much better result in terms of Chi-

Square value and hardware implementations.

- 183 -

Figure 6.1: Block diagram of ROBAST

In this technique the modulo addition with substitution and permutation is given but

to enhance the security further other arithmetic operations can also implemented in this

technique. Figure 6.1 gives the block diagram of ROBAST.

- 184 -

6.3 Example

Consider the block S = 10010011 of size 8 bits. The Flow diagram to show how

positions of the bits of s and the different intermediate blocks can be reoriented with the key

values to complete the cycle is shown in figure 6.1 gives the flow/block diagram of ROBAST

and table 6.1 illustrates this example in details. In this diagram, each arrow indicates

positional orientation of a bit during iteration. Therefore the final cipher text is S’=01001001.

Table 6.1: An encryption example of ROBAST

Source Stream(S) 10010011

Blocks of 2-bits 10 01 00 11

Forward 2-bit

Modulo 2
2
 addition

10 11 11 10

Backward 2-bit

Modulo 2
2
 addition

10 00 01 10

Orientation of Bits 01 00 10 01

Final Ciphertext (S’) 01001001

Table 6.1 illustrates an encryption example of ROBAST. Let consider the above

source stream, S, is divided into blocks of 2-bits each. So, get four blocks, B1=10, B2=01,

B3=00 and B4=11. Then forward modulo-4 addition is performed, B2=B1+B2, B3=B2+B3

and B4=B3+B4. Now, get the result as B1=10, B2=11, B3=11 and B4=10, which is shown in

the third row of table 6.1. After that backward modulo-4 addition is performed, B3=B3+B4,

B2=B2+B3 and B1=B1+B2. Now, get the result as B1=10, B2=00, B3=01 and B4=10, which

is shown in the fourth row of table 6.1. Then orientation of the bits are performed that is 1
st

bit is oriented with 2
nd

 bit of every 2-bit blocks and the result is shown in the fifth row of

table 6.1. Finally all the bits are concatenated to get the ciphertext S’.

Table 6.2 illustrates a decryption example of ROBAST. In this decryption example

the modulo-2
n
 subtraction is performed instead of addition and the steps used in encryption

are just reversed for the decryption. Since it is a symmetric cipher so decryption will be the

just reverse of encryption.

Let consider the above ciphertext, S’, is divided into blocks of 2-bits each. So, get

four blocks, B1=01, B2=00, B3=10 and B4=01. First, orientation of bits is performed, that is

- 185 -

1
st
 bit is oriented with 2

nd
 bit of every 2-bit blocks. The result is given in third row of table

6.2.

Table 6.2: Example of decryption in ROBAST

Source Stream(S’) 01001001

Blocks of 2-bits 01 00 10 01

Orientation of Bits 10 00 01 10

Backward 2-bit

Modulo 2
2
 subtraction

10 11 11 10

Forward 2-bit Modulo

2
2
 subtraction

10 01 00 11

Final Plaintext (S’’) 10010011

During decoding the backward modulo-4 subtraction is performed, B3=B4-B3,

B2=B3-B2 and B1=B2-B1. Now, get the result as B1=10, B2=11, B3=11 and B4=10, which

is shown in the fourth row of table 6.2. After that forward modulo-4 subtraction is performed,

B2=B2-B1, B3=B3-B2 and B4=B4-B3. The result obtained as B1=10, B2=01, B3=00 and

B4=11, which is shown in the fifth row of table 6.2. Finally all the bits are concatenated to

get the final plaintext S’’, which is the same as the original plaintext S.

6.4 Implementation and Key Generation

The technique executes modulo addition between two blocks, the first iteration

performs in forward basis and then backward operation is performed. Next, final permutation

is done to get the final cipher text.

This technique has been implemented in C and then feasibility study has been

performed. Finally, FPGA based implementation has been done in VHDL. In both

implementation, the technique takes input from file as a source stream and encryption is

performed. The cipher text generated is finally written in another file. The data blocks (8, 16,

32, 64, 128 and 256-bits) from the input file have been stored in array. Then encryption is

performed and also stored in array. The reading and writing of data from and in file is based

on 8-bit ASCII codes. XilinX ISE 8.1i software has been used for writing codes in VHDL.

- 186 -

library std;

library ieee;

use ieee.std_logic_arith.all;

use work.pack.all;

use std.textio.all;

use ieee.std_logic_TEXTIO.all;

entity ROBAST_VHDL is

Port (input_bits : in BIT_VECTOR (16 downto 1);

output_bits : out

BIT_VECTOR (16 downto 1); key_bits : in

BIT_VECTOR (8 downto 1);

EN_DN : in BIT);

end ROBAST_VHDL;

architecture Behavioral of ROBAST_VHDL is

begin

process(EN_DN)

variable varin_bits,varout_bits: bit_vector(16 downto

1);

begin

if (EN_DN='1')then varin_bits:=input_bits;

AA:

ROBAST_Encryption(varin_bits,key_bits,varout_bits)

;

output_bits<=varout_bits;

else

BB:

ROBAST_Decryption(varin_bits,key_bits,varout_bits)

;

output_bits<=varout_bits;

end if;

end process;

end Behavioral;

Figure 6.2: ROBAST entity and its function

- 187 -

Figure 6.3: Top level RTL design of ROBAST

Figure 6.2 gives the implementation of ROBAST entity and its function. The

encryption/decryption entity input bit vector (16-bit), output bit vector (16-bit), key bit vector

(8-bit) and EN_DN signal. If EN_DN = 1 then encryption is performed else decryption is

performed. During encryption the input bit vector of 16-bits is the plaintext and output 16-bit

vector is the ciphertext where as EN_DN value is ‘1’. During decryption the input bit vector

of 16-bits is the ciphertext and the output 16-bit vector is the plaintext where as EN_DN

value is ‘0’. Figure 6.3 shows the top RTL diagram of ROBAST.

When EN_DN = 1, the ‘ROBAST_Encryption’ function is called with the parameters,

‘varin_bits’ which is the plaintext, ‘varout_bits’ which is the ciphertext, both of these are of

16-bits and third parameter is the ‘key_bits’ which is the session key of the encryption of 8-

bits. When EN_DN = 0, the ‘ROBAST_Decryption’ function is called with the parameters,

‘varin_bits’ which is the ciphertext, ‘varout_bits’ which is the plaintext, both of these are of

16-bits and third parameter is the ‘key_bits’ which is the session key of the decryption of 8-

bits. This code is written in VHDL using behavioral model of coding. The

‘ROBAST_VHDL’ entity in this coding has three ports, ‘input_bits’ of IN type of bit vector

of 16-bits, ‘output_bits’ of OUT type of bit vector of 16-bits, ‘key_bits’ of IN type of bit

vector of 16-bits and ‘EN_DN’ bit of IN type. ‘Behavioral’ is the architecture of the entity

‘ROBAST_VHDL’, this architecture contains a process which is called on the signal

‘EN_DN’ that is whenever there is a signal in ‘EN_DN’ this process is called. This process

contains two functions, ‘ROBAST_Encryption’ and ‘ROBAST_Decryption’. These two

functions are called according to the value of signal bit ‘EN_DN’ which is already discussed.

The implementation here is both functional and files type. These means that the code can be

implemented in Xilinix FPGA and the simulation takes the input from a text file and the

output is written into another text file. There are various libraries are used, library ‘std’ and

library ‘ieee’, it is important to note that library ‘ieee.std_logic_TEXTIO.all’ is used for the

- 188 -

implementation of text file reading and writing. Figure 6.2 gives the main ROBAST entity

coded in VHDL.

Section 6.4.1 deals with the key generation process, section 6.4.2 illustrates an

example and section 6.4.3 gives the concept of modulo addition.

6.4.1 The Key Generation Process of ROBAST

In this section key generation process has been illustrated, the session key is 128-bits

for generalized ROBAST implementation.

Table 6.3: Representation of number of iterations in each round by bits, the key generation

for ROBAST

Round Block Size Number of Iterations

Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

Figure 6.4: Graphical representation of key generation of ROBAST

- 189 -

The key generation process depends on block size, iteration of each block and final

permutation performed. Thus, in the proposed scheme, eight rounds have been considered,

each for 2, 4, 8, 16, 32, 64, 128, and 256 block size. As mentioned in each round is repeated

for a finite number of times and the number of iterations will form a part of the encryption-

key. Although the key may be formed in many ways, for the sake of brevity it is proposed to

represent the number of iterations in each round by a 16-bit binary string. The binary strings

are then concatenated to form a 128-bit key for a particular key. Table 6.3 gives the key

generation process and the same is shown graphically in figure 6.4. For the block size of 2-

bits are considering 72 rounds, for block size of 4-bits are considering 690 rounds and so on

and finally for block size of 256-bits 50021rounds have been considered for encryption. Since

the technique is symmetric block cipher so for decryption same number of rounds will be

required. These numbers of rounds have been considered in binary value, for each block size

the number of rounds is considered in 16-bits of binary value. So there is eight block sizes

and their corresponding eight 16-bits rounds, the key is formed by concatenating all the 16-

bits binary values. Therefore, the size of the session key proposed here is 16 X 8 = 128-bits,

which is now a day’s considered the secure key length.

An example of key generation is illustrated in section 6.4.2. Section 6.4.3 describes

the modulo addition used in ROBAST, which is an important operation in the technique and

should be taken into account while forming the session key.

6.4.2 An Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for

block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 6.3 shows the

corresponding binary value for the number of iterations in each round. If considering the

block size of 256-bits then the binary value of round is ‘1100001101100101’, for block size

of 128-bit the binary value of round is ‘1100001011001110’ and so on finally for block size

of 2-bits the binary value of round is ‘0000000001001000’. These eight 16-bits binary strings

are concatenated together to form the 128-bit binary string, which is given below.

 110000110110010111000010110011101011111100110110101011011001101110110

10010101010000100001110000100000010101100100000000001001000

- 190 -

Figure 6.5: Session key generation of ROBAST

This 128-bit binary string will be the encryption-key for this particular session.

During decryption, the same key is taken to iterate each round of modulo-subtraction for the

specified number of times and reverse permutation. Figure 6.5 shows the top level RTL

diagram of session key generation of ROBAST.

6.4.3 Modulo Addition Used in ROBAST

An alternative method for modulo addition is proposed here to make the calculations

simple. The need for computation of decimal equivalents of the blocks is avoided here since

it will get large decimal integer values for large binary blocks. The method proposed here is

just to discard the carry out of the MSB after the addition to get the result. For example, if

add 1101 and 1001 it get 10110. In terms of decimal values, 13+9=22. Since the modulus of

addition is 16 (2
4
) in this case, the result of addition should be 6 (22-16=6). Discarding the

carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So the result will be

0110, which is equivalent to 6 in decimal. The same is applicable to any block size.

6.5 Analysis

Analyzing all the results presented in section 6.6, following are the points obtained on

the proposed technique, ROBAST:

 The algorithmic complexity of ROBAST is O(n
2
).

 ROBAST encrypts block of fixed sizes of 2
n
, where n = { 3, 4, 5, …..}, that is

8, 16, 32, 64, 128 and 256.

 ROBAST is a substitution cipher, where the modulo addition between two

consecutive blocks replaces the second block.

- 191 -

 ROBAST is a recursive cipher, the encryption block size starts with 256-bits

and goes up-to 8-bit block size.

 Decryption is same as encryption where round keys are given in reverse

manner in decryption than that of encryption.

6.6 Results and Simulations

Any cryptographic technique is to be accepted, a satisfactory results are very much

required. This technique has been tested for feasibility both in terms of algorithmic

parameters and cryptographic parameters. These are all described in respective sub sections.

Section 6.6.1 discuss results of RTL/Hardware implementation, section 6.6.2 discuss the

results of frequency distribution graph, section 6.6.3 discuss the results of Chi-Square test for

non-homogeneity of source files and encrypted files, section 6.6.4 discuss the results of time

complexity and section 6.6.5 discuss the results of avalanche ratio test.

6.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed

technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main

objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.

Figure 6.6: RTL diagram of RSA

- 192 -

Figure 6.7: Spartan 3E RTL diagram of TPRT

Figure 6.8: Spartan 3E RTL diagram of TMAT

Figure 6.9: Spartan 3E schematic of ROBAST

- 193 -

Figure 6.6 shows the RTL schematic of RSA, figure 6.7 shows the RTL schematic of

TPRT, figure 6.8 shows the RTL schematic of TMAT and figure 6.9 shows the RTL

schematic of ROBAST. If observe the figures given above that it can be seen that a lot of

Look-Up-Tables are required, almost thirty, to realize this proposed technique, ROBAST, in

Spartan 3E FPGA. Similarly by seeing RTL schematic it can be said that a lot of registers are

required, almost fifty, to realize this proposed technique, ROBAST. So, this technique uses

the resources efficiently, the netlist study and speed grade study is discussed in later

paragraphs.

Table 6.4 gives the netlist generation of proposed technique, ROBAST, previous

techniques, TPRT, TMAT and RSA. RAMs/ROMs used in ROBAST is quite more than that

of TPRT and TMAT but still less than RSA. Since modulo addition is the backbone of

ROBAST, so, ROBAST uses quite large number of adder/subtraction than that of TPRT,

TMAT and RSA. Registers used here, ROBAST, is also larger than that of TPRT and TMAT

but it is still less than that of RSA. This technique, ROBAST, also uses a quite number of

latches and multiplexers than TPRT and TMAT. So, in overall it can be said that ROBAST

uses the resources available in FPGA chip.

Table 6.4: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT and ROBAST)

Sr No. Netlist Components Number

RSA TPRT TMAT ROBAST

1 ROMs/RAMs 430 10 14 25

2 Adders/Subtractions 3 0 2 20

3 Registers 420 20 30 50

4 Latches 80 0 0 10

5 Multiplexers 120 0 0 10

Table 6.5 gives the timing summary of proposed technique, ROBAST, previous

techniques, TPRT and TMAT and RSA. The minimum period for ROBAST is less than

TPRT, TMAT and RSA. The maximum frequency is same for all the implementation because

all the implementation is based of Spartan 3E FPGA with a speed grade of -5. Minimum

input arrival time of ROBAST is of medium value than TPRT, TMAT and RSA.

- 194 -

Table 6.5: HDL synthesis report (Timing summary of RSA, TPRT, TMAT and ROBAST)

 Sr No. Timing Constraint Values

RSA TPRT TMAT ROBAST

1 Speed Grade -5 -5 -5 -5

2 Minimum period (ns) 9.895 5.66 7.95 5.55

3 Maximum Frequency

(MHZ)

101.06 101.06 101.06 101.06

4 Minimum input

arrival time before

clock (ns)

6.697 4.33 5.55 5.55

5 Maximum output

required time after

clock (ns)

4.31 3.33 4.25 4.44

The maximum output required time is higher for proposed technique, ROBAST, than

that of TPRT, TMAT and RSA. So, in overall it can be said that ROBAST is giving

satisfactory result in hardware implementation.

6.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis. Figure 6.10 illustrates the source file, RSA encrypted file and TPRT encrypted

file frequency distribution results found after implementation of respective

algorithms/techniques. Figure 6.11 illustrates the frequency distribution of TMAT and

ROBAST encrypted file. The frequency distribution graph of all the proposed techniques,

ROBAST, TPRT and TMAT are giving the optimal result. All the frequencies are evenly

distributed over 256 region for all the technique except that of RSA where the frequency

distribution is not evenly distributed and somewhat resembles frequency distribution of a text

file. Though ten files have been encrypted but for this result the file ‘genesis.txt’ of size 48.44

KB is considered.

- 195 -

Figure 6.10: Frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

- 196 -

Figure 6.11: Frequency distribution graph of TMAT and ROBAST encrypted files

6.6.3 The Non-Homogeneity Test

Test for non homogeneity has been done using Chi-Square value and degree of

freedom; this is one of the important cryptographic parameters. Chi-Square value is the

statistical value between source file and encrypted files, which gives the difference. Degree

of freedom in the character distribution of the above said files. Table 6.6 gives the Chi-

Square value and figure 6.12 illustrates the same graphically.

- 197 -

Figure 6.12: Pictorial representation of Chi-Square values of ROBAST, RSA, TPRT and

TMAT

Table 6.6: Chi-Square values of ROBAST, RSA, TPRT and TMAT

Source File File Size

(Bytes)

Chi-Square Values

ROBAST RSA TMAT TPRT

license.txt 17,632 6472 5668 201530 191382

cs405(ei).doc 25,422 4407 2654 286025 253470

acread9.txt 35,121 560357 447984 440184 410735

deutsch.txt 47,829 3307374 685963 555220 505121

genesis.txt 49,600 2679799 3318506 659045 638592

pod.exe 69,981 8495675 694410 905416 896405

mspaint.exe 136,463 3131296 2667664 1297256 1203665

cmd.exe 152,028 9559993 2216429 1759014 1692655

d3dim.dll 193,189 3102369 906300 4630652 4250652

clbcatq.dll 403,901 2590855 3896171 4167801 3922143

- 198 -

Table 6.7: Degree of freedom of ROBAST, RSA, TPRT and TMAT

Source File File Size

(Bytes)

Degree of Freedom

ROBAST RSA TMAT TPRT

license.txt 17,632 253 253 255 255

cs405(ei).doc 25,422 253 253 255 255

acread9.txt 35,121 253 253 255 255

deutsch.txt 47,829 253 253 255 255

genesis.txt 49,600 253 253 255 255

pod.exe 69,981 253 253 255 255

mspaint.exe 136,463 254 254 255 255

cmd.exe 152,028 253 253 255 255

d3dim.dll 193,189 253 253 255 255

clbcatq.dll 403,901 253 253 255 255

From the table it is seen that the average Chi-Square value of ROBAST is 33,43,860,

RSA is 14,84,175, TMAT is 14,90,214 and TPRT is 13,96,482. Therefore it can be said that

ROBAST is giving the optimal solution for non-homogeneity test but in degree of freedom

TMAT and TPRT are giving better result than ROBAST. Figure 6.12 giving the Chi-Square

values graphically, X-axis is the ten files and Y-axis is the corresponding Chi-Square values,

here bar graph is selected for this result.

6.6.4 The Time Complexity Analysis

Time complexity is based on encryption time and decryption time. Encryption time is

the time required to encrypt a source file and decryption time is the time to decrypt the cipher

text file to get the original file. Table 6.8 gives the encryption time complexities and figure

6.13 illustrates the same. Table 6.9 gives the decryption time complexities and figure 6.14

illustrates the same. This test is in terms of efficient algorithmic parameter.

- 199 -

Table 6.8: Comparison of encryption time of ROBAST, RSA, TMAT and TPRT

Source File File Size

(Bytes)

Encryption Time

ROBAST RSA TMAT TPRT

license.txt 17,632 0.00 0.01 0.03 0.02

cs405(ei).doc 25,422 0.01 0.06 0.00 0.00

acread9.txt 35,121 0.02 0.07 0.13 0.10

deutsch.txt 47,829 0.03 0.11 0.25 0.20

genesis.txt 49,600 0.04 0.12 0.28 0.25

pod.exe 69,981 0.04 0.12 0.39 0.35

mspaint.exe 136,463 0.06 0.20 0.44 0.40

cmd.exe 152,028 0.07 0.25 0.55 0.50

d3dim.dll 193,189 0.08 0.28 0.55 0.52

clbcatq.dll 403,901 0.08 0.32 0.67 0.60

Table 6.9: Comparison of decryption time of ROBAST, RSA, TMAT and TPRT

Source File File Size

(Bytes)

Decryption Time

ROBAST RSA TMAT TPRT

license.txt 17,632 0.01 0.15 0.11 0.10

cs405(ei).doc 25,422 0.02 0.71 0.00 0.00

acread9.txt 35,121 0.03 1.15 0.13 0.10

deutsch.txt 47,829 0.03 1.36 0.15 0.11

genesis.txt 49,600 0.04 1.61 0.25 0.20

pod.exe 69,981 0.04 1.86 0.39 0.35

mspaint.exe 136,463 0.05 2.71 0.48 0.40

cmd.exe 152,028 0.06 3.34 0.52 0.42

d3dim.dll 193,189 0.07 3.73 0.60 0.50

clbcatq.dll 403,901 0.08 4.25 0.65 0.55

- 200 -

Figure 6.13: Pictorial representation of encryption time of ROBAST, RSA, TMAT and TPRT

Figure 6.14: Pictorial representation of decryption time of ROBAST, RSA, TMAT and TPRT

Encryption time in table 6.8, the encryption time is given against file size in KB, and

considering all the ten files then a total 2.36 MB of file is encrypted. The total time of

encryption by ROBAST is 0.43 seconds, RSA is 1.54 seconds, TMAT is 3.29 seconds and

TPRT is 2.94 seconds. So, ROBAST is giving the optimal result for encryption time

- 201 -

complexity analysis. Figure 6.13 giving these results graphically, X-axis is the ten files and

Y-axis is the corresponding encryption time, here line graph is selected for the result.

Decryption time in table 6.9, the decryption time is given against file size in KB, and

considering all the ten files then a total 2.36 MB of file is decrypted. The total time of

decryption by ROBAST is 0.43 seconds, RSA is 20.87 seconds, TMAT is 3.28 seconds and

TPRT is 2.73 seconds. So, ROBAST is giving the optimal result for decryption time

complexity analysis and far better than that of RSA. Figure 6.14 giving these results

graphically, X-axis is the ten files and Y-axis is the corresponding decryption time, here line

graph is selected for the result.

6.6.5 The Avalanche Ratio Test

The avalanche ratio has been obtained by modifying 2-3 bits/bytes in the encryption

key as well as in source files. It’s a strong cryptographic parameter and this may be

conceptualize with the avalanche occurs in hill area. Table 6.10 gives the avalanche ratio

values of ROBAST, RSA, TPRT and TMAT.

Table 6.10: Comparison of avalanche ratio of ROBAST, RSA, TPRT and TMAT encrypted

files

Source File File Size

(Bytes)

Avalanche

Ratio of

ROBAST

encrypted

files (in %)

Avalanche

Ratio of

RSA

encrypted

files (in %)

Avalanche

Ratio of

TPRT

encrypted

file (in %)

Avalanche

ratio of

TMAT

encrypted

file (in %)

license.txt 17,632 71.90 58.0 77.7 80.8

cs405(ei).doc 25,422 99.69 60.0 80.0 85.5

acread9.txt 35,121 99.93 75.0 88.8 90.0

deutsch.txt 47,829 99.96 78.9 89.0 91.5

genesis.txt 49,600 97.72 80.9 87.0 94.7

pod.exe 69,981 77.00 58.0 77.0 80.0

mspaint.exe 136,463 98.22 58.9 76.0 80.0

cmd.exe 152,028 99.97 67.0 77.0 80.0

d3dim.dll 193,189 99.98 67.9 82.9 85.0

clbcatq.dll 403,901 75.55 68.0 88.5 90.5

- 202 -

The average avalanche ratio of ROBAST is 91.99%, RSA is 67.26%, TPRT is

82.39% and TMAT is 85.8%. So ROBAST is again giving optimal solution for avalanche

ratio analysis that means modifying of plaintext/key will greatly affect ciphertext than other

techniques/algorithm, RSA, TPRT and TMAT.

6.7 Discussions

The technique given here is easily implemented in high-level language and in VHDL.

This technique is very easy and it’s implemented in FPGA-based systems, the goal of fast

execution and strong cryptanalysis requirements are also obtained here. Moreover this

technique can be fabricated in chip to be used in embedded systems. The main goal is to

develop an efficient FPGA-based crypto hardware and this proposed technique is another step

towards this. Now in the next two chapters are develop technique which will give much better

result in terms of confusion and diffusion. It is also be seen that the avalanche ratio analysis

will be boosted in the subsequent chapters.

Chapter 7

Shuffle – Rotational Addition Technique (SRAT)

7.1 Introduction

In this chapter, another secret-key cryptographic system is proposed. The proposed

system is a bit-level implementation. It is a block cipher and it follows the principle of

substitution and permutation. The techniques of the encryption and the decryption are not the

same but one can easily be derived from the other. During encryption modulo addition and

butterfly shuffle has been done and during decryption modulo subtraction and butterfly

shuffle has been done. The encryption key and decryption keys are same.

During encryption, a butterfly shuffle is applied to the whole source stream, then the

source stream is broken down into blocks of fixed size, then the consecutive blocks are

modulo added, the result replaces the second block keeping the first block intact, in the next

phase the whole block is left circular rotated. Now the blocks are concatenated and again

another round of butterfly shuffle is applied. The block size and number of modulo addition

to be performed depends on round key K1 and the butterfly shuffle depends upon round key

K2, thus the RAT operation is sandwiched between two butterfly shuffles.

 During decryption, at first butterfly shuffle is done on source stream, then the source

stream is broken down into number of fixed size blocks, the consecutive blocks are modulo

subtracted the result replacing the second block keeping the first block intact, then here right

circular rotation is performed. Then the blocks are merged and another round of butterfly

shuffle is applied.

The system does not cause any storage overhead, the execution time changes almost

linearly with the size of the file being encrypted. The result of the Chi-Square test establishes

the fact that the source file and the encrypted file are non-homogeneous. The frequency

distribution test between the source and the encrypted files shows how the encrypted

characters are well distributed. The comparison of this proposed technique with the RSA

system on the basis of the Chi-Square values establishes the success of the technique in

ensuring the security of highly satisfactory level. Encryption and decryption time analysis has

also been done and this technique is giving satisfactory result. Another important

cryptographic parameter is avalanche test and this technique is giving much better result.

These entire tests have been performed by implementing the techniques in C-programming

language. Moreover, this technique has also been implemented in VHDL for FPGA-based

systems and the results found there after is also better than previous techniques.

Section 7.2 discussed the algorithm of SRAT with a block level diagram, section 7.3

gives a detailed example of encryption and decryption process, section 7.4 discussed the

- 206 -

implementation issues with key generation, section 7.5 gives a brief analysis, section 7.6

discussed the results obtained based on implementation and a brief discussions are given in

section 7.7.

7.2 The Algorithm of SRAT

 This section describes the algorithm of SRAT with a block level diagram. The

plaintext for Shuffle-RAT is considered as a stream of 512 bit blocks. Figure 7.1 shows the

block diagram of Shuffle-RAT. The basic round function is Rotational Addition Technique

(RAT), applied on the 512-bit plaintext over 8 rounds where RAT is sandwiched between

two Butterfly-Shuffles.

Figure 7.1: Block diagram of Shuffle-RAT

The plaintext is subdivided into smaller blocks in each round of Shuffle-RAT, where

the block sizes vary with the powers of 2 in the rounds, i.e., 2
n
-bit blocks are considered for

round ‘n’, where ‘n = 1, 2, 3 … 8’. In the ‘n-th’ round of Shuffle-RAT, the rotational addition

adds each block to the adjacent block modulo ‘2
n’

, and stores the result in the second block,

iteratively over the length of the plaintext, the operation of RAT is in between two Butterfly-

Shuffle. In mathematical terms, the round function of Shuffle-RAT is as follows.

- 207 -

 One Round of Butterfly-Shuffle (1)

Bi+1 = (Bi + Bi+1) mod 2
n
 (2)

Another Round of Butterfly-Shuffle (3)

In equation (2), the index ‘i’ cover all the blocks in each round. Each round of

Shuffle-RAT is iterated for some number of times defined by ‘keys’, where the round-keys

are of size 16 bits each. Thus, the total key-size of Shuffle-RAT is 8 x 16 = 128 bits.

Decryption for Shuffle-RAT is just the opposite of encryption, where one has to use modular

subtraction instead of addition and the round-keys are considered in the reverse order.

A close study of Shuffle-RAT reveals a few areas for improving the design even

further. The degree of randomness may be increased for better non-homogeneity and security

than the previous scheme. In terms of improving the algorithm, it was observe that RAT, the

previous proposed technique, has a strong property of ‘confusion’, like all good block

ciphers, but lacks good ‘diffusion’. Thus, I propose the diffusion of Shuffle-RAT with the

technique of butterfly shuffle to produce a new cipher – Shuffle-RAT, with high confusion

and diffusion. This Butterfly-Shuffle produces high ‘diffusion’ which is performed twice in

this technique, before and after each round of RAT, and RAT here provides good

‘confusion’. Therefore this proposed cipher, Shuffle-RAT (SRAT), provides high confusion

and diffusion properties.

The algorithm of the Shuffle-RAT technique is based on RAT [131], and can be

summarized as follows:

 Step 1: The 512 bit message is divided into a number of blocks; each

containing N = 2
n
 bits, where N is any one of 2, 4, 8, 16, 32, 64,

128, 256.

 Step 2: Each round key of 16 bits, produced similar to that in RAT, is

divided into two parts each of 8 bits. Suppose that they are named

as key1 and key2.

 Step 3: First, Butterfly-Shuffle of bits/blocks is performed, which is based

on key2.

 Step 4: Two adjacent blocks are added and result is stored in the 2
nd

 block

where the modulus of addition is 2
n
 as in the case of RAT. This

RAT operation is performed and which is based on Key1. Thus,

- 208 -

original RAT is performed on the blocks of size N for (key1) times

of iterations.

 Step 5: The blocks are shuffled within the message to create proper

diffusion. This is done by a simple butterfly shuffle, shuffling pairs

of adjacent blocks, and the shuffling is done just once. Thus

another round of Butterfly-Shuffle is performed and which is based

on key2.

 Step 6:

Finally, all the blocks are concatenated to form 512-bit ciphertext.

Thus, Shuffle-RAT incorporate diffusion in the structure of RAT using the butterfly

shuffle, sandwiched between two regular rounds of RAT, which already provides sufficient

amount of confusion as in the original design. The decryption is same as the above step, but

in the middle phase, that is, in RAT, operation the modulo subtraction is performed instead of

modulo addition. Since it is a symmetric block so repeated modulo addition would form the

original bit stream, but this number of iterations would increase in exponential term with the

increase of block size. Thus, for decryption modulo subtraction is proposed.

Table 7.1: Number of iteration to regenerate source stream using modulo-addition

Block size No. of iterations

2 4

4 16

8 256

16 65536

Table 7.1 gives number of iterations against block sizes in SRAT. If observe table 7.1,

four numbers of iterations is required for 2-bit block size, 16 numbers of iterations is required

for 4-bit block size and 65536 numbers of iterations are required to get back the original

source stream for 16-bit block size using modulo-addition. Thus for 512-bit block size the

number of iterations will be huge (in millions) to get back the original source stream using

modulo-addition. Figure 7.2 illustrates the same graphically.

- 209 -

Figure 7.2: Graphical representation of number of iterations to obtain source stream using

modulo-addition

It is seen from figure 7.2 that the number of iteration to get back the original source

stream varies exponentially with the block size, therefore modulo-subtraction is proposed for

decryption.

7.3 Example

An example of SRAT has been given. Consider the plaintext as 1011110111000111.

Table 7.2 gives the encryption process, here plaintext of 16-bit is considered. At first the 16-

bit plaintext is divided into eight 2-bit block size, and then a butterfly shuffle is performed.

Table 7.2: Encryption process of SRAT

Plaintext 1011110111000111

Round 1 (Block size = 2 bits) Butterfly-

Shuffle

11 11 01 10 11 11 00 01

11 10 11 01 00 11 11 00

10 11 01 11 00 00 11 11
RAT

Butterfly-

Shuffle

Next Input 1011011100001111

Round 2 (Block size = 4 bits) Butterfly-

Shuffle

0111 1011 1111 0000

0111 0010 1111 1111

0010 0111 1111 1111
RAT

Butterfly-

Shuffle

Final Ciphertext 0010011111111111

- 210 -

Table 7.2 gives the encryption process, here plaintext of 16-bit is considered. At first

the 16-bit plaintext is divided into eight 2-bit block size, and then a butterfly shuffle is

performed.

Let consider the plaintext as P = ‘1011110111000111’. The eight blocks will be,

B1=10, B2=11, B3=11, B4=01, B5=11, B6=00, B7=01 and B8=11. In Butterfly-Shuffle in

the left part (B1, B2, B3 and B4) is, B3 will be replaced by B4, B2 will be replaced by B3,

B1 will replace by B2 and B4 will replace by B1. The Butterfly-Shuffle for right part (B5,

B6, B7 and B8) is, B6 will be replaced by B5, B7 will be replaced by B6, B8 will be replaced

by B7 and B5 will be replaced by B8. This type of replacing is known as Butterfly-shuffle.

Table 7.3: Decryption process of SRAT

Ciphertext 0010011111111111

Round 1 (Block size = 4 bits) Butterfly-

Shuffle

0111 0010 1111 1111

0111 1011 1111 0000

1011 0111 0000 1111
RAT

Butterfly-

Shuffle

Next Input 1011011100001111

Round 2 (Block size = 2 bits) Butterfly-

Shuffle

11 01 11 10 11 00 00 11

11 10 11 01 00 11 11 00

10 11 11 01 11 00 01 11
RAT

Butterfly-

Shuffle

Final Plaintext 1011110111000111

 Then one round of RAT is performed but here 2-bit modulo addition is done, again

another round of Butterfly-Shuffle is done. All the eight blocks will be input to the next

round of Shuffle-RAT encryption, in this round, 16-bit sub-stream is divided into four blocks

of 4-bits each, and then Butterfly-Shuffle is performed.

Let consider the sub-stream, S = ‘1011011100001111’. The four blocks would be,

B1=1011, B2=0111, B3=0000, B4=1111. In Butterfly-Shuffle in the left part just B1 and B2

are swapped. In right part of Butterfly-Shuffle just B3 and B4 are swapped. This type of

replacing is known as Butterfly-shuffle.

Then one round of RAT operation is performed where 4-bit modulo addition is done.

Again another round of Butterfly-Shuffle is performed. Finally Concatenation of all four

blocks will result in 16-bit ciphertext.

- 211 -

Table 7.3 gives the decryption process of the same ciphertext generated in table 7.3.

The process of decryption is same as that of encryption, but with two differences, at first 4-

block size is considered then 2-bit block size is considered. Second, in RAT operation

7.4 Implementation and Key Generation

 The implementation of SRAT is done in IEEE VHDL and synthesized in Xilinx 8.1i.

These contains various modules and sub modules. Before laying out the architectural plan for

this proposed cipher, SRAT, let take note of all components that it will be required to use in

this context:

 Storage: The plaintext is stored in a 512 bit, which is a 64-byte register array

denoted by ‘regbox’. The key is stored in a 128 bit, which is a 16-

byte register array denoted by ‘keymod’. The masks for two rounds

are stored in a 10-byte register array denoted by ‘mskbox’.

 Logic

blocks:

This consists of the main controller module denoted by ‘srat_main’,

the individual circuits for 8 rounds of Shuffle-RAT (SRAT2 to

SRAT256), and the access logic and multiplexing circuit to read and

write from the storage.

 SRATn: Means Shuffle-RAT algorithm with n-bit of plaintext, SRAT2 means

Shuffle-RAT with 2-bit plaintext block, SRAT256 means Shuffle-

RAT with 256-bit plaintext block.

Figure 7.3: Top-level hardware architecture for Shuffle-RAT

- 212 -

Figure 7.3 shows the design of Shuffle-RAT for FPGA simulation. The plaintext, keys

are taken from storage registers named ‘regbox’ and ‘keymod’. The complete Shuffle-RAT

operations are done in SRAT2 to SRAT256, as described in the algorithm. Clock and reset

inputs are fed to the main controller module, which instructs the SRAT modules to operate in

a particular sequence, and indicates when all operations are completed successfully.

The registers are byte array (8 bit) for the storage ‘regbox’, whereas SRAT2 and

SRAT4 require the access of 2-bit and 4-bit blocks respectively. This is why the masks are

stored in ‘mskbox’ to access the required 2-bit or 4-bit blocks from the bytes. Another main

point in terms of an efficient design is that the blocks SRAT2 to SRAT256 operate

sequentially, and do not overlap in time. Thus, the access ports to the storage modules, that

are ‘regbox’, ‘keymod’ and ‘mskbox’, can be shared among the SRAT operations. So, the

port sharing logic between rounds of Shuffle-RAT is incorporated.

The main storage for the Shuffle-RAT hardware is the ‘regbox’ array and the

‘keymod’ array. The ‘regbox’ comprises of 8 bit registers made of edge-triggered master-

slave flip-flops, with a total of 64 such registers to hold the 512-bit plaintext. To

accommodate the read and write accesses to the ‘regbox’, use write-access decoders and

read-access decoders, which in turn control 64-to-1 multiplexer units associated to each

location of the array. The ‘keymod’ that holds the 128-bit Shuffle-RAT key is also designed

in a similar fashion, but with the exception that no intermediate write accesses are required

for the registers.

Modulo adder is another important component in this proposed technique, SRAT and

also for ROBAST. Carry Look-ahead Adder is designed for this purpose. The carry Look-

ahead Adder (CLA) solves the carry delay problem by calculating the carry signals in

advance, based on the input signals. It is based on the fact that a carry signal will be

generated in two cases: (4) when both bits ai and bi are 1 or (5) when one of the two bits is 1

and the carry-in is 1. Thus, one can write,

 ci+1 = ai . bi + (ai XOR bi) . ci (4)

si = (ai XOR bi) XOR ci (5)

The above two equations can be written in terms of two new signals Pi and Gi, which

are shown in figure 7.4.

- 213 -

Figure 7.4: Full adder at stage i with Pi and Gi

 ci+1 = Gi + Pi . ci (6)

 si = Pi XOR ci (7)

 Where

 Gi = ai . bi (8)

 Pi = ai XOR bi (9)

Gi and Pi are called the carry generate and carry propagate terms, respectively. Notice

that the generate and propagate terms only depend on the input bits and thus will be valid

after one and two gate delay, respectively. If one uses the above expression to calculate the

carry signals, one does not need to wait for the carry to ripple through all the previous stages

to find its proper value.

Let’s apply this to a 4-bit adder to make it clear. Putting i = 0, 1, 2, 3 in equation (6)

got

 c1 = G0 + P0 . c0

 (10)

 c2 = G1 + P1 . G0 + P1 . P0 . c0

 (11)

 c3 = G2 + P2 . G1 + P2 . P1 . G0 + P2 . P1 . P0 . c0

 (12)

 c4 = G3 + P3 . G2 + P3 . P2. G1 + P3 . P2. P1 . G0 + P3 . P2 . P1 . P0 . c0

 (13)

- 214 -

Figure 7.5 shows that a 4-bit CLA is built using gates to generate the Pi and Gi signals

and a logic block to generate the carry out signals according to Equations 10- 13. For

modulo-4 CLA only have to discard c4. CLAs are usually implemented as 4-bit modules and

are used in a hierarchical structure to realize adders that have multiples of 4-bits. It is a

simple matter to develop a more versatile 2’s complement adder/subtractor based on the

adder in figure 7.5.

Figure 7.5: 4-bit modulo carry look-ahead adder implementation details

Section 7.4.1 describes the key generation process and section 7.4.2 gives an example

of key generation.

7.4.1 Key Generation

In the proposed technique, eight rounds have been considered, each for 2, 4, 8, 16, 32,

64, 128, and 256 block size. Each round is repeated for a finite number of times and the

number of iterations will form a part of the encryption-key. Although the key may be formed

in many ways, for the sake of brevity it is proposed to represent the number of iterations in

- 215 -

each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-

bit key for a particular key.

In the proposed technique, eight rounds have been considered, each for 2, 4, 8, 16, 32,

64, 128, and 256 block size. Each round is repeated for a finite number of times and the

number of iterations will form a part of the encryption-key. Although the key may be formed

in many ways, for the sake of brevity it is proposed to represent the number of iterations in

each round by a 16-bit binary string. The binary strings are then concatenated to form a 128-

bit key for a particular key.

Table 7.4: Representation of number of iterations in each round in SRAT

Round Block

Size

Number of Iterations

Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

Figure 7.6: Graphical representation of round v/s iteration

- 216 -

Figure 7.7: Session key generation for SRAT

Figure 7.7 shows the top level RTL diagram of session key generation, here two

session keys are generated, session key 1 (SK1_RAT) is used for RAT operation that is

modulo addition operation, session key 2 (SK2_SHUFFLE) is used for two rounds of

butterfly shuffle. The total size of key is 128-bits.

7.4.2 Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for

block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 7.4 shows the

corresponding binary value for the number of iterations in each round. Figure 7.6 shows the

graph for the round v/s iteration. The binary strings are concatenated together to form the

128-bit binary string:

110000110110010111000010110011101011111100110110101011011001101110110

10010101010000100001110000100000010101100100000000001001000

This 128-bit binary string will be the key for encryption for a particular session.

During decryption, the same key is taken to iterate each round of modulo-subtraction for the

specified number of times.

7.5 Analysis

This technique is derived from Rotational Addition Technique (RAT), the advantages

of RAT are:-

 The technique can take little time to encode and decode though the block

length is large.

- 217 -

 The encoding string will not generate any overhead bits.

 Selecting the block pairs randomly (rather than consecutive pairs) may

increase the security.

RAT also has severe limitations which are listed below:-

 The first 2-bits of the message never get encrypted. So, the first two bits are

always in the hand of cryptanalyst.

 The first 4-bits of the message never gets encrypted from round two onwards.

The first 8-bits of the message never gets encrypted from round three onwards

and so froths from all the rounds.

 In general first 2
k
 bits never gets encrypted in round ‘k’ onwards.

 Key size of RAT encryption and RAT decryption is 16-bits per round. Thus

the runtime of RAT (with 16-bits of keys at each level) is approximately in

order of 8*2
16

=2
19

 RAT cycles. Where one cycle is equivalent to on complete

RAT operation over the whole 512-bits. This number makes RAT a bit slower.

The basic ideas of the design of SRAT are as follows:-

 The degree of randomness has also increased here by introducing two butterfly

shuffles in between one round of RAT.

 RAT does the job of confusion well but butterfly shuffle introduce the job of

diffusion as well.

Thus got much better technique, the algorithmic complexity of SRAT is found to be

O(n
2
).

7.6 Results and Simulations

In this section, the various results obtained on implementation of the proposed

technique, Shuffle-RAT, has been compared with the previous techniques, TPRT, TMAT and

ROBAST. This technique is also compared with popular and industrially accepted cipher,

RSA. The comparisons are done in two categories, first one is the comparisons based on

- 218 -

FPGA-Based hardware implementation and second one is the comparisons based on software

implementation through C-programming language. The software implementation includes

Chi-Square values, encryption time and decryption time, avalanche test and frequency

distribution. The hardware implementation will mainly deal with the Register Transfer Logic

(RTL) parameters and diagrams. Section 7.6.1 discuss results of RTL/Hardware

implementation, section 7.6.2 discuss the results of frequency distribution graph, section

7.6.3 discuss the results of Chi-Square test for non-homogeneity of source files and encrypted

files, section 7.6.4 discuss the results of time complexity and section 7.6.5 discuss the results

of avalanche ratio test.

7.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed

technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main

objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.

Figure 7.8: RTL diagram of RSA

Figure 7.9: Spartan 3E RTL diagram of TPRT

- 219 -

Figure 7.10: Spartan 3E RTL diagram of TMAT

Figure 7.11: Spartan 3E schematic of ROBAST

Figure 7.12: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT

Figure 7.8 shows the RTL schematic of RSA, figure 7.9 shows the RTL schematic of

TPRT, figure 7.10 shows the RTL schematic of TMAT, figure 7.11 shows the RTL schematic

- 220 -

of ROBAST and figure 7.12 shows RTL schematic of SRAT. If the figures are analyzed

given above it can be seen that a few Look-Up-Tables are required. Nine lookup tables are

required to realize this proposed technique, SRAT, in Spartan 3E FPGA. So, this technique

uses the resources efficiently, the netlist study and speed grade study is discussed in

subsequent paragraphs.

Table 7.5: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST and

SRAT)

Sr No. Netlist Components Number

RSA TPRT TMAT ROBAST SRAT

1 ROMs/RAMs 430 10 14 25 28

2 Adders/Subtractions 3 0 2 20 28

3 Registers 420 20 30 50 641

4 Latches 80 0 0 10 80

5 Multiplexers 120 0 0 10 136

Table 7.5 gives the HDL synthesis of netlist generation, the number of ROMs/RAMs

and adder/subtraction used in SRAT in 28 which is the highest than other techniques, number

of register of SRAT is 641 which is also highest, the number of latches is 80 and multiplexers

is 136, these results are also highest. So, in terms of netlist generation SRAT consuming the

maximum resources efficiently.

Table 7.6: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST and

SRAT)

Sr No. Timing Constraint Values

RSA TPRT TMAT ROBAST SRAT

1 Speed Grade -5 -5 -5 -5 -5

2 Minimum period (ns) 9.895 5.66 7.95 5.55 5.50

3 Maximum Frequency

(MHZ)

101.06 101.06 101.06 101.06 101.06

4 Minimum input arrival

time before clock (ns)

6.697 4.33 5.55 5.55 4.25

5 Maximum output

required time after

clock (ns)

4.31 3.33 4.25 4.44 3.33

- 221 -

Table 7.6 gives the timing synthesis of the techniques, RAT giving the minimum

period of 5.50ns, minimum input arrival time before clock of SRAT is 4.25ns, and Maximum

output required time after clock of SRAT is 3.33ns, these shows the optimal result of SRAT

than TPRT, TMAT, ROBAST and RSA. Thus SRAT is the best implemented in FPGA-based

systems.

7.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.

- 222 -

Figure 7.13: Frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

Figure 7.14: Frequency distribution graph of TMAT and ROBAST encrypted files

- 223 -

Figure 7.15: Frequency distribution graph of SRAT encrypted files

Figure 7.13 illustrates the source file, RSA encrypted file and TPRT encrypted file

frequency distribution results found after implementation of respective

algorithms/techniques. Figure 7.14 illustrates the frequency distribution of TMAT and

ROBAST encrypted file. Figure 7.15 illustrates the frequency distribution graph of SRAT

encrypted file. The frequency distribution graph of all the proposed techniques, SRAT,

ROBAST, TPRT and TMAT are giving the optimal result. All the frequencies are evenly

distributed over 256 region for all the technique except that of RSA where the frequency

distribution is not evenly distributed and somewhat resembles frequency distribution of a text

file. Though ten files have been encrypted but for this result the file ‘genesis.txt’ of size 48.44

KB is considered. Therefore there is no substantial improvement in this result for SRAT.

7.6.3 The Non-Homogeneity Test

This section shows the extent of non-homogeneity between source file and encrypted

file. To test this Chi-Square is taken as a parameter. Here the observed frequency is source

file that is plaintext and the expected frequency is the ciphertext that is encrypted file. Ten

files has been taken for this test in increasing order of file size, the size starts from 17,632

bytes (17.22 KB) and goes to 403,901 bytes (394.43 KB). Among these ten files, four text

files has been taken, one Microsoft word file has been taken, three executable file has been

taken and two dll files has been taken.

These files are then repeatedly encrypted by RSA, TPRT, TMAT, ROBAST and

SRAT, then with software tools the Chi-Square value between the source files and encrypted

files are noted down in tabular format.

- 224 -

Table 7.7: Comparison of Chi-Square values of ROBAST, RSA, TPRT, TMAT and SRAT

Source File File Size

(Bytes)

Chi-Square Values

ROBAST RSA TMAT TPRT SRAT

license.txt 17,632 6472 5668 201530 191382 201960

cs405(ei).doc 25,422 4407 2654 286025 253470 305590

acread9.txt 35,121 560357 447984 440184 410735 451125

deutsch.txt 47,829 3307374 685963 555220 505121 558330

genesis.txt 49,600 2679799 3318506 659045 638592 683128

pod.exe 69,981 8495675 694410 905416 896405 937565

mspaint.exe 136,463 3131296 2667664 1297256 1203665 1308890

cmd.exe 152,028 9559993 2216429 1759014 1692655 2009956

d3dim.dll 193,189 3102369 906300 4630652 4250652 9900630

clbcatq.dll 403,901 2590855 3896171 4167801 3922143 4525650

Table 7.8: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT and SRAT

Source File File Size

(Bytes)

Degree of Freedom

ROBAST RSA TMAT TPRT SRAT

license.txt 17,632 253 253 255 255 253

cs405(ei).doc 25,422 253 253 255 255 254

acread9.txt 35,121 253 253 255 255 255

deutsch.txt 47,829 253 253 255 255 240

genesis.txt 49,600 253 253 255 255 255

pod.exe 69,981 253 253 255 255 255

mspaint.exe 136,463 254 254 255 255 255

cmd.exe 152,028 253 253 255 255 255

d3dim.dll 193,189 253 253 255 255 255

clbcatq.dll 403,901 253 253 255 255 255

- 225 -

Figure 7.16: Comparison Chi-Square values for ROBAST, RSA, TMAT, TPRT and SRAT

It is seen from the table the average Chi-Square value of SRAT is 2088282, ROBAST

is 33,43,860, RSA is 14,84,175, TMAT is 14,90,214 and TPRT is 13,96,482. Therefore it can

be said that SRAT is giving the optimal solution for non-homogeneity test but in degree of

freedom TMAT and TPRT are giving better result than SRAT. Table 7.7 giving the Chi-

Square values, table 7.8 giving the degree of freedom values and figure 7.16 giving the Chi-

Square values graphically, X-axis is the ten files and Y-axis is the corresponding Chi-Square

values, here bar graph is selected for this result. The degree of freedom result of SRAT is

nearly 255. Thus SRAT is giving heterogeneous result than other techniques including RSA.

7.6.4 The Time Complexity Analysis

Time complexity is based on encryption time and decryption time. Encryption time is

the time required to encrypt a source file and decryption time is the time to decrypt the cipher

text file to get the original file. Ten source files are encrypted and the encryption times are

noted, then these encrypted files are decrypted and the decryption time is noted.

- 226 -

Table 7.9: Comparison encryption time of ROBAST, RSA, TMAT, TPRT and SRAT

Source File File Size

(Bytes)

Encryption Time

ROBAST RSA TMAT TPRT SRAT

license.txt 17,632 0.00 0.01 0.03 0.02 0.00

cs405(ei).doc 25,422 0.01 0.06 0.00 0.00 0.01

acread9.txt 35,121 0.02 0.07 0.13 0.10 0.01

deutsch.txt 47,829 0.03 0.11 0.25 0.20 0.01

genesis.txt 49,600 0.04 0.12 0.28 0.25 0.02

pod.exe 69,981 0.04 0.12 0.39 0.35 0.02

mspaint.exe 136,463 0.06 0.20 0.44 0.40 0.03

cmd.exe 152,028 0.07 0.25 0.55 0.50 0.05

d3dim.dll 193,189 0.08 0.28 0.55 0.52 0.05

clbcatq.dll 403,901 0.08 0.32 0.67 0.60 0.05

Table 7.10: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT and SRAT

Source File File Size

(Bytes)

Decryption Time

ROBAST RSA TMAT TPRT SRAT

license.txt 17,632 0.01 0.15 0.11 0.10 0.00

cs405(ei).doc 25,422 0.02 0.71 0.00 0.00 0.01

acread9.txt 35,121 0.03 1.15 0.13 0.10 0.01

deutsch.txt 47,829 0.03 1.36 0.15 0.11 0.01

genesis.txt 49,600 0.04 1.61 0.25 0.20 0.02

pod.exe 69,981 0.04 1.86 0.39 0.35 0.02

mspaint.exe 136,463 0.05 2.71 0.48 0.40 0.02

cmd.exe 152,028 0.06 3.34 0.52 0.42 0.05

d3dim.dll 193,189 0.07 3.73 0.60 0.50 0.05

clbcatq.dll 403,901 0.08 4.25 0.65 0.55 0.05

Table 7.9 gives the encryption times of all the techniques including RSA, table 7.10

gives the decryption times of all the techniques including RSA. Figure 7.17 shows the

encryption time graphically and figure 7.18 shows the decryption time graphically.

- 227 -

Figure 7.17: Pictorial representation of encryption time against file size

Figure 7.18: Pictorial representation of decryption time against file size

The cumulative encryption time of ROBAST is 0.43 seconds, RSA is 3.54 seconds,

TMAT is 3.29 seconds, TPRT 2.94 seconds and SRAT is 0.25 seconds. The cumulative

decryption time of ROBAST is 0.43 seconds, RSA 20.87 seconds, TMAT is 3.28 seconds,

TPRT is 2.63 seconds and SRAT is 0.24 seconds. Therefore SRAT is giving the best result in

terms of encryption and decryption time.

- 228 -

7.6.5 The Avalanche Ratio Test

The avalanche ratio is the ratio between the modified results to the original result. The

avalanche ratio is obtained by modifying 2-3 bits/bytes in the encryption key as well as in

source files.

Table 7.11: Comparison of avalanche ratio of ROBAST, RSA, TPRT, TMAT and SRAT

encrypted files

Source File File Size

(Bytes)

Avalanche

Ratio of

ROBAST

encrypted

files (in %)

Avalanche

Ratio of

RSA

encrypted

files (in %)

Avalanche

Ratio of

TPRT

encrypted

file (in %)

Avalanche

ratio of

TMAT

encrypted

file (in %)

Avalanche

ratio of

SRAT

encrypted

file (in %)

license.txt 17,632 71.90 58.0 77.7 80.8 91.5

cs405(ei).doc 25,422 99.69 60.0 80.0 85.5 90.5

acread9.txt 35,121 99.93 75.0 88.8 90.0 98.0

deutsch.txt 47,829 99.96 78.9 89.0 91.5 99.5

genesis.txt 49,600 97.72 80.9 87.0 94.7 99.9

pod.exe 69,981 77.00 58.0 77.0 80.0 99.9

mspaint.exe 136,463 98.22 58.9 76.0 80.0 98.0

cmd.exe 152,028 99.97 67.0 77.0 80.0 97.0

d3dim.dll 193,189 99.98 67.9 82.9 85.0 97.5

clbcatq.dll 403,901 75.55 68.0 88.5 90.5 99.0

Table 7.11 gives the avalanche ratio of all the techniques, thus it can be seen that

SRAT is giving the best result in terms of avalanche ratio test. So, it can be said that

modifying few bits or bytes in source file of session key will effect most bits or bytes of

encrypted file through SRAT.

7.7 Discussions

In this chapter, efficient iterated block cipher Shuffle-RAT has been proposed based

on an existing design of Rotational Addition Technique (RAT) with a novel inclusion of

butterfly-shuffle in the process. Detailed analysis of the new cipher based on relevant

cryptographic properties have been studied, and comparison with existing well-known

- 229 -

designs, including the original RAT has also been done. Efficient hardware architecture for

Shuffle-RAT implementation has also been done on FPGA, and tested for the feasibility of

the design using VHDL description, simulated using Xilinx ISE. The natural step for future

work would be to exploit the advantages of Shuffle-RAT through its practical implementation

and synthesis on FPGA or ASIC platforms. Shuffle-RAT is also compared to all the other

proposed techniques in the next chapter.

Chapter 8

Triple Sagacious Vanquish (TSV)

8.1 Introduction

The Triple SV is a block cipher that uses secret key encryption. This algorithm takes a

fixed-length string of plaintext bits and transforms it through a series of complicated

operations into another cipher-text bit string of the same length. The proposed block size is

256 bits. The key comprises 112 bits. Figure 8.1 summarizes the overall structure of Triple

SV.

Figure 8.1: Overview of the TSV

The TSV consist of complex operation of encryption and decryption and the key

generation produce a key of 112 bits. This proposed technique is also symmetric in nature

because the operation required for encryption is same required for decryption with the same

key for encryption and decryption. Modes of operation for this proposed technique is Cipher

Block Chaining (CBC), which is used for encryption and decryption. This technique is

successfully implemented in software module using C programming and also in hardware

module using VHDL. Apart from other parameters this proposed technique exhibits a good

avalanche effect. The CBC modes of operation converts a block cipher to a stream cipher and

stream cipher has a good avalanche effect that is why this proposed technique shows a good

avalanche effect. So, through this proposed technique got a stream cipher design using block

cipher through CBC. Figure 8.1 shows the block diagram of Triple SV (TSV).

Section 8.2 discussed the algorithm of TSV with a block level diagram, section 8.3

gives a detailed example of encryption and decryption process, section 8.4 discussed the

implementation issues with key generation, section 8.5 gives a brief analysis, section 8.6

discussed the results obtained based on implementation and a brief discussions are given in

section 8.7.

- 234 -

8.2 The Algorithm of TSV

TSV takes 256-bits plaintext as input and then inverse function is applied. The inverse

function is a function which takes a block of bits as input then gives out the complement of

these bits. Then seven rounds of encryption is performed, 2-bits block encryption, 4-bits

block encryption, 8-bits block encryption, 16-bits block encryption, 32-bits block encryption,

64-bits block encryption and 128-bits block encryption. The details have been discussed in

later sub-section. Again inverse function is applied so that it cancels out the first round of

inverse function and finally 256-bits of ciphertext obtained. The proposed mode of operation

is CBC which gives a high avalanche as well as better non-homogeneity is obtained.

Section 8.2.1 gives a brief discussions on modes of operation, section 8.2.2 gives the

encryption process and section 8.2.3 gives the decryption process.

Figure 8.2: The Cipher Block Chaining (CBC) mode for encryption in TSV

Figure 8.3: The Cipher Block Chaining (CBC) mode for decryption in TSV

8.2.1 Modes of Operation

Like other block ciphers, TSV must be used in one of the several modes of operation,

like Electronic codebook (ECB), Cipher-block chaining (CBC), Propagating cipher-block

- 235 -

chaining (PCBC), Cipher feedback (CFB), and Output feedback (OFB). TSV has been

designed in CBC mode.

In the CBC mode, each block of plaintext is XORed with the previous cipher-text

block before being encrypted. This way, each cipher-text block is dependent on all plaintext

blocks processed up to that point. Also, to make each message unique, an initialization

vector must be used in the first block. A one-bit change in a plaintext affects all following

cipher-text blocks. A plaintext can be recovered from just two adjacent blocks of cipher-text.

As a consequence, decryption can be parallelized, and a one-bit change to the cipher-text

causes complete corruption of the corresponding block of plaintext, and inverts the

corresponding bit in the following block of plaintext. Figure 8.2 and figure 8.3 represent the

encryption and the decryption process of CBC mode. CBC mode of operation also converts a

block cipher to a stream cipher with high avalanche effect and which is found in the result

after implementation of TSV in CBC.

Figure 8.4: TSV encryption overview

- 236 -

Figure 8.5: n-BIT level structure (encryption) for TSV

8.2.2 Encryption

There are basically seven similar levels of processing. In addition there is also an

initial and final inversion operation. The seven similar levels of processing have identical

structure but differ in the number of consecutive n bits out of the input 256 bit to each level,

which are coupled together and treated as a single entity while being processed inside each

level. The values that n take in the 7 distinct levels are 2, 4, 8, 16, 32, 64, 128, (that is 2
(level

number)
), respectively. Hence the seven levels of processing are named as 2-bit level, 4-bit

level, 8-bit level, 16-bit level, 32-bit level, 64-bit level, and 128-bit level, respectively. This

technique’s overall structure (for encryption) is shown in figure 8.4.

 n-Bit Level Structure

Figure 8.5 shows the entire construct of the n-bit level. Each level basically comprises

three major functions, namely, Far Swapping, Near Swapping and Expansion Function, and a

XOR Function. The 256-bit input to the level first undergoes an n-bit far swap. The 256-bit

output of the n-bit far swap is then introduced to an n-bit near swap, which again generates a

256-bit output. In the far swap the 0
th

 block is swapped with (k-1)
th

 block, 1
st
 block is

swapped with the (k-2)
th
 block and so on for k-blocks of input bits and n-bit far swap means

the block size is of n-bits. In the near swap the 0
th

 block is swapped with 1
st
 block, 2

nd
 block

- 237 -

is swapped with 3
rd

 block and so on for k-blocks of input bits and n-bit near swap means the

block size is of n-bits.

After far swap and near swap of n-bit blocks, all the blocks are combined to get 256-

bit stream which is then XORed with the output of the expansion function and the resultant is

passed to the next n-bit round structure. Figure 8.6 shows the n-bit far swap where as figure

8.7 show the n-bit near swap.

Figure 8.6: n-bit far swap function for TSV

Figure 8.7: n-bit near swap function for TSV

Figure 8.8: Expansion function for encryption of TSV

- 238 -

Figure 8.9: TSV decryption process

Figure 8.10: n-bit level structure (decryption) of TSV

- 239 -

Figure 8.11: Expansion function for decryption of TSV

Meanwhile, the 16-bits string, Kn enters the level and get expanded into a 256-bit

string with which the 256-bit output of the near swap gets XORed to produce a 256-bit

intermediate. This intermediate is again fed into the same level to carry out the procedure all

over again. This iterative operation of the level continues for d time, where d is a positive

integer, the value of which is determined by the decimal equivalent of the string Kn.

After complete iterations of ‘d’ times, the 256-bit output is the output of that level and

is carried to the next n-bit level for similar series of operations.

 n-Bit Far Swap Function: The n-bit far swap function has been

diagrammatically depicted in figure 8.6. The n-bit far swap function is a

simple function. Firstly, the 256-bit of the incoming string are grouped into

distinct n-bit groups, where n is 2, 4, 8, 16, 32, 64, or 128, depending on the

level at which are operating. The groups are formed by starting from the first

bit and grouping together the first n consecutive bits, then the next n

consecutive bit, and so on. These distinct n-bit groups behave as individual

entities at that particular level.

 For n-bit far swapping, the first n-bit group gets swapped (interchanged) the

last (farthest) n-bit group. The second n-bit group gets swapped with the

penultimate n-bit group, and so on.

 n-Bit Near Swap Function: The n-bit near swap function is quite similar to n-

bit far swapping function, with a subtle change in swapping pattern, as

- 240 -

demonstrated in figure 8.7. For n-bit near swapping, the first n-bit group gets

swapped (interchanged) the second (nearest) n-bit group. The third n-bit group

gets swapped with the fourth n-bit group, and likewise the penultimate n-bit

group is swapped with the ultimate n-bit group.

 Expansion Function (for encryption): The Expansion Function, in comparison

to the earlier functions is a little more complex. For a certain n-bit level, the

Expansion Function transforms the 16-bits string, Kn into a 256-bit string

which is used as an input to the XOR Function. Figure 8.8 summarizes the

expansion function for encryption.

 Inverse function: Inverse function is the random permutation of the 256-bit

plaintext and it is completely defined by the implementation. The initial

inverse function inverts the bits and performs the random permutation. The

final inverse function which get the 256-bit output from 128-bit level, it again

invert the bits and performed random permutation. The final inverse function

is designed in such a way that it cancel out the effect of initial inverse function.

The function takes the 16-bit Kn string as input. Next, it determines the number of

iteration of the particular level. Then Kn is given a left-rotations and the modifies string

makes the first 16 bits of the expanded string. Another left-rotation is given to the first 16-bits

to produce the next 16-bits, and so on.

Sixteen such modifications of the 16-bit string finally produce the 256-bit string for

that particular level and that particular iteration. Thus, a 256-bit output is generated by the

expansion function, which then gets XORed with the 256-bit output of the n-bit near-

swapping of that particular iteration of the level.

8.2.3 Decryption

The decryption algorithm is just the reverse of the encryption algorithm. In case of

decryption, the 256-bit cipher text fed to the cipher first undergoes 128-bit level, then 64-bit

level and so on till 2-bit level. Figure 8.9 shows the decryption algorithm.

Even the order of operations inside each level is reversed with the expansion function

operating first, then the n-bit near swap and then the n-bit far swap, as depicted in figure 8.10.

All the individual function retains exactly the same functionality as in case of encryption. The

- 241 -

only function that gets a little modified in case of decryption is the Expansion Function.

Figure 8.11 clearly explains the functioning of the expansion function in case of decryption.

8.3 Example

The proposed technique is defined on 256-bit plaintext and 112-bit key with 7-rounds.

To understand it in better way here 2-bit level round/structure encryption is illustrated. A 16-

bit plain text and a key of 8-bit are taken as an example.

Table 8.1: TSV encryption using 2-bit level with 16-bit plaintext and 8-bit Key

Step No. Caption Bit Sequence

1 Input 16-bit Plaintext 1011010010101001

2 Input 8-bit Key 11000110

3 Formation of 2-bit block of Plaintext 10 11 01 00 10 10 10 01

4 Far Swap 01 10 10 10 00 01 11 10

5 Near Swap 10 01 10 10 01 00 10 11

6 Key Expansion 11000110 10001101

7 XOR operation and Final Output 0101110011000110

A simple TSV encryption is shown in table 8.1. The technique, TSV, has seven round

structure, 2-bit level, 4-bit level, 8-bit level, 16-bit level, 32-bit level, 64-bit level and 128-bit

level. In this example 16-bit plaintext, 8-bit key and 2-bit level structure encryption is

illustrated. All the steps are shown in Table 8.1.

 Step 1: Take 16-bit plaintext as input.

 Step 2: Take 8-bit key as input.

 Step 3: Since, it is a 2-bit stage, the 16-bit plaintext is now broken into eight

blocks of 2-bit each.

 Step 4: Now far swap function is performed. Let consider the above eight

blocks as B1, B2, B3,, B8. In far swap, B1 is swapped with B8,

B2 is swapped with B7, B3 is swapped with B6 and finally B4 is

swapped with B5.

- 242 -

 Step 5: Now near swap function is performed. Let consider the above eight

blocks as B1, B2, B3,, B8. In near swap, B1 is swapped with B2,

B3 is swapped with B4, B5 is swapped with B6 and finally B7 is

swapped with B8.

 Step 6: In this technique key expansion is proposed to form round keys. To

perform XOR operation of round key with 16-bit plaintext have to

expand the input 8-bit key. Expansion function works as: first 8-bit of

round key is same as 8-bit input key, then 8-bit input key is left

rotated by 1-bit and which form the next 8-bit of round key, thus got

16-bit round key.

 Step 7: In this step the 16-bit round key (output from Step no. 6) is XORed

with 16-bit output from near swap operation (Step no. 5). Thus got the

final encrypted stream.

In actual implementation, the output from 2-bit level is passed to 4-bit level and so on.

Decryption is just the opposite of encryption just illustrated. When this algorithm is

implemented with CBC mode of operation it get poly-alphabetic cipher with good avalanche

effect and better non-homogeneity.

8.4 Implementation and Key Generation

Proposed technique, TSV, has swapping, round key generation and Cipher Block

Chaining (CBC) as the main important module for hardware implementation. Let first

describe the hardware implementation of CBC. Section 8.4.1 gives the implementation details

of Cipher Block Chaining (CBC) mode and section 8.4.2 illustrates the round key generation.

8.4.1 Cipher Block Chaining (CBC) Mode

In Cipher Block Chaining (CBC) mode, the output of one block cipher is fed into the

other block cipher along with the next block message. CBC mode converts the block cipher

into stream cipher. The algorithm below describes the mode and a pictorial description is

provided in figure 8.12 and figure 8.13 respectively.

- 243 -

Algorithm CBC_Encryption

K (P)

1: Partition P into P1, P2, . . . , Pm

2: C1 EK(P1 _ IV);

3: for i 2 to m

4: Ci EK(Pi _ Ci−1)

5: end for

6: return C1,C2, . . . ,Cm

Figure 8.12: Top level algorithm for CBC encryption of TSV

Algorithm CBC_Decryption

K (C)

1: Partition C into C1,C2, . . . ,Cm

2: P1 E−1

 K (C1) _ IV

3: for i 2 to m

4: Pi E−1

 K (Ci) _ Ci−1

5: end for

6: return P1, P2, . . . , Pm

Figure 8.13: Top level algorithm for CBC decryption of TSV

Figure 8.12 depicts the top level algorithm for CBC encryption and figure 8.13

depicts the top level algorithm for CBC decryption, these algorithms has been implemented

in both C- programming for software implementation and VHDL implementation for FPGA-

based systems. CBC takes as input m message blocks and an initialization vector (IV).

During encryption, the output of the ith block depends on the previous i−1 blocks. So, CBC

encryption is inherently sequential. The output of each block depends on all the previous

blocks and thus provides more security than ECB. The sequential design does not allow a

fully pipelined implementation for this mode.

- 244 -

8.4.2 Round Key Generation

Round Key Generation is another important module of TSV, the round key is a

function of session key and number of iterations of each round.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use work.tsv_package.all;

entity key_gen is

port (key: in STD_LOGIC_VECTOR(111 downto 0);

round: in round_type;

DATAOUT: out STD_LOGIC_VECTOR(255 downto 0));

end entity key_gen;

architecture top_tsv_RTL of key_gen is

begin

process (key, round) is

begin

DATAOUT <= ROUNDKEY_GEN(key, round);

end process;

end architecture top_tsv_RTL;

Figure 8.14: Top level VHDL module for round key generation of TSV

Figure 8.15: Top level entity of round key generation of TSV

- 245 -

Figure 8.14 shows the top level VHDL module for round key generation for TSV.

Here ‘key_gen’ is an entity for round key generation. As stated before the round keys of each

round is generated from the user given key, the length of each round key is 256-bits and user

key is 112-bit. Figure 8.15 shows the top level entity of round key generation of TSV.

In port logic, ‘key’ is an array of 112-bit (111-0), which takes the 112-bit user

encryption/decryption key. Then this key and round number is passed through process

‘ROUNDKEY_GEN’, this process generates the 256-bit round key for each round and it is

stored in ‘DATAOUT’ array of 256-bit (255-0).

Key length is one of the two most important security factors of any encryption

algorithm—the other one being the design of the algorithm itself. The effective key length of

Triple SV is 112 bits, giving 2
112

 possible combinations. The 112-bit key is completely user

defined and is provided by the user in the form of numbers of iteration that each of the n-bit

levels would have while the encryption or decryption process progresses. The 112 bits of the

key have been logically divided into seven 16-bit binary sequences, each of which relates to a

particular n-bit level. The association is elucidated below.

 Bit number 1 to 16 form string K2, and is associated with 2-bit level.

 Bit number 17 to 32 form string K4, and is associated with 4-bit level.

 Bit number 33 to 48 form string K8, and is associated with 8-bit level.

 Bit number 49 to 64 form string K16, and is associated with 16-bit level.

 Bit number 65 to 80 form string K32, and is associated with 32-bit level.

 Bit number 81 to 96 form string K64, and is associated with 64-bit level.

 Bit number 97 to 112 form string K128, and is associated with 128-bit level.

Therefore, TSV is successfully implemented in VHDL with CBC modes of operation;

round key of 128-bits is also generated by taking 112-bits input as session key. TSV is also

implemented in C-programming to find the testing parameters and to compare it with RSA

and previously proposed techniques. TSV is giving a much better result in avalanche ratio

test and non-homogeneity test using Chi-Square values.

- 246 -

8.5 Analysis

TSV is implemented in both hardware and software modules. Some of the

characteristics are:

 TSV encryption and decryption is done in CBC mode so it converts a block

cipher to stream cipher.

 The avalanche ratio test reveals a much better result for TSV, which means if

alter a few bits/bytes in session key or in plaintext than it effects or alters

99.9% bits/bytes of ciphertext.

 TSV also involves generation of 128-bits round keys from 112-bits of session

key, during decryption the round keys are applied in reverse manner as that

was applied during encryption.

 TSV gives much better result in non-homogeneity test using Chi-Square

values that means that the ciphertext differs in large manner from plaintext.

 Algorithmic complexity of TSV is found to be O(n
2
).

 TSV is symmetric block cipher which means same key is used for encryption

and decryption.

 TSV is also a non Feistal block cipher, which is commonly used for design of

symmetric block cipher.

 In hardware implementation perspective TSV uses much less resources than

that of RSA where giving better results in testing parameters.

 TSV can be used in key distribution techniques using Key Distribution Centres

(KDC).

8.6 Results and Simulations

In this section some of the results of TSV are discussed and the various comparisons

made with the earlier proposed technique and also with RSA. Section 8.6.1 discuss results of

RTL/Hardware implementation, section 8.6.2 discuss the results of frequency distribution

graph, section 8.6.3 discuss the results of Chi-Square test for non-homogeneity of source files

and encrypted files, section 8.6.4 discuss the results of time complexity and section 8.6.5

discuss the results of avalanche ratio test.

- 247 -

8.6.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed

technique in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main

objective is to find an efficient FPGA-based cryptographic technique for implementation in

embedded systems.

Figure 8.16: RTL diagram of RSA

Figure 8.17: Spartan 3E RTL diagram of TPRT

- 248 -

Figure 8.18: Spartan 3E RTL diagram of TMAT

Figure 8.19: Spartan 3E schematic of ROBAST

Figure 8.20: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT

- 249 -

Figure 8.21: Spartan 3E RTL diagram of TSV

The design of TSV is done using VHDL and implemented in Xilinx Spartan-3E

XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i design

tool. Figure 8.16 shows the RTL of RSA, figure 8.17 shows the RTL of TPRT, figure 8.18

shows RTL of TMAT, figure 8.19 shows RTL of ROBAST, figure 8.20 shows RTL of SRAT

and figure 8.21 shows the RTL diagram of TSV. Here 64-bit implementation timing diagram

is illustrated, plaintext is of 64-bit and user encryption/decryption key is of 56-bit, the output

64-bit ciphertext is got after 450ns.

Table 8.2: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,

SRAT and TSV)

Sr

No.

Netlist Components Number

RSA TPRT TMAT ROBAST SRAT TSV

1 ROMs/RAMs 430 10 14 25 28 12

2 Adders/Subtractions 3 0 2 20 28 0

3 Registers 420 20 30 50 641 10

4 Latches 80 0 0 10 80 0

5 Multiplexers 120 0 0 10 136 0

Table 8.2 illustrates the hardware implementation analysis of TSV and its

comparisons with other techniques/algorithms, namely, RSA, TPRT, TMAT, ROBAST and

SRAT. This proposed technique, TSV, uses no adder/subtractions, latches and multiplexers.

TSV uses 22 memory units (ROM/RAM) and 10 registers which are quite less than that of

- 250 -

other techniques/algorithms. Observing the above table it is seen that RSA consumes

maximum of resources, then comes ROBAT followed by SRAT. TPRT, TMAT consumes

the minimum resources.

Table 8.3: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST, SRAT

and TSV)

Sr

No.

Timing

Constraint

Values

RSA TPRT TMAT ROBAST SRAT TSV

1 Speed Grade -5 -5 -5 -5 -5 -5

2 Minimum

period (ns)

9.895 5.66 7.95 5.55 5.50 10.22

3 Maximum

Frequency

(MHZ)

101.06 101.06 101.06 101.06 101.06 101.06

4 Minimum input

arrival time

before clock

(ns)

6.697 4.33 5.55 5.55 4.25 6.66

5 Maximum

output required

time after clock

(ns)

4.31 3.33 4.25 4.44 3.33 5.55

Table 8.3 illustrates the entire timing summary obtained after HDL synthesis. The

speed grade and maximum frequency is same as all the techniques/algorithms have been

implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).

TPRT and ROBAST gives optimal solution in terms of minimum period, minimum input

arrival time and maximum output time. Though TSV doesn’t give optimal results in hardware

implementation but it gives best result in avalanche effect.

8.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.

- 251 -

Figure 8.22: Frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

- 252 -

Figure 8.23: Frequency distribution graph of TMAT and ROBAST encrypted files

Figure 8.24: Frequency distribution graph of SRAT encrypted files

- 253 -

Figure 8.25: Frequency distribution graph of TSV encrypted files

The results shown are obtained after calculating the respective Frequency

Distributions of the source file ‘genesis.txt’. Figure 8.22 shows the frequency distribution

graph of source file, RSA encrypted file and TPRT encrypted file. Figure 8.23 shows

frequency distribution graph of TMAT encrypted file and ROBAST encrypted file. Figure

8.24 shows the frequency distribution graph of SRAT encrypted file and figure 8.25 shows

frequency distribution graph of TSV encrypted file. It obvious that TSV is giving much better

result than that of RSA. The frequencies of TSV aggregated to a specific range thus it is very

difficult for cryptanalysis.

8.6.3 The Non-Homogeneity Test

Another way to analyze the technique is to test the non-homogeneity of the source and

the encrypted file. The Chi-Square test has been performed for this purpose.

Figure 8.26: Pictorial representation of Chi-Square values

- 254 -

Table 8.4: Comparison of Chi-Square values of ROBAST, RSA, TPRT, TMAT, SRAT and

TSV

Source File File

Size

(Bytes)

Chi-Square Values

ROBAST RSA TMAT TPRT SRAT TSV

license.txt 17,632 6472 5668 201530 191382 201960 210050

cs405(ei).doc 25,422 4407 2654 286025 253470 305590 306000

acread9.txt 35,121 560357 447984 440184 410735 451125 475590

deutsch.txt 47,829 3307374 685963 555220 505121 558330 3567900

genesis.txt 49,600 2679799 3318506 659045 638592 683128 3580050

pod.exe 69,981 8495675 694410 905416 896405 937565 8590100

mspaint.exe 136,463 3131296 2667664 1297256 1203665 1308890 3595000

cmd.exe 152,028 9559993 2216429 1759014 1692655 2009956 9569921

d3dim.dll 193,189 3102369 906300 4630652 4250652 9900630 9910550

clbcatq.dll 403,901 2590855 3896171 4167801 3922143 4525650 5125590

Table 8.5: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT, SRAT and

TSV

Source File File Size

(Bytes)

Degree of Freedom

ROBAST RSA TMAT TPRT SRAT TSV

license.txt 17,632 253 253 255 255 253 255

cs405(ei).doc 25,422 253 253 255 255 254 255

acread9.txt 35,121 253 253 255 255 255 254

deutsch.txt 47,829 253 253 255 255 240 253

genesis.txt 49,600 253 253 255 255 255 255

pod.exe 69,981 253 253 255 255 255 255

mspaint.exe 136,463 254 254 255 255 255 254

cmd.exe 152,028 253 253 255 255 255 255

d3dim.dll 193,189 253 253 255 255 255 253

clbcatq.dll 403,901 253 253 255 255 255 255

The Chi-Square test has been performed for this purpose. Table 8.4 and figure 8.26

show the file size and the corresponding Chi-Square values for ten different files. Table 8.5

gives the degree of freedom values. The Chi-Square values for the proposed technique are

- 255 -

comparatively lower than those obtained by RSA. The value of degree of freedom is on an

average 127. Hence the source and the corresponding encrypted files are considered to be

heterogeneous. The degree of freedom is listed in table 8.5. Average Chi-Square value of

TSV is 4165, RSA is 47505, TMAT is 1490214, TPRT is 1396482, ROBAST is 3343860 and

Shuffle-RAT is 21076. Thus in terms of non-homogeneity TSV doesn’t show optimal result.

8.6.4 The Time Complexity Analysis

In this section it will discuss time complexity analysis of the proposed technique,

TSV, the time complexity analysis is broadly divided into two categories, namely encryption

time and decryption time. The encryption time is the time required to convert a plaintext into

a ciphertext and the decryption time is the time required to convert the ciphertext into the

plaintext for a given block size and key. Here ten different sample files are taken and their

complexities are noted down.

Table 8.6: Comparison of encryption time of ROBAST, RSA, TMAT, TPRT, SRAT and

TSV

Source File File Size

(Bytes)

Encryption Time

ROBAST RSA TMAT TPRT SRAT TSV

license.txt 17,632 0.00 0.01 0.03 0.02 0.00 0.00

cs405(ei).doc 25,422 0.01 0.06 0.00 0.00 0.01 0.00

acread9.txt 35,121 0.02 0.07 0.13 0.10 0.01 0.01

deutsch.txt 47,829 0.03 0.11 0.25 0.20 0.01 0.01

genesis.txt 49,600 0.04 0.12 0.28 0.25 0.02 0.01

pod.exe 69,981 0.04 0.12 0.39 0.35 0.02 0.02

mspaint.exe 136,463 0.06 0.20 0.44 0.40 0.03 0.02

cmd.exe 152,028 0.07 0.25 0.55 0.50 0.05 0.03

d3dim.dll 193,189 0.08 0.28 0.55 0.52 0.05 0.04

clbcatq.dll 403,901 0.08 0.32 0.67 0.60 0.05 0.05

- 256 -

Table 8.7: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT, SRAT and

TSV

Source File File Size

(Bytes)

Decryption Time

ROBAST RSA TMAT TPRT SRAT TSV

license.txt 17,632 0.01 0.15 0.11 0.10 0.00 0.00

cs405(ei).doc 25,422 0.02 0.71 0.00 0.00 0.01 0.00

acread9.txt 35,121 0.03 1.15 0.13 0.10 0.01 0.01

deutsch.txt 47,829 0.03 1.36 0.15 0.11 0.01 0.01

genesis.txt 49,600 0.04 1.61 0.25 0.20 0.02 0.02

pod.exe 69,981 0.04 1.86 0.39 0.35 0.02 0.02

mspaint.exe 136,463 0.05 2.71 0.48 0.40 0.02 0.03

cmd.exe 152,028 0.06 3.34 0.52 0.42 0.05 0.03

d3dim.dll 193,189 0.07 3.73 0.60 0.50 0.05 0.04

clbcatq.dll 403,901 0.08 4.25 0.65 0.55 0.05 0.05

Figure 8.27: Pictorial representation of encryption time against file size

- 257 -

Figure 8.28: Pictorial representation of decryption time against file size

Table 8.6 and table 8.7 illustrate the encryption time and decryption time of the

proposed techniques with RSA. This section compares the time complexity of the TSV with

that of RSA by taking the encryption and decryption times into consideration. The graphical

analysis of the encryption and decryption time of the Triple SV and RSA has been depicted in

Figure 8.27 and figure 8.28 respectively. The time complexity of the proposed technique is

well comparable to RSA. It is also observed that the time complexity of the proposed

technique, TSV, is quite less than the previously proposed techniques, ROBAST, TMAT,

TPRT and Shuffle-RAT. Thus TSV gives optimal solution in respect to time complexity

analysis taking account both encryption time and decryption time.

8.6.5 The Avalanche Ratio Test

Avalanche Effect refers to a desirable property of any cryptographic algorithm where,

if an input is changed slightly (for example, flipping a single bit) the output changes

significantly (e.g., more than half the output bits flip).

- 258 -

Table 8.8 compares the avalanche effect ratio for TSV, RSA and previous proposed

techniques/algorithm and which are obtained after calculating the respective Avalanche

Effect by making a change of a few (approx 3) characters in each file. It is observed that the

proposed technique is showing an average avalanche ratio percentage of 99.7% which is way

higher than that obtained using RSA. High avalanche ratio ensures higher security from brute

force attack. It is also observed that this avalanche ratio test of TSV is better than Shuffle-

RAT, TPRT, TMAT and ROBAST.

8.7 Discussions

The cryptographic technique, Triple SV is a symmetric block cipher using a 256-bit

block and 112-bit key. From the above discussions it can be inferred that Triple SV is

potentially a promising algorithm which can find its efficient implementation in different

fields. Triple SV has a way better Avalanche Effect than any of the other existing algorithms

and hence can be incorporated in the process of encryption of any plaintext. The high

avalanche ratio and a key size of 112 bits ensure sound security from brute force attacks. The

implementation in CBC mode ensures low predictability and tougher cryptanalysis. Even the

time complexity of the proposed algorithm is considerably viable and even better than RSA at

many instances. The proposed model(s) and conclusion(s) of this thesis is given in next part

of this thesis.

Chapter 9

Modified Forward Backward Overlapped Modulo Arithmetic Technique (MFBOMAT)

9.1 Introduction

In this chapter, a new Cryptosystem based on block cipher has been proposed where

the encryption is done through Modified Forward Backward Overlapped Modulo Arithmetic

Technique (MFBOMAT). The original message is considered as a stream of bits, which is

then divided into a number of blocks, each containing n bits, where n is any one of 2, 4, 8, 16,

32, 64, 128, 256. The first and last blocks are then added where the modulus of addition is 2
n
.

The result replaces the last block (say Nth block), first block remaining unchanged (Forward

mode). In the next attempt the second and the Nth block (the changed block) are added and

the result replaces the second block (Backward mode).Again the second (the changed block)

and the (N-1)th block are added and the result replaces the (N-1)th block (Forward

mode).The modulo addition has been implemented in a very simple manner where the carry

out of the MSB is discarded to get the result. The technique is applied in a cascaded manner

by varying the block size from 2 to 256. The whole technique has been implemented by using

a modulo subtraction technique for decryption.

In the proposed scheme the source file is taken as input as streams of binary bits. For

its implementation the stream size to be 512 bits have been taken though the scheme may be

implemented for larger stream sizes also. The input stream, S, is first broken into a number of

blocks, each containing n bits (n=2k, k=1,2,3,......,8) so that S = B1B2B3.......B m where

m=512/n. Starting from the MSB, the blocks are paired as (B1,Bm), (B2,Bm), (B2,Bm-

1),(B3,Bm-1) and so on. So there is a common member in any two non-adjacent block-pairs,

i.e. the block-pairs are overlapping and hence the name given to the technique The FBOMAT

operation is applied to each pair of blocks. The process is repeated, each time increasing the

block size till n=256.The proposed scheme has been implemented by using the reverse

technique, i.e. modulo subtraction technique, for decryption.

Section 9.2 discussed the algorithm of MFBOMAT with a block level diagram,

section 9.3 gives a detailed example of encryption and decryption process, section 9.4

discussed the implementation issues with key generation, section 9.5 gives a brief analysis,

section 9.6 discussed the results obtained based on implementation and a brief discussions are

given in section 9.7.

- 262 -

9.2 The Algorithm of MFBOMAT

After chapping the input stream into blocks of 2 bits each and pairing the blocks as

explained in Section 1, the following operations are performed starting from the most

significant side:

 Round 1: The whole plaintext is divided into finite number of blocks of 2-bit

block size. Then get a number of blocks B1, B2, B3,, Bn. B1 is

modulo added to Bn and the result replaces the Bn, then Bn is

modulo added to B2, result replacing the B2, then B2 is modulo

added to Bn-1 and the result replaces the Bn-1. Then Bn-1 is modulo

added to B3 and the result replaces the B3 and it continues in similar

manner. In each pair of blocks, the first member of the pair is added

to the second member where the modulus of addition is 2n for block

size n. Therefore for 2-bit blocks, the modulus of addition will be 4.

This round is repeated for a finite number of times and the number

of iterations will form a part of the session key as discussed in

section 9.4.

 Round 2: The same operation as in Round 1 is performed with block size 4. In

the next round the block size of 8-bits is taken and the same

operation is repeated. In this fashion several rounds are completed

till it reaches Round 8 where the block size is 256 and get the

encrypted bit-stream. The operations of the non adjacent block-pairs

increase the complexity of the algorithm resulting in the

enhancement of security.

 During decryption, the reverse operation, i.e. modulo subtraction, is performed

instead of modulo addition, starting from the blocks B n/2 and ((B n)

/2) +1 and then ((B n)/2) and ((B n) /2) +2 and then ((B n)/2)-1 and

((B n) /2) +2 .The process continues until all the remaining blocks

are decrypted. Where the nth block is the last block of the 512-bits

stream.

- 263 -

Figure 9.1: Block diagram of MFBOMAT

Figure 9.1 gives the block diagram of MFBOMAT, The whole plaintext is divided

into finite number of blocks of 2-bit block size. Then get a number of blocks B1, B2, B3,,

Bn. B1 is modulo added to Bn and the result replaces the Bn, then Bn is modulo added to B2,

result replacing the B2, then B2 is modulo added to Bn-1 and the result replaces the Bn-1.

Then Bn-1 is modulo added to B3 and the result replaces the B3 and it continues in similar

manner. In each pair of blocks, the first member of the pair is added to the second member

where the modulus of addition is 2n for block size n. Therefore for 2-bit blocks, the modulus

- 264 -

of addition will be 4. This round is repeated for a finite number of times and the number of

iterations will form a part of the session key as discussed in section 9.4.

9.2.1 The Modulo Addition

An alternative method for modulo addition is proposed here to make the calculations

simple. The need for computation of decimal equivalents of the blocks is avoided here since

it will get large decimal integer values for large binary blocks. The method proposed here is

just to discard the carry out of the MSB after the addition to get the result. For example, if

add 1101 and 1001 and get 10110. In terms of decimal values, 13+9=22. Since the modulus

of addition is 16 (24) in this case, the result of addition should be 6 (22-16=6). Discarding the

carry from 10110 is equivalent to subtracting 10000 (i.e. 16 in decimal). So the result will be

0110, which is equivalent to 6 in decimal. The same is applicable to any block size.

9.3 Example

Although the proposed scheme is applied to a 512-bit input stream, for the sake of

brevity, consider a stream of 16 bits, say S = 1101001100011011 each round is performed

only once to make the process simple for understanding.

9.3.1 The Encryption

Round 1: Block size = 2, number of blocks = 8

The blocks are B1 = 11, B2 = 11, B3 = 01, B4 = 01, B5 = 00, B6 = 10, B7 = 01 and

B8 = 10.

The MFBOMAT is applied to these eight blocks

- 265 -

(B2, B3) mod16, Change B3

Round 3: Block size = 8, number of blocks = 2

Since it has been considered only a 16-bit stream cannot be proceed further. The

output from Round 3, say S', is the encrypted stream, i.e. S' =.1111101011111111.For

decryption the opposite method i.e. modular subtraction is used to get back the original bit

stream in S.

- 266 -

9.3.2 The Decryption

For decryption the opposite method i.e. modular subtraction is used to get back the

original bit stream in S.

Round 1:Block size=8, number of blocks =2

- 267 -

The decrypted bit stream: S”=1101001100011011.So S=S”.

- 268 -

9.4 Implementation and Key Generation

The technique executes modulo addition between two blocks, the first iteration

performs in forward basis and then backward operation is performed. Next, final permutation

is done to get the final cipher text.

library std;

library ieee;

use ieee.std_logic_arith.all;

use work.pack.all;

use std.textio.all;

use ieee.std_logic_TEXTIO.all;

entity MFBOMAT_VHDL is

Port (input_bits : in BIT_VECTOR (16 downto 1);

output_bits : out BIT_VECTOR (16 downto 1); key_bits : in

BIT_VECTOR (8 downto 1);

EN_DN : in BIT);

end MFBOMAT_VHDL;

architecture Behavioral of MFBOMAT_VHDL is

begin

process(EN_DN)

variable varin_bits,varout_bits: bit_vector(16 downto 1);

begin

if (EN_DN='1')then varin_bits:=input_bits;

AA: MFBOMAT_Encryption(varin_bits,key_bits,varout_bits);

output_bits<=varout_bits;

else

BB: MFBOMAT_Decryption(varin_bits,key_bits,varout_bits);

output_bits<=varout_bits;

end if;

end process;

end Behavioral;

Figure 9.2: MFBOMAT entity and its function

- 269 -

Figure 9.3: Top level RTL design of MFBOMAT

FPGA based implementation of the technique has been done in VHDL. In both

implementation, the technique takes input from file as a source stream and encryption is

performed. The cipher text generated is finally written in another file. The data blocks (8, 16,

32, 64, 128 and 256-bits) from the input file have been stored in array. Then encryption is

performed and also stored in array. The reading and writing of data from and in file is based

on 8-bit ASCII codes. XilinX ISE 8.1i software has been used for writing codes in VHDL.

Figure 9.2 gives the implementation of MFBOMAT entity and its function. The

encryption/decryption entity input bit vector (16-bit), output bit vector (16-bit), key bit vector

(8-bit) and EN_DN signal. If EN_DN = 1 then encryption is performed else decryption is

performed. During encryption the input bit vector of 16-bits is the plaintext and output 16-bit

vector is the ciphertext where as EN_DN value is ‘1’. During decryption the input bit vector

of 16-bits is the ciphertext and the output 16-bit vector is the plaintext where as EN_DN

value is ‘0’. Figure 9.3 shows the top RTL diagram of MFBOMAT.

When EN_DN = 1, the ‘MFBOMAT_Encryption’ function is called with the

parameters, ‘varin_bits’ which is the plaintext, ‘varout_bits’ which is the ciphertext, both of

these are of 16-bits and third parameter is the ‘key_bits’ which is the session key of the

encryption of 8-bits. When EN_DN = 0, the ‘MFBOMAT_Decryption’ function is called

with the parameters, ‘varin_bits’ which is the ciphertext, ‘varout_bits’ which is the plaintext,

both of these are of 16-bits and third parameter is the ‘key_bits’ which is the session key of

the decryption of 8-bits. This code is written in VHDL using behavioral model of coding. The

‘MFBOMAT_VHDL’ entity in this coding has three ports, ‘input_bits’ of IN type of bit

vector of 16-bits, ‘output_bits’ of OUT type of bit vector of 16-bits, ‘key_bits’ of IN type of

bit vector of 16-bits and ‘EN_DN’ bit of IN type. ‘Behavioral’ is the architecture of the entity

‘MFBOMAT_VHDL’, this architecture contains a process which is called on the signal

‘EN_DN’ that is whenever there is a signal in ‘EN_DN’ this process is called. This process

- 270 -

contains two functions, ‘MFBOMAT_Encryption’ and ‘MFBOMAT_Decryption’. These two

functions are called according to the value of signal bit ‘EN_DN’ which is already discussed.

The implementation here is both functional and files type. These means that the code can be

implemented in Xilinix FPGA and the simulation takes the input from a text file and the

output is written into another text file. There are various libraries are used, library ‘std’ and

library ‘ieee’, it is important to note that library ‘ieee.std_logic_TEXTIO.all’ is used for the

implementation of text file reading and writing. Figure 9.2 gives the main MFBOMAT entity

coded in VHDL.

Section 9.4.1 deals with the key generation process, section 9.4.2 illustrates an

example.

9.4.1 The Key Generation Process of MFBOMAT

In this section key generation process has been illustrated, the session key is 128-bits

for generalized MFBOMAT implementation.

Table 9.1: Representation of number of iterations in each round by bits, the key generation

for MFBOMAT

Round Block Size Number of Iterations

Decimal Binary

8. 256 50021 1100001101100101

7. 128 49870 1100001011001110

6. 64 48950 1011111100110110

5. 32 44443 1010110110011011

4. 16 46250 1011010010101010

3. 8 4321 0001000011100001

2. 4 690 0000001010110010

1. 2 72 0000000001001000

- 271 -

Figure 9.4: Graphical representation of key generation of MFBOMAT

The key generation process depends on block size, iteration of each block and final

permutation performed. Thus, in the proposed scheme, eight rounds have been considered,

each for 2, 4, 8, 16, 32, 64, 128, and 256 block size. As mentioned in each round is repeated

for a finite number of times and the number of iterations will form a part of the encryption-

key. Although the key may be formed in many ways, for the sake of brevity it is proposed to

represent the number of iterations in each round by a 16-bit binary string. The binary strings

are then concatenated to form a 128-bit key for a particular key. Table 9.1 gives the key

generation process and the same is shown graphically in figure 9.4. For the block size of 2-

bits are considering 72 rounds, for block size of 4-bits are considering 690 rounds and so on

and finally for block size of 256-bits 50021rounds have been considered for encryption. Since

the technique is symmetric block cipher so for decryption same number of rounds will be

required. These numbers of rounds have been considered in binary value, for each block size

the number of rounds is considered in 16-bits of binary value. So there is eight block sizes

and their corresponding eight 16-bits rounds, the key is formed by concatenating all the 16-

- 272 -

bits binary values. Therefore, the size of the session key proposed here is 16 X 8 = 128-bits,

which is now a day’s considered the secure key length.

An example of key generation is illustrated in section 9.4.2. Section 9.4.3 describes

the modulo addition used in MFBOMAT, which is an important operation in the technique

and should be taken into account while forming the session key.

9.4.2 An Example of Key Generation

Consider a particular session where the source file is encrypted using iterations for

block sizes 2, 4, 8, 16, 32, 64, 128, and 256 bits, respectively. Table 9.1 shows the

corresponding binary value for the number of iterations in each round. If consider the block

size of 256-bits then the binary value of round is ‘1100001101100101’, for block size of 128-

bit the binary value of round is ‘1100001011001110’ and so on finally for block size of 2-bits

the binary value of round is ‘0000000001001000’. These eight 16-bits binary strings are

concatenated together to form the 128-bit binary string, which is given below.

 110000110110010111000010110011101011111100110110101011011001101110110

10010101010000100001110000100000010101100100000000001001000

Figure 9.5: Session key generation of MFBOMAT

This 128-bit binary string will be the encryption-key for this particular session.

During decryption, the same key is taken to iterate each round of modulo-subtraction for the

specified number of times and reverse permutation. Figure 9.5 shows the top level RTL

diagram of session key generation of MFBOMAT.

- 273 -

9.5 Analysis

Some of the analyses of this technique are as follows:-

 The algorithmic complexity of MFBOMAT is O(n
2
).

 This technique incorporates forward and backward mode of encryption.

 This technique incorporates two rounds, round 1 for forward mode of encryption

and round 2 is for backward mode of encryption.

 Decryption is same as encryption where the round keys are provided in reverse

order.

 The modulo addition is incorporated as a main functional block of the technique.

 128-bit key is proposed for encryption and decryption using MFBOMAT.

9.6 Results and Simulations

This section will discuss some of the results of TSV and the various comparisons

made with the proposed techniques and RSA. Section 9.6.1 discuss results of RTL/Hardware

implementation, section 9.6.2 discuss the results of frequency distribution graph, section

9.6.3 discuss the results of Chi-Square test for non-homogeneity of source files and encrypted

files, section 9.6.4 discuss the results of time complexity and section 9.6.5 discuss the results

of avalanche ratio test.

9.6.1 RTL Simulation Based Result

In this section some of the results found on implementing of the proposed technique

in VHDL have been given. The code has been simulated and synthesized in Xilinx 8.1i. The

main objective is to find an efficient FPGA-based cryptographic technique for

implementation in embedded systems.

- 274 -

Figure 9.6: RTL diagram of RSA

Figure 9.7: Spartan 3E RTL diagram of TPRT

Figure 9.8: Spartan 3E RTL diagram of TMAT

- 275 -

Figure 9.9: Spartan 3E schematic of ROBAST

Figure 9.10: Spartan 3E RTL schematic of the main controller module of Shuffle-RAT

Figure 9.11: Spartan 3E RTL diagram of TSV

- 276 -

Figure 9.12: Spartan 3E RTL diagram of MFBOMAT

The design of MFBOMAT is done using VHDL and implemented in Xilinx Spartan-

3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i design

tool. Figure 9.6 shows the RTL of RSA, figure 9.7 shows the RTL of TPRT, figure 9.8 shows

RTL of TMAT, figure 9.9 shows RTL of ROBAST, figure 9.10 shows RTL of SRAT, figure

9.11 shows the RTL diagram of TSV and figure 9.12 shows RTL diagram of MFBOMAT.

Here 256-bit implementation timing diagram is illustrated, plaintext is of 256-bit and user

encryption/decryption key is of 128-bit, the output 256-bit ciphertext is got after 450ns.

Table 9.2: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,

SRAT, TSV and MFBOMAT)

Sr

No.

Netlist Components Number

RSA TPRT TMAT ROBAST SRAT TSV MFBOMAT

1 ROMs/RAMs 430 10 14 25 28 12 09

2 Adders/Subtractions 3 0 2 20 28 0 15

3 Registers 420 20 30 50 641 10 10

4 Latches 80 0 0 10 80 0 0

5 Multiplexers 120 0 0 10 136 0 0

- 277 -

Table 9.2 illustrates the hardware implementation analysis of MFBOMAT and its

comparisons with other techniques/algorithms, namely, RSA, TPRT, TMAT, ROBAST,

SRAT and TSV. This technique uses 15 adder/subtractions and no latches and multiplexers.

MFBOMAT uses 09 memory units (ROM/RAM) and 10 registers which are quite less than

that of other techniques/algorithms. Observing the above table it is seen that RSA consumes

maximum of resources, then comes ROBAT followed by SRAT. TPRT, TMAT and

MFBOMAT consume the minimum resources.

Table 9.3 illustrates the entire timing summary obtained after HDL synthesis. The

speed grade and maximum frequency is same as all the techniques/algorithms have been

implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).

Table 9.3: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST, SRAT

and TSV)

Sr

No.

Timing

Constraint

Values

RSA TPRT TMAT ROBAST SRAT TSV MFBOMAT

1 Speed

Grade

-5 -5 -5 -5 -5 -5 -5

2 Minimum

period (ns)

9.895 5.66 7.95 5.55 5.50 10.22 4.99

3 Maximum

Frequency

(MHZ)

101.06 101.06 101.06 101.06 101.06 101.06 101.06

4 Minimum

input arrival

time before

clock (ns)

6.697 4.33 5.55 5.55 4.25 6.66 4.20

5 Maximum

output

required

time after

clock (ns)

4.31 3.33 4.25 4.44 3.33 5.55 3.30

- 278 -

MFBOMAT is obtained minimum period of 4.99ns followed by RSA 9.89ns, TPRT

5.66ns, TMAT 7.95ns, ROBAST 5.55ns, SRAT 5.50ns and TSV 10.22ns. MFBOMAT is

also require minimum input arrival time before clock of 4.20ns followed by RSA 6.70ns,

TPRT 4.33ns, TMAT 5.55ns, ROBAST 5.55ns, SRAT 4.25ns and TSV 6.66ns. MFBOMAT

requires minimum value in maximum output required time after clock of 3.30ns followed by

RSA 4.31ns, TPRT 3.33ns, TMAT 4.25ns, ROBAST 4.44ns, SRAT 3.33ns and TSV 5.55ns.

Thus it can be said that MFBOMAT is giving optimal result in terms of hardware

implementation.

9.6.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters present

in the respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis. The analysis has been given after the following figures showing the frequency

distribution encrypted by all the proposed techniques.

- 279 -

Figure 9.13: Frequency distribution graph of source, RSA encrypted and TPRT encrypted

files

- 280 -

Figure 9.14: Frequency distribution graph of TMAT and ROBAST encrypted files

Figure 9.15: Frequency distribution graph of SRAT encrypted files

Figure 9.16: Frequency distribution graph of TSV encrypted files

- 281 -

Figure 9.17: Frequency distribution graph of MFBOMAT encrypted files

The results shown are obtained after calculating the respective Frequency

Distributions of the source file ‘genesis.txt’. Figure 9.13 shows the frequency distribution

graph of source file, RSA encrypted file and TPRT encrypted file. Figure 9.14 shows

frequency distribution graph of TMAT encrypted file and ROBAST encrypted file. Figure

9.15 shows the frequency distribution graph of SRAT encrypted file, figure 9.16 shows

frequency distribution graph of TSV encrypted file and figure 9.17 shows the frequency

distribution graph of MFBOMAT encrypted files. It obvious that MFBOMAT is giving much

better result than that of RSA.

9.6.3 The Non-Homogeneity Test

The extent of non-homogeneity between source file/plaintext and encrypted

file/ciphertext is computed using Chi-Square value. In this context the observed frequency is

the plaintext files and the expected frequency is the ciphertext files. Thus it gives the extent

of non-homogeneity between plaintext files and ciphertext files.

- 282 -

Table 9.4 shows the Chi-Square values of all the techniques, the cummulative Chi-

Square value of MFBOMAT is 47769393, TSV is 44930751, SRAT is 20882824, TPRT is

13964820, TMAT is 14902143, ROBAST is 33438597 and RSA is 14841749. So,

MFBOMAT generates the optimal result therefore MFBOMAT is the most heterogeneous

technique.

Figure 9.18: Pictorial representation of Chi-Square values against file size

- 283 -

Table 9.5: Comparison of degree of freedom of ROBAST, RSA, TPRT, TMAT, SRAT, TSV

and MFBOMAT

Source File File

Size

(Bytes)

Degree of Freedom

ROBAST RSA TMAT TPRT SRAT TSV MFBOMAT

license.txt 17,632 253 253 255 255 253 255 255

cs405(ei).doc 25,422 253 253 255 255 254 255 255

acread9.txt 35,121 253 253 255 255 255 254 254

deutsch.txt 47,829 253 253 255 255 240 253 255

genesis.txt 49,600 253 253 255 255 255 255 255

pod.exe 69,981 253 253 255 255 255 255 253

mspaint.exe 136,463 254 254 255 255 255 254 255

cmd.exe 152,028 253 253 255 255 255 255 255

d3dim.dll 193,189 253 253 255 255 255 253 255

clbcatq.dll 403,901 253 253 255 255 255 255 255

Figure 9.18 gives the Chi-Square graph where it can be seen that MFBOMAT is

giving the optimal result. Table 9.5 giving the degree of freedom values where MFBOMAT

is giving almost 255 values.

9.6.4 The Time Complexity Analysis

In this section time complexity analysis has been taken and for this encryption time

and decryption time has been taken for analysis.

Table 9.6 gives the encryption times of ten different files. The cumulative time of

MFBOMAT is 0.15 seconds, TSV is 0.19 seconds, SRAT is 0.25 seconds, TPRT is 2.94

seconds, TMAT is 3.29 seconds, ROBAST is 0.43 seconds and RSA is 1.54 seconds.

Therefore MFBOMAT is giving optimal result in terms of encryption time complexity

analysis.

- 284 -

Table 9.6: Comparison of encryption time of ROBAST, RSA, TMAT, TPRT, SRAT, TSV

and MFBOMAT

Source File File

Size

(Bytes)

Encryption Time

ROBAST RSA TMAT TPRT SRAT TSV MFBOMAT

license.txt 17,632 0.00 0.01 0.03 0.02 0.00 0.00 0.00

cs405(ei).doc 25,422 0.01 0.06 0.00 0.00 0.01 0.00 0.00

acread9.txt 35,121 0.02 0.07 0.13 0.10 0.01 0.01 0.01

deutsch.txt 47,829 0.03 0.11 0.25 0.20 0.01 0.01 0.01

genesis.txt 49,600 0.04 0.12 0.28 0.25 0.02 0.01 0.01

pod.exe 69,981 0.04 0.12 0.39 0.35 0.02 0.02 0.01

mspaint.exe 136,463 0.06 0.20 0.44 0.40 0.03 0.02 0.02

cmd.exe 152,028 0.07 0.25 0.55 0.50 0.05 0.03 0.02

d3dim.dll 193,189 0.08 0.28 0.55 0.52 0.05 0.04 0.03

clbcatq.dll 403,901 0.08 0.32 0.67 0.60 0.05 0.05 0.04

Figure 9.19: Pictorial representation of encryption time against file size

- 285 -

Table 9.7: Comparison of decryption time of ROBAST, RSA, TMAT, TPRT, SRAT and

TSV

Source File File

Size

(Bytes)

Decryption Time

ROBAST RSA TMAT TPRT SRAT TSV MFBOMAT

license.txt 17,632 0.01 0.15 0.11 0.10 0.00 0.00 0.00

cs405(ei).doc 25,422 0.02 0.71 0.00 0.00 0.01 0.00 0.00

acread9.txt 35,121 0.03 1.15 0.13 0.10 0.01 0.01 0.00

deutsch.txt 47,829 0.03 1.36 0.15 0.11 0.01 0.01 0.01

genesis.txt 49,600 0.04 1.61 0.25 0.20 0.02 0.02 0.01

pod.exe 69,981 0.04 1.86 0.39 0.35 0.02 0.02 0.01

mspaint.exe 136,463 0.05 2.71 0.48 0.40 0.02 0.03 0.02

cmd.exe 152,028 0.06 3.34 0.52 0.42 0.05 0.03 0.03

d3dim.dll 193,189 0.07 3.73 0.60 0.50 0.05 0.04 0.03

clbcatq.dll 403,901 0.08 4.25 0.65 0.55 0.05 0.05 0.04

Table 9.7 gives the decryption times of ten different files. The cumulative time of

MFBOMAT is 0.15 seconds, TSV is 0.21 seconds, SRAT is 0.24 seconds, TPRT is 2.73

seconds, TMAT is 3.28 seconds, ROBAST is 0.43 seconds and RSA is 20.87 seconds.

Therefore MFBOMAT is giving optimal result in terms of decryption time complexity

analysis.

Figure 9.20: Pictorial representation of decryption time against file size

- 286 -

Figure 9.19 and figure 9.20 gives the encryption time complexity graph and

decryption time complexity graph respectively. Thus it is clear from the graph that

MFBOMAT gives the optimal result in time complexity analysis.

9.6.5 The Avalanche Ratio Test

Avalanche Effect refers to a desirable property of any cryptographic algorithm where,

if an input is changed slightly (for example, flipping a single bit) the output changes

significantly (e.g., more than half the output bits flip).

- 287 -

Table 9.8 compares the avalanche effect ratio for TSV, RSA and previous proposed

techniques/algorithm and which are obtained after calculating the respective Avalanche

Effect by making a change of a few (approx 3) characters in each file. It is observed that the

proposed technique is showing an average avalanche ratio percentage of 99.7% which is way

higher than that obtained using RSA. High avalanche ratio ensures higher security from brute

force attack. It is also observed that this avalanche ratio test of TSV is better than Shuffle-

RAT, TPRT, TMAT, ROBAST and MFBOMAT. Therefore MFBOMAT is giving optimal

result in avalanche ratio test but not better than TSV.

9.7 Discussions

The technique proposed takes little time to encode and decode though the block

length is high. The encoded string will not generate any overhead bits. The block length may

further increased beyond 256 bits, which may enhance the security. Selecting the block pairs

in random order, rather than taking those in consecutive order may enhance security. The

proposed scheme may be applicable to embedded systems.

Chapter 10

Proposed Models

10.1 Proposed Models

In this chapter two models have been proposed out of research carried out during the

generic of study. Section 10.2 describes a proposed model derived from microprocessor

based solutions and section 10.3 gives another proposed model derived from FPGA-Based

solutions. Discussions on the proposed model are given in section 10.4.

10.2 The Proposed Model for Microprocessor-Based Solutions

Complete functionaries could be obtained through models and this chapter proposed

models for the same. Figure 10.1 shows the proposed model for microprocessor-based

solutions. In this model a 64-bit plaintext is encrypted to produce a 64-bit ciphertext, with a

key of 128-bit key size. In this model there are three parts, first one is the encryption process,

second one is the decryption process and the third one is the key generation or sub-key

generation or round-key generation process.

Figure 10.1: Proposed model for microprocessor-based solutions

- 292 -

64-bit plaintext is fed into Modified Recursive Modulo-2
n
 and Key Rotation

Technique (MRMKRT) block which gets the round-key/sub-key, K1, and this plaintext is

encrypted by MRMKRT encryption. The output from this is divided into two blocks of 32-bit

each, the left 32-bit block and right 32-bit block, then a 32-bit swap is done, here the left 32-

bit block becomes the right 32-bit block and right 32-bit block becomes the left 32-bit block.

After swapping two blocks are merged to form 64-bit block. This 64-bit block is then fed to

Recursive Transposition Technique (RTT), which gets round-key/sub-key, K2; this 64-bit

input is encrypted by RTT encryption. The output from this phase is again performed 32-bit

swap. The 64-bit output from this final phase is the ciphertext. Let’s now discuss the

decryption process.

The 64-bit ciphertext produced above by the encryption process travels through

unsecure channel and reaches the destination. The decryption process is just the reverse of the

encryption process and the round-keys/sub-keys is applied in reverse order. At first a 32-bit

swap operation is performed, this means the 32-bit left input block becomes right output

block and the 32-bit right input block becomes left output block. This 64-bit block is fed to

RTT decryption, round-key/sub-key, K2. Again the output from this phase is performed a

similar 32-bit swap. Finally, this 64-bit block is fed to MRMKRT decryption with round-

key/sub-key, K1, this produce back the original 64-bit plain text. Now discuss the key

generation process.

In this proposed model 128-bit key size has been considered. First, 128-bit key is fed

to first stage of key generation (Key Gen – I), this round-key/sub-key generation process

which is already described in section 2.5 of chapter 2. First round-key/sub-key, K1 generated

is passed to MRMKRT in both encryption process and decryption process. This 128-block

key is performed a circular left shift of 1 – bit (LS – 1). The output from this phase is fed to

second phase of key generation (Key Gen – II), this round-key/sub-key generation process

which is already described in section 3.3 of chapter 3. This phase generates a round-key/sub-

key, K2, which is fed to RTT encryption process and decryption process. This proposed

model has been implemented both in 8085 microprocessor and C-programming language.

Detailed analysis of results of the proposed model is given in section 10.2.1.

10.2.1 Results and Comparisons

The main emphasis is given on comparisons of the results with RSA. Section 10.2.1.1

gives implementation based results, section 10.2.1.2 gives frequency distribution graph,

- 293 -

section 10.2.1.3 gives non-homogeneity test, section 10.2.1.4 deals with time complexity

analysis and avalanche ratio is given in section 10.2.1.5.

10.2.1.1 Implementation based result

In this section results obtained from implementation of the proposed model is

compared with MRMKRT and RTT as there is no low level implementation is available of

RSA.

Table 10.1: Implementation based results of MRMKRT, RTT and proposed model

Characteristics ↓ Proposed Techniques MRMKRT RTT Proposed

Model

Block Cipher √ √ √

Fixed Length Block Cipher √ - -

Variable Length Block Cipher - √ √

Implementation in Bit-Level √ √ √

Implementation other than Bit-Stream - - -

Private/Symmetric Key System √ √ √

Substitution Technique √ √ √

Transposition Technique - √ √

Boolean as Basic Operation √ √ -

Non-Boolean as Basic Operation √ - -

No Alteration in Size √ √ √

Formation of Cycle √ √ -

Non-formation of Cycle - - √

Number of sub-programs used 4 7 12

Number of IO/M operations per block of

encryption/decryption

9 5 15

Number of Boolean operations used per block of

encryption/decryption

1 1 1

Number of Non Boolean operations used per block of

encryption/decryption

5 0 5

Calculated T-states per block of encryption/decryption 760 544 1350

Table 10.1 gives the summary of implementation based results where this proposed

model is compared with MRMKRT and RTT.

- 294 -

Figure 10.2: Graphical representation of implementation based results of the model,

MRMKRT and RTT

Figure 10.2 shows the graphical representation of implementation based result. This

proposed model is variable size block cipher, the implementation is bit level with private key

stream, it also involve both permutation and substitution technique, this proposed model also

have Boolean and non Boolean operations and there is no alteration of cycle and also cycle is

not formed.

Number of subprogram is used is 12, IO/M operation is 15, Boolean operation is 1,

non Boolean operation is 5 and calculated T-states is 1350. Therefore with these results it can

be said that the proposed model is successfully implemented in low level that in 8085.

10.2.1.2 Frequency Distribution Graph

All 255 ASCII characters are taken for this test for both plaintext/source file and

ciphertext/encrypted file. The frequency graph of source file, RSA encrypted file and

proposed model encrypted file is taken for consideration. There are ten files taken for various

result and analysis but only one file is taken for frequency distribution analysis and other nine

files giving the similar result.

- 295 -

Figure 10.3: Frequency distribution of source file

Figure 10.4: The frequency distribution graph of RSA encrypted file

Figure 10.5: Graphical representation of frequency distribution of proposed model (encrypted

file)

Figure 10.3 gives the frequency distribution graph of source file, figure 10.4 shows

the same for RSA encrypted file and figure 10.5 shows the same for this proposed model

encrypted file. Thus frequency distribution graph of this proposed model is well comparable

with RSA.

- 296 -

10.2.1.3 Non-Homogeneity Test

Chi-square test is performed to find the non-homogeneity of the proposed model with

RSA. Ten files of different file typed and different file sizes are taken for this test.

Table 10.2: Comparisons of Chi-Square values of RSA and proposed model

Source File File Size

(Bytes)

Chi-Square Value Degree of Freedom

Proposed

model

RSA Proposed

model

RSA

license.txt 17,632 225000 40159 255 64

cs405(ei).doc 25,422 299125 199354 255 66

acread9.txt 35,121 460050 179524 255 73

deutsch.txt 47,829 588660 344470 255 77

genesis.txt 49,600 690010 416029 255 75

pod.exe 69,981 901556 751753 255 76

mspaint.exe 136,463 1550000 1204193 255 88

cmd.exe 152,028 1908000 585857 255 73

d3dim.dll 193,189 496590 328677 255 10

clbcatq.dll 403,901 3907125 328511 255 11

Table 10.2 shows the Chi-Square values of ten source files of RSA and the proposed

model. It is clearly observed that the extent of non-homogeneity of the proposed model is

quite higher than that of RSA. So, this proposed model is giving optimal solution in terms of

non-homogeneity by using Chi-Square values.

Figure 10.6: Graphical representation of Chi-Square for RSA and proposed model

- 297 -

Figure 10.6 shows the result graphically, where it can be see that for all the ten source

files the Chi-Square value of this proposed model is quite higher than that of RSA.

10.2.1.4 Time Complexity Analysis

Time complexity analysis is taken for encryption time and decryption time. This

analysis is taken for all the ten source files.

Table 10.3 gives the tabulation for encryption time and decryption time of both RSA

and proposed model. Figure 10.7 gives the graphical representation of encryption time and

figure 10.8 gives the graphical representation of decryption time. The cumulative encryption

time of this proposed model is 4.34 seconds and the cumulative encryption time of RSA is

4.35 seconds. The cumulative decryption time of the proposed model is 5.69 seconds and

cumulative decryption time of RSA is 51.97 seconds. Therefore it can be said that the

proposed model is giving much better result than that of RSA.

Table 10.3: Comparison of time complexity analysis of RSA and proposed model

Source File File Size

(Bytes)

Encryption time

(in Seconds)

Decryption time

(in seconds)

Proposed

Model

RSA Proposed

model

RSA

license.txt 17,632 0.02 0.01 0.15 0.28

cs405(ei).doc 25,422 0.02 0.03 0.15 0.30

acread9.txt 35,121 0.20 0.21 0.20 1.67

deutsch.txt 47,829 0.30 0.35 0.30 3.51

genesis.txt 49,600 0.40 0.40 0.55 5.06

pod.exe 69,981 0.80 0.39 0.45 4.34

mspaint.exe 136,463 0.70 0.65 0.80 8.37

cmd.exe 152,028 0.50 0.61 0.90 6.59

d3dim.dll 193,189 0.70 0.75 0.99 10.15

clbcatq.dll 403,901 0.70 0.95 1.20 11.70

- 298 -

Figure 10.7: Pictorial representation of encryption time

Figure 10.8: Graphical representation of decryption time

10.2.1.5 The Avalanche Ratio Test

The avalanche ratio test is the extent of which the ciphertext bits filliped when one or

more bits of plaintext or key are flipped.

- 299 -

Table 10.4: Comparison of avalanche ratio of RSA and proposed model

Source File File Size (Bytes) Avalanche Ratio(in Percentage)

RSA Proposed model

license.txt 17,632 58.0 88.8

cs405(ei).doc 25,422 60.0 80.0

acread9.txt 35,121 75.0 88.8

deutsch.txt 47,829 78.9 90.5

genesis.txt 49,600 80.9 95.5

pod.exe 69,981 58.0 90.0

mspaint.exe 136,463 58.9 96.5

cmd.exe 152,028 67.0 87.0

d3dim.dll 193,189 67.9 85.0

clbcatq.dll 403,901 68.0 95.5

Table 10.4 is giving the avalanche ratio test and here the proposed model is giving far

better result than that of RSA.

10.3 The Proposed Model for FPGA-Based Solutions

An FPGA-based model has also been proposed here where, the complete

functionaries of FPGA-based techniques is described here through another proposed model.

Figure 10.9 shows the proposed model for FPGA-based solutions. In this model also a 64-bit

plaintext is encrypted to produce a 64-bit ciphertext, with a key of 128-bit key size. In this

model there are three parts, first one is the encryption process, second one is the decryption

process and the third one is the key generation or sub-key generation or round-key generation

process. Let explain it one by one.

At first 64-bit plaintext is fed into Triangular Modulo Arithmetic Technique (TMAT)

block which gets the round-key/sub-key, K1, and this plaintext is encrypted by TMAT

encryption. The output from this is now performed a circular left shift of 1 – bit (LS – 1).

After shifting operation this 64-bit block is then fed to Recursively Oriented Block Addition

and Substitution Technique (ROBAST), which get round-key/sub-key, K2, this 64-bit input is

encrypted by ROBAST encryption. The output from this phase is again performed circular

left shift of 2 – bits (LS – 2).

- 300 -

Figure 10.9: Proposed model for FPGA-based solutions

After shifting operation the 64-bit block is fed to Shuffle-RAT (SRAT) phase, which

get round-key/sub-key, K3, from the key generation process. This 64-bit block is encrypted

with SRAT. After this the 64-bit block is now performed a circular left shift of 3 – bits (LS –

3). The 64-bit output is now fed to Triple-SV (TSV) phase, which get round-key/sub-key, K4,

from the key generation process. Now, finally the 64-bit block is Forward Backward

Overlapped Modulo Arithmetic Technique (FBOMAT) encrypted to produce 64-bit

ciphertext with a round key of K5. Let’s now discuss the decryption process.

The 64-bit ciphertext produced above by the encryption process travels through

unsecure channel and reaches the decryption process. Since the techniques were symmetric in

nature so the proposed model is symmetric too. The decryption process is just the reverse of

the encryption process and the round-keys/sub-keys is applied in reverse order. At first 64-bit

ciphertext is decrypted through FBOMAT decryption with round key K5. Then 64-bit

- 301 -

ciphertext is TSV decrypted, with the round key/sub key, K4. This 64-bit block is now

performed a circular right shift of 3 – bits (RS – 3). The 64-bit output from this phase is now

fed to SRAT, with round-key/sub-key, K3, this is now SRAT decrypted. Then this 64-bit

block is performed a circular right shift of 2 – bits (RS – 2). Now, this 64-bit block is fed to

ROBAST decryption, round-key/sub-key, K2. Again the output from this phase is performed

a similar circular right shift of 1 – bits (RS – 1). Finally, this 64-bit block is fed to TMAT

decryption with round-key/sub-key, K1, this produce back the original 64-bit plain text. Now

discuss the key generation process.

In this proposed model, the key is considered to be 128-bit key size, which is now

recommended. First, 128-bit key is fed to Two Pass Replacement Technique (TPRT), this

whole 128-bit key is encrypted with one round of TPRT which takes system time as a key

input. This phase produce the first round-key/sub-key, K1, which is passed to TMAT in both

encryption process and decryption process. Now this 128-block key is divided into two 64-bit

blocks and swap operation is done, this means the right input 64-bit becomes left output 64-

bit and left input 64-bit becomes right output 64-bit, finally the output blocks are merged to

form 128-bit block. The output from this phase is fed to Key Gen – I, this round-key/sub-key

generation process which is already described in section 4.4.1 of chapter 4. This phase

generates a round-key/sub-key, K2, which is fed to ROBAST encryption process and

decryption process. The 128-bit output from this phase is again performed a 64-bit swap

operation as discussed earlier. After the swapping operation, this 128-bit block key is fed to

Key Gen – II, already discussed in section 8.4.2 of chapter 8, to produce the third round-

key/sub-key, K3, which is fed to both SRAT encryption process and SRAT decryption

process. The 128-bit output from the previous phase is again performed 64-bit swap operation

described earlier. The next round-key/sub-key is produced by performing the Key Gen – III

operation as already described in section 9.4.1 of chapter 9, this round-key/sub-key, K4, is

fed to both TSV encryption process and decryption process. Finally another 64-bit swap

operation is performed and it forms the final round key, K5, which is fed to both FBOMAT

encryption and decryption. Here one should note that all the round-keys/sub-keys is of 128-

bit key size. This proposed model has been implemented in both FPGA-based systems by

VHDL and C-programming language. Section 10.3.1 gives the results to analyse this

proposed model for its acceptance.

- 302 -

10.3.1 Results and Simulations

The main emphasis is given on comparisons with RSA. Section 10.3.1.1 gives RTL

simulation based results, section 10.3.1.2 gives frequency distribution graph, section 10.3.1.3

gives non-homogeneity test, section 10.3.1.4 deals with time complexity analysis and section

10.3.1.5 chalk out the avalanche ratio test.

10.3.1.1 RTL Simulation Based Result

In this section gives some of the results found after implementing the proposed model

in VHDL. This code has been simulated and synthesized in Xilinx 8.1i. The main objective is

to find an efficient FPGA-based cryptographic technique for implementation in embedded

systems.

Figure 10.10: RTL diagram of RSA

Figure 10.11: Spartan 3E RTL diagram of proposed model

- 303 -

The design of proposed model is done using VHDL and implemented in Xilinx

Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5) FPGA using the ISE 8.1i

design tool. Figure 10.10 shows the RTL of RSA, figure 10.11 shows the RTL of proposed

model.

Table 10.5: HDL synthesis report (Netlist generation of RSA and proposed model)

Sr No. Netlist Components Number

RSA Proposed model

1 ROMs/RAMs 430 110

2 Adders/Subtractions 3 70

3 Registers 420 770

4 Latches 80 80

5 Multiplexers 120 120

Table 10.5 gives the HDL synthesis report, specifically net list generation of RSA and

proposed model. Proposed model uses 110 ROMs/RAMs where as RSA uses 430

ROMs/RAMs, proposed model uses 70 adders/subtractions where RSA uses only 3

adder/subtractions, proposed model uses 770 registers where as RSA uses 420 registers, both

proposed model and RSA uses 80 lathes and 120 multiplexers. Therefore this proposed model

is well comparable with RSA.

Table 10.6 gives the HDL synthesis report specifically timing summary of RSA and

proposed model. The minimum period of RSA is 9.895ns and proposed model is 9.55ns,

minimum input arrival time before clock of RSA is 6.697ns and proposed model is 6.55 ns

and maximum output required time after clock of RSA is 4.31ns and the proposed model is

4.30ns. This implementation has been made on speed grade of -5 and maximum frequency of

101.06 MHZ. Therefore it can be said that proposed model is giving much better result than

that of RSA and this proposed model is well comparable with RSA.

10.3.1.2 The Frequency Distribution Graph

The frequency distribution is the distribution of the all 256 ASCII characters in the

respective files. This is also a cryptographic parameter which measures the degree of

cryptanalysis.

- 304 -

Table 10.6: HDL synthesis report (Timing summary of RSA and proposed model)

Sr No. Timing Constraint Values

RSA Proposed model

1 Speed Grade -5 -5

2 Minimum period (ns) 9.895 9.55

3 Maximum Frequency (MHZ) 101.06 101.06

4 Minimum input arrival time before

clock (ns)

6.697 6.55

5 Maximum output required time after

clock (ns)

4.31 4.30

Figure 10.12: Frequency distribution of source file

Figure 10.13: The frequency distribution graph of RSA encrypted file

- 305 -

Figure 10.14: The frequency distribution graph of proposed model

Figure 10.12 gives the frequency distribution graph of source file, figure 10.13 shows

the same for RSA encrypted file and figure 10.14 shows the same for this proposed model

encrypted file. Thus frequency distribution graph of this proposed model is well comparable

with RSA.

10.3.1.3 The Non-Homogeneity Test

Chi-square test is performed to find the non-homogeneity of the proposed model with

RSA. Ten files of different file typed and different file sizes are taken for this test.

Table 10.7: Chi-Square values of RSA and proposed model

Source File File

Size

(Bytes)

Chi-Square Values Degree of freedom

RSA Proposed

model

RSA Proposed model

license.txt 17,632 5668 6005 64 253

cs405(ei).doc 25,422 2654 338690 66 254

acread9.txt 35,121 447984 475859 73 255

deutsch.txt 47,829 685963 3885550 77 255

genesis.txt 49,600 3318506 4112060 75 254

pod.exe 69,981 694410 8992436 76 255

mspaint.exe 136,463 2667664 4560124 88 255

cmd.exe 152,028 2216429 9956700 73 240

d3dim.dll 193,189 906300 9925690 10 255

clbcatq.dll 403,901 3896171 6556900 11 254

- 306 -

Figure 10.15: Graphical representation of Chi-Square value of RSA and proposed model

Table 10.7 shows the Chi-Square values of ten source files of RSA and the proposed

model. It is clearly observed that the extent of non-homogeneity of the proposed model is

quite higher than that of RSA. So, this proposed model is giving optimal solution in terms of

non-homogeneity by using Chi-Square values.

Figure 10.15 shows the result graphically, from it is seen that that for all the ten

source files the Chi-Square value of this proposed model is quite higher than that of RSA.

The degree of freedom of this proposed model is also quite higher than that of RSA.

10.3.1.4 The Time Complexity Analysis

Another way to analyze any algorithm is to take the time complexity analysis. Here

encryption time and decryption time have been taken into account.

- 307 -

Table 10.8: Encryption and decryption time of RSA and proposed model

Source File File

Size

(Bytes)

Encryption Time Decryption Time

RSA Proposed

model

RSA Proposed

model

license.txt 17,632 0.01 0.06 0.28 0.15

cs405(ei).doc 25,422 0.06 0.06 0.30 0.25

acread9.txt 35,121 0.07 0.07 1.67 0.80

deutsch.txt 47,829 0.11 0.10 3.51 0.90

genesis.txt 49,600 0.12 0.10 5.06 2.30

pod.exe 69,981 0.12 0.10 4.34 3.50

mspaint.exe 136,463 0.20 0.20 8.37 4.50

cmd.exe 152,028 0.25 0.20 6.59 6.10

d3dim.dll 193,189 0.28 0.25 10.15 8.50

clbcatq.dll 403,901 0.32 0.35 11.70 10.50

Table 10.8 gives the tabulation for encryption time and decryption time of both RSA

and proposed model. Figure 10.16 gives the graphical representation of encryption time and

figure 10.17 gives the graphical representation of decryption time. The cumulative encryption

time of this proposed model is 1.49 seconds and the cumulative encryption time of RSA is

1.54 seconds. The cumulative decryption time of the proposed model is 37.5 seconds and

cumulative decryption time of RSA is 51.97 seconds. Therefore it can be said that the

proposed model is giving much better result than that of RSA.

Figure 10.16: Pictorial representation of encryption time of RSA and proposed model

- 308 -

Figure 10.17: Pictorial representation of decryption time of RSA and proposed model

10.3.1.5 The Avalanche Ratio Test

The avalanche ratio test is the extent of which the ciphertext bits filliped when one or

more bits of plaintext or key are flipped.

Table 10.9: The avalanche ratio of RSA and proposed model

Source File File Size

(Bytes)

Avalanche Ratio(in Percentage)

RSA Proposed model

license.txt 17,632 58.0 88.8

cs405(ei).doc 25,422 60.0 80.0

acread9.txt 35,121 75.0 88.8

deutsch.txt 47,829 78.9 90.5

genesis.txt 49,600 80.9 95.5

pod.exe 69,981 58.0 90.0

mspaint.exe 136,463 58.9 96.5

cmd.exe 152,028 67.0 87.0

d3dim.dll 193,189 67.9 85.0

clbcatq.dll 403,901 68.0 95.5

- 309 -

Table 10.9 is giving the avalanche ratio test and here the proposed model is giving far

better result than that of RSA.

10.4 Discussions

In this chapter two proposed models have been discussed. In all the models 64-bit

plaintext is encrypted to get 64-bit ciphertext. The key size of all the models are 128-bit. The

128-bit key ensure better cryptographic strength and 64-bit block length is also recommended

for symmetric block cipher.

In microprocessor-based model two proposed techniques, MRMKRT and RTT, are

incorporated. In this model three round keys are generated from 128-bit input key.

MRMKRT is found optimal for frequency distribution analysis and degree of freedom

analysis, RTT is found optimal for Chi-square value (non-homogeneity) analysis and

avalanche ratio. Thus, by implementing this proposed model, hope to get better cryptographic

strength and algorithmic properties.

In FPGA-based model, TMAT, ROBAST, Shuffle-RAT, TSV have been incorporated

for encryption/decryption process and FBOMAT is used in round key generation process.

TMAT is found suitable for frequency distribution analysis, degree of freedom and hardware

implementation based results, ROBAST is optimal for Chi-Square and degree of freedom

analysis, Shuffle-RAT gives high confusion and diffusion and TSV is giving high avalanche

effect. Thus, by implementing this proposed models. Better cryptographic strength and

algorithmic properties may be achieved.

Thus, by implementing these proposed models better cryptographic strength and

algorithmic properties may be achieved.

Chapter 11

Conclusions

11.1 Conclusive Discussions

In this thesis eight novel techniques are proposed. Modified Recursive Modulo-2
n
 and

Key Rotation Technique (MRMKRT) and Recursive Transposition Technique (RTT) are

microprocessor-based proposal and implemented techniques. Two Pass Replacement

Technique (TPRT), Triangular Modulo Arithmetic Technique (TMAT), Recursively Oriented

Block Addition and Substitution Technique (ROBAST), Shuffle-RAT (SRAT), Triple-SV

(TSV / 3SV) and Forward Backward Overlapped Modulo Arithmetic Technique (FBOMAT)

are FPGA-based proposal and implemented techniques. The conclusions on microprocessor-

based techniques, FPGA-based techniques and all the eight proposed techniques are

discussed in subsequent paragraphs. Section 11.2 illustrates the future works with concluding

remarks.

Table 11.1 illustrates overall conclusion scenario for microprocessor-based solutions.

In this table two proposed algorithms/techniques are compared along with the existing,

renowned and industrially accepted RSA. The symbol “√” shows the optimal solution. Here

also six properties are considered for the evaluation. The properties for evaluation are

frequency distribution graph, Chi-Square values for non-homogeneity, degree of freedom,

avalanche ratio, encryption time and decryption time.

If frequency distribution graph is considered and it is seen that the entire proposed

algorithm generate optimal solutions, which means the frequencies are well distributed in

ciphertext as compared to plaintext; here exception is the RSA, whose frequency is not well

distributed. Now considering Chi-Square values, the proposed technique, RTT, obtained the

higher and best result, thus the RTT encrypted ciphertext is most non-

homogeneous/heterogeneous among all the proposed techniques and also from RSA. If

degree of freedom is considered almost all the proposed techniques are obtained the optimal

solution except RSA.

Frequency distribution graph has a uniform distribution with higher degree of

freedom. Now, taking avalanche ratio, the proposed technique, RTT, obtained the optimal

solution. This means if a single bit/byte in plaintext and or key is changed then there is a

large alteration in ciphertext. Now consider encryption time, the proposed technique, RTT,

shows the best result, thus the time of encryption of RTT is least than other techniques and

RSA.

- 314 -

Table 11.1: Characteristics of microprocessor-based solutions

Techniques MRMKRT RTT RSA

Properties

Frequency

Distribution Graph

√ √ -

Chi-Square Values - √ -

Degree of Freedom √ √ -

Avalanche Ratio - √ -

Encryption Time - √ -

Decryption Time - √ -

Now, considering decryption time, the proposed technique, RTT, gives the good

solution, this means time of decryption of RTT is least than other proposed techniques and

RSA.

Techniques are implemented in bit-level with private/symmetric key cryptography

where as RSA is public key cryptography. MRMKRT is substitution cipher where as RTT is

substitution and transposition technique and RSA is substitution cipher, RTT uses Boolean as

basic operation and MRMKRT uses both modulo addition (non Boolean) and Boolean as a

basic operation and RSA is non-Boolean operation.

The plaintext size and ciphertext size remains same for both proposed techniques

where as for RSA the plaintext size and ciphertext size are not equal. MRMKRT and RTT

forms cycle where the plaintext regenerates after some finite number of iteration depends on

block size and number of iteration used during encryption and for RSA plaintext never

regenerates. MRMKRT, RTT and RSA used 4, 7 and 10 sub-programs respectively.

MRMKRT used 9 IO/M operations, RSA uses 50 IO/M operations and RTT used 5 IO/M

operations per block encryption/decryption. MRMKRT and RTT used one Boolean operation

per block of encryption/decryption but MRMKRT also used 5 non Boolean operations. RSA

uses 50 Boolean operations and uses 10 non-Boolean operations per block of

encryption/decryption.

- 315 -

Table 11.2: Comparisons of MRMKRT, RTT and RSA

Characteristics ↓ Proposed Techniques MRMKRT RTT RSA

Block Cipher √ √ √

Fixed Length Block Cipher √ - √

Variable Length Block Cipher - √ -

Implementation in Bit-Level √ √ √

Implementation other than Bit-Stream - - -

Private/Symmetric Key System √ √ -

Substitution Technique √ √ √

Transposition Technique - √ -

Boolean as Basic Operation √ √ -

Non-Boolean as Basic Operation √ - √

No Alteration in Size √ √ -

Formation of Cycle √ √ -

Non-formation of Cycle - - √

Number of sub-programs used 4 7 10

Number of IO/M operations per block of

encryption/decryption

9 5 50

Number of Boolean operations used per block of

encryption/decryption

1 1 50

Number of Non Boolean operations used per block of

encryption/decryption

5 0 10

Calculated T-states per block of encryption/decryption 760 544 950

So, T-states calculated for MRMKRT, RTT and RSA are 760, 544 and 950

respectively. Thus it can be said that in microprocessor based implementation perspective

RTT is the faster than MRMKRT and RSA in terms of execution speed per block of

encryption/decryption.

- 316 -

Figure 11.1: Graphical representation of comparisons of MRMKRT, RTT and RSA

Thus RTT is giving the optimal solution in respect to microprocessor based

implementation. Table 11.2 and figure 11.1 summarize these discussions.

Table 11.3 illustrates the overall conclusion scenario for FPGA based solutions. In

this table the six proposed algorithms/techniques are compared along with the existing,

renowned and industrially accepted RSA. The symbol “√” shows the optimal solution got

against a property or the best solution. Here also seven properties are considered for the

evaluation, in this chapter and also throughout the thesis. The proposed techniques are TPRT,

TMAT, ROBAST, SRAT, TSV and FBOMAT. The properties taken are frequency

distribution graph, Chi-Square values for non-homogeneity, degree of freedom, avalanche

ratio, encryption time, decryption time and simulation based results.

Taking frequency distribution graph, it is seen that the all proposed algorithm obtain

the optimal solution that means the frequencies are well distributed in ciphertext as compared

to plaintext; here exception is the TSV and RSA, whose frequency is not well distributed.

Now taking the Chi-Square values, the proposed, MFBOMAT, obtain the higher and best

result, thus the MFBOMAT encrypted ciphertext is most non-homogeneous/heterogeneous

among all the proposed technique and also from RSA. Now taking the degree of freedom,

almost all the proposed techniques are obtained the optimal solution except TSV and RSA,

so, this result is at par with the result of frequency distribution graph. Now consider

avalanche ratio, the technique, ROBAST and TSV, obtained the optimal solution.

- 317 -

Table 11.3: Characteristics of FPGA-based solutions

Techniques

TPRT TMAT ROBAST Shuffle-

RAT

TSV RSA MFBOMAT

Properties

Frequency

Distribution

Graph

√ √ √ √ - - √

Chi-Square

Values

- - √ - - - √

Degree of

Freedom

√ √ √ √ - - √

Avalanche

Ratio

- - √ - √ - -

Encryption

Time

- √ - - - - √

Decryption

Time

- - - - √ - √

Simulation

Based

Results

√ - - - - - √

As these two techniques are implemented as Cipher Block Chaining (CBC) mode, so,

the result is also at par with the theory of cryptography. This means if a bit/byte in plaintext

and or key is changed then there is a large change in ciphertext. Now taking encryption time,

the proposed technique, MFBOMAT, shows the best result, thus the time of encryption of

MFBOMAT is least than other techniques and RSA. In terms of decryption time, the

proposed, MFBOMAT, gives the best solution. In terms of simulation based results, this

property is based on results of RTL schematic, less number of Look-Up-Tables thus less area,

less time slices, less timing simulation parameters, thus the proposed, MFBOMAT, gives the

best solution in this respect, it is obvious because the MFBOMAT is the simplest technique

than all the other proposed techniques.

- 318 -

Table 11.4: HDL synthesis report (Netlist generation of RSA, TPRT, TMAT, ROBAST,

SRAT, TSV and MFBOMAT)

Sr

No.

Netlist Components Number

RSA TPRT TMAT ROBAST SRAT TSV MFBOMAT

1 ROMs/RAMs 430 10 14 25 28 12 09

2 Adders/Subtractions 3 0 2 20 28 0 15

3 Registers 420 20 30 50 641 10 10

4 Latches 80 0 0 10 80 0 0

5 Multiplexers 120 0 0 10 136 0 0

Figure 11.2: Pictorial representation of HDL synthesis report of net-list generation

Table 11.4 illustrates the hardware implementation analysis of MFBOMAT, RSA,

TPRT, TMAT, ROBAST, SRAT and TSV. RSA uses 430, TPRT uses 10, TMAT uses 14,

ROBAST uses 25, SRAT uses 28, TSV uses 12 and MFBOMAT uses 9 numbers of

ROMs/RAMs. RSA, TPRT, TMAT, ROBAST, SRAT, TSV and MFBOMAT uses 3, nil, 2,

20, 28, nil and 15 adders/substrations respectively. RSA uses 420, TPRT uses 20, TMAT

uses 30, ROBAST uses 50, SRAT uses 641, TSV uses 10 and MFBOMAT uses 10 numbers

of registers. RSA uses 80, ROBAST uses 10, SRAT uses 80 and others use nil number of

latches. RSA uses 120, ROBAST uses 10, SRAT uses 136 and others use nil number of

latches. Thus from these analysis we can conclude that MFBOMAT is giving optimal result

- 319 -

in terms of HDL synthesis of net list generation for FPGA-based implementation. Figure 11.2

gives the summarized result.

Table 11.5 illustrates the entire timing summary obtained after HDL synthesis. The

speed grade and maximum frequency is same as all the techniques/algorithms have been

implemented in Xilinx Spartan-3E XC3S100E-5VQ100 (package: VQ100, speed grade: -5).

Table 11.5: HDL synthesis report (Timing summary of RSA, TPRT, TMAT, ROBAST,

SRAT and TSV)

Sr

No.

Timing

Constraint

Values

RSA TPRT TMAT ROBAST SRAT TSV MFBOMAT

1 Speed

Grade

-5 -5 -5 -5 -5 -5 -5

2 Minimum

period (ns)

9.895 5.66 7.95 5.55 5.50 10.22 4.99

3 Maximum

Frequency

(MHZ)

101.06 101.06 101.06 101.06 101.06 101.06 101.06

4 Minimum

input arrival

time before

clock (ns)

6.697 4.33 5.55 5.55 4.25 6.66 4.20

5 Maximum

output

required

time after

clock (ns)

4.31 3.33 4.25 4.44 3.33 5.55 3.30

MFBOMAT is obtained minimum period of 4.99ns followed by RSA 9.89ns, TPRT

5.66ns, TMAT 7.95ns, ROBAST 5.55ns, SRAT 5.50ns and TSV 10.22ns. MFBOMAT is

also require minimum input arrival time before clock of 4.20ns followed by RSA 6.70ns,

TPRT 4.33ns, TMAT 5.55ns, ROBAST 5.55ns, SRAT 4.25ns and TSV 6.66ns.

- 320 -

Figure 11.3: Pictorial representation of HDL synthesis report of timing summary

MFBOMAT requires minimum value in maximum output required time after clock of

3.30ns followed by RSA 4.31ns, TPRT 3.33ns, TMAT 4.25ns, ROBAST 4.44ns, SRAT

3.33ns and TSV 5.55ns. Thus from these analysis we can conclude that MFBOMAT is giving

optimal result in terms of HDL synthesis of timing summary for FPGA-based

implementation. Figure 11.3 gives the summarized result. Therefore from the discussions of

HDL synthesis report of both netlist generation and timing summary it can be concluded that

MFBOMAT is the optimal solution for FPGA-based implementation.

11.2 The Future Work

Authors have implemented eight techniques and compared with RSA. There are other

existing algorithm exist such as TDES and AES. Author have also not carried out

cryptanalysis of these techniques. The following are the main points where a further research

may be carried out in future.

 Design and implementation of public key cryptography in FPGA and

microprocessor based system.

 Design and implementation of Elliptic Curve Cryptography in microprocessor

based and FPGA-based systems.

- 321 -

 Study on cryptanalysis like differential attack, linear attack, power analysis of

crypto-hardware/crypto-processor, key boomerang attack, side channel attack,

improved meet-in-the-middle attack etc.

 FPGA-based systems like implementation of fast, secure crypto solution for

FPGA(s), FPGA-based TLC schemes, design of firewalls, gateways in FPGA-

based systems, design of memory systems in FPGA(s) etc.

In this thesis eight novel techniques are proposed, two of them are realized in

microprocessor-based systems and six of them are realized in FPGA-based systems.

MRMKRT and TPRT gives better result in frequency distribution graph analysis and degree

of freedom analysis than RSA. MFBOMAT gives better result in FPGA simulation based

analysis and time complexity analysis than RSA. ROBAST gives better result in Chi-Square

value analysis (non-homogeneity) than RSA. SRAT adds better confusion and diffusion

cryptographic properties. TSV gives better avalanche ratio analysis than RSA.

Therefore, proposed models can be used in modern Information and Communication

Technology (ICT) and Information Technology Enabled Services (ITES) for providing the

primary goal of data/information confidentiality.

References

1. Chester Rebeiro and Debdeep Mukhopadhaya, “High Speed Compact Elliptic Curve

Crypto-processor for FPGA platforms”, Progress in Cryptology – INDOCRYPT

2008, 9
th
 International Conference on Cryptology in India, Kharagpur, India,

December 14-17, 2008, LNCS 5365, Springer.

2. Mridul Nandi, “Two New Efficient CCA-Secure Online Ciphers: MHCBC and

MCBC”, Progress in Cryptology – INDOCRYPT 2008, 9
th
 International Conference

on Cryptology in India, Kharagpur, India, December 14-17, 2008, LNCS 5365,

Springer.

3. Jens-Peter Kaps, “Chai-Tea, Cryptographic Hardware Implementation of xTEA”,

Progress in Cryptology – INDOCRYPT 2008, 9
th

 International Conference on

Cryptology in India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

4. Daniel J Berustine and Peter Schwabe, “New AES Software Speed Record”, Progress

in Cryptology – INDOCRYPT 2008, 9
th
 International Conference on Cryptology in

India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

5. J Lu, Orr Dunkelman, Nathan Kellar and J Kim, “New Impossible Differential Attack

on AES”, Progress in Cryptology – INDOCRYPT 2008, 9
th
 International Conference

on Cryptology in India, Kharagpur, India, December 14-17, 2008, LNCS 5365,

Springer.

6. M Gorski and S Lucks, “New Related Key Boomerang Attacks on AES”, Progress in

Cryptology – INDOCRYPT 2008, 9
th
 International Conference on Cryptology in

India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

7. M. Agarwal, S. Karmakar, D. Saha and Debdeep Mukhopadhaya, “Scan Based Side

Channel Attack on Stream Ciphers and Their Counter-Measures”, Progress in

Cryptology – INDOCRYPT 2008, 9
th
 International Conference on Cryptology in

India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

8. Qiang Tang, “Type-Based Proxy Re-encryption and Its Construction”, Progress in

Cryptology – INDOCRYPT 2008, 9
th
 International Conference on Cryptology in

India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

- 326 -

9. Y Ren and D Gu, “Secure Hierarchical Identity Based Encryption Scheme in the

Standard Model”, Progress in Cryptology – INDOCRYPT 2008, 9
th

 International

Conference on Cryptology in India, Kharagpur, India, December 14-17, 2008, LNCS

5365, Springer.

10. DP Schmid and A Biryukov, “Slid Pairs in Salsa20 and Trivium”, Progress in

Cryptology – INDOCRYPT 2008, 9
th
 International Conference on Cryptology in

India, Kharagpur, India, December 14-17, 2008, LNCS 5365, Springer.

11. A Simmonds, Peter Sandilands and LV Ekert, “An Ontology for Network Security

Attacks”, Applied Computing, Second Asian Applied Computing Conference, AACC

2004, Kathmandu, Nepal, October 29-31, 2004, LNCS 3285, Springer.

12. S Dutta and JK Mandal, “Ensuring e-Security Using a Private-Key Cryptographic

System Following Recursive Positional Modulo-2 Substitution”, Applied Computing,

Second Asian Applied Computing Conference, AACC 2004, Kathmandu, Nepal,

October 29-31, 2004, LNCS 3285, Springer.

13. SJ Mamagi, P Chaurasia and MP Sing, “Merging of RC5 with AES – Incorporating

More Flexibility and Security to AES”, 12
th
 International Conference on Information

Technology, ICIT – 2009, Bhubaneswar, India, December 21- 24, 2009, IEEE.

14. S Ghosh, S Ray, R Chobasia, “Chaotic Cryptography using External Key”, 12
th

International Conference on Information Technology, ICIT – 2009, Bhubaneswar,

India, December 21- 24, 2009, IEEE.

15. PK Jha, JK Mandal, “Cascaded Encryption Through Recursive Carry Addition and

Key rotation (CRCAKR) of a Session Key”, 9
th

 International Conference on

Information Technology, ICIT – 2006, Bhubaneswar, India, December 18-21, 2006,

IEEE and IEEE Computer Society.

16. Nalini N, R Rao G, “Cryptanalysis of Block Cipher via Improved Simulated

Annealing Technique”, 9th International Conference on Information Technology,

ICIT – 2006, Bhubaneswar, India, December 18-21, 2006, IEEE and IEEE Computer

Society.

- 327 -

17. S Sinha, JK Mandal and R Chakraborty, “A Microprocessor-Based Block Cipher

through Overlapped Modulo Arithmetic Technique (OMAT)”, 12
th
 International

Conference on Advanced Computing and Communication, ADCOM 2004, December

15-18, 2004, Ahmedabad, INDIA, IEEE Gujarat Section.

18. HS Dutta and A Dutta, “Bit-stream Authentication Technique for FPGA Security”,

International Conference on Information Technology, INTL-INFOTECH 2007,

March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-6824.

19. BK Upadhaya, P Vanketasewaran, SK Sanyal and R Nandi, “A Novel FPGA based

TLC Scheme”, International Conference on Information Technology, INTL-

INFOTECH 2007, March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-6824.

20. GH Mondal, P Chakraborti and CT Bhuian, “Various New and Modified Approaches

for Encryption and Their Comparative Study”, International Conference on

Information Technology, INTL-INFOTECH 2007, March 19-21, 2007, Haldia, West

Bengal, India, ISSN 0973-6824.

21. C Reddy, R Arora, M Kedia, I Sen Gupta, “Design and Implementation of a Packet

Level Firewall on FPGA”, International Conference on Information Technology,

INTL-INFOTECH 2007, March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-

6824.

22. B Bhuyan, T Bhunia, P Chakraborti, SR Bhadra Chaudhuri, and Atal Chaudhuri,

“Practical Realization of Selective DES and Results Thereof”, International

Conference on Information Technology, INTL-INFOTECH 2007, March 19-21,

2007, Haldia, West Bengal, India, ISSN 0973-6824.

23. Ramkrishna Das, Durbadal Mandal, A.K. Bhatterjee, P. Paul and S. Dutta, “An

Evolutionary Approach in Developing Efficient Ciphering System”, International

Conference on Information Technology, INTL-INFOTECH 2007, March 19-21,

2007, Haldia, West Bengal, India, ISSN 0973-6824.

- 328 -

24. P Paul, S Dutta, AK Bhattacharya, “Ensuring Information Security through a 491-Bit

Storage-Efficient Substitution-Based Block Cipher of Bit-Level Implementation”,

International Conference on Information Technology, INTL-INFOTECH 2007,

March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-6824.

25. P Paul, S Dutta, AK Bhattacharya, “An Attempt to ascertain Security of Information

through a Non Boolean-based Storage-Efficient Private-Key Block Cipher”,

International Conference on Information Technology, INTL-INFOTECH 2007,

March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-6824.

26. K Rahimunnisa, MA Lincy, “A Hardware Implementation of Three Standard

Cryptography Algorithms on an Universal Architecture for the Application of Smart

Cards”, International Conference on Information Technology, INTL-INFOTECH

2007, March 19-21, 2007, Haldia, West Bengal, India, ISSN 0973-6824.

27. PK Jha, JK Mandal, S Shakya, “Encryption Through Cascaded Recursive Key

Rotation of a Session Key and Addition of Blocks (CRKRAB)”, International

Conference on Information Technology, INTL-INFOTECH 2007, March 19-21,

2007, Haldia, West Bengal, India, ISSN 0973-6824.

28. R Saram, M Khomdram, “Juxtaposition of RSA and Elliptic Curve Cryptosystem”,

International Journal of Computer Science and Network Security, IJCSNS, Volume 9.

Number 9, September 2009, ISSN 1738-7906.

29. MH Rais and SM Qasim, “Efficient Hardware Realization of Advanced Encryption

Standard Algorithm using Virtex-5 FPGA”, International Journal of Computer

Science and Network Security, IJCSNS, Volume 9. Number 9, September 2009, ISSN

1738-7906.

30. K Raj, B kumar, P Mittal, “FPGA Implementation and Mask Level CMOS Layout

Design of Redundant Binary Signed Digit Comparator”, International Journal of

Computer Science and Network Security, IJCSNS, Volume 9. Number 9, September

2009, ISSN 1738-7906.

- 329 -

31. P Uppuluri, V Dwakara, A Tangaonkar, V Rajeagowda, “Securing the interaction

between X clients”, International Journal of Computer Science and Network Security,

IJCSNS, Volume 9. Number 9, September 2009, ISSN 1738-7906.

32. MH Rais, SM Qasim, “A Novel Implementation of AES-128 using Reduced Residue

of Prime Numbers based S-Box”, International Journal of Computer Science and

Network Security, IJCSNS, Volume 9. Number 9, September 2009, ISSN 1738-7906.

33. PK Jha and JK Mandal, “Cascaded Recursive Key Rotation and Key Arithmetic of A

Session Key (CRKRKA)”, International Journal of Intelligent Information Processing,

2(1) January-June 2008, pp- 9-20, ISSN 2093-1964.

34. S Dutta and JK Mandal, “Ensuring Information Security through 123-bit recursive

substitution of bits through prime-nonprime detection of sub-stream (RSBP)”, Journal

of Scientific and Industrial Research, Volume 68, July – 2009, pp 584-591, ISSN

0022-4456.

35. PK Jha, JK Mandal, “A Bit Level Symmetric Encryption Technique Through

Recursive key Rotation (RKR) of a Session Key”, AMSE International Journal,

Volume 2, 2007.

36. PK Jha, JK Mandal, S Shakya, “A Bit Level Symmetric Encryption Technique

through Recursive Transposition Operation (RTO) to Enhance the Security of

Transmission”, Journal of the Institute of Engineering, Volume 5, No. 1, pp 106-116,

ISSN 1810-3383, 2005.

37. PK Jha and JK Mandal, “Encryption through Cascaded Recursive Bit wise and Carry

Addition on Blocks (CRBOCAB) of A Session Key”, International Conference on

Advances in Computer Vision and Information Technology, IEEE, IEEE Mumbai

Section, 2008.

38. AK Sharma, CS Lamba, “Network Security and Networking Protocol”, International

Conference on Advances in Computer Vision and Information Technology, IEEE,

IEEE Mumbai Section, 2008.

- 330 -

39. UK Mondal, SN Mandal, J PalChoudhury. JK Mandal, “Frame Based Symmetric Key

Cryptography”, Int. J. Advanced Networking and Applications, Volume: 02, Issue:

04, Pages: 762-769 (2011), ISSN: 09750290, EISSN: 09750282.

40. Dr. Sastry JKR, Prof K. SubbaRao, Prof N Venkata Ram, Ms.J. Sasi Bhanu,

“Attacking Embedded Systems through Power Analysis”, Int. J. Advanced

Networking and Applications, Volume: 02, Issue: 04, Pages: 762-769 (2011), ISSN:

09750290, EISSN: 09750282.

41. Arturo Diaz-Perez, Nazar A. Saqib, and Francisco Rodrguez-Henriquez, “Some

Guidelines for Implementing Symmetric-Key Cryptosystems on Re-configurable-

Hardware”, Information Security Laboratory, Oregon State University,

http://islab.oregonstate.edu/papers/FRH/DiazNzRdgz-DES(9).pdf, published on 30-

Jun-2004.

42. Jerome Burke, John McDonald, Todd Austin, “Architectural Support for Fast

Symmetric-Key Cryptography”, ACM journal, Nov. 12-15, 2000.

43. Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography”, IEEE

Information Theory Workshop, Lenox, MA, June 23–25, 1975 and the IEEE

International Symposium on Information Theory in Ronneby, Sweden, June 21–24,

1976.

44. Philippe Paquet, “Sinople: a 128-bit symmetric block cipher”, Draft – 2, Revised,

March 14, 2003, philippe@paquet.net, http://philippe.paquet.net/sinople.

45. V Canda, TV Trung, S Maglivaras, T Horvath, “Symmetric Block Ciphers Based on

Group Bases”, Selected Areas in Cryptography, SAC'2000, Ed. D. Stinson and S.

Tavares, LNCS, (2001) pp.98—105.

46. Reiner Dojen and Tom Coffey, “Applying Conditional Linear Cryptanalysis to

Ciphers with Key- Dependant Operations”, WSEAS TRANSACTIONS ON

COMPUTERS Issue 5, Volume 3, November 2004 ISSN: 1109-2750, pp 1425-1430.

47. Olivier Billet and Henri Gilbert, “A Traceable Block Cipher”, Appeared in C. -S. Laih

(Ed.): ASIACRYPT 2003, LNCS 2894, pp. 331–346, 2003. Springer-Verlag Berlin

Heidelberg 2003 IACR 2003.

http://islab.oregonstate.edu/papers/FRH/DiazNzRdgz-DES(9).pdf
mailto:philippe@paquet.net
http://philippe.paquet.net/sinople

- 331 -

48. Andrey Bogdanov and Vincent Rijmen, “Zero-Correlation Linear Cryptanalysis of

Block Ciphers”, Cryptology ePrint Archive, 2011.

49. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San

Ling, “Improved Meet-in-the-Middle Cryptanalysis of KTANTAN”, Cryptology

ePrint Archive, 2011.

50. Celine Blondeau and Benot Gerard, “Multiple Differential Cryptanalysis: Theory and

Practice”, Cryptology ePrint Archive, 2011.

51. Farzaneh Abazari, Babak Sadeghian, “Cryptanalysis with Ternary Difference:

Applied to Block Cipher PRESENT”, Cryptology ePrint Archive, 2011.

52. Said E. El-Khamy1, Fellow IEEE, M. Abou El-Nasr2, Member IEEE, and Amina El-

Zein3, “A Highly Secure Chaotic Stream Cipher Using Map and Orbit Hopping”,

25th National Radio Science Conference (NRSC 2008), March 18-20, 2008, Faculty

of Engineering, Tanta Univ., Egypt, ieeexplore.ieee.org.

53. Miodrag J. Mihaljevic and Hideki Imai, “A Stream Cipher Design Based on

Embedding of Random Bits”, International Symposium on Information Theory and its

Applications, ISITA 2008, Auckland, New Zealand, 7-10, December, 2008,

ieeexplore.ieee.org.

54. C .S Lamba, “Design and Analysis of Stream Cipher for Network Security”, Second

International Conference on Communication Software and Networks, 2010,

ieeexplore.ieee.org.

55. Yunyi Liu, Tuanfa Qin, “The Key and IV Setup of the Stream Ciphers HC-256 and

HC-128”, International Conference on Networks Security, Wireless Communications

and Trusted Computing, 2009, ieeexplore.ieee.org.

56. Tieming Chen and Liang Ge, “TinyStream: A Lightweight and Novel Stream Cipher

Scheme for Wireless Sensor Networks”, International Conference on Computational

Intelligence and Security, 2010, ieeexplore.ieee.org.

57. Sheena Mathew, K. Paulose Jacob, “A New Fast Stream Cipher: MAJE4”, -- Indco

2005- Cofeene Chnn India 1-13 Dec 2005, pp 60-63, ieeexplore.ieee.org.

- 332 -

58. Lin Gan, Stan Simmons and Stafford Tavares, “A New Family of Stream Ciphers

Based on Cascaded Small S-Boxes”, pp 0053 – 0058, ieeexplore.ieee.org, IEEE

Conferences, 2000.

59. Shai Halevi, Don Coppersmith and Charanjit Jutla, “Scream: a software-efficient

stream cipher”, June 5, 2002, Stony Brook University, Dept of Computer Science,

http://www.cs.sunysb.edu/.

60. Zhang Peng and Jia Jian Fang, “Comparing and Implementation of Public Key

Cryptography Algorithms on Smart Card”, International Conference on Computer

Application and System Modeling (ICCASM 2010), ieeexplore.ieee.org.

61. Kashif Latif, Athar Mahboob, Nassar Ikram, “A Parameterized Design of Modular

Exponentiation on Reconfigurable Platforms for RSA Cryptographic Processor”,

Publication Year: 2009, Page(s): 200 - 205 IEEE Conferences, ieeexplore.ieee.org.

62. Irma B. Fernandez, Wunnava V. Subbarao, “Encryption based Security for ISDN

Communication: Technique and Application”, 0-7803-1797-1/94/1994 IEEE,

ieeexplore.ieee.org.

63. Jin Park, Jeong-Tae Hwang, Young-Chul Kim, “FPGA and ASIC Implementation of

ECC Processor for Security on Medical Embedded System”, Proceedings of the Third

International Conference on Information Technology and Applications (ICITA’05) 0-

7695-2316-1/05 2005 IEEE, ieeexplore.ieee.org.

64. Yunpeng Zhang and XiaLin, “Fast Public Key Algorithm of Knapsack Type”,

International Conference on Computer and Communication Technologies in

Agriculture Engineering, 2010, ieeexplore.ieee.org.

65. KT Ng. WN Chau, and YM Siu, “An Internet Security System for E-commerce”, 0-

7803-7474-61021%17.000 2002 IEEE, ieeexplore.ieee.org.

66. Jing-Shyang Hwu, Rong-Jaye Chen, Member, IEEE, and Yi-Bing Lin, Fellow, IEEE,

“An Efficient Identity-based Cryptosystem for End-to-end Mobile Security”, IEEE

Transactions On Wireless Communications, vol. 5, no. 9, September 2006,

ieeexplore.ieee.org.

http://www.cs.sunysb.edu/

- 333 -

67. Simson L. Garfinkel, “Public key cryptography”, Internet Kiosk, June 1996,

ieeexplore.ieee.org.

68. Frank E. Ferrante, “Maintaining Security and Privacy of Patient Information”, MSEE,

MSEPP, Proceedings of the 28th IEEE EMBS Annual International Conference New

York City, USA, Aug 30-Sept 3, 2006, ieeexplore.ieee.org.

69. “Security at Internet layer”, Cover feature, 0018-9162/98 1998 IEEE, September

1998, ieeexplore.ieee.org.

70. HoWon Kim, Member, IEEE, and Sunggu Lee, Member, IEEE, “Design and

Implementation of a Private and Public Key Crypto Processor and Its Application to a

Security System”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1,

February 2004, ieeexplore.ieee.org.

71. Zeng Ping, Hu Ronglei, Fang Yong, Yang Jianxi, Liu Yue, “A key management

scheme for Ad hoc networks”, 978-1-4244-3693-4/09 2009 IEEE, ieeexplore.ieee.org.

72. Byoung-Jo "J" Kim, Srividhya Srinivasan, “Simple Mobility Support for IPsec Tunnel

Mode”, AT&T Labs-Research, macsbug@research.att.com, Georgia Institute of

Technology, vidya@cc.gatech.edu, 0-7803-7954-3/03 2003 IEEE,

ieeexplore.ieee.org.

73. Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, and Tadayoshi

Kohno, “Experimental Security Analysis of a Modern Automobile”, Appears in IEEE

Symposium on Security and Privacy. 2010. http://www.autosec.org/.

74. M. Blaze, “High-Bandwidth Encryption with Low-Bandwidth Smartcards”,

Cambridge Workshop on Fast Software Encryption, February 1996,

http://www.crypto.com/papers/, 1995.

75. Matt Blaze, “Key Management in an Encrypting File System”, USENIX Summer

1994 Technical Conference, Boston, MA, June 1994, http://www.crypto.com/papers/.

mailto:macsbug@research.att.com
mailto:vidya@cc.gatech.edu
http://www.autosec.org/
http://www.crypto.com/papers/
http://www.crypto.com/papers/

- 334 -

76. M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, J. Shokrollahi, “Tradeoff

Analysis of FPGA Based Elliptic Curve Cryptography”, Proceedings of the IEEE

International Symposium on Circuits and Systems. 2002. ISCAS’02, 5:797–800,

2002.

77. Gael Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater and Jean-Didier

Legat, “Compact and Efficient Encryption/Decryption Module for FPGA

Implementation of the AES Rijndael Very Well Suited for Small Embedded

Applications”, 18-Dec-2003, http://www.dice.ucl.ac.be/~fstandae/PUBLIS/15.pdf.

78. M. Riaz and HM Heys, “The FPGA Implementation of the RC6 and CAST-256

Encryption Algorithms”, Faculty of Engineering and Applied Science, Memorial

University, Canada, 22-Jun-2004,

http://www.engr.mun.ca/~howard/PAPERS/fpga.pdf.

79. “Protecting FPGAs from Power Analysis – Cryptography Research White paper”, by

Cryptography Research Inc, Version 1.0 April 20, 2010,

http://www.cryptography.com/public/pdf/FPGASecurity.pdf.

80. Ismail San and Nuray At, “Enhanced FPGA Implementation of the Hummingbird

Cryptographic Algorithm”, Cryptology ePrint Archive, 2010,

http://eprint.iacr.org/2010/.

81. John Fry and Martin Langhamme, “RSA and Public Key Cryptography in FPGAs”,

www.altera.com , 2005.

82. M. Huang, K. Gaj, S. Kwon, and T. El-Ghazawi, “An Optimized Hardware

Architecture for the Montgomery Multiplication Algorithm”, PKC 2008: 11th

International Workshop on Practice and Theory in Public Key Cryptography,

Barcelona, Spain, pages 214-228, March, 2008, LNCS 4939.

83. R. Lien, T. Grembowski, and K. Gaj, “A 1 Gbit/s Partially Unrolled Architecture of

Hash Functions SHA-1 and SHA-512”, RSA Conference, Cryptographer's Track, CT-

RSA 2004, San Francisco, CA, LNCS, volume 2964, pages 324–328, Feb., 2004.

http://www.dice.ucl.ac.be/~fstandae/PUBLIS/15.pdf
http://www.engr.mun.ca/~howard/PAPERS/fpga.pdf
http://www.cryptography.com/public/pdf/FPGASecurity.pdf
http://eprint.iacr.org/2010/
http://www.altera.com/

- 335 -

84. Kris Gaj and Pawel Chodowiec, “Comparison of the hardware performance of the

AES candidates using re-configurable hardware”, The Third Advanced Encryption

Standard Candidate Conference, April 13-14, 2000, New York, New York, USA.

National Institute of Standards and Technology, Entire proceeding,

http://csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm, Contents.

85. JP. Kaps and C. Paar, “Fast DES implementations for FPGAs and its application to a

universal key-search machine”, Selected Areas in Cryptography, 5th Annual

International Workshop, SAC'98, Proceedings, Lecture Notes in Computer Science

(LNCS), volume 1556, Queen's University, Kingston, Ontario, Canada, Springer-

Verlag, Berlin, pages 234–247, 1999.

86. Mike Hutton, Jay Schleicher, David Lewis, Bruce Pedersen, Richard Yuan, Sinan

Kaptanoglu, Gregg Baeckler, Boris Ratchev, Ketan Padalia, Mark Bourgeault, Andy

Lee, Henry Kim and Rahul Saini, “Improving FPGA Performance and Area Using an

Adaptive Logic Module”, FPL 2004, LNCS 3203, pp. 135–144, 2004. Š Springer-

Verlag Berlin Heidelberg 2004.

87. Pawel Chodowiec and Kris Gaj, “Very Compact FPGA Implementation of the AES

Algorithm”, C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 319–333, 2003.

Springer-Verlag Berlin Heidelberg 2003.

88. Arshad Aziz and Nassar Ikram, “An FPGA-based AES-CCM Crypto Core For IEEE

802.11i Architecture”, International Journal of Network Security, Vol.5, No.2,

PP.224–232, Sept. 2007, ISSN 1816-353X (Print), ISSN 1816-3548 (Online).

89. Pranam Paul, Saurabh Dutta and A K Bhattacharjee, “Enhancement of Security

through an Efficient Substitution based Block Cipher of Bit-level Implementation

with Possible Loss-less Compression”, IJCSNS International Journal of Computer

Science and Network Security, VOL.8 No.4, April 2008, Journal ISSN: 1738-7906.

90. Mrinmoy Ghosh and Prof. Pranam Paul, “An Application to ensure Security through

Bit-level Encryption”, IJCSNS International Journal of Computer Science and

Network Security, VOL.9 No.11, November 2009, Journal ISSN: 1738-7906.

http://csrc.nist.gov/encryption/aes/round2/conf3/aes3conf.htm
http://www.informatik.uni-trier.de/~ley/db/conf/aes/aes2000.html

- 336 -

91. Lin Han, Jun Han, Xiaoyang Zeng, Ronghua Lu, Jia Zhao, “A Programmable Security

Processor for Cryptography Algorithms”, 978-1-4244-2186-2/08 2008 IEEE,

ieeexplore.ieee.org.

92. Xiao-Hui Yang, Zi-Bin Dai and Xue-Rong Yu, “The Research And Design Of

Reconfigurable Cryptographic Chip Based On Block Cipher”, 1-4244-0161-5/06

2006 IEEE, ieeexplore.ieee.org.

93. Jayanta Kumar Pal, J. K. Mandal, “A Random Block Length Based Cryptosystem

through Multiple Cascaded Permutation- Combinations and Chaining of Blocks”,

Fourth International Conference on Industrial and Information Systems, ICIIS 2009,

28 - 31 December 2009, Sri Lanka, ieeexplore.ieee.org.

94. Jayanta Kumar Pal, J. K. Mandal, “A Novel Block Cipher Technique Using Binary

Field Arithmetic Based Substitution (BCTBFABS)”, Second International conference

on Computing, Communication and Networking Technologies, 2010,

ieeexplore.ieee.org.

95. Robert M. Best, “Preventing Software Piracy With Crypto-Microprocessor”,

Princeton University, Dept. of Computer Science, 19 Nov

2004,http://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/CryptoProc_B

est.pdf , 1980.

96. HoWon Kim, Member, IEEE, and Sunggu Lee, Member, IEEE, “Design and

Implementation of a Private and Public Key Crypto Processor and Its Application to a

Security System”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1,

FEBRUARY 2004, ieeexplore.ieee.org.

97. Ingrid Verbauwhede, Frank Hoornaert, Joos Vandewalle, “Security and Performance

Optimization of a New DES Data Encryption Chip”, IEEE Journal of Solid-State

Circuits, VOL. 23, NO. 3. June 1988, ieeexplore.ieee.org.

98. N. D. Goots, N. A. Moldovyan, P. A. Moldovyanu, and D. H. Summerville, “Fast

DDP-Based Ciphers: from Hardware to Software”, 0-7803-8294-3/04 2004 IEEE,

ieeexplore.ieee.org.

- 337 -

99. Tarun Kochar, Sukumar Nandi and Santosh Biswas, “A Single chip implementation

of AES cipher and Whirlpool hash function”, 978-1-4244-4859-3/09/ 2009,

ieeexplore.ieee.org.

100. Christos F Sotiriou and Yannis Papaefstathiou, “Design-Space Exploration of

A Cryptography Algorithm”, 0-7803-8163-7/03 2003 IEEE, ICECS-2003,

ieeexplore.ieee.org.

101. Carl M. Campbell, “A_Microprocessor-Based Module to Provide Security in

Electronic Funds Transfer Systems”, CH1465-4/79/0000-0148 1979 IEEE,

ieeexplore.ieee.org.

102. G. I. Davida, D. L. Wells, “Microprocessors and Data Encryption”, CH1465-

4/79/0000-0154 1979 IEEE, ieeexplore.ieee.org.

103. Tao Chen, Bin Yu, Jin-Hai Su, Zi-bin Dai, Jian-Guo Liu, “A Reconfigurable

Modular Arithmetic Unit for Public-key Cryptography”, 1-4244-1132-7/07/ 2007

IEEE, ieeexplore.ieee.org.

104. Christian Muller-Schloer and Siemens AG, “A Microprocessor Based Crypto-

processor”, 0272-1732/83/1000-0005 1983 IEEE, ieeexplore.ieee.org.

105. Sukumar S. Raghuram and Chaitali Chakrabarti, “A Programmable Processor

for Cryptography”, ISCAS 2000 - IEEE International Symposium on Circuits and

Systems, May 28-31, 2000, Geneva, Switzerland, ieeexplore.ieee.org.

106. Dan Fay, Alex Shye, Sayantan Bhattacharya, Daniel A. Connors and Steve

Wichmann, “An Adaptive Fault-Tolerant Memory System for FPGA-based

Architectures in the Space Environment”, University of Colorado a Boulder:

Computer Engineering Research, 2007 NASA/ESA Conference on Adaptive

Hardware Systems, August 2007, http://ce.colorado.edu/Publications/.

107. Vyacheslav Kharchenko, Olexander Siora, Volodymyr Sklyar, “Design and

Testing Technique of FPGA-Based Critical Systems”, CADSM’2009, 24-28

February, 2009, Polyana-Svalyava (Zakarpattya), UKRAINE, ieeexplore.ieee.org.

http://ce.colorado.edu/Publications/

- 338 -

108. Xuemei LI, Qiuchen YUAN,Wuchen WU, Xiaohong PENG, Ligang HOU,

“Implementation of GSM SMS Remote Control System Based on FPGA”, 978-1-

4244- 7618-3 /10/ IEEE, ieeexplore.ieee.org, 2010.

109. GODWIN U, “A Microprocessor – Based Tunneling Machine Controller”,

W/CH 2935-5/90/~1879 1990 IEEE, ieeexplore.ieee.org.

110. Kamalnayan Jayaraman, Vivekananda M. Vedula and Jacob A. Abraham,

“Native Mode Functional Self-Test Generation for Systems-on-Chip”, Proceedings of

the International Symposium on Quality Electronic Design (ISQED.02) 0-7695-1561-

4/02 2002 IEEE, IEEE Computer Society, ieeexplore.ieee.org.

111. Mudduveerappa, S.Nagaraja.Rao, H.D.Maheshappa and R.Sriram,

“Microprocessor Based Audiometer for Mass Screening”, IEEE Engineering in

Medicine and Biology Society 10th Annual International Conference—1625 CH2566-

BjBBjOOOO--1625 1988 IEEE, ieeexplore.ieee.org.

112. Dr.V.P.Ramamurth, Mr.V.Vijayakumar, Mr S. Saravanan, “Design of A 8085

Microprocessor Controller for A Three Phase Converter With Fourth Leg”, 1980,

ieeexplore.ieee.org.

113. Zhining Lim and Braden J. Phillips, “An RNS-Enhanced Microprocessor

Implementation of Public Key Cryptography”, 978-1-4244-2110-7/08/2007 IEEE,

ieeexplore.ieee.org.

114. Yadollah Eslami, Member, IEEE, Ali Sheikholeslami, Senior Member, IEEE,

P. Glenn Gulak, Senior Member, IEEE, Shoichi Masui, Member, IEEE, and Kenji

Mukaida, “An Area-Efficient Universal Cryptography Processor for Smart Cards”,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, VOL. 14, NO.

1, January 2006, ieeexplore.ieee.org.

115. Peter A Ivey, Simon N Walker, Jon M Stern and Simon Davidson, “An Ultra-

High Speed Public Key Encryption Processor”, IEEE 1992 Custom Integrated

Circuits Conference, ieeexplore.ieee.org.

116. Johann GroBschadl, “The Chinese Remainder Theorem and its Application in

a High-speed RSA Crypto Chip”, 1063-9527/00 2000 IEEE, ieeexplore.ieee.org.

- 339 -

117. Rajashekhar Modugu, Yong-Bin Kim and Minsu Choi, “Design and

Performance Measurement of Efficient IDEA (International Data Encryption

Algorithm) Crypto-Hardware using Novel Modular Arithmetic Components”, 978-1-

4244-2833-5/10/ 2010 IEEE, ieeexplore.ieee.org.

118. Bo Yang, Kaijie Wu, and Ramesh Karri, “Secure Scan: A Design-for-Test

Architecture for Crypto Chips”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, VOL. 25, NO. 10, October 2006, ieeexplore.ieee.org.

119. Ms. Anuja R. Tungar, “Review paper: On, Comparative study of Embedded

System architectures for implementation of ECC.”, 978-1-4244-4570-7/09 2009

IEEE, ieeexplore.ieee.org.

120. Mohamed H. Abdel Rahman, E. Talkhan and Samir I. Shaheen, “Crypto-

Algorithms maker Kit”, ICM 2bb3, Dec. 9-1 1 , Cairo, Egypt, ieeexplore.ieee.org,

2003.

121. William Stallings, “Cryptography and Network Security: Principle and

Practice”, Second Edition, Pearson Education Asia, Sixth Indian Reprint, 2002, ISBN:

81-7808-605-0.

122. Behrouz A. Forouzan, “Cryptography and Network Security”, Special Indian

Edition 2007, Tata Mc-Graw-Hill, ISBN-13: 978-0-07-066046-5, ISBN-10: 0-07-

066046-8.

123. Ramesh Gaonkar, “Microprocessor Architecture, Programming and

Application with the 8085”, Fifth Edition, Penram International Publishing (India)

Private Limited, ISBN: 81-87972-09-2.

124. Dr. Hafizur Rahaman, “Microprocessor Programming and Interfacing (Intel

8085 and 8086)”, First Edition 2005, Everest Publishing House, ISBN: 81-7660-129-

2.

125. Wayne Wolf, “FPGA-Based System Design”, First Impression – 2009,

Pearson Education, ISBN: 978-81-317-2465-1.

- 340 -

126. Zainalabedin Navabi, “Embedded Core Design with FPGA(s)”, Edition 2008,

Tata Mc-Graw Hill, ISBN-13: 978-0-07-013978-7, ISBN-10: 0-07-013978-4.

127. J. Bhasker, “A VHDL Primer”, Thirteen Indian Reprint 2004, Pearson

Education, ISBN: 81-7808-016-8.

128. Kanika Kaur, “Digital System Design”, Copyright © 2009, Scitech

Publications (India) Pvt. Ltd., ISBN: 978-81-8371-188-3.

129. Yashavant P. Kanetkar, “Understanding Pointers in C”, First Indian Edition

2001, BPB Publications, ISBN: 81-7656-358-7.

130. “Dictionary of Computer and Information Technology Terms”, by LP

Editorial Board, Law Point (Kolkata, India) Publishers, Distributers and Book Sellers,

First Edition 2004.

131. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-Based Block

Cipher through Rotational Addition Technique (RAT)”, published & presented in 9
th

International Conference on Information Technology (ICIT 2006), held on 18-21

December 2006, at Bhubaneswar, India, organized and sponsored by IEEE Computer

Society, IEEE, Orissa Information Technology Society (OITS), Institute of Technical

Education and Research (ITER), New Jersey Institute of Technology (NJIT), Satyam

Computers Ltd. and IEEE New jersey Section, and published by IEEE Computer

Society Conference Publishing Services, ISBN-10: 0-7695-2635-7/06, ISBN-13: 978-

0-7695-2635-5, pp 155–159.

132. Rajdeep Chakraborty and J.K. Mandal, “An Approach Towards Digital

Content Protection Through Two Pass Replacement Technique (TPRT)”, published in

First International Conference on Information Technology (INTL-INFOTECH 2007),

held on March 19-21, 2007 at Haldia, INDIA, organized and sponsored by

Department of Computer Science and Informatics, Haldia Institute of Technology

(HIT), Technical Education Quality Improvement Program (TEQIP), Computer

Society of India (CSI) (Kolkata), TEQIP network Partners, University of Calcutta

(Kolkata), Govt. College of Engineering and Ceramic Technology (Kolkata), and

published by Vitasta Publishing Pvt. Ltd., New Delhi, India, ISBN 81-89766-74-0,

ISSN 0973-6824,pp 62–65.

- 341 -

133. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-Based Stream

Cipher Through Stream Addition Technique (SAT)”, published in International

Conference on Systemics, Cybernetics and Informatics (ICSCI 2009), held on January

07-10, 2009 at Hyderabad, India, organized, sponsored and, published by Pentagram

Research Center Pvt. Ltd. Hyderabad, India, Volume 1 of 2, pp 41–45.

134. Rajdeep Chakraborty and J.K. Mandal, “A Microprocessor-based Stream

Cipher through Stream Parity Technique (SPT)”, published & presented in First

International Conference on Computer, Communication, Control and Information

Technology (C
3
IT 2009), held on 06-07 February, 2009 at Hoogly, West Bengal,

INDIA, organized and sponsored by Academy of Technology (AOT), IEEE Leos

Calcutta Chapter, IEEE EDS Calcutta Chapter, All India Council for Technical

Education (AICTE), Indian Space Research Organization (ISRO), and CSIR, and

published by MACMILLAN PUBLISHERS INDIA LTD Advanced Research Series,

New Delhi, India, ISBN 10: 0230-63759-0, ISBN 13: 978-0230-63759-7, pp 417–

423.

135. Rajdeep Chakraborty and J.K. Mandal, “Ensuring e-Security through

Microprocessor-Based Recursive Transposition Technique (RTT)”, published &

presented in 12
th

 International Conference on Information Technology (ICIT 2009),

held on December 21-24, 2009, at Bhubaneswar, India, organized and sponsored by

IEEE, IEEE Computer Society, Orissa Information Technology Society (OITS),

Temple City Institute of Technology and Engineering (TITE), Silicon Institute of

Technology, IIIT, NIST, OCAC and Techno India Group (Kolkata), and published by

Tata McGraw Hill Education Private Limited, New Delhi, India, ISBN-10: 0-07-

068104-0, ISBN-13: 978-0-07-068104-2, pp 66–69.

136. Rajdeep Chakraborty and J. K. Mandal, “An RTL Based Design &

Implementation of Block Cipher through Oriented Encryption Technique (OET)”,

published & presented in International Conference on Computing and Systems (ICCS

2010), held on November 19-20, 2010, at Burdwan, West Bengal, India, organized

and published by Department of Computer Science, The University of Burdwan,

Burdwan – 713104, West Bengal, India, ISBN – 93-80813-01-5, pp 335 – 338.

- 342 -

137. Rajdeep Chakraborty and J. K. Mandal, “An RTL Based Design &

Implementation of Block Cipher through Time-Stamp-Keyed-Oriented Encryption

Technique (TSK-OET)”, published in International Journal of Advanced Research in

Computer Science (IJARCS), ISSN 0976 – 5697, accepted & published in Volume 2

– No. 1 (Jan – Feb 2011) issue, pp-428 – 432, indexed by Index Copernicus,

Directory of Open Access Journal (DAOJ), Open J Gate, Ulrichs Web, EBSCOhost,

Electronic Journal Library, New Jour, ScienceCentral.com, Genamics, Mlibrary of

University of Michigan, Kun Shan University Library and Dayang Journal System.

138. Rajdeep Chakraborty and J. K. Mandal, “FPGA Based Cipher Design &

Implementation of Recursive Oriented Block Arithmetic and Substitution Technique

(ROBAST)”, published in (IJACSA) International Journal of Advanced Computer

Science and Applications, ISSN 2156-5570 (online), ISSN 2158-107X (print),

accepted and published in Volume 2- Issue 4 (April 2011) issue pp-54 – 59, indexed

by. docstoc, Scribd, getCITED, CiteSeer
x
, EBSCO HOST, Directory of Open Access

Journal (DAOJ), Google Scholar, Journal Seek, Index Copernicus, Georgetown

University Library and Powered by Microsoft Research.

139. Rajdeep Chakraborty, Sananda Mitra and J. K. Mandal, “Shuffle-RAT: An

FPGA-based Iterative Block Cipher”, published in International Journal of Advanced

Research in Computer Science (IJARCS), ISSN 0976 – 5697, accepted & published

in Volume 2 – No. 3 (May – June 2011) issue, pp-21 – 24, indexed by Index

Copernicus, Directory of Open Access Journal (DAOJ), Open J Gate, Ulrichs Web,

EBSCOhost, Electronic Journal Library, New Jour, ScienceCentral.com, Genamics,

Mlibrary of University of Michigan, Kun Shan University Library and Dayang

Journal System.

- 343 -

140. Rajdeep Chakraborty, Sonam Agarwal, Sridipta Misra, Vineet Khemka, Sunit

Kr Agarwal and J. K. Mandal, “Triple SV: A Bit Level Symmetric Block-Cipher

Having High Avalanche Effect”, published in (IJACSA) International Journal of

Advanced Computer Science and Applications, ISSN 2156-5570 (online), ISSN

2158-107X (print), accepted and published in Volume 2- Issue 7 (July 2011) issue pp-

61 – 68, indexed by. docstoc, Scribd, getCITED, CiteSeer
x
, EBSCO HOST, Directory

of Open Access Journal (DAOJ), Google Scholar, Journal Seek, Index Copernicus,

Georgetown University Library, Ulrichsweb, BASE, WorldCat and Powered by

Microsoft Research.

141. Rajdeep Chakraborty, Sridipta Misra, Sunit Kumar Agarwal, Vineet Khemka,

Sonam Agarwal and J. K. Mandal, “Efficient Hardware Realization of Triple Data

Encryption Standard (TDES) Algorithm using Spartan-3E FPGA”, published &

presented in International Conference on Issues and Challenges in Networking,

Intelligence and Computing (ICNICT 2011), held on 2-3 September, 2011, at

Ghaziabad, India, organized and sponsored by Department of Computer Science and

Engineering, Krishna Institute of Engineering and Technology (KIET), India,

Department of Science & Technology, Govt. of India, New Delhi, Computer Society

of India (Ghaziabad Chapter), International Neural Network Society (India Regional

Chapter), International Journal of Advanced Research in Computer Science and

Ubiquitous Computing and Communication Journal, and published by Nandani

Prakashan Pvt. Ltd., New Delhi, India, ISBN – 978-93-81126-27-1, pp 60 – 63.

142. Rajdeep Chakraborty, Debajyoti Guha and J. K. Mandal, “A Block Cipher

Based Cryptosystem Through Forward Backward Overlapped Modulo Arithmetic

Technique (FBOMAT)”, published in International Journal of Engineering & Science

Journal (IJESR), ISSN 2277 – 2685, accepted & published in Volume 2 – Issue 5

(May 2012) issue, pp-349 – 360, indexed by Index Copernicus, Open J Gate, Ulrichs

Web, Google Scholar.

- 344 -

143. Rajdeep Chakraborty, Avishek Datta and J. K. Mandal, “Modified Recursive

Modulo 2
n
 and Key Rotation Technique (MRMKRT)”, published in International

Journal of Engineering & Science Research (IJESR), ISSN 2277 – 2685, accepted &

published in Volume 5 – Issue 2 (February 2015) issue, pp-76 – 81, indexed by Index

Copernicus, Open J Gate, Ulrichs Web, Google Scholar.

144. Rajdeep Chakraborty, Santanu Basak and JK Mandal “An FPGA Based

Crypto Processor through Triangular Modulo Arithmetic Technique (TMAT)”,

published in International Journal of Multidisciplinary in Cryptology and Information

Security (IJMCIS) ISSN 2320 –2610, accepted & published in Volume 3, No.3 (May

– June 2014) issue, PP 14-20, indexed by Google scholar, Cite Seer, getCited,

.docstoc, Scribd, Ulrich Web, Index Copernicus, Microsoft Academics, New Jour,

DOAJ.

145. Debajyoti Guha, Rajdeep Chakraborty and Abhirup Sinha “A Block Cipher

Based Cryptosystem Through Modified Forward Backward Overlapped Modulo

Arithmetic Technique (MFBOMAT)”, published in IOSR Journal of Computer

Engineering (IOSR–JCE), e-ISSN: 2278-0661, p-ISSN: 2278-8727, accepted &

published in Volume 13, Issue 1 (Jul. - Aug. 2013) issue, PP 138-146, indexed by

NASA, Cross Ref, Arxiv.org, Cabell’s, Index Copernicus, EBSCO Host, Ulrichs

Web, Google Scholar, ANED, Jour Informatics.

146. Rajdeep Chakraborty, Sibendu Biswas and JK Mandal “Modified Rabin

Cryptosystem through Advanced Key Distribution System”, published in IOSR

Journal of Computer Engineering (IOSR–JCE), e-ISSN: 2278-0661, p-ISSN: 2278-

8727, accepted & published in Volume 16, Issue 2 Ver XII (Mar. - Apr. 2014) issue,

PP 01-07, indexed by NASA, Cross Ref, Arxiv.org, Cabell’s, Index Copernicus,

EBSCO Host, Ulrichs Web, Google Scholar, ANED, Jour Informatics.

- 345 -

147. Rajdeep Chakraborty, Avishek Datta and JK Mandal “Secure Encryption

Technique (SET): A Private Key Crypto System”, published in International Journal

of Multidisciplinary in Cryptology and Information Security (IJMCIS) ISSN 2320 –

2610, accepted & published in Volume 4, No.1 (January – February 2015) issue, PP

10-13, indexed by Google scholar, Cite Seer, getCited, .docstoc, Scribd, Ulrich Web,

Index Copernicus, Microsoft Academics, New Jour, DOAJ.

148. Sarkar, A, Mandal, J. K., “Secured wireless communication through Simulated

Annealing Guided Triangularized Encryption by Multilayer Perceptron generated

Session Key(SATMLP)”,CCSIT- 2013, Proceedings of Third International

Conference on Computer Science & Information Technology(CCSIT-2013) vis

Lecture Notes of the Institute for Computer Science, Social Informatics and

Telecommunications Engineering(LNICST), Springer, ISSN No.1867-8211, Feb.18-

20, 2013, pp. …-…76, , Bangalore, India., 2013

149. Mandal, J. K., Chatterjee R, “Authentication of PCSs with Triangular

Encryption Technique”, Proceedings of 6th Philippine Computing Science

Congress(PCSC 2006), Ateneo de Manila University, Manila, Philippine, March 28-

29,2006.

150. Avishek Datta, Rajdeep Chakraborty and J.K. Mandal, “The CRYPSTER: A

Private Key Crypto System”, published & presented in 2015 IEEE International

Conference on Computer Graphics, Vision and Information Security (IEEE CGVIS

2015) IEEE Conference Record number: #36759, held on November 02-03, 2015, at

Bhubaneswar, India, organized and sponsored by IEEE Kolkata Section, KIIT

University, Bhubaneswar, Odisha India and published in IEEE XPLORE CFP 15C89-

ART ISBN: 978-1-4673-7437-8, CD-ROM CFP 15C89-CDR ISBN: 978-1-4673-

7436-1, pp 35–37.

